Model-free Prediction and Bootstrap

Dimitris N. Politis

Statistics in the 20th Century

Statistics in the 20th Century

- Once upon a time in the UK

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed
- Shape of $F_{\theta}(x)$ is known - parameter θ is unknown

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed
- Shape of $F_{\theta}(x)$ is known - parameter θ is unknown e.g. F_{θ} is $N(\theta, 1)$ or $N\left(\theta, \sigma^{2}\right)$ with σ^{2} being a "nuisance" (!)

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed
- Shape of $F_{\theta}(x)$ is known - parameter θ is unknown e.g. F_{θ} is $N(\theta, 1)$ or $N\left(\theta, \sigma^{2}\right)$ with σ^{2} being a "nuisance" (!)
- $F_{\theta}(x)$ belongs to a parametric family of distributions

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed
- Shape of $F_{\theta}(x)$ is known - parameter θ is unknown e.g. F_{θ} is $N(\theta, 1)$ or $N\left(\theta, \sigma^{2}\right)$ with σ^{2} being a "nuisance" (!)
- $F_{\theta}(x)$ belongs to a parametric family of distributions
- Goal: Use the data to estimate θ

Statistics in the 20th Century

- Once upon a time in the UK - Fisher, Pearson, Gosset, etc.
- Data: Y_{1}, \ldots, Y_{n} i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d. $=$ independent, identically distributed
- Shape of $F_{\theta}(x)$ is known - parameter θ is unknown e.g. F_{θ} is $N(\theta, 1)$ or $N\left(\theta, \sigma^{2}\right)$ with σ^{2} being a "nuisance" (!)
- $F_{\theta}(x)$ belongs to a parametric family of distributions
- Goal: Use the data to estimate θ - but also quantify estimation accuracy (standard error, confidence interval, etc.)
R.A. Fisher and Maximum Likelihood Estimation (MLE)

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{\text {MLE }}$ is the value maximizing the Likelihood function

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{\text {MLE }}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{M L E}$ is consistent for θ and ...

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{M L E}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{M L E}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{M L E} \sim N(\theta, I(\theta) / n)$ for large n

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{\text {MLE }}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{M L E}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{M L E} \sim N(\theta, I(\theta) / n)$ for large n
- The Fisher information $I(\theta)$ can be computed from F_{θ}

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{\text {MLE }}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{M L E}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{M L E} \sim N(\theta, I(\theta) / n)$ for large n
- The Fisher information $I(\theta)$ can be computed from F_{θ}
- Can use the asymptotic normal distribution to construct confidence intervals and hypothesis tests for θ

R.A. Fisher and Maximum Likelihood Estimation (MLE)

- $\hat{\theta}_{\text {MLE }}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{M L E}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{M L E} \sim N(\theta, I(\theta) / n)$ for large n
- The Fisher information $I(\theta)$ can be computed from F_{θ}
- Can use the asymptotic normal distribution to construct confidence intervals and hypothesis tests for θ
- MLE is a complete theory for statistical inference.

What's the catch?

What's the catch?

- 100 years ago, sample sizes were quite small

What's the catch?

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with $n=9$ at the Guiness Brewery in 1908

What's the catch?

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with $n=9$ at the Guiness Brewery in 1908
- Asymptotic normality can not be justified

What's the catch?

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with $n=9$ at the Guiness Brewery in 1908
- Asymptotic normality can not be justified
- Assuming F_{θ} is $N\left(\theta, \sigma^{2}\right)$, Gosset figured out the exact distribution of the "studentized" sample mean $\frac{\bar{X}-\theta}{\hat{\sigma}}$.

What's the catch?

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with $n=9$ at the Guiness Brewery in 1908
- Asymptotic normality can not be justified
- Assuming F_{θ} is $N\left(\theta, \sigma^{2}\right)$, Gosset figured out the exact distribution of the "studentized" sample mean $\frac{\bar{X}-\theta}{\hat{\sigma}}$.
- But how about statistics other than the sample mean \bar{X} ?

What's the catch-part II

What's the catch-part II

- Why/how can we assume that F_{θ} belongs to any given parametric family? E.g. why assume F_{θ} is $N\left(\theta, \sigma^{2}\right)$?

What's the catch-part II

- Why/how can we assume that F_{θ} belongs to any given parametric family? E.g. why assume F_{θ} is $N\left(\theta, \sigma^{2}\right)$?
- Answer: for convenience, in view of a small sample

What's the catch-part II

- Why/how can we assume that F_{θ} belongs to any given parametric family? E.g. why assume F_{θ} is $N\left(\theta, \sigma^{2}\right)$?
- Answer: for convenience, in view of a small sample
- With a large sample Y_{1}, \ldots, Y_{n}, the common distribution $F(x)$ can be readily estimated from the data.

What's the catch-part II

- Why/how can we assume that F_{θ} belongs to any given parametric family? E.g. why assume F_{θ} is $N\left(\theta, \sigma^{2}\right)$?
- Answer: for convenience, in view of a small sample
- With a large sample Y_{1}, \ldots, Y_{n}, the common distribution $F(x)$ can be readily estimated from the data.
- $F(x)=P\left\{Y_{i} \leq x\right\}$ can be estimated by $\hat{F}(x)=\frac{\#\left\{Y_{i} \leq x\right\}}{n}$ i.e., the proportion of data points that are $\leq x$.

What's the catch-part II

- Why/how can we assume that F_{θ} belongs to any given parametric family? E.g. why assume F_{θ} is $N\left(\theta, \sigma^{2}\right)$?
- Answer: for convenience, in view of a small sample
- With a large sample Y_{1}, \ldots, Y_{n}, the common distribution $F(x)$ can be readily estimated from the data.
- $F(x)=P\left\{Y_{i} \leq x\right\}$ can be estimated by $\hat{F}(x)=\frac{\#\left\{Y_{i} \leq x\right\}}{n}$ i.e., the proportion of data points that are $\leq x$.
- This is a modern, nonparametric setup.

An example under the nonparametric setup

An example under the nonparametric setup

- Y_{1}, \ldots, Y_{n} are house sale prices in San Diego in Jan. 2022

An example under the nonparametric setup

- Y_{1}, \ldots, Y_{n} are house sale prices in San Diego in Jan. 2022
- The median house price θ can be estimated by the sample median $\hat{\theta}$, i.e., the median of the data points Y_{1}, \ldots, Y_{n}

An example under the nonparametric setup

- Y_{1}, \ldots, Y_{n} are house sale prices in San Diego in Jan. 2022
- The median house price θ can be estimated by the sample median $\hat{\theta}$, i.e., the median of the data points Y_{1}, \ldots, Y_{n}
- What is the standard error of the sample median $\hat{\theta}$?

An example under the nonparametric setup

- Y_{1}, \ldots, Y_{n} are house sale prices in San Diego in Jan. 2022
- The median house price θ can be estimated by the sample median $\hat{\theta}$, i.e., the median of the data points Y_{1}, \ldots, Y_{n}
- What is the standard error of the sample median $\hat{\theta}$?
- So if $\hat{\theta}=555 K$, how sure are you that this figure - which was based on (say) $n=300$ points- is close to the true median?

A thought experiment

A thought experiment

- Statistic $\hat{\theta}$ was computed from data Y_{1}, \ldots, Y_{n} i.i.d. from F

A thought experiment

- Statistic $\hat{\theta}$ was computed from data Y_{1}, \ldots, Y_{n} i.i.d. from F
- If we knew F we could generate more samples, and witness how $\hat{\theta}$ varies across samples.

A thought experiment

- Statistic $\hat{\theta}$ was computed from data Y_{1}, \ldots, Y_{n} i.i.d. from F
- If we knew F we could generate more samples, and witness how $\hat{\theta}$ varies across samples.
- Parallel universes:

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from F and compute $\hat{\theta}^{(1)}$
Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from F and compute $\hat{\theta}^{(2)}$
Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

A thought experiment

- Statistic $\hat{\theta}$ was computed from data Y_{1}, \ldots, Y_{n} i.i.d. from F
- If we knew F we could generate more samples, and witness how $\hat{\theta}$ varies across samples.
- Parallel universes:

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from F and compute $\hat{\theta}^{(1)}$
Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from F and compute $\hat{\theta}^{(2)}$
Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

- Approximate the variance of $\hat{\theta}$ by the sample variance of the artificial statistics: $\hat{\theta}^{(1)}, \cdots, \hat{\theta}^{(B)}$.

Resampling and the bootstrap - circa 1980

Resampling and the bootstrap - circa 1980

- This is just a Monte Carlo simulation assuming F is known.

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from F and compute $\hat{\theta}^{(1)}$
Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from F and compute $\hat{\theta}^{(2)}$

Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

Resampling and the bootstrap - circa 1980

- This is just a Monte Carlo simulation assuming F is known.

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from F and compute $\hat{\theta}^{(1)}$
Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from F and compute $\hat{\theta}^{(2)}$

Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

- But F is unknown...

Resampling and the bootstrap - circa 1980

- This is just a Monte Carlo simulation assuming F is known.

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from F and compute $\hat{\theta}^{(1)}$
Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from F and compute $\hat{\theta}^{(2)}$
Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

- But F is unknown... plugging in \hat{F} for F makes this bootstrap

Generate sample $Y_{1}^{(1)}, \ldots, Y_{n}^{(1)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(1)}$ Generate sample $Y_{1}^{(2)}, \ldots, Y_{n}^{(2)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(2)}$

Generate sample $Y_{1}^{(B)}, \ldots, Y_{n}^{(B)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(B)}$

From i.i.d. to non-i.i.d. data

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming...

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. $=$ independent, Non-identically distributed data Regression: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where the errors ϵ_{i} are i.i.d.

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data Regression: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where the errors ϵ_{i} are i.i.d.
- N.i.d. $=$ Non-independent, identically distributed data

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data Regression: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where the errors ϵ_{i} are i.i.d.
- N.i.d. $=$ Non-independent, identically distributed data Stationary Time Series: $Y_{i}=\beta_{0}+\beta_{1} Y_{i-1}+\epsilon_{i}$ with ϵ_{i} i.i.d.

From i.i.d. to non-i.i.d. data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. $=$ independent, Non-identically distributed data Regression: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ where the errors ϵ_{i} are i.i.d.
- N.i.d. $=$ Non-independent, identically distributed data Stationary Time Series: $Y_{i}=\beta_{0}+\beta_{1} Y_{i-1}+\epsilon_{i}$ with ϵ_{i} i.i.d.
- Fit Regression and Autoregression models to reduce to i.i.d.

From model-based to model-free - D.P. (2015)

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- Find an invertible transformation H_{n} such that the vector $\underline{\epsilon}=H_{n}(\underline{Y})$ has i.i.d. components $\epsilon_{1}, \ldots, \epsilon_{n}$

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- Find an invertible transformation H_{n} such that the vector $\underline{\epsilon}=H_{n}(\underline{Y})$ has i.i.d. components $\epsilon_{1}, \ldots, \epsilon_{n}$
- Resample the i.i.d. $\epsilon_{1}, \ldots, \epsilon_{n}$, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- Find an invertible transformation H_{n} such that the vector $\underline{\epsilon}=H_{n}(\underline{Y})$ has i.i.d. components $\epsilon_{1}, \ldots, \epsilon_{n}$
- Resample the i.i.d. $\epsilon_{1}, \ldots, \epsilon_{n}$, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.
- Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_{1}, \ldots, \epsilon_{n}$

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- Find an invertible transformation H_{n} such that the vector $\underline{\epsilon}=H_{n}(\underline{Y})$ has i.i.d. components $\epsilon_{1}, \ldots, \epsilon_{n}$
- Resample the i.i.d. $\epsilon_{1}, \ldots, \epsilon_{n}$, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.
- Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_{1}, \ldots, \epsilon_{n}$
- (ii) Resample from the estimated F_{ϵ} to create a bootstrap sample $\epsilon_{1}^{*}, \ldots, \epsilon_{n}^{*}$

From model-based to model-free - D.P. (2015)

- Data: Y_{1}, \ldots, Y_{n} not i.i.d.
- Let $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- Find an invertible transformation H_{n} such that the vector $\underline{\epsilon}=H_{n}(\underline{Y})$ has i.i.d. components $\epsilon_{1}, \ldots, \epsilon_{n}$
- Resample the i.i.d. $\epsilon_{1}, \ldots, \epsilon_{n}$, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.
- Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_{1}, \ldots, \epsilon_{n}$
- (ii) Resample from the estimated F_{ϵ} to create a bootstrap sample $\epsilon_{1}^{*}, \ldots, \epsilon_{n}^{*}$
- (iii) Let $\underline{Y}^{*}=H_{n}^{-1}\left(\underline{\epsilon}^{*}\right)$ where $\underline{\epsilon}^{*}=\left(\epsilon_{1}^{*}, \ldots, \epsilon_{n}^{*}\right)^{\prime}$

Data

Modeling

To explain or to predict?

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.

To explain or to predict?

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.
- Use of models for prediction can be problematic when:

To explain or to predict?

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.
- Use of models for prediction can be problematic when:
- a model is overspecified
- parameter inference is highly model-specific (and sensitive to model mis-specification)
- prediction is carried out by plugging in the estimated parameters and treating the model as exactly true.

To explain or to predict?

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.
- Use of models for prediction can be problematic when:
- a model is overspecified
- parameter inference is highly model-specific (and sensitive to model mis-specification)
- prediction is carried out by plugging in the estimated parameters and treating the model as exactly true.
- "All models are wrong but some are useful" - George Box.

A Toy Example

- Assume regression model: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{20}+$ error

A Toy Example

- Assume regression model: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{20}+$ error
- If $\hat{\beta}_{2}$ is barely statistically significant, do you still use it in prediction?

A Toy Example

- Assume regression model: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{20}+$ error
- If $\hat{\beta}_{2}$ is barely statistically significant, do you still use it in prediction?
- If the true value of β_{2} is close to zero, and $\operatorname{var}\left(\hat{\beta}_{2}\right)$ is large, then it may be advantageous to omit β_{2} : allow a nonzero Bias but minimize MSE.

A Toy Example

- Assume regression model: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{20}+$ error
- If $\hat{\beta}_{2}$ is barely statistically significant, do you still use it in prediction?
- If the true value of β_{2} is close to zero, and $\operatorname{var}\left(\hat{\beta}_{2}\right)$ is large, then it may be advantageous to omit β_{2} : allow a nonzero Bias but minimize MSE.
- A mis-specified model can be optimal for prediction!

Prediction Framework

- a. Point predictors
b. Interval predictors
c. Predictive distribution

Prediction Framework

- a. Point predictors
b. Interval predictors
c. Predictive distribution
- Abundant Bayesian literature in parametric framework -Cox (1975), Geisser (1993), etc.

Prediction Framework

- a. Point predictors
b. Interval predictors
c. Predictive distribution
- Abundant Bayesian literature in parametric framework -Cox (1975), Geisser (1993), etc.
- Frequentist/nonparametric literature scarse -- except:

Conformal Prediction in Machine Learning (Vovk, Wasserman, Candes, Chernozhukov, etc.)

l.i.d. set-up

- Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. from the (unknown) $\operatorname{cdf} F_{\varepsilon}$

l.i.d. set-up

- Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. from the (unknown) $\operatorname{cdf} F_{\varepsilon}$
- GOAL: prediction of future ε_{n+1} based on the data

l.i.d. set-up

- Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. from the (unknown) $\operatorname{cdf} F_{\varepsilon}$
- GOAL: prediction of future ε_{n+1} based on the data
- F_{ε} is the predictive distribution, and its quantiles could be used to form predictive intervals

l.i.d. set-up

- Let $\varepsilon_{1}, \ldots, \varepsilon_{n}$ i.i.d. from the (unknown) $\operatorname{cdf} F_{\varepsilon}$
- GOAL: prediction of future ε_{n+1} based on the data
- F_{ε} is the predictive distribution, and its quantiles could be used to form predictive intervals
- The mean and median of F_{ε} are optimal point predictors under an L_{2} and L_{1} criterion respectively.

l.i.d. data

- F_{ε} is unknown but can be estimated by the empirical distribution (edf) \hat{F}_{ε}.

l.i.d. data

- F_{ε} is unknown but can be estimated by the empirical distribution (edf) \hat{F}_{ε}.
- L2 and L1 optimal predictors will be approximated by the mean and median of \hat{F}_{ε} respectively. ' 'Naive" model-free predictive intervals could be based on the quantiles of \hat{F}_{ε} but this ignores the variance due to estimation -- need bootstrap!

Non-i.i.d. data

- In general, data $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ are not i.i.d.

Non-i.i.d. data

- In general, data $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ are not i.i.d.
- So the predictive distribution of Y_{n+1} given the data will depend on \underline{Y}_{n} and \mathbf{X}_{n+1} which is a matrix of observable, explanatory (predictor) variables.

Non-i.i.d. data

- In general, data $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ are not i.i.d.
- So the predictive distribution of Y_{n+1} given the data will depend on \underline{Y}_{n} and \mathbf{X}_{n+1} which is a matrix of observable, explanatory (predictor) variables.
- Key Examples: Regression and Time series

Models

- Regression: $Y_{t}=\mu\left(\underline{x}_{t}\right)+\sigma\left(\underline{x}_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$

Models

- Regression: $Y_{t}=\mu\left(\underline{x}_{t}\right)+\sigma\left(\underline{x}_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$
- Time series:

$$
Y_{t}=\mu\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right)+\sigma\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right) \varepsilon_{t}
$$

Models

- Regression: $Y_{t}=\mu\left(\underline{x}_{t}\right)+\sigma\left(\underline{x}_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$
- Time series:
$Y_{t}=\mu\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right)+\sigma\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right) \varepsilon_{t}$
- The above are flexible, nonparametric models.

Models

- Regression: $Y_{t}=\mu\left(\underline{x}_{t}\right)+\sigma\left(\underline{x}_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$
- Time series:

$$
Y_{t}=\mu\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right)+\sigma\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right) \varepsilon_{t}
$$

- The above are flexible, nonparametric models.
- Given one of the above models, optimal model-based predictors of a future Y-value can be constructed.

Models

- Regression: $Y_{t}=\mu\left(\underline{x}_{t}\right)+\sigma\left(\underline{x}_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$
- Time series:

$$
Y_{t}=\mu\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right)+\sigma\left(Y_{t-1}, \cdots, Y_{t-p} ; \underline{x}_{t}\right) \varepsilon_{t}
$$

- The above are flexible, nonparametric models.
- Given one of the above models, optimal model-based predictors of a future Y-value can be constructed.
- Nevertheless, the prediction problem can be carried out in a fully model-free setting, offering-at the very least-robustness against model mis-specification.

Transformation vs. modeling

- DATA: $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$

Transformation vs. modeling

- DATA: $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- GOAL: predict future value Y_{n+1} given the data

Transformation vs. modeling

- DATA: $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- GOAL: predict future value Y_{n+1} given the data
- Find invertible transformation H_{m} so that (for all m) the
vector $\underline{\epsilon}_{m}=H_{m}\left(\underline{Y}_{m}\right)$ has i.i.d. components ϵ_{k} where $\underline{\epsilon}_{m}=\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{\prime}$

Transformation vs. modeling

- DATA: $\underline{Y}_{n}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$
- GOAL: predict future value Y_{n+1} given the data
- Find invertible transformation H_{m} so that (for all m) the
vector $\underline{\epsilon}_{m}=H_{m}\left(\underline{Y}_{m}\right)$ has i.i.d. components ϵ_{k} where
$\underline{\epsilon}_{m}=\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)^{\prime}$

$$
\underline{Y} \xrightarrow{H_{m}} \underline{\epsilon}
$$

$$
\underline{Y} \stackrel{H_{m}^{-1}}{\leftrightarrows} \underline{\epsilon}
$$

Transformation

$$
\begin{aligned}
& \text { (i) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}}{\longleftrightarrow}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \\
& \text { (ii) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}^{-1}}{\leftrightarrows}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)
\end{aligned}
$$

- (i) implies that $\epsilon_{1}, \ldots, \epsilon_{n}$ are known given the data Y_{1}, \ldots, Y_{n}

Transformation

$$
\begin{aligned}
& \text { (i) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}}{\longleftrightarrow}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \\
& \text { (ii) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}^{-1}}{\leftrightarrows}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)
\end{aligned}
$$

- (i) implies that $\epsilon_{1}, \ldots, \epsilon_{n}$ are known given the data Y_{1}, \ldots, Y_{n}
- (ii) implies that Y_{n+1} is a function of $\epsilon_{1}, \ldots, \epsilon_{n}$, and ϵ_{n+1}

Transformation

$$
\begin{aligned}
& \text { (i) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}}{\longleftrightarrow}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right) \\
& \text { (ii) }\left(Y_{1}, \ldots, Y_{m}\right) \stackrel{H_{m}^{-1}}{\leftrightarrows}\left(\epsilon_{1}, \ldots, \epsilon_{m}\right)
\end{aligned}
$$

- (i) implies that $\epsilon_{1}, \ldots, \epsilon_{n}$ are known given the data Y_{1}, \ldots, Y_{n}
- (ii) implies that Y_{n+1} is a function of $\epsilon_{1}, \ldots, \epsilon_{n}$, and ϵ_{n+1}
- So, given the data $\underline{Y}_{n}, Y_{n+1}$ is a function of ϵ_{n+1} only, i.e.,

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$
- The mean and median of $\tilde{h}(\epsilon)$ where $\epsilon \sim F_{\varepsilon}$ are optimal point predictors of Y_{n+1} under L_{2} or L_{1} criterion

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$
- The mean and median of $\tilde{h}(\epsilon)$ where $\epsilon \sim F_{\varepsilon}$ are optimal point predictors of Y_{n+1} under L_{2} or L_{1} criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$
- The mean and median of $\tilde{h}(\epsilon)$ where $\epsilon \sim F_{\varepsilon}$ are optimal point predictors of Y_{n+1} under L_{2} or L_{1} criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$
- To predict Y_{n+1}^{2}, replace \tilde{h} by \tilde{h}^{2}; to predict $g\left(Y_{n+1}\right)$, replace \tilde{h} by $g \circ \tilde{h}$.

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$
- The mean and median of $\tilde{h}(\epsilon)$ where $\epsilon \sim F_{\varepsilon}$ are optimal point predictors of Y_{n+1} under L_{2} or L_{1} criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$
- To predict Y_{n+1}^{2}, replace \tilde{h} by \tilde{h}^{2}; to predict $g\left(Y_{n+1}\right)$, replace \tilde{h} by $g \circ \tilde{h}$.
- The unknown F_{ε} can be estimated by \hat{F}_{ε}, the edf of $\epsilon_{1}, \ldots, \epsilon_{n}$.

Model-free prediction principle

$$
Y_{n+1}=\tilde{h}\left(\epsilon_{n+1}\right)
$$

- Suppose $\epsilon_{1}, \ldots, \epsilon_{n} \sim \operatorname{cdf} F_{\varepsilon}$
- The mean and median of $\tilde{h}(\epsilon)$ where $\epsilon \sim F_{\varepsilon}$ are optimal point predictors of Y_{n+1} under L_{2} or L_{1} criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$
- To predict Y_{n+1}^{2}, replace \tilde{h} by \tilde{h}^{2}; to predict $g\left(Y_{n+1}\right)$, replace \tilde{h} by $g \circ \tilde{h}$.
- The unknown F_{ε} can be estimated by \hat{F}_{ε}, the edf of $\epsilon_{1}, \ldots, \epsilon_{n}$.
- But the predictive distribution needs bootstrapping-also because \tilde{h} is estimated from the data.

Nonparametric Regression

$\operatorname{MODEL}(\star): \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$

- x_{t} univariate and deterministic

Nonparametric Regression

$\operatorname{MODEL}(\star): \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$

- x_{t} univariate and deterministic
- Y_{t} data available for $t=1, \ldots, n$.

Nonparametric Regression

$\operatorname{MODEL}(\star): \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$

- x_{t} univariate and deterministic
- Y_{t} data available for $t=1, \ldots, n$.
- $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ from (unknown) $\operatorname{cdf} F$

Nonparametric Regression

$\operatorname{MODEL}(\star): \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$

- x_{t} univariate and deterministic
- Y_{t} data available for $t=1, \ldots, n$.
- $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ from (unknown) cdf F
- the functions $\mu(\cdot)$ and $\sigma(\cdot)$ unknown but smooth

Nonparametric Regression

Note: $\mu(x)=E(Y \mid x)$ and $\sigma^{2}(x)=\operatorname{Var}(Y \mid x)$.

- Let m_{x}, s_{x} be smoothing estimators of $\mu(x), \sigma(x)$.

Nonparametric Regression

Note: $\mu(x)=E(Y \mid x)$ and $\sigma^{2}(x)=\operatorname{Var}(Y \mid x)$.

- Let m_{x}, s_{x} be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.

Nonparametric Regression

Note: $\mu(x)=E(Y \mid x)$ and $\sigma^{2}(x)=\operatorname{Var}(Y \mid x)$.

- Let m_{x}, s_{x} be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.
- E.g. Nadaraya-Watson estimator $m_{x}=\sum_{i=1}^{n} Y_{i} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$

Nonparametric Regression

Note: $\mu(x)=E(Y \mid x)$ and $\sigma^{2}(x)=\operatorname{Var}(Y \mid x)$.

- Let m_{x}, s_{x} be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.
- E.g. Nadaraya-Watson estimator $m_{x}=\sum_{i=1}^{n} Y_{i} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$
- here $K(x)$ is the kernel, h the bandwidth, and

$$
\tilde{K}\left(\frac{x-x_{i}}{h}\right)=K\left(\frac{x-x_{i}}{h}\right) / \sum_{k=1}^{n} K\left(\frac{x-x_{k}}{h}\right) .
$$

Nonparametric Regression

Note: $\mu(x)=E(Y \mid x)$ and $\sigma^{2}(x)=\operatorname{Var}(Y \mid x)$.

- Let m_{x}, s_{x} be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.
- E.g. Nadaraya-Watson estimator $m_{x}=\sum_{i=1}^{n} Y_{i} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$
- here $K(x)$ is the kernel, h the bandwidth, and $\tilde{K}\left(\frac{x-x_{i}}{h}\right)=K\left(\frac{x-x_{i}}{h}\right) / \sum_{k=1}^{n} K\left(\frac{x-x_{k}}{h}\right)$.
- Similarly, $s_{x}^{2}=M_{x}-m_{x}^{2}$ where $M_{x}=\sum_{i=1}^{n} Y_{i}^{2} \tilde{K}\left(\frac{x-x_{i}}{q}\right)$

(a) Log-wage vs. age data with fitted kernel smoother m_{x}.
(b) Unstudentized residuals $Y-m_{x}$ with superimposed s_{x}.
- 1971 Canadian Census data cps 71 from np package of R; wage vs. age dataset of 205 male individuals with common education.
- Kernel smoother problematic at the left boundary; local linear is better (Fan and Gijbels, 1996) or reflection (Hall and Wehrly, 1991).

Residuals

- (\star): $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$

Residuals

- $(\star): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$

Residuals

- $(\star): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$
- predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$

Residuals

- $(*): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$
- predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$
- $m_{x}^{(t)}$ and $s_{X_{t}}^{(t)}$ are the estimators m and s computed from the delete- Y_{t} dataset: $\left\{\left(Y_{i}, x_{i}\right)\right.$, for all $\left.i \neq t\right\}$.

Residuals

- $(*): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$
- predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$
- $m_{x}^{(t)}$ and $s_{X_{t}}^{(t)}$ are the estimators m and s computed from the delete- Y_{t} dataset: $\left\{\left(Y_{i}, x_{i}\right)\right.$, for all $\left.i \neq t\right\}$.
- \tilde{e}_{t} is the (standardized) error in trying to predict Y_{t} from the delete- Y_{t} dataset.

Residuals

- $(*): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$
- predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$
- $m_{x}^{(t)}$ and $s_{X_{t}}^{(t)}$ are the estimators m and s computed from the delete- Y_{t} dataset: $\left\{\left(Y_{i}, x_{i}\right)\right.$, for all $\left.i \neq t\right\}$.
- \tilde{e}_{t} is the (standardized) error in trying to predict Y_{t} from the delete- Y_{t} dataset.
- Selection of bandwidth parameters h and q is often done by cross-validation, i.e., pick h, q to minimize $\operatorname{PRESS}=\sum_{t=1}^{n} \tilde{e}_{t}^{2}$.

Residuals

- $(*): Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$
- fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{X_{t}}$
- predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$
- $m_{x}^{(t)}$ and $s_{X_{t}}^{(t)}$ are the estimators m and s computed from the delete- Y_{t} dataset: $\left\{\left(Y_{i}, x_{i}\right)\right.$, for all $\left.i \neq t\right\}$.
- \tilde{e}_{t} is the (standardized) error in trying to predict Y_{t} from the delete- Y_{t} dataset.
- Selection of bandwidth parameters h and q is often done by cross-validation, i.e., pick h, q to minimize $\operatorname{PRESS}=\sum_{t=1}^{n} \tilde{e}_{t}^{2}$.
- BETTER: L_{1} cross-validation: pick h, q to minimize $\sum_{t=1}^{n}\left|\tilde{e}_{t}\right|$.

Model-based (MB) point predictors

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. (0,1) with $\operatorname{cdf} F$.

- GOAL: Predict a future response Y_{f} associated with point x_{f}.

Model-based (MB) point predictors

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. (0,1) with $\operatorname{cdf} F$.

- GOAL: Predict a future response Y_{f} associated with point x_{f}.
- L_{2}-optimal predictor of Y_{f} is $E\left(Y_{\mathrm{f}} \mid x_{\mathrm{f}}\right)$, i.e., $\mu\left(x_{\mathrm{f}}\right)$

Model-based (MB) point predictors

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- GOAL: Predict a future response Y_{f} associated with point x_{f}.
- L_{2}-optimal predictor of Y_{f} is $E\left(Y_{\mathrm{f}} \mid x_{\mathrm{f}}\right)$, i.e., $\mu\left(x_{\mathrm{f}}\right)$ which is approximated by $m_{\chi_{f}}$.

Model-based (MB) point predictors

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- GOAL: Predict a future response Y_{f} associated with point x_{f}.
- L_{2}-optimal predictor of Y_{f} is $E\left(Y_{\mathrm{f}} \mid x_{\mathrm{f}}\right)$, i.e., $\mu\left(x_{\mathrm{f}}\right)$ which is approximated by $m_{x_{f}}$.
- L_{1}-optimal predictor of Y_{f} is the conditional median, i.e., $\mu\left(x_{\mathrm{f}}\right)+\sigma\left(x_{\mathrm{f}}\right) \cdot \operatorname{median}(F)$

Model-based (MB) point predictors

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- GOAL: Predict a future response Y_{f} associated with point x_{f}.
- L_{2}-optimal predictor of Y_{f} is $E\left(Y_{\mathrm{f}} \mid x_{\mathrm{f}}\right)$, i.e., $\mu\left(x_{\mathrm{f}}\right)$ which is approximated by $m_{x_{f}}$.
- L_{1}-optimal predictor of Y_{f} is the conditional median, i.e., $\mu\left(x_{\mathrm{f}}\right)+\sigma\left(x_{\mathrm{f}}\right) \cdot \operatorname{median}(F)$
which is approximated by $m_{x_{\mathrm{f}}}+s_{x_{\mathrm{f}}} \cdot \operatorname{median}\left(\hat{F}_{e}\right)$ where \hat{F}_{e} is the edf of the (fitted) residuals e_{1}, \ldots, e_{n}

Model-based (MB) point predictors 2

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_{t}=\log$-salary.

Model-based (MB) point predictors 2

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_{t}=$ log-salary.
- To predict salary at age x_{f} we need to predict $g\left(Y_{\mathrm{f}}\right)$ where $g(x)=\exp (x)$.

Model-based (MB) point predictors 2

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_{t}=$ log-salary.
- To predict salary at age x_{f} we need to predict $g\left(Y_{\mathrm{f}}\right)$ where $g(x)=\exp (x)$.
- MB L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{\chi_{\mathrm{f}}}+\sigma_{\chi_{\mathrm{f}}} e_{i}\right)$.

Model-based (MB) point predictors 2

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_{t}=\log$-salary.
- To predict salary at age x_{f} we need to predict $g\left(Y_{\mathrm{f}}\right)$ where $g(x)=\exp (x)$.
- MB L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- Naive predictor $g\left(m_{x_{f}}\right)$ is suboptimal when g is nonlinear.

Model-based (MB) point predictors 2

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_{t}=\log$-salary.
- To predict salary at age x_{f} we need to predict $g\left(Y_{\mathrm{f}}\right)$ where $g(x)=\exp (x)$.
- MB L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- Naive predictor $g\left(m_{x_{\mathrm{f}}}\right)$ is suboptimal when g is nonlinear.
- MB L_{1}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$; naive plug-in ok iff g is monotone!

Which residuals to use?

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- MB L_{2}-optimal predictor of $g\left(Y_{f}\right)$ is $E\left(g\left(Y_{f}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- MB L_{1}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$.

Which residuals to use?

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with cdf F.

- MB L_{2}-optimal predictor of $g\left(Y_{f}\right)$ is $E\left(g\left(Y_{f}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{X_{\mathrm{f}}} e_{i}\right)$.
- MB L_{1}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$.
- Traditionally, the above are calculated using the fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{x_{t}}$.

Which residuals to use?

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- MB L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- MB L_{1}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$.
- Traditionally, the above are calculated using the fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{x_{t}}$.
- MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.
- $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{X_{t}}^{(t)}\right) / s_{X_{t}}^{(t)}$.

Which residuals to use?

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with cdf F.

- MB L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- MB L_{1}-optimal predictor of $g\left(Y_{f}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$.
- Traditionally, the above are calculated using the fitted residuals: $e_{t}=\left(Y_{t}-m_{x_{t}}\right) / s_{x_{t}}$.
- MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.
- $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{x_{t}}^{(t)}\right) / s_{x_{t}}^{(t)}$.
- e_{t} and \tilde{e}_{t} are centered at zero but different scale: $\left|e_{t}\right|<\left|\tilde{e}_{t}\right|$.

Which residuals to use?

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- MB L_{2}-optimal predictor of $g\left(Y_{f}\right)$ is $E\left(g\left(Y_{\mathrm{f}}\right) \mid x_{\mathrm{f}}\right)$ estimated by $n^{-1} \sum_{i=1}^{n} g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right)$.
- MB L_{1}-optimal predictor of $g\left(Y_{f}\right)$ estimated by the sample median of the set $\left\{g\left(m_{x_{\mathrm{f}}}+\sigma_{x_{\mathrm{f}}} e_{i}\right), i=1, \ldots, n\right\}$.
- Traditionally, the above are calculated using the fitted residuals: $e_{t}=\left(Y_{t}-m_{\chi_{t}}\right) / s_{x_{t}}$.
- MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.
- $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_{t}=\left(Y_{t}-m_{X_{t}}^{(t)}\right) / s_{X_{t}}^{(t)}$.
- e_{t} and \tilde{e}_{t} are centered at zero but different scale: $\left|e_{t}\right|<\left|\tilde{e}_{t}\right|$.
- Makes little difference for point predictors but huge difference for prediction intervals: MF/MB alleviates undercoverage.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{\mathrm{f}}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{f}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.
- Based on the pseudo-data $Y_{1}^{\star}, \ldots, Y_{n}^{\star}$, re-estimate the functions $\mu(x)$ and $\sigma(x)$ by m_{x}^{\star} and s_{x}^{\star}.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{f}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.
- Based on the pseudo-data $Y_{1}^{\star}, \ldots, Y_{n}^{\star}$, re-estimate the functions $\mu(x)$ and $\sigma(x)$ by m_{x}^{\star} and s_{x}^{\star}.
- Calculate bootstrap root: $g\left(Y_{f}^{\star}\right)-\Pi\left(g, m_{x}^{*}, s_{x}^{*}, \underline{Y}_{n}, \mathbf{X}_{n+1}, \hat{F}_{n}\right)$.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{f}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.
- Based on the pseudo-data $Y_{1}^{\star}, \ldots, Y_{n}^{\star}$, re-estimate the functions $\mu(x)$ and $\sigma(x)$ by m_{x}^{\star} and s_{x}^{\star}.
- Calculate bootstrap root: $g\left(Y_{f}^{\star}\right)-\Pi\left(g, m_{x}^{*}, s_{x}^{*}, \underline{Y}_{n}, \mathbf{X}_{n+1}, \hat{F}_{n}\right)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α-quantile denoted $q(\alpha)$.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{f}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.
- Based on the pseudo-data $Y_{1}^{\star}, \ldots, Y_{n}^{\star}$, re-estimate the functions $\mu(x)$ and $\sigma(x)$ by m_{x}^{\star} and s_{x}^{\star}.
- Calculate bootstrap root: $g\left(Y_{f}^{\star}\right)-\Pi\left(g, m_{x}^{*}, s_{x}^{*}, \underline{Y}_{n}, \mathbf{X}_{n+1}, \hat{F}_{n}\right)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α-quantile denoted $q(\alpha)$.
- Our estimate of the predictive distribution of $g\left(Y_{\mathrm{f}}\right)$ is the empirical df of bootstrap roots shifted to the right by Π.

Model-based bootstrap for predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

Prediction root: $g\left(Y_{f}\right)-\Pi$ where Π is the point predictor.

- Bootstrap the (fitted or predictive) residuals r_{1}, \ldots, r_{n} to create pseudo-residuals $r_{1}^{\star}, \ldots, r_{n}^{\star}$ whose edf is denoted by \hat{F}_{n}^{\star}.
- Create pseudo-data $Y_{i}^{\star}=m_{x_{i}}+s_{x_{i}} r_{i}^{\star}$, for $i=1, \ldots n$.
- Calculate a bootstrap pseudo-response $Y_{f}^{\star}=m_{X_{f}}+s_{X_{f}} r$ where r is drawn randomly from $\left(r_{1}, \ldots, r_{n}\right)$.
- Based on the pseudo-data $Y_{1}^{\star}, \ldots, Y_{n}^{\star}$, re-estimate the functions $\mu(x)$ and $\sigma(x)$ by m_{x}^{\star} and s_{x}^{\star}.
- Calculate bootstrap root: $g\left(Y_{f}^{\star}\right)-\Pi\left(g, m_{x}^{*}, s_{x}^{*}, \underline{Y}_{n}, \mathbf{X}_{n+1}, \hat{F}_{n}\right)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α-quantile denoted $q(\alpha)$.
- Our estimate of the predictive distribution of $g\left(Y_{f}\right)$ is the empirical df of bootstrap roots shifted to the right by Π.
- Then, a $(1-\alpha) 100 \%$ equal-tailed predictive interval for $g\left(Y_{f}\right)$ is given by: $[\Pi+q(\alpha / 2), \Pi+q(1-\alpha / 2)]$.

Model-free prediction in regression

Previous discussion hinged on model: $(\star) \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ from $c d f F$.

- What happens if model (\star) does not hold true?

Model-free prediction in regression

Previous discussion hinged on model: (\star) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ from $c d f F$.

- What happens if model (\star) does not hold true?
- E.g., the skewness and/or kurtosis of Y_{t} may depend on x_{t}.

Model-free prediction in regression

Previous discussion hinged on model: $(\star) \quad Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ from $c d f F$.

- What happens if model (\star) does not hold true?
- E.g., the skewness and/or kurtosis of Y_{t} may depend on x_{t}.
- cps71 data: skewness/kurtosis of salary depend on age.

(a) Log-wage SKEWNESS vs. age.
(b) Log-wage KURTOSIS vs. age.
- Both skewness and kurtosis are nonconstant!

General background-

- Could try skewness reducing transformations-but log already does that.

General background-

- Could try skewness reducing transformations-but log already does that.
- Could try ACE, AVAS, etc.

General background-

- Could try skewness reducing transformations-but log already does that.
- Could try ACE, AVAS, etc.
- There is a simpler, more general solution!

General background

- The $Y_{t} \mathrm{~s}$ are still independent but not identically distributed.

General background

- The $Y_{t} s$ are still independent but not identically distributed.
- We will denote the conditional distribution of Y_{f} given x_{f} by $D_{x}(y)=P\left\{Y_{\mathrm{f}} \leq\left. y\right|_{\mathrm{x}_{\mathrm{f}}}=x\right\}$

General background

- The $Y_{t} s$ are still independent but not identically distributed.
- We will denote the conditional distribution of Y_{f} given x_{f} by $D_{x}(y)=P\left\{Y_{\mathrm{f}} \leq\left. y\right|_{\mathrm{f}_{\mathrm{f}}}=x\right\}$
- Assume the quantity $D_{x}(y)$ is continuous in both x and y.

General background

- The $Y_{t} s$ are still independent but not identically distributed.
- We will denote the conditional distribution of Y_{f} given x_{f} by $D_{x}(y)=P\left\{Y_{\mathrm{f}} \leq\left. y\right|_{\mathrm{f}_{\mathrm{f}}}=x\right\}$
- Assume the quantity $D_{x}(y)$ is continuous in both x and y.
- With a categorical response, standard methods like Generalized Linear Models can be invoked, e.g. logistic regression, Poisson regression, etc.

General background

- The $Y_{t} s$ are still independent but not identically distributed.
- We will denote the conditional distribution of Y_{f} given x_{f} by $D_{x}(y)=P\left\{Y_{\mathrm{f}} \leq\left. y\right|_{\mathrm{f}_{\mathrm{f}}}=x\right\}$
- Assume the quantity $D_{x}(y)$ is continuous in both x and y.
- With a categorical response, standard methods like Generalized Linear Models can be invoked, e.g. logistic regression, Poisson regression, etc.
- Since $D_{x}(\cdot)$ depends in a smooth way on x, we can estimate $D_{x}(y)$ by the 'local' empirical $N_{x, h}^{-1} \sum_{t:\left|x_{t}-x\right|<h / 2} \mathbf{1}\left\{Y_{t} \leq y\right\}$ where $\mathbf{1}\{\cdot\}$ is indicator, and $N_{x, h}$ is the number of summands, i.e., $N_{x, h}=\#\left\{t:\left|x_{t}-x\right|<h / 2\right\}$.

Constructing the transformation

- More general estimator $\hat{D}_{x}(y)=\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \leq y\right\} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$.

Constructing the transformation

- More general estimator $\hat{D}_{x}(y)=\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \leq y\right\} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$.
- $\hat{D}_{x}(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$.

Constructing the transformation

- More general estimator $\hat{D}_{x}(y)=\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \leq y\right\} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$.
- $\hat{D}_{x}(y)$ is just a Nadaraya-Watson smoother of the variables $1\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$.
- Can use local linear smoother of $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$ but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).

Constructing the transformation

- More general estimator $\hat{D}_{x}(y)=\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \leq y\right\} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$.
- $\hat{D}_{x}(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$.
- Can use local linear smoother of $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$ but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).
- Estimator $\hat{D}_{x}(y)$ enjoys many good properties including asymptotic consistency; see e.g. Li and Racine (2007).

Constructing the transformation

- More general estimator $\hat{D}_{x}(y)=\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \leq y\right\} \tilde{K}\left(\frac{x-x_{i}}{h}\right)$.
- $\hat{D}_{x}(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$.
- Can use local linear smoother of $\mathbf{1}\left\{Y_{t} \leq y\right\}, t=1, \ldots, n$ but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).
- Estimator $\hat{D}_{x}(y)$ enjoys many good properties including asymptotic consistency; see e.g. Li and Racine (2007).
- But $\hat{D}_{x}(y)$ is discontinuous in y, and therefore unacceptable!
- Could use linear interpolation or smooth it by kernel methods, i.e., $\tilde{D}_{x}(y)=\sum_{i=1}^{n} \Lambda\left(\frac{y-Y_{i}}{h_{0}}\right) \tilde{K}\left(\frac{x-x_{i}}{h}\right)$ where $h_{0} \sim h^{2}$.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let $\eta_{i}=D_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$ our transformation objective would be exactly achieved since $\eta_{1}, \ldots, \eta_{n}$ would be i.i.d. Uniform $(0,1)$.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let $\eta_{i}=D_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$ our transformation objective would be exactly achieved since $\eta_{1}, \ldots, \eta_{n}$ would be i.i.d. Uniform $(0,1)$.
- $D_{x}(\cdot)$ not known but we have estimator $\tilde{D}_{x}(\cdot)$ as its proxy.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let $\eta_{i}=D_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$ our transformation objective would be exactly achieved since $\eta_{1}, \ldots, \eta_{n}$ would be i.i.d. Uniform $(0,1)$.
- $D_{x}(\cdot)$ not known but we have estimator $\tilde{D}_{x}(\cdot)$ as its proxy.
- Therefore, our proposed transformation for the MF prediction principle is $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let $\eta_{i}=D_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$ our transformation objective would be exactly achieved since $\eta_{1}, \ldots, \eta_{n}$ would be i.i.d. Uniform $(0,1)$.
- $D_{x}(\cdot)$ not known but we have estimator $\tilde{D}_{x}(\cdot)$ as its proxy.
- Therefore, our proposed transformation for the MF prediction principle is $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- $\tilde{D}_{x}(\cdot)$ is consistent, so u_{1}, \ldots, u_{n} are approximately i.i.d.

Constructing the transformation-

- Since the $Y_{t} s$ are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let $\eta_{i}=D_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$ our transformation objective would be exactly achieved since $\eta_{1}, \ldots, \eta_{n}$ would be i.i.d. Uniform $(0,1)$.
- $D_{x}(\cdot)$ not known but we have estimator $\tilde{D}_{x}(\cdot)$ as its proxy.
- Therefore, our proposed transformation for the MF prediction principle is $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- $\tilde{D}_{x}(\cdot)$ is consistent, so u_{1}, \ldots, u_{n} are approximately i.i.d.
- The probability integral transform was used in the past for building better density estimators-Ruppert and Cline (1994).

Model-free optimal predictors

- Transformation: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.

Model-free optimal predictors

- Transformation: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- Inverse transformation \tilde{D}_{x}^{-1} is well-defined since $\tilde{D}_{x}(\cdot)$ is strictly increasing.

Model-free optimal predictors

- Transformation: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- Inverse transformation \tilde{D}_{x}^{-1} is well-defined since $\tilde{D}_{x}(\cdot)$ is strictly increasing.
- Let $u_{\mathrm{f}}=D_{\chi_{\mathrm{f}}}\left(Y_{\mathrm{f}}\right)$ and $Y_{\mathrm{f}}=D_{X_{\mathrm{f}}}^{-1}\left(u_{\mathrm{f}}\right)$.

Model-free optimal predictors

- Transformation: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- Inverse transformation \tilde{D}_{x}^{-1} is well-defined since $\tilde{D}_{x}(\cdot)$ is strictly increasing.
- Let $u_{\mathrm{f}}=D_{\chi_{\mathrm{f}}}\left(Y_{\mathrm{f}}\right)$ and $Y_{\mathrm{f}}=D_{\chi_{\mathrm{f}}}^{-1}\left(u_{\mathrm{f}}\right)$.
- $\tilde{D}_{x_{f}}^{-1}\left(u_{i}\right)$ has (approximately) the same distribution as Y_{f} (conditionally on x_{f}) for any i.

Model-free optimal predictors

- Transformation: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ for $i=1, \ldots, n$.
- Inverse transformation \tilde{D}_{x}^{-1} is well-defined since $\tilde{D}_{x}(\cdot)$ is strictly increasing.
- Let $u_{\mathrm{f}}=D_{\chi_{\mathrm{f}}}\left(Y_{\mathrm{f}}\right)$ and $Y_{\mathrm{f}}=D_{\chi_{\mathrm{f}}}^{-1}\left(u_{\mathrm{f}}\right)$.
- $\tilde{D}_{x_{f}}^{-1}\left(u_{i}\right)$ has (approximately) the same distribution as Y_{f} (conditionally on x_{f}) for any i.
- So $\left\{\tilde{D}_{x_{f}}^{-1}\left(u_{i}\right), i=1, \ldots, n\right\}$ is a set of bona fide potential responses that can be used as proxies for Y_{f}.
- These n valid potential responses $\left\{\tilde{D}_{X_{f}}^{-1}\left(u_{i}\right), i=1, \ldots, n\right\}$ gathered together give an approximate empirical distribution for Y_{f} from which our predictors will be derived.
- These n valid potential responses $\left\{\tilde{D}_{\chi_{f}}^{-1}\left(u_{i}\right), i=1, \ldots, n\right\}$ gathered together give an approximate empirical distribution for Y_{f} from which our predictors will be derived.
- The L_{2}-optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ will be the expected value of $g\left(Y_{\mathrm{f}}\right)$ that is approximated by $n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{X_{f}}^{-1}\left(u_{i}\right)\right)$.
- These n valid potential responses $\left\{\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right), i=1, \ldots, n\right\}$ gathered together give an approximate empirical distribution for Y_{f} from which our predictors will be derived.
- The L_{2} —optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ will be the expected value of $g\left(Y_{\mathrm{f}}\right)$ that is approximated by $n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{X_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)$.
- The L_{1} —optimal predictor of $g\left(Y_{\mathrm{f}}\right)$ will be approximated by the sample median of the set $\left\{g\left(\tilde{D}_{x_{f}}^{-1}\left(u_{i}\right)\right), i=1, \ldots, n\right\}$.

Model-free optimal point predictors

	Model-free method
L_{2} —predictor of Y_{f}	$n^{-1} \sum_{i=1}^{n} \tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)$
L_{1} —predictor of Y_{f}	median $\left\{\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right\}$
L_{2} —predictor of $g\left(Y_{\mathrm{f}}\right)$	$n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)$
L_{1} —predictor of $g\left(Y_{\mathrm{f}}\right)$	$\operatorname{median}\left\{g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)\right\}$

TABLE. Model-free (MF) and Limit Model-free (LMF) predictors. Basic MF: $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ Limit MF: $u_{i} \sim$ i.i.d. Uniform $(0,1)$.

Model-free model-fitting

- The MF predictors (mean or median) can be used to give the equivalent of a model fit.

Model-free model-fitting

- The MF predictors (mean or median) can be used to give the equivalent of a model fit.
- Focus on the L_{2}-optimal case with $g(x)=x$.

Model-free model-fitting

- The MF predictors (mean or median) can be used to give the equivalent of a model fit.
- Focus on the L_{2}-optimal case with $g(x)=x$.
- Calculating the MF predictor $\Pi\left(x_{\mathrm{f}}\right)=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)$ for many different x_{f} values-say on a grid-, the equivalent of a nonparametric smoother of a regression function is constructed-Model-Free Model-Fitting.
- MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.-see Figures 3 and 4.
- MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.-see Figures 3 and 4.
- No need for log-transformation of salaries!
- MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.-see Figures 3 and 4.
- No need for log-transformation of salaries!
- MF is totally automatic!!

FIGURE 3: (a) Wage vs. age scatterplot. (b) Circles indicate the salary predictor $n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)$ calculated from log-wage data with $g(x)$ exponential. For both figures, the superimposed solid line represents the MF salary predictor calculated from the raw data (without log).

quantiles of Uniform $(0,1)$

quantiles of Uniform $(0,1)$

FIGURE 4: Q-Q plots of the u_{i} vs. the quantiles of Uniform $(0,1)$.
(a) The u_{i} 's are obtained from the log-wage vs. age dataset of Figure 1 using bandwidth 5.5; (b) The u_{i} 's are obtained from the raw (untransformed) dataset of Figure 3 using bandwidth 7.3.

MF predictive distributions

- For MF we can always take $g(x)=x$; no need for other preliminary transformations.

MF predictive distributions

- For MF we can always take $g(x)=x$; no need for other preliminary transformations.
- Let $g\left(Y_{\mathrm{f}}\right)-\Pi$ be the prediction root where Π is either the L_{2} - or L_{1}-optimal predictor, i.e., $\Pi=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{f}}^{-1}\left(u_{i}\right)\right)$ or $\Pi=$ median $\left\{g\left(\tilde{D}_{X_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)\right\}$.

MF predictive distributions

- For MF we can always take $g(x)=x$; no need for other preliminary transformations.
- Let $g\left(Y_{\mathrm{f}}\right)-\Pi$ be the prediction root where Π is either the L_{2} - or L_{1}-optimal predictor, i.e., $\Pi=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}\left(u_{i}\right)\right)$

- Based on the Y-data, estimate the conditional distribution $D_{x}(\cdot)$ by $\tilde{D}_{x}(\cdot)$, and let $u_{i}=\tilde{D}_{x_{i}}\left(Y_{i}\right)$ to obtain the transformed data u_{1}, \ldots, u_{n} that are approximately i.i.d.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. Uniform $(0,1)$-LMF version.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. Uniform $(0,1)$-LMF version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim i . i . d$. Uniform $(0,1)-L M F$ version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.
- Generate a bootstrap pseudo-response $Y_{f}^{*}=\tilde{D}_{x_{f}}^{-1}(u)$ with u drawn randomly from set $\left(u_{1}, \ldots, u_{n}\right)$-or from $\operatorname{Uniform}(0,1)$.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim i . i . d$. Uniform $(0,1)$-LMF version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.
- Generate a bootstrap pseudo-response $Y_{f}^{*}=\tilde{D}_{x_{f}}^{-1}(u)$ with u drawn randomly from set $\left(u_{1}, \ldots, u_{n}\right)$ —or from $\operatorname{Uniform}(0,1)$.
- Based on the pseudo-data Y_{t}^{\star}, re-estimate the conditional distribution $D_{x}(\cdot)$; denote the bootstrap estimator by $\tilde{D}_{x}^{*}(\cdot)$.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim i . i . d$. Uniform $(0,1)$-LMF version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.
- Generate a bootstrap pseudo-response $Y_{f}^{*}=\tilde{D}_{x_{f}}^{-1}(u)$ with u drawn randomly from set $\left(u_{1}, \ldots, u_{n}\right)$-or from Uniform $(0,1)$.
- Based on the pseudo-data Y_{t}^{\star}, re-estimate the conditional distribution $D_{x}(\cdot)$; denote the bootstrap estimator by $\tilde{D}_{x}^{*}(\cdot)$.
- Calculate the bootstrap root $g\left(Y_{\mathrm{f}}^{*}\right)-\Pi^{*}$ where $\Pi^{*}=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{\chi_{f}}^{*^{-1}}\left(u_{i}^{*}\right)\right)$ or $\Pi^{*}=$ median $\left\{g\left(\tilde{D}_{\chi_{f}}^{*^{-1}}\left(u_{i}^{*}\right)\right)\right\}$

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim i . i . d$. Uniform $(0,1)-L M F$ version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.
- Generate a bootstrap pseudo-response $Y_{f}^{*}=\tilde{D}_{x_{f}}^{-1}(u)$ with u drawn randomly from set $\left(u_{1}, \ldots, u_{n}\right)$-or from Uniform $(0,1)$.
- Based on the pseudo-data Y_{t}^{\star}, re-estimate the conditional distribution $D_{x}(\cdot)$; denote the bootstrap estimator by $\tilde{D}_{x}^{*}(\cdot)$.
- Calculate the bootstrap root $g\left(Y_{f}^{*}\right)-\Pi^{*}$ where $\Pi^{*}=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{X_{f}}^{*^{-1}}\left(u_{i}^{*}\right)\right)$ or $\Pi^{*}=$ median $\left\{g\left(\tilde{D}_{X_{f}}^{*^{-1}}\left(u_{i}^{*}\right)\right)\right\}$
- Repeat the above steps B times, and collect the B bootstrap roots in the form of an e.d.f. with α-quantile denoted $q(\alpha)$.

MF bootstrap predictive distribution of $g\left(Y_{\mathrm{f}}\right)$

- Let $u_{1}^{*}, \ldots, u_{n}^{*} \sim$ i.i.d. \hat{F}_{n} (the e.d.f. of u_{1}, \ldots, u_{n}); alternatively, let $u_{1}^{*}, \ldots, u_{n}^{*} \sim i . i . d$. Uniform $(0,1)-L M F$ version.
- Use the inverse transformation \tilde{D}_{x}^{-1} to create pseudo-data in the Y domain, i.e., $Y_{t}^{*}=\tilde{D}_{\chi_{t}}^{-1}\left(u_{t}^{*}\right)$ for $t=1, \ldots n$.
- Generate a bootstrap pseudo-response $Y_{f}^{*}=\tilde{D}_{x_{\mathrm{f}}}^{-1}(u)$ with u drawn randomly from set $\left(u_{1}, \ldots, u_{n}\right)$-or from Uniform $(0,1)$.
- Based on the pseudo-data Y_{t}^{\star}, re-estimate the conditional distribution $D_{x}(\cdot)$; denote the bootstrap estimator by $\tilde{D}_{x}^{*}(\cdot)$.
- Calculate the bootstrap root $g\left(Y_{f}^{*}\right)-\Pi^{*}$ where $\Pi^{*}=n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\mathrm{f}}}^{*^{-1}}\left(u_{i}^{*}\right)\right)$ or $\Pi^{*}=$ median $\left\{g\left(\tilde{D}_{\chi_{\mathrm{f}}}^{*^{-1}}\left(u_{i}^{*}\right)\right)\right\}$
- Repeat the above steps B times, and collect the B bootstrap roots in the form of an e.d.f. with α-quantile denoted $q(\alpha)$.
- Predictive distribution of $g\left(Y_{\mathrm{f}}\right)$ is the above edf shifted to the right by Π, and MF/LMF $(1-\alpha) 100 \%$ equal-tailed, prediction interval for $g\left(Y_{\mathrm{f}}\right)$ is $[\Pi+q(\alpha / 2), \Pi+q(1-\alpha / 2)]$.

Simulation: regression under model (\star)

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. (0,1) with $\operatorname{cdf} F$.

- Design points x_{1}, \ldots, x_{n} for $n=100$ equi-spaced on $(0,2 \pi)$

Simulation: regression under model (\star)

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. (0,1) with $\operatorname{cdf} F$.

- Design points x_{1}, \ldots, x_{n} for $n=100$ equi-spaced on $(0,2 \pi)$
- $\mu(x)=\sin (x), \sigma(x)=1 / 2$ and errors $\mathrm{N}(0,1)$ or Laplace.

Simulation: regression under model (\star)

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- Design points x_{1}, \ldots, x_{n} for $n=100$ equi-spaced on $(0,2 \pi)$
- $\mu(x)=\sin (x), \sigma(x)=1 / 2$ and errors $\mathrm{N}(0,1)$ or Laplace.
- Prediction points: $x_{\mathrm{f}}=\pi ; \mu(x)$ has high slope but zero curvature-easy case for estimation.

Simulation: regression under model (\star)

(*) $Y_{t}=\mu\left(x_{t}\right)+\sigma\left(x_{t}\right) \varepsilon_{t}$ with $\varepsilon_{t} \sim$ i.i.d. $(0,1)$ with $\operatorname{cdf} F$.

- Design points x_{1}, \ldots, x_{n} for $n=100$ equi-spaced on $(0,2 \pi)$
- $\mu(x)=\sin (x), \sigma(x)=1 / 2$ and errors $\mathrm{N}(0,1)$ or Laplace.
- Prediction points: $x_{\mathrm{f}}=\pi ; \mu(x)$ has high slope but zero curvature-easy case for estimation.
- $x_{\mathrm{f}}=\pi / 2$ and $x_{\mathrm{f}}=3 \pi / 2 ; \mu(x)$ has zero slope but high curvature—peak and valley so large bias of m_{x}.

FIGURE 6: Typical scatterplots with superimposed kernel smoothers;
(a) Normal data; (b) Laplace data.

Simulation: regression without model (\star)

Instead: $Y=\mu(x)+\sigma(x) \varepsilon_{x}$ with $\varepsilon_{x}=\frac{c_{x} Z+\left(1-c_{x}\right) W}{\sqrt{c_{x}^{2}+\left(1-c_{x}\right)^{2}}}$

Simulation: regression without model (\star)

Instead: $Y=\mu(x)+\sigma(x) \varepsilon_{x}$ with $\varepsilon_{x}=\frac{c_{x} Z+\left(1-c_{x}\right) W}{\sqrt{c_{x}^{2}+\left(1-c_{x}\right)^{2}}}$

- $Z \sim N(0,1)$ independent of W that is also $(0,1)$ but has exponential shape, i.e., $\frac{1}{2} \chi_{2}^{2}-1$.

Simulation: regression without model (\star)

Instead: $Y=\mu(x)+\sigma(x) \varepsilon_{X}$ with $\varepsilon_{X}=\frac{c_{x} Z+\left(1-c_{x}\right) W}{\sqrt{c_{x}^{2}+\left(1-c_{x}\right)^{2}}}$

- $Z \sim N(0,1)$ independent of W that is also $(0,1)$ but has exponential shape, i.e., $\frac{1}{2} \chi_{2}^{2}-1$.
- ε_{X} independent but not i.i.d.: $c_{X}=x /(2 \pi)$ for $x \in[0,2 \pi]$

Simulation: regression without model (\star)

Instead: $Y=\mu(x)+\sigma(x) \varepsilon_{X}$ with $\varepsilon_{X}=\frac{c_{x} Z+\left(1-c_{x}\right) W}{\sqrt{c_{x}^{2}+\left(1-c_{x}\right)^{2}}}$

- $Z \sim N(0,1)$ independent of W that is also $(0,1)$ but has exponential shape, i.e., $\frac{1}{2} \chi_{2}^{2}-1$.
- ε_{x} independent but not i.i.d.: $c_{x}=x /(2 \pi)$ for $x \in[0,2 \pi]$
- Large $x: \varepsilon_{x}$ is close to Normal. Small x : ε_{x} is skewed/kurtotic.

x_{f} / π	0.15	0.3	0.5	0.75	1	1.25	1.5
	0.878	0.886	0.854	0.886	0.878	0.860	0.876
Norm	1.6147	1.6119	1.6117	1.6116	1.6117	1.6116	1.6117
	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.852	0.864	0.818	0.854	0.878	0.866	0.802
MB	1.6021	1.5326	1.4547	1.5855	1.7120	1.5955	1.4530
	0.013	0.013	0.012	0.014	0.015	0.013	0.012
	0.904	0.894	0.890	0.900	0.928	0.910	0.870
MFMB	1.8918	1.8097	1.7248	1.8602	2.006	1.8669	1.7170
	0.017	0.016	0.017	0.016	0.016	0.015	0.016
	0.916	0.872	0.860	0.898	0.926	0.910	0.888
LMF	1.8581	1.7730	1.6877	1.8286	1.9685	1.8334	1.6921
	0.016	0.015	0.014	0.016	0.017	0.015	0.015
	0.910	0.888	0.902	0.892	0.906	0.922	0.874
MF	1.8394	1.7531	1.6784	1.8117	1.9423	1.8139	1.6808
	0.016	0.015	0.014	0.016	0.017	0.016	0.015
	0.900	0.884	0.880	0.906	0.912	0.912	0.884
PMF	1.8734	1.7814	1.7013	1.8394	1.9705	1.8462	1.7076
	0.016	0.014	0.014	0.015	0.016	0.015	0.014

90\% Prediction intervals: i.i.d. Normal errors.

x_{f} / π	0.15	0.3	0.5	0.75	1	1.25	1.5
Norm	0.886	0.892	0.872	0.896	0.896	0.878	0.894
	1.6296	1.6268	1.6266	1.6265	1.6266	1.6266	1.6266
	0.008	0.008	0.008	0.008	0.008	0.008	0.008
	0.872	0.836	0.856	0.868	0.890	0.860	0.846
MB	1.5881	1.5743	1.5114	1.6276	1.7526	1.6255	1.4487
	0.017	0.017	0.018	0.017	0.017	0.017	0.016
	0.914	0.904	0.906	0.898	0.938	0.898	0.892
MFMB	1.8663	1.8602	1.7735	1.9157	2.044	1.9043	1.7049
	0.021	0.022	0.022	0.020	0.020	0.020	0.020
	0.902	0.868	0.904	0.912	0.910	0.912	0.870
LMF	1.8418	1.8470	1.8034	1.8777	1.9907	1.8978	1.7110
	0.022	0.022	0.025	0.022	0.021	0.022	0.021
	0.898	0.884	0.886	0.914	0.938	0.904	0.874
MF	1.8134	1.8307	1.0847	1.8632	1.9704	1.8756	1.7054
	0.022	0.022	0.025	0.023	0.021	0.023	0.022
	0.918	0.910	0.868	0.880	0.946	0.928	0.882
PMF	1.8504	1.8633	1.8090	1.8954	1.9953	1.8995	1.7236
	0.022	0.022	0.024	0.022	0.021	0.022	0.021

$\overline{90 \%}$ Prediction intervals: i.i.d. Laplace errors.

x_{f} / π	0.15	0.3	0.5	0.75	1	1.25	1.5
	0.906	0.890	0.890	0.884	0.908	0.900	0.870
Norm	1.5937	1.5911	1.5908	1.5908	1.5908	1.5908	1.5908
	0.009	0.009	0.009	0.009	0.009	0.009	0.009
	0.846	0.878	0.860	0.882	0.894	0.862	0.804
MB	1.4846	1.4530	1.3485	1.5421	1.6795	1.5329	1.4012
	0.021	0.019	0.018	0.019	0.019	0.017	0.015
	0.928	0.946	0.886	0.964	0.932	0.912	0.846
MFMB	1.8161	1.7776	1.6409	1.8833	2.051	1.8695	1.7162
	0.031	0.025	0.023	0.026	0.024	0.022	0.021
	0.916	0.934	0.908	0.928	0.918	0.898	0.846
LMF	1.7555	1.7460	1.5870	1.8489	1.9798	1.7985	1.6652
	0.027	0.025	0.023	0.024	0.024	0.020	0.019
	0.908	0.932	0.882	0.910	0.906	0.910	0.860
MF	1.7344	1.7265	1.5561	1.8300	1.9345	1.7707	1.6355
	0.027	0.025	0.023	0.025	0.023	0.020	0.019
	0.926	0.936	0.932	0.922	0.932	0.872	0.872
PMF	1.7748	1.7636	1.5991	1.8550	1.9898	1.8083	1.6737
	0.026	0.024	0.022	0.023	0.023	0.019	0.019

90\% Prediction intervals: non-i.i.d. errors.

Local Linear Estimation of a Conditional Distribution

- Objective: Nonparametric regression at boundary points
- Local regression applied for problems involving conditional moment estimation at both interior and boundary points e.g. $\mu(x)=E(Y \mid X=x)$
- Our interest: Estimate conditional distribution at boundary points using local linear regression
- Known issues: Estimated distribution may not be monotone increasing and may not lie in $[0,1]$
- Proposed solution corrects for monotonicity, superior performance demonstrated for both synthetic and real-life datasets versus existing estimators

Local Linear Setup

Conditional Mean:

$$
\mu(x)=E(Y \mid X=x)
$$

estimated by
Local Constant Estimator (Nadaraya-Watson) :
$\frac{\sum_{i=1}^{n} \tilde{K}_{i, x} Y_{i}}{\sum_{i=1}^{n} \tilde{K}_{i, x}}$
where $\tilde{K}_{i, x}=K\left(\frac{x-x_{i}}{b}\right)$
or by Local Linear Estimator:
$\frac{\sum_{j=1}^{n} w_{j} Y_{j}}{\sum_{j=1}^{n} w_{j}}$
where $w_{i}=\tilde{K}_{i, x}\left(1-\hat{\beta}\left(x-x_{i}\right)\right) \quad$ and $\quad \hat{\beta}=\frac{\sum_{i=1}^{n} \tilde{K}_{i, x}\left(x-x_{i}\right)}{\sum_{i=1}^{n} \tilde{K}_{i, x}\left(x-x_{i}\right)^{2}}$

Local Linear Distribution

Conditional Distribution is a Mean:

$$
D_{x}(y)=E(W \mid X=x) \text { where } W=\mathbf{1}\{Y \leq y\}
$$

Local Constant Distribution Estimator:

$$
\hat{D}_{x}^{L C}(y)=\frac{\sum_{\sim}^{n} \hat{K}_{i=1} K_{i, 1}\left\{Y_{i} \leq y\right\}}{\sum_{i=1}^{n} \tilde{K}_{i, x}}
$$

where $\tilde{K}_{i, x}=K\left(\frac{x-x_{i}}{b}\right)$
Local Linear Distribution Estimator:

$$
\hat{D}_{x}^{L L}(y)=\frac{\sum_{j=1}^{n} w_{j} \mathbf{1}\left\{Y_{j} \leq y\right\}}{\sum_{j=1}^{n} w_{j}}
$$

where $w_{i}=\tilde{K}_{i, x}\left(1-\hat{\beta}\left(x-x_{i}\right)\right) \quad$ and $\quad \hat{\beta}=\frac{\sum_{i=1}^{n} \tilde{K}_{i, x}\left(x-x_{i}\right)}{\sum_{i=1}^{n} \tilde{K}_{i, x}\left(x-x_{i}\right)^{2}}$
Smooth Version of Local Linear Estimator:

$$
\bar{D}_{x}^{L L}(y)=\frac{\sum_{j=1}^{n} w_{j} \Lambda\left(\frac{y-Y_{j}}{h_{0}}\right)}{\sum_{j=1}^{n} w_{j}} \text { where } \Lambda \text { is a smooth cdf. }
$$

Hansen Local Linear Estimator

Issues with LL-based distribution estimation:
(\star) Weights in local linear estimation can be negative

- $\bar{D}_{x}^{L L}(y)$ not guaranteed to be in $[0,1]$
- $\bar{D}_{x}^{L L}(y)$ not guaranteed to be monotonic

Hansen proposal:
$\bar{D}_{x}^{L L H}(y)=\frac{\sum_{i=1}^{n} w_{i}^{\ominus} \Lambda\left(\frac{y-Y_{i}}{h_{0}}\right)}{\sum_{i=1}^{n} w_{i}^{\infty}}$
$w_{i}=\tilde{K}_{i, x}\left(1-\hat{\beta}\left(x-x_{i}\right)\right)$
$\alpha=\hat{\beta}\left(x-x_{i}\right)$
$w_{i}^{\diamond}= \begin{cases}0 & \text { when } \alpha>1 \\ \tilde{K}_{i, x}(1-\alpha) & \text { when } \alpha \leq 1 .\end{cases}$

Monotone Local Linear Estimation (joint with S. Das)

- Recall that the derivative of $\bar{D}_{x}^{L L}(y)$ with respect to y is given by

$$
\bar{d}_{x}^{L L}(y)=\frac{\frac{1}{h_{0}} \sum_{j=1}^{n} w_{j} \lambda\left(\frac{y-Y_{j}}{h_{0}}\right)}{\sum_{j=1}^{n} w_{j}}
$$

where $\lambda(y)$ is the derivative of $\Lambda(y)$.

- Define a nonnegative version of $\bar{d}_{x}^{L L}(y)$ as $\bar{d}_{x}^{L L+}(y)=\max \left(\bar{d}_{x}^{L L}(y), 0\right)$.
- To make the above a proper density function, renormalize it to area one, i.e., let

$$
\begin{equation*}
\bar{d}_{x}^{L L M}(y)=\frac{\bar{d}_{x}^{L L+}(y)}{\int_{-\infty}^{\infty} \bar{d}_{x}^{L L+}(s) d s} \tag{1}
\end{equation*}
$$

- Finally, define $\bar{D}_{x}^{L L M}(y)=\int_{-\infty}^{y} \bar{d}_{x}^{L L M}(s) d s$.

Note: Other algorithms for monotonicity correction are also possible which directly use the estimated distribution $\bar{D}_{x}^{L L}(y)$.

Results with synthetic data - (KS statistic)

Model:
$Y_{i}=\sin \left(2 \pi x_{i}\right)+\sigma\left(x_{i}\right) \epsilon_{i}$ for $i=1,2, \ldots, 1001, x_{i}=\frac{i}{n}, \sigma\left(x_{i}\right)=0.1$, and $\epsilon_{i}=N(0,1)$, Prediction at $\mathrm{i}=1001$

Bandwidth	KS-LC	KS-LLH	KS-LLM
3.7	$\mathbf{0 . 2 3 5 0 8}$	0.252884	0.275132
7.4	0.241992	0.233996	0.23606
11.1	0.2767	$\mathbf{0 . 2 3 2 0 6 4}$	0.218948
14.8	0.31528	0.240476	0.20744
18.5	0.349924	0.2554	$\mathbf{0 . 2 0 0 9}$
22.2	0.38438	0.273648	0.204404
25.9	0.418316	0.288032	0.21502
29.6	0.448772	0.307672	0.231588
33.3	0.474796	0.326224	0.253472
37.0	0.502768	0.342884	0.275936
40.7	0.5264	0.360888	0.2993
44.4	0.54664	0.37786	0.320348
48.1	0.56692	0.393392	0.34248
51.8	0.58646	0.407108	0.359404

Results with synthetic data - (Point Prediction)

Model:

$Y_{i}=\sin \left(2 \pi x_{i}\right)+\sigma\left(x_{i}\right) \epsilon_{i}$ for $i=1,2, \ldots, 1001, x_{i}=\frac{i}{n}, \sigma\left(x_{i}\right)=0.1$, and $\epsilon_{i}=N(0,1)$, Prediction at $\mathrm{i}=1001$

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
3.7	-0.01887676	0.01265856	-0.0087034	0.01453471	0.0004694887	0.01667712	0.00279478	0.01713243
7.4	-0.03782673	$\mathbf{0 . 0 1 2 6 1 4 3 5}$	-0.01818502	0.0126929	0.0005444976	0.01323652	0.003247646	0.01340418
11.1	-0.05753609	0.01418224	-0.02725602	$\mathbf{0 . 0 1 2 3 2 8 7 7}$	-0.001022256	0.01200918	0.0039133	0.01219628
14.8	-0.07724901	0.01672728	-0.03718728	0.01259729	-0.005397138	0.01148354	0.00354838	0.01167496
18.5	-0.09692561	0.0200906	-0.04758345	0.01327841	-0.01222596	$\mathbf{0 . 0 1 1 3 0 6 2 2}$	0.002834568	0.01139095
22.2	-0.116533	0.02423279	-0.05831195	0.01431087	-0.02106315	0.01142789	0.002008806	0.01120327
25.9	-0.1359991	0.02911512	-0.06918129	0.0156254	-0.03138586	0.01185914	0.001102312	0.01106821
29.6	-0.1555938	0.03480583	-0.08021998	0.01722284	-0.04274234	0.01263368	$8.912064 \mathrm{e}-05$	0.01096947
33.3	-0.1752324	0.04128715	-0.09144259	0.01910772	-0.05473059	0.01375585	-0.001070282	0.01089842
37.0	-0.1947342	0.04848954	-0.1027918	0.02127558	-0.0670785	0.01521865	-0.002416635	0.01084951
40.7	-0.2145001	0.05656322	-0.1142845	0.02374615	-0.07967838	0.01704094	-0.003988081	0.01081946
44.4	-0.2343967	0.06548142	-0.1259372	0.02651703	-0.09236019	0.01919461	-0.005818943	$\mathbf{0 . 0 1 0 8 0 6 9 9}$
48.1	-0.2543523	0.07522469	-0.1377167	0.02960364	-0.1050934	0.02168698	-0.007939144	0.01081259
51.8	-0.2740635	0.08563245	-0.1496325	0.03301117	-0.1178388	0.02451228	-0.01037417	0.01083832

Results with synthetic data - (Quantile Estimation)

Model:
$Y_{i}=\sin \left(2 \pi x_{i}\right)+\sigma\left(x_{i}\right) \epsilon_{i}$ for $i=1,2, \ldots, 1001, x_{i}=\frac{i}{n}, \sigma\left(x_{i}\right)=0.3$, and $\epsilon_{i}=N(0,1)$, Prediction at $\mathrm{i}=1001$

Results with real-life data

Model: Wage dataset from ISLR package in R.
Objective: point prediction over last 231 values of backward dataset.

Point Prediction with ISLR data

Method	Bias	MSE
LC	0.0004954944	0.08236025
LLH	-0.001962329	0.0808793
LLM	$-6.005305 \mathrm{e}-05$	0.08044857
LL	0.0002608775	0.08055141

