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Longitudinal studies

Longitudinal data consist of repeated measurements over time
on the same individuals.

In medical research, the values of biochemical markers related
to some disease are typically recorded at each clinic visit to keep
track of disease progression.

This is in contrast to cross-sectional studies where, for each
individual data, on a single time point are collected.

There is often great variability across subjects, e.g. due to
unmeasured characteristics such as genetic or environmental
factors.

In longitudinal studies, the effects of such factors are cancelled
out, helping us identify causal relationships under certain as-
sumptions.
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Example of longitudinal data
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Linear mixed models (LMMs)

Linear mixed models (LMMs) are frequently applied in longitu-
dinal data analysis.

The random intercept and slope model is particularly popular

Yj = (β0 + b0) + (β1 + b1)tj + ϵj , j = 1, 2, . . . , Q

- (b0, b1)
⊤ ∼ N(0,D) → random intercept and slope

- (β0, β1)
⊤ → fixed effects

- ϵj ∼ N(0, ω−1) → the within-individual error

The idea is that individuals have their own intercepts and rates
of change over time (slopes).

Thomadakis et al. Competing risk SREMs using CIFs
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Random intercept and slope

Thomadakis et al. Competing risk SREMs using CIFs
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Linear mixed models - II

In the general case,

Y =Xβ +Zb+ ϵ,

where β and b ∼ N(0,D) are the fixed and random effects,
with associated design matrices, X and Z, respectively. ϵ ∼
N(0, ω−1bi).

X and Z are typically functions of time.

E(Y ) =Xβ and V ar(Y ) = σ2(bi +ZDZ
⊤).

Hence, integrating out the random effects, a specific model for
the covariance structure is implied.

Both Bayesian and Frequentist inferences are straightforward.

Thomadakis et al. Competing risk SREMs using CIFs
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Example of longitudinal data with missingness
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Types of missing data

Figure: Examples of missing data patterns in a hypothetical longitudinal
study with five planned measurements; “x” denotes an observed
measurement and “?” a missing longitudinal response

Thomadakis et al. Competing risk SREMs using CIFs
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Missing data in longitudinal studies

In practice, some values in Y = (Y1, . . . , YQ)
⊤ can be missing.

Dropout: measurements after a certain time point are missing.

M =
∑Q

j=1Rj , the number of the observed measurements,
where Rj denotes an indicator of Yj being observed/recorded.

The quality of the inference depends crucially on the association
between Y and M .

Given M = j, Y ⊤ = (Y ⊤
(j),Y

⊤
(j̄)), with

Y (j) = (Y1, . . . , Yj)
⊤ (observed data)

Y (j̄) = (Yj+1, . . . , YQ)
⊤ (missing data).

Bayesian/Frequentist inferences are based on the joint distribu-
tion of the observed data and the dropout process, (Y (M),M).

Thomadakis et al. Competing risk SREMs using CIFs
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Missing data mechanisms Little & Rubin (1987)

Missing completely at random (MCAR): all valid methods un-
biased

Pr(M = j|Y ;θt) = Pr(M = j;θt).

Missing at random (MAR): likelihood-based methods (e.g. lin-
ear mixed models) modelling all the observed data unbiased

Pr(M = j|Y ;θt) = Pr(M = j|Y (j);θt).

Missing not at random (MNAR): needs joint modelling of the
marker and the dropout process

Pr(M = j|Y ;θt) = Pr(M = j|Y (j),Y (j̄);θt).

Definite discrimination between MAR and MNAR is difficult as it
relies on modelling assumptions (Molenberghs et al. 2008).

Thomadakis et al. Competing risk SREMs using CIFs
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Shared random effects models (SREMs)

Shared random effects models (SREMs) are a specific subclass
of joint models.

Key assumption: The marker model and the time-to-dropout
model are linked through the random effects b. They specify
models for both

- the observed responses Y |b, e.g. through LMMs:
Y =Xβ +Zb+ ϵ;

- the time to dropout T |b
Given b, the two processes are assumed to be independent.

They are joint models corresponding to a MNAR mechanism.

- Dependence on the missing observations is introduced by
integrating out the random effects.

Numerical/stochastic integration methods are usually required
for inference.

Thomadakis et al. Competing risk SREMs using CIFs
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Examples of SREMs

In many SREMs, it is considered that

m(t) =X(t)β +Z(t)b

is the “true” marker value at t.

Current value parameterization: The hazard of dropout de-
pends on the “true” marker value

h{t|m(t);θt} = h0(t;ψ) exp {αm(t)} .

Random-effects parameterization: The hazard of dropout
depends directly on the random effects

h(t|b;θt) = h0(t;ψ) exp
(
α⊤b

)
.

Thomadakis et al. Competing risk SREMs using CIFs
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Competing risk SREMs

Most of the research in joint modeling assumes that there is a
single cause of failure (event).

Multiple failure causes exist in many applications.

When occurrence of one event precludes the occurrence of
other events (or substantially alters the probability of
observing the other events) → Competing risks.

Joint modelling of longitudinal data and competing-risk
survival data has also gained attention in the last decade.

In principle, competing-risk data can be analyzed through
either cause-specific hazards or cumulative incidence functions
(CIFs).

Thomadakis et al. Competing risk SREMs using CIFs
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Cause-specific hazards

Let T ⋆
i be the survival time and Ki ∈ {1, . . . ,K} the failure cause

Cause-specific hazards: → the rate of failure from a
particular cause at a specific time point given that the
individual has survived up to that point.

αik(t) = lim
h→0

P (t < T ⋆
i ≤ t+ h,Ki = k|Ti > t)

h

Proportional cause-specific hazards are usually applied in
practice, αik(t) = α0k(t) exp(x

⊤
i β).

Likelihood function for a sample {(ti,Ki)}Ni=1

L(θ) =
N∏
i=1

K∏
k=1

αik(ti)
δik exp

{
−
∫ ti

0
αik(u)du

}
⇒ models for each cause can be fitted separately by treating
the other failure causes as non-informative right censoring.

Thomadakis et al. Competing risk SREMs using CIFs
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Cumulative incidence function (CIF)

Definition: The probability of occurrence of a specific cause over
time

Fik(t) = P (T ⋆
i ≤ t,Ki = k) =

∫ t

0
αik(u) exp

{
−
∫ u

0

K∑
k=1

αik(w)dw

}
du

Complex function of cause-specific hazards

Semiparametric modeling of subdistribution hazards, λik(t),
proposed by Fine & Gray (1999) is typically performed for
the event of interest as

Fik(t) = 1− exp

{
−
∫ t

0
λik(u)du

}
i.e. there is an 1-1 relationship between Fik(t) and λik(t).

Thomadakis et al. Competing risk SREMs using CIFs
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Cause-specific hazards or Cumulative incidence in SREMs?

Aetiological-type research questions → cause-specific hazards

Prognosis of a disease and prediction purposes → CIF

Cause-specific hazards more frequent in joint modeling, proba-
bly due to the much easier implementation (recall the likelihood
factorizes into K independent components).

The CIFs can be obtained from the CSHs, requiring though
complex integration.

- becomes even more difficult due to the presence of random
effects

Therefore, SREMs in terms of the CIFs would be more natu-
ral and could substantially reduce the computational burden of
formally deriving CIF estimates based on cause-specific hazard
estimates.

Thomadakis et al. Competing risk SREMs using CIFs
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Boundedness constraint in CIF-based modeling

Issue with CIF-based modeling

The all-cause CIF should be bounded by 1.

Approaches to deal with it in standard Survival Analysis

1 Ignore the constraint (Fine & Gray 1999, Jeong & Fine 2006,
Mozumder et al. 2018)

2 Model the the baseline asymptote for one cause-specific CIF
(Shi et al. 2013)

3 Add a small positive number to force the survival function to
be positive (Mao & Lin 2017)

4 Incorporating a formal (nonlinear) boundedness constraint in
the maximization process (Bakoyannis et al. 2017), e.g. through
the Augmented Lagrangian Adaptive Barrier Minimization Al-
gorithm (alabama library in R).

Thomadakis et al. Competing risk SREMs using CIFs
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Boundedness constraint in SREMs

However, how to impose such a constraint in SREMs is not so
clear as SPMs are defined conditionally on the random effects,
and integration over the prior distribution of the random effects
is required to obtain the observed data likelihood.

Under the Bayesian paradigm, Gelfand et al. (1992) suggested
that when the constraints involve the data (as it is the case in
CIF modelling), it is more natural to build the constraints into
the likelihood function rather than into the prior distribution.

Thomadakis et al. Competing risk SREMs using CIFs
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Motivating example: CD4 cell counts

CD4 cell count, an immunological biormarker, has been widely
used to keep track of HIV progression.

CD4 counts increase rapidly after ART initiation, reaching in
most cases normal levels within a few years.

Robust CD4 recovery is important both at the individual and
population level as lower CD4 counts are associated with higher
mortality.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

Motivation: CD4 modelling after ART initiation

CD4 data are censored due to death in care and disengagement
from care (competing risks).

Significant under-reporting of deaths, more often in resource-
constrained countries.

Deceased patients can be incorrectly classified as disengaged
from care ⇒ biased estimates.

Thus, disengagement from care is different from non-informative
censoring (e.g. administrative censoring).

Competing risk SREMs have been proposed in the literature,
with most approaches based on cause-specific hazards.

- However, the cumulative probability of an event over time, i.e.
the cumulative incidence function (CIF), could be more relevant
from a clinical perspective.
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Failure cause misclassification

One solution: Double sampling
- The true failure cause is ascertained in a small random sample
of individuals initially classified as disengaged from care.

Various approaches to deal with outcome misclassification:

- Bakoyannis et al. (2019): missing absorbing states in a multi-
state model through pseudo-likelihood.

- Daniel Paulino et al. (2003): misclassification in Binomial re-
gression using MCMC.
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AIMs

1 To propose a unified and flexible approach to jointly model a
continuous disease marker over time and competing risks using
CIFs for the survival submodels, accounting also for misspecified
failure cause.
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Proposed model structure

Longitudinal submodel: a standard LMM

yi(t) = x
⊤
i (t)β + z⊤i (t)bi + ϵi(t),

with mi(t) = x
⊤
i (t)β + z⊤i (t)bi the “true” marker value for

the ith individual at time t and Mi(t) = {mi(s) : 0 ≤ s ≤ t}.

Competing risks submodel: We simultaneously model the
CIFs for all causes conditionally on the history of true marker
values, Mi(t):

Fik{t|Mi(t),wik;θtk} = Pr{T ⋆
i ≤ t,Ki = k|Mi(t),wik;θtk},

where wik denotes baseline covariates and θtk the parameters
of the kth CIF.
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Models for CIFs

FM
ik {t|Mi(t),wik;θtk} = 1− exp

{
−
∫ t

0
eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds

}
,SREM-CIF-1

FM
ik {t|Mi(t),wik;θtk} = 1−

{
1 + ck

∫ t

0
eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds

}−1/ck

SREM-CIF-2

where Bk(t) is a B-splines basis matrix for cause k at time t and
αk is the parameter linking the “true” marker values to the CIF for
cause k. Also, θ⊤tk = (ψ⊤

k ,γ
⊤
k , αk).

SREM-CIF-1→ proportional subdistribution hazards joint model
(Deslandes & Chevret 2010), whereas SREM-CIF-2 is an ex-
tension of SREM-CIF-1 based on the generalized odds rate
transformation (Jeong & Fine 2007, Bakoyannis et al. 2017).

SREM-CIF-2 reduces to SREM-CIF-1 as ck ↘ 0, thus the
model proposed by Deslandes & Chevret (2010) is a special
case.
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Addressing boundness constraints

The sum of all cause-specific CIFs should be bounded by 1 at each
failure time. To account for that, we assumed that

Fik{t|Mi(t),wik;θtk} =

{
FM
ik {t|Mi(t),wik;θtk}, 0 ≤ t ≤ τi

FM
ik {τi|Mi(τi),wik;θtk}, t > τi

,

i.e. we allowed the CIFs to increase up to a certain time point

τi = sup

[
t :

K∑
k=1

FM
ik {t|Mi(t),wik;θtk} ≤ 1

]
τi ≡ τi(θ, bi) is the upper limit
for the survival time T ⋆

i ; τi = ∞
if the constraint is met ∀t > 0.

If some specific parameter val-
ues (θ, bi) do not meet this
constraint ⇒ zero likelihood ⇒
zero posterior.
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Bayesian estimation

Bayesian estimation procedure using MCMC.

Letting θ = (θ⊤L ,θ
⊤
t )

⊤ be the whole parameter vector and Dobs

be the observed data, the posterior of all unknown parameters,
f(θ, b|Dobs), is proportional to

f(θ)

N∏
i=1

(
f(yi|bi;θL)f(bi;θL)

K∏
k=1

fik{Ti|Mi(Ti),wik;θtk}δik

[
1−

K∑
k=1

Fik{Ti|Mi(Ti),wik;θtk}

]1−δi )
,

where δik = I(Ki = k), δi =
∑K

k=1 δik, Ti = min(T ⋆
i , Ci) and

fik{t|Mi(t),wik;θtk} denotes the derivative of Fik{t|Mi(t),wik;θtk}
over t.
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Calculation of the upper limit τi?

Since Fik{t|Mi(t),wik;θtk} =

{
FM
ik {t|Mi(t),wik;θtk}, 0 ≤ t ≤ τi

FM
ik {τi|Mi(τi),wik;θtk}, t > τi

,

the density function is equal to

fik{t|Mi(t),wik;θtk} = I(0 < t < τi)
∂FM

ik {t|Mi(t),wik;θtk}
∂t

Therefore, the posterior distribution is equivalent to including
the model-based CIF, FM

ik {Ti|Mi(Ti),wik;θtk}, and its deriva-
tive along with the indicator function

I

[
K∑
k=1

FM
ik {Ti|Mi(Ti),wik;θtk}

]

Thus, calculation of τi(β,θt, bi) is not required within the
MCMC algorithm (more on the usefulness of τi later).
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MCMC details

Some conditional distributions can be conjugate:

Assuming ω ∼ Gamma(λ1, λ2) ⇒ the corresponding condi-
tional posterior distribution is

Gamma

{
n

2
+ λ1, λ2 +

1

2

N∑
i=1

(yi −Xiβ −Zibi)
⊤(yi −Xiβ −Zibi)

}

Assuming D ∼ IW (A, df) (Inverse-Wishart), the correspond-
ing conditional posterior distribution is equal to

IW

(
A+

N∑
i=1

bib
⊤
i , df +N

)
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Conditional posterior of β

Proposal distribution: q(βcan|D, b;ω) ∼ N(µ1,C1) (the poste-
rior distribution given the longitudinal model only)

C1 =

(
C−1

0 + ω

N∑
i=1

X⊤
i Xi

)−1

µ1 = C1

{
C−1

0 µ0 + ω

N∑
i=1

X⊤
i (yi −Zibi)

}
Then the acceptance probability is equal to

p = min

{
1,

∏N
i=1 f{Ti,Ki|M can

i (Ti),wi;θt}∏N
i=1 f{Ti,Ki|Mi(Ti),wi;θtk}

}
,

where M can
i (Ti) and Mi(Ti) denote the “true” marker values up to

Ti evaluated at the candidate, βcan, and current MCMC value, β,
respectively.
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Conditional posterior of bi

f(bi|D;θ) ∝ exp

{
−1

2
b⊤i (D

−1 + ωZ⊤
i Zi)bi + ωb⊤i Z

⊤
i (yi −Xiβ)

}
×

K∏
k=1

fM
ik {Ti|Mi(Ti),wik;θtk}δik

[
SM
i {Ti|Mi(Ti),wi;θt}

]1−δi

× I

[
K∑

k=1

FM
ik {Ti|Mi(Ti),wik;θtk} < 1

]

Starting from the posterior mode using only the marker model,
µbi , we carry out a single Newton Raphson step

b⋆i = µbi + I(µbi)
−1U(µbi)

where U(bi) = ∂ log f(bi|D;θ)
∂bi

and I(bi) = −∂2 log f(bi|D;θ)

∂bi∂b
⊤
i

.

Boundness constraint was ignored in U(bi) and I(bi)
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Conditional posterior of bi

Proposal density: q(bcani |D;θ) ∼ N
{
b⋆i , (D

−1 + ωZ⊤
i Zi)

−1
}

Does not depend on the current value of bi, though it does
depend on the current values of the remaining parameters, θt
and θL.

Metropolis-Hastings acceptance probability:

p = min

{
1,

f(bcani |D;θ)

f(bi|D;θ)
× q(bi|D;θ)

q(bcani |D;θ)

}
.

If the all-cause CIF is not bounded by 1 at bcani , the acceptance
probability is equal to zero as f(bcani |D;θ) equals zero.

A similar approach was adopted to update the values of θt, but
we performed a low number of BFGS steps instead of Newton-
Raphson to avoid calculation of the Hessian.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

Integral in the definition of CIFs

SREM-CIF-1

FM
ik {t|Mi(t),wik;θtk} = 1−exp

{
−
∫ t

0
eB

⊤
k (s)ψk+γ

⊤
k wik+αkmi(s)ds

}
To calculate this one-dimensional integral, we used Gauss-Legendre
rules with 30 nodes.
That is, we first transformed the integration limits to (−1, 1)∫ b

a
g(x)dx =

b− a

2

∫ 1

−1
g

{
(b− a)u

2
+

a+ b

2

}
du

which can approximated by
∑30

j=1wjg
{

(b−a)xj

2 + a+b
2

}
.

The pairs {(xj , wj)}30j=1 are predetermined to yield an exact
solution to the integral if the integrand can be expressed in
the form of any polynomial of degree (2× 30)− 1 or less that
interpolates the abscissas.
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Inference under misclassified causes of failure

Let Ki be the true failure cause and K̃i be the observed one.

Misclassification probabilities:

πjk(Dmisc,i) = Pr(K̃i = j|Ki = k,Dmisc,i;θmisc),∑K
j=1 πjk(Dmisc,i) = 1 for all k = 1, 2, . . . ,K.

Dmisc,i observed data up to the event time, Ti.

Assumptions

1 Non-informative right censoring (e.g. administrative censoring)
is correctly classified, i.e. Ki = 0 ⇔ K̃i = 0

2 K̃i always observed, but Ki available only in a random sample
(double sampling) (Ri = 1).
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Missing failure status

In this context, the observed data are

Dobs =

{
(yi,Xi,Zi, Ti,Ki, K̃i,wi,Dmisc,i, Ri) if Ri = 1, i = 1, . . . , N,

(yi,Xi,Zi, Ti,Ki, K̃i,wi,Dmisc,i, Ri) if Ri = 0, i = 1, . . . , N.
,

where Ri is an indicator function of the ith individual being doubly
sampled.

We assume MAR for the probability of being in the double
sampling:

Pr{Ki = k|K̃i = j, Ti = t,Mi(t),wi,Dmisc,i;θ,θmisc} =

Pr{Ki = k|K̃i = j, Ti = t,Mi(t),wi, Ri,Dmisc,i;θ,θmisc}.

The true failure cause should not depend on whether Ri = 1
or Ri = 0.
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Missing failure status

Due to MAR we are able to predict the missing true failure
cause based on the observed data only.

In fact, this is an alternative definition of MAR (using simplified
notation)

f(ymi |yoi , Ri) =
f(ymi ,yoi , Ri)

f(yoi , Ri)
=

f(Ri|ymi ,yoi )f(y
m
i ,yoi )

f(Ri|yoi )f(yoi )

=
f(Ri|yoi )
f(Ri|yoi )

f(ymi |yoi ) = f(ymi |yoi ).
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Imputation step - I

Due to MAR, as shown above, the missing failure causes can be
predicted by the model through

Pr{Ki = k|K̃i = j, T ⋆
i = t,Mi(t),wi,Dmisc,i;θ,θmisc}

By the assumptions that
1 the failure cause probabilities do not depend on Dmisc,i and
θmisc

2 and the misclassification probabilities πjk(Dmisc,i) are indepen-
dent of the random effects and the parameters of interest, θ,
thus independent of Mi(t) and wi

and using the law of total probability, it can be shown that Pr{Ki =
k|K̃i = j, T ⋆

i = t,Mi(t),wi,Dmisc,i;θ,θmisc} is equal to

Pr{Ki = k|T ⋆
i = t,Mi(t),wi;θt}πjk(Dmisc,i)∑K

k=1 Pr{Ki = k|T ⋆
i = t,Mi(t),wi;θt}πjk(Dmisc,i)
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Imputation step - II

It also follows that the failure cause probabilities conditionally on
the survival time T ⋆

i = t are equal to

Pr{Ki = k|T ⋆
i = t,Mi(t),wi;θt} =

αik{t|Mi(t),wi;θt}∑K
k=1 αik{t|Mi(t),wi;θt}

,

where αik{t|Mi(t),wi;θt} denotes the kth cause-specific hazard
function for individual i.

By definition,

Fik{t|Mi(t),wik;θtk} =

∫ t

0
αik{u|Mi(u),wi;θt}Si{u|Mi(u),wi;θt}du,

thus it follows that the missing failure causes can be predicted by

fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)∑K
k=1 fik{t|Mi(t),wik;θtk}πjk(Dmisc,i)

.
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Imputation step - Remarks

Since a failure cause is always reported, both the joint model
and the misclassification model are required to predict the
missing causes of failure.

Ki can be repeatedly imputed within the MCMC algorithm
based on the current values of θ and πjk(Dmisc,i) (data aug-
mentation), (e.g. Daniel Paulino et al. 2003).

In general, to model πjk(Dmisc,i) conditional on the observed
information (i.e. Dmisc,i), multinomial logistic regression could
be used for example.

Dmisc,i can include the observed marker values, the event time,
or other auxiliary information that is not included in the scien-
tific model of interest (joint model).
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MCMC for misclassified failure causes

1 Choose adequate initial values θ(0), b(0), {K(0)
i : i ∈ Imis},θ(0)misc,

meeting the likelihood constraints for all individuals. For l =
1, 2, . . . , L

2 Posterior step
Update (θ(l−1), b(l−1)) to (θ(l), b(l)) according to the posterior

distribution f(θ, b|{K(l−1)
i : i ∈ Imis},Dobs), i.e. the posterior

distribution of (θ, b) given all the observed data, with the miss-
ing failure causes being equal to their current values.

Update θ
(l−1)
misc to θ

(l)
misc according to f(θmisc|{K(l−1)

i : i ∈
Imis}, {Ki : i /∈ Imis}, {Dmisc,i, i = 1, . . . , N}). If Dmisc,i is
an empty set, the Dirichlet distribution (Beta for K = 2) leads
to conditional conjugacy.

3 Imputation step

Sample {K(l)
i : i ∈ Imis} directly from its posterior distribution.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

MCMC for misclassified failure causes

1 Choose adequate initial values θ(0), b(0), {K(0)
i : i ∈ Imis},θ(0)misc,

meeting the likelihood constraints for all individuals. For l =
1, 2, . . . , L

2 Posterior step
Update (θ(l−1), b(l−1)) to (θ(l), b(l)) according to the posterior

distribution f(θ, b|{K(l−1)
i : i ∈ Imis},Dobs), i.e. the posterior

distribution of (θ, b) given all the observed data, with the miss-
ing failure causes being equal to their current values.

Update θ
(l−1)
misc to θ

(l)
misc according to f(θmisc|{K(l−1)

i : i ∈
Imis}, {Ki : i /∈ Imis}, {Dmisc,i, i = 1, . . . , N}). If Dmisc,i is
an empty set, the Dirichlet distribution (Beta for K = 2) leads
to conditional conjugacy.

3 Imputation step

Sample {K(l)
i : i ∈ Imis} directly from its posterior distribution.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

MCMC for misclassified failure causes

1 Choose adequate initial values θ(0), b(0), {K(0)
i : i ∈ Imis},θ(0)misc,

meeting the likelihood constraints for all individuals. For l =
1, 2, . . . , L

2 Posterior step
Update (θ(l−1), b(l−1)) to (θ(l), b(l)) according to the posterior

distribution f(θ, b|{K(l−1)
i : i ∈ Imis},Dobs), i.e. the posterior

distribution of (θ, b) given all the observed data, with the miss-
ing failure causes being equal to their current values.

Update θ
(l−1)
misc to θ

(l)
misc according to f(θmisc|{K(l−1)

i : i ∈
Imis}, {Ki : i /∈ Imis}, {Dmisc,i, i = 1, . . . , N}). If Dmisc,i is
an empty set, the Dirichlet distribution (Beta for K = 2) leads
to conditional conjugacy.

3 Imputation step

Sample {K(l)
i : i ∈ Imis} directly from its posterior distribution.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

MCMC for misclassified failure causes

1 Choose adequate initial values θ(0), b(0), {K(0)
i : i ∈ Imis},θ(0)misc,

meeting the likelihood constraints for all individuals. For l =
1, 2, . . . , L

2 Posterior step
Update (θ(l−1), b(l−1)) to (θ(l), b(l)) according to the posterior

distribution f(θ, b|{K(l−1)
i : i ∈ Imis},Dobs), i.e. the posterior

distribution of (θ, b) given all the observed data, with the miss-
ing failure causes being equal to their current values.

Update θ
(l−1)
misc to θ

(l)
misc according to f(θmisc|{K(l−1)

i : i ∈
Imis}, {Ki : i /∈ Imis}, {Dmisc,i, i = 1, . . . , N}). If Dmisc,i is
an empty set, the Dirichlet distribution (Beta for K = 2) leads
to conditional conjugacy.

3 Imputation step

Sample {K(l)
i : i ∈ Imis} directly from its posterior distribution.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

Motivation - UNAIDS mortality estimates

The United Nations (UN) Joint
Programme in HIV/AIDS (UN-
AIDS) produces various esti-
mates of parameters relevant to
the worldwide HIV epidemic.

E.g. Progression to next CD4
category, mortality by CD4 cat-
egory, among many others.

A CIF-based joint modeling ap-
proach could directly inform
some parameters of the Spec-
trum software.

The relevant statistical literature
is sparse (Hu et al. 2012).

Figure: A portion of the Spectrum
software.
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Definition of longitudinal and survival states

In medical research, e.g. in the Spectrum software of UN-
AIDS, it is common to discretize the marker values into non-
overlapping intervals

{[s0, s1), . . . , [sJ−1, sJ)}

and define mutually-exclusive states based on survival and (dis-
cretized) marker data.

For any t > 0,

{mi(t) ∈ Sh, T
⋆
i > t}, h = 1, . . . , J (Marker states)

{T ⋆
i ≤ t,Ki = k}, k = 1, . . . ,K (Survival states)

where Sh = [sh−1, sh).

As the focus is often on describing the “true” biological process,
states have been defined in terms of the “true” marker values.
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Monitoring the cohort evolution through states

Progression of the whole cohort can be easily monitored by a series
of estimated multistate probabilities

Pr{mi(t) ∈ Sh, T
⋆
i > t|wi;θ}, h = 1, . . . , J

- Latent marker state probability, which expresses the probability
of being event free and having “true” marker values in Sh.

Pr(T ⋆
i ≤ t,Ki = k|wik;θ), k = 1, . . . ,K

- The population-averaged CIF for a particular cause

The above estimates can be visualized through a multistate proba-
bility plot.
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Transition probabilities by baseline marker state

To get better insight into the dynamics of the processes, one may
be also interested in transitions by baseline marker stats. It can be
easily shown that

Pr{T ⋆
i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ}

=

∫
mi(0)∈Sg

Fik{t|Mi(t),wik;θtk}
f(bi;θL)

Pr{mi(0) ∈ Sg;θL}
dbi

Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ}

=

∫
mi(0)∈Sg ,mi(t)∈Sh

Si{t|Mi(t),wi;θt}
f(bi;θL)

Pr{mi(0) ∈ Sg;θL}
dbi

Inference involves two distinct problems (i) approximation of the
integral over the random effects and (ii) accounting for the variability
in θ.
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Estimation of the transition probabilities (given θ)

Pr{T ⋆
i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ} can be approximated using

{b(j)ig }Nmc
j=1 ∼ N(0,D) given that mi(0) ∈ Sg, by

N−1
mc

Nmc∑
j=1

Fik{t|M
(j)
ig (t),wik;θtk} (1)

where m
(j)
ig (t) = x⊤

i (t)β+ z⊤i (t)b
(j)
ig and M

(j)
ig (t) = {m(j)

ig (s) : 0 ≤
s ≤ t}.
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Estimation of the transition probabilities (given θ)

Similarly, after multiplying and dividing the integrand by Pr{mi(t) ∈
Sh,mi(0) ∈ Sg;θ} (importance sampling), Pr{mi(t) ∈ Sh, T

⋆
i >

t|mi(0) ∈ Sg,wi;θ} can be approximated using {b(j)igh}
Nmc
j=1 ∼ N(0,D)

given that mi(0) ∈ Sg and mi(t) ∈ Sh, i.e.

Pr{mi(t) ∈ Sh,mi(0) ∈ Sg;θ}
Pr{mi(0) ∈ Sg;θ}Nmc

Nmc∑
j=1

Si{t|M (j)
igh(t),wi;θt}, (2)

where m
(j)
igh(t) = x⊤

i (t)β + z⊤i (t)b
(j)
igh and M

(j)
igh(t) = {m(j)

igh(s) :
0 ≤ s ≤ t}.
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Monte Carlo integration for estimating the transition
probabilities

Samples from multivariate normal under linear inequality
constraints

Samples {b(j)ig }Nmc
j=1 for bi from the N(0,D) distribution under the

linear constraint mi(0) ∈ Sg can be simulated, among many other
options (e.g. Gibbs sampling), very efficiently through Hamiltonian
Monte Carlo (Pakman 2015).

Note that if
∑K

k=1 F
M
ik {t|M (j)

ig (t),wik;θtk} > 1,

Fik{t|M
(j)
ig (t),wik;θtk} = Fik{t′|M

(j)
ig (t′),wik;θtk},

where t′ = τi(β,θt, b
(j)
ig ).

Thus, calculation of the upper bound is required only for the
random draws that do not fulfil the boundedness constraint.
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M
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ig (t),wik;θtk} > 1,

Fik{t|M
(j)
ig (t),wik;θtk} = Fik{t′|M

(j)
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(j)
ig ).

Thus, calculation of the upper bound is required only for the
random draws that do not fulfil the boundedness constraint.
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Posterior samples for multistate/transition probabilities

A posterior sample for the transition probabilities can be obtained
by

1 drawing θ(l) ∼ f(θ|Dobs), l = 1, 2, . . . , L and
2 approximating Pr{mi(t) ∈ Sh, T

⋆
i > t|mi(0) ∈ Sg,wi;θ

(l)}
and Pr{mi(t) ∈ Sh, T

⋆
i > t|mi(0) ∈ Sg,wi;θ

(l)}, for each
l = 1, 2, . . . , L, using the formulas previously described.

Posterior samples for population-averaged CIFs and latent marker
state probabilities through

Pr(T ⋆
i ≤ t,Ki = k|wik;θ)

=

J∑
g=1

Pr{T ⋆
i ≤ t,Ki = k|mi(0) ∈ Sg,wik;θ}Pr{mi(0) ∈ Sg;θ}

Pr{mi(t) ∈ Sh, T
⋆
i > t|wi;θ}

=

J∑
g=1

Pr{mi(t) ∈ Sh, T
⋆
i > t|mi(0) ∈ Sg,wi;θ}Pr{mi(0) ∈ Sg;θ}
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CIF estimates conditional on observed marker states

In a clinical application, estimating the population-averaged CIF
conditional on the observed marker state could be valuable for
making projections about the future cohort evolution.

Thus, CIFs given observed baseline state, Pr{T ⋆
i ≤ t,Ki =

k|yi(0) ∈ Sg,wik;θ}, g = 1, . . . , J , could be of interest.

By similar probabilistic arguments, Pr{T ⋆
i ≤ t,Ki = k|yi(0) ∈

Sg,wik;θ} can be shown to be equal to∫
yi(0)∈Sg

∫
Fik{t|Mi(t),wik;θtk}

f{yi(0), bi;θ}
Pr{yi(0) ∈ Sg;θ}

dbi dyi(0).
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CIF estimates conditional on observed marker states

∫
yi(0)∈Sg

∫
Fik{t|Mi(t),wik;θtk}

f{yi(0), bi;θ}
Pr{yi(0) ∈ Sg;θ}

dbi dyi(0).

which can be estimated by drawing samples {y(j)ig (0), b
(j)
ig }Nmc

j=1 for
{yi(0), bi} from the

N

{(
x⊤
i (0)β
0

)
,

(
σ2 + z⊤i (0)Dzi(0) z⊤i (0)D

Dzi(0) D

)}
,

distribution, constrained such that yi(0) ∈ Sg, i.e.

Pr{T ⋆
i ≤ t,Ki = k|yi(0) ∈ Sg,wik;θ}

can be approximated by N−1
mc

∑Nmc
j=1 Fik{t|M

(j)
ig (t),wik;θtk}, where

m
(j)
ig (t) = x⊤

i (t)β+z
⊤
i (t)b

(j)
ig andM

(j)
ig (t) = {m(j)

ig (s) : 0 ≤ s ≤ t}.
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CIF estimates conditional on history of observed marker
states

Similarly, one may be also interested in CIFs conditional on
being in certain observed states at specific time points.

In this case, it would be reasonable to also condition on survival
up to the last time point and the baseline state, i.e. Pr{T ⋆

i ≤
t,Ki = k|T ⋆

i > s, yi(0) ∈ Sg, yi(s) ∈ Sh,wi;θ}, for 0 ≤ s < t
and g, h ∈ {1, 2, . . . , J}.
Estimation becomes more involved requiring evaluation of two
integrals...

Such estimates could be useful for identifying certain subsets of
the population who are event free and at high risk for developing
any of the events.
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Simulation study design

Marker data generated by an LMM assuming piece-wise linear
evolution over time

- 10 year study duration with 2 obs/year.

Two competing risks: K = 1 (death in care) and K = 2
(disengagement from care), with the CIFs based on

Fik{t|Mi(t),Wi;θtk} = 1− exp

{
−
∫ t

0
euk(s)+γ1Wi+αkmi(s)ds

}
,SREM-CIF-1

Fik{t|Mi(t),Wi;θtk} = 1−
{
1 + ck

∫ t

0
euk(s)+γ1Wi+αkmi(s)ds

}−1/ck

SREM-CIF-2

uk(t) is a complex polynomial, and ck = 1 in SREM-CIF-2.

A binary covariate (Wi) effect on both CIFs was assumed.

For each scenario, both models were fitted.
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Simulation study design

Misclassification: π11 = 0.75 and π22 = 0.90, i.e. the first
event (death) more likely to be misclassified.

20% of individuals who failed from any event were included in
the double sampling.

Population CIFs and latent marker state estimates were also
recorded for each replication.

Based on our motivating example, we considered 7 latent marker
states: [0,50), [50,100), [100,200), [200,250), [250,350), [350,500)
and [500,∞) cells/µL.

Just as an example we present estimates for the population CIFs
and the [350,500) cells/µL latent marker state at 10 years.
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Scenario-1: Results under SREM-CIF-1

Parameter True1 Median Bias ASD MCSD Cov. Median Bias ASD MCSD Cov.
Longitudinal Results from SREM-CIF-1 Results from SREM-CIF-2
Intercept 12.850 12.856 0.006 0.126 0.122 94.200 12.856 0.006 0.126 0.122 94.000
Slope1 (β1) 6.030 6.027 -0.003 0.109 0.104 95.600 6.020 -0.010 0.109 0.104 95.200
Slope2 (β2) 0.770 0.769 -0.001 0.031 0.030 94.800 0.767 -0.003 0.031 0.030 95.000
Slope3 (β3) 0.000 -0.001 -0.001 0.017 0.017 94.200 -0.001 -0.001 0.017 0.017 94.200

Cause 1 (e.g. death)
“True” marker value (α1) -0.160 -0.161 -0.001 0.016 0.017 94.600 -0.182 0.019 0.020
Binary covariate (γ1) 0.150 0.147 -0.003 0.147 0.149 94.200 0.159 0.167 0.168
CIF1 t = 10, w = 1 (%) 15.604 15.246 -0.357 1.667 1.693 92.600 15.210 -0.394 1.664 1.677 93.000
CIF1 t = 10, w = 0 (%) 13.673 13.410 -0.263 1.613 1.642 94.600 13.433 -0.240 1.600 1.634 93.400

Cause 2 (e.g. disengagement)
“True” marker value (α2) -0.020 -0.021 -0.001 0.010 0.010 94.800 -0.026 0.012 0.012
Binary covariate (γ2) -0.150 -0.152 -0.002 0.088 0.087 94.600 -0.184 0.108 0.106
CIF2 t = 10, w = 1 (%) 37.431 37.514 0.083 2.076 2.145 92.400 37.775 0.343 2.041 2.089 92.200
CIF2 t = 10, w = 0 (%) 41.997 42.143 0.146 2.083 2.168 92.800 42.138 0.141 2.029 2.100 93.000

Misclassification par.
π11 (%) 75.000 73.873 -1.127 4.829 4.884 95.000 73.968 -1.032 4.815 4.881 94.800
π22 (%) 90.000 89.160 -0.840 1.935 2.051 91.600 89.079 -0.921 1.934 2.046 91.600

Marker states
State 62, w = 1 (%) 12.389 12.373 -0.015 0.501 0.508 94.200 12.289 -0.100 0.499 0.505 93.400
State 6, w = 0 (%) 11.687 11.635 -0.052 0.491 0.519 92.400 11.620 -0.067 0.487 0.519 91.200
State 6 to 73, w = 1 (%) 41.984 42.127 0.143 1.830 1.818 95.800 42.054 0.070 1.825 1.822 94.800
State 6 to 7, w = 0 (%) 39.495 39.592 0.097 1.849 1.751 96.200 39.582 0.086 1.820 1.751 96.200

1 “True” denotes the true parameter values; “Median” the mean of posterior medians over the 500 replications; “Bias” the mean bias
for posterior median estimates; “ASD” the average posterior standard deviation, “MCSD” the empirical Monte carlo deviation of
estimates and “Cov.” the empirical coverage probability of posterior credible intervals.

2 {
√
350 ≤ mi(10) <

√
500} ∩ {T ⋆

i > 10}.
3 {

√
350 ≤ mi(0) <

√
500} → {mi(10) >

√
500} ∩ {T ⋆

i > 10}.
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Scenario-2: Results under SREM-CIF-2

Parameter True1 Median Bias ASD MCSD Cov. Median Bias ASD MCSD Cov.
Longitudinal Results from SREM-CIF-1 Results from SREM-CIF-2
Intercept 12.850 12.846 -0.004 0.126 0.126 95.600 12.846 -0.004 0.126 0.126 96.000
Slope1 (β1) 6.030 6.034 0.004 0.110 0.108 95.400 6.028 -0.002 0.110 0.108 96.000
Slope2 (β2) 0.770 0.772 0.002 0.031 0.032 93.400 0.770 -0.000 0.031 0.032 93.400
Slope3 (β3) 0.000 0.001 0.001 0.017 0.017 95.400 0.001 0.001 0.017 0.017 95.600

Cause 1 (e.g. death)
“True” marker value (α1) -0.160 -0.143 0.016 0.016 -0.163 -0.003 0.019 0.019 95.600
Binary covariate (γ1) 0.150 0.141 0.150 0.164 0.159 0.009 0.168 0.179 93.600
CIF1 t = 10, w = 1 (%) 15.521 15.264 -0.256 1.707 1.881 90.800 15.315 -0.206 1.713 1.839 92.200
CIF1 t = 10, w = 0 (%) 13.765 13.461 -0.304 1.643 1.677 94.000 13.492 -0.273 1.638 1.641 94.600

Cause 2 (e.g. disengagement)
“True” marker value (α2) -0.020 -0.016 0.010 0.010 -0.019 0.001 0.012 0.012 95.400
Binary covariate (γ2) -0.150 -0.121 0.088 0.091 -0.152 -0.002 0.108 0.109 93.600
CIF2 t = 10, w = 1 (%) 37.837 37.932 0.095 2.090 2.258 91.400 38.046 0.209 2.064 2.201 91.600
CIF2 t = 10, w = 0 (%) 41.417 41.613 0.196 2.088 2.192 93.400 41.649 0.232 2.043 2.124 93.400

Misclassification par.
π11 (%) 75.000 73.856 -1.144 4.890 5.123 91.800 73.819 -1.181 4.881 5.104 91.800
π22 (%) 90.000 89.096 -0.904 1.982 1.969 92.600 89.032 -0.968 1.977 1.963 92.600

Marker states
State 62, w = 1 (%) 12.257 12.238 -0.019 0.499 0.526 93.400 12.170 -0.087 0.498 0.524 93.000
State 6, w = 0 (%) 11.794 11.742 -0.052 0.493 0.504 93.600 11.722 -0.072 0.489 0.496 94.400
State 6 to 73, w = 1 (%) 40.956 40.926 -0.029 1.827 1.833 94.400 40.919 -0.037 1.816 1.821 95.000
State 6 to 7, w = 0 (%) 39.052 39.007 -0.045 1.839 1.929 93.400 39.020 -0.032 1.809 1.902 93.400

1 “True” denotes the true parameter values; “Median” the mean of posterior medians over the 500 replications; “Bias” the mean bias
for posterior median estimates; “ASD” the average posterior standard deviation, “MCSD” the empirical Monte carlo deviation of
estimates and “Cov.” the empirical coverage probability of posterior credible intervals.

2 {
√
350 ≤ mi(10) <

√
500} ∩ {T ⋆

i > 10}.
3 {

√
350 ≤ mi(0) <

√
500} → {mi(10) >

√
500} ∩ {T ⋆

i > 10}.

Thomadakis et al. Competing risk SREMs using CIFs



Introduction Competing risk SREMs Acknowledgements References

Application to East Africa IeDEA data

Data derived from the East Africa IeDEA cohort study.

A 60% random sample from [35-45) years old women was se-
lected leading to 8005 individuals.

CD4 evolution since ART initiation.

Two competing risks: (i) death in care (K = 1) and (ii) disen-
gagement from care (K = 2).

Unidirectional misclassification: a true disengagement can-
not be an observed death.

3275 (40.9%) and 273 (3.4%) observed disengagements from
care and deaths, respectively.

443 (13.5%) disengaged patients included in double sampling,

- of whom, 80 (18.1%) were actually deceased.
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Application to East Africa IeDEA data

B-splines (3 internal knots) for the square root CD4 evolution.

Optimal fit based on the marginalized DIC when c1 = 1.5 and
c2 = 1e− 05 (effectively a subdistribution hazards model).

Misclassification No Misclassification
Parameter Median1 SD LB UB Median SD LB UB
Longitudinal
Intercept 12.48 0.06 12.35 12.60 12.47 0.06 12.35 12.59
β1 4.32 0.10 4.13 4.51 4.36 0.10 4.17 4.55
β2 4.81 0.11 4.59 5.03 4.84 0.11 4.63 5.06
β3 8.07 0.15 7.78 8.36 8.07 0.15 7.78 8.36
β4 9.62 0.27 9.10 10.17 9.52 0.28 8.96 10.05
β5 10.76 0.44 9.88 11.61 10.51 0.44 9.64 11.38
β6 10.52 0.65 9.25 11.77 10.24 0.66 8.94 11.51

Cause 1 (Death)
“True” marker value, α1 -0.20 0.01 -0.23 -0.17 -0.18 0.02 -0.22 -0.15

Cause 2 (Disengagement)
“True” marker value sHR, exp(α2) 1.04 0.01 1.03 1.06 1.00 <0.01 0.99 1.01

π11 (%) 29.21 1.99 25.56 33.32

1 “Median”, “SD”, “LB”, and “UB” denote the posterior median, standard deviation, 2.5% and 97.5%
quantiles, respectively. “sHR” denotes the subdistribution hazard ratio.
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Results from the fitted SREM
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Figure: CD4 evolution as fitted by the subdistribution hazards joint
model in the AMACS data.
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Results from the fitted SREM
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Conclusions - I

We propose a flexible CIF-based joint modeling approach which
could be a useful alternative to a cause-specific-hazard-based
one.

Our proposed model has been extended to accommodate failure
cause misclassification through a double sampling approach.

Based solely on the joint model, we also derive posterior sam-
ples for multistate probabilities defined jointly by marker and
competing risk data.

Some transition probabilities between states are also derived.
Observed or latent marker states can be defined.
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Conclusions - II

The requirement that the all-cause CIF should be bounded by
1 is formally considered.

- No random effects → it can be dealt with in the maximization
process.

- Not trivial in the presence of random effects.

Our model assumes an upper bound of the survival time →
zero likelihood when the constraint is violated ⇔ introducing
an indicator function in the likelihood.

However, to estimate multistate probabilities, CIFs should be
evaluable at any random effect value drawn from its prior.

Thus, having an explicitly defined model for the CIFs account-
ing for the constraints, population-averaged quantities can be
estimated directly.
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Conclusions - III

Simulations have shown that it works well with a 20% doubly
sampled individuals.

Population CIFs and latent marker states over time estimates
were also derived and evaluated in the simulation study.

Extensions
- Dynamic failure probabilities (Rizopoulos 2012).
- More flexible functional forms for the dependence on mi(t).

- Include the marker slope ∂mi(t)
∂t as well?
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Publications

The whole work has been published in Biostatistics.
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