Model-free Prediction and Bootstrap

Dimitris N. Politis

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Once upon a time in the UK

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

▶ Once upon a time in the UK — Fisher, Pearson, Gosset, etc.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Once upon a time in the UK — Fisher, Pearson, Gosset, etc.
 Data: Y₁,..., Y_n i.i.d. from some distribution F_θ(x)

▶ Once upon a time in the UK — Fisher, Pearson, Gosset, etc.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- **Data**: Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed

▶ Once upon a time in the UK — Fisher, Pearson, Gosset, etc.

- **Data**: Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed
- Shape of $F_{\theta}(x)$ is known parameter θ is unknown

- Once upon a time in the UK Fisher, Pearson, Gosset, etc.
- **Data**: Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed
- Shape of F_θ(x) is known parameter θ is unknown e.g. F_θ is N(θ, 1) or N(θ, σ²) with σ² being a "nuisance" (!)

- Once upon a time in the UK Fisher, Pearson, Gosset, etc.
- **Data**: Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed
- Shape of F_θ(x) is known parameter θ is unknown e.g. F_θ is N(θ, 1) or N(θ, σ²) with σ² being a "nuisance" (!)

• $F_{\theta}(x)$ belongs to a parametric family of distributions

- Once upon a time in the UK Fisher, Pearson, Gosset, etc.
- **Data:** Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed
- Shape of F_θ(x) is known parameter θ is unknown e.g. F_θ is N(θ, 1) or N(θ, σ²) with σ² being a "nuisance" (!)

- $F_{\theta}(x)$ belongs to a parametric family of distributions
- Goal: Use the data to estimate θ

- Once upon a time in the UK Fisher, Pearson, Gosset, etc.
- **Data**: Y_1, \ldots, Y_n i.i.d. from some distribution $F_{\theta}(x)$
- i.i.d.= independent, identically distributed
- Shape of F_θ(x) is known parameter θ is unknown e.g. F_θ is N(θ, 1) or N(θ, σ²) with σ² being a "nuisance" (!)
- $F_{\theta}(x)$ belongs to a parametric family of distributions
- Goal: Use the data to estimate θ but also quantify estimation accuracy (standard error, confidence interval, etc.)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 $\blacktriangleright \ \hat{\theta}_{\textit{MLE}}$ is the value maximizing the Likelihood function

▶ $\hat{\theta}_{MLE}$ is the value maximizing the Likelihood function

• Under regularity conditions, $\hat{\theta}_{MLE}$ is consistent for θ and ...

θ̂_{MLE} is the value maximizing the Likelihood function

 Under regularity conditions, *θ̂_{MLE}* is consistent for *θ* and ...
 ... asymptotically normal, i.e., *θ̂_{MLE}* ~ N(θ, I(θ)/n) for large n

- $\hat{\theta}_{MLE}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{MLE}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{MLE} \sim N(\theta, I(\theta)/n)$ for large *n*

• The Fisher information $I(\theta)$ can be computed from F_{θ}

- $\hat{\theta}_{MLE}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{MLE}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{MLE} \sim N(\theta, I(\theta)/n)$ for large n

- The Fisher information $I(\theta)$ can be computed from F_{θ}
- Can use the asymptotic normal distribution to construct confidence intervals and hypothesis tests for θ

- ▶ $\hat{\theta}_{MLE}$ is the value maximizing the Likelihood function
- Under regularity conditions, $\hat{\theta}_{MLE}$ is consistent for θ and asymptotically normal, i.e., $\hat{\theta}_{MLE} \sim N(\theta, I(\theta)/n)$ for large n

- The Fisher information $I(\theta)$ can be computed from F_{θ}
- Can use the asymptotic normal distribution to construct confidence intervals and hypothesis tests for θ
- MLE is a complete theory for statistical inference.

100 years ago, sample sizes were quite small

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with n = 9 at the Guiness Brewery in 1908

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with n = 9 at the Guiness Brewery in 1908

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Asymptotic normality can not be justified

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with n = 9 at the Guiness Brewery in 1908

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Asymptotic normality can not be justified
- Assuming F_{θ} is $N(\theta, \sigma^2)$, Gosset figured out the exact distribution of the "studentized" sample mean $\frac{\bar{X}-\theta}{\hat{\sigma}}$.

- 100 years ago, sample sizes were quite small
- W.S. Gosset (AKA "a student") was working with n = 9 at the Guiness Brewery in 1908
- Asymptotic normality can not be justified
- Assuming F_θ is N(θ, σ²), Gosset figured out the exact distribution of the "studentized" sample mean X̄-θ/φ.
- But how about statistics other than the sample mean \bar{X} ?

Why/how can we assume that F_θ belongs to any given parametric family? E.g. why assume F_θ is N(θ, σ²)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why/how can we assume that F_θ belongs to any given parametric family? E.g. why assume F_θ is N(θ, σ²)?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Answer: for convenience, in view of a small sample

- Why/how can we assume that F_θ belongs to any given parametric family? E.g. why assume F_θ is N(θ, σ²)?
- Answer: for convenience, in view of a small sample
- With a large sample Y₁,..., Y_n, the common distribution F(x) can be readily estimated from the data.

- Why/how can we assume that F_θ belongs to any given parametric family? E.g. why assume F_θ is N(θ, σ²)?
- Answer: for convenience, in view of a small sample
- With a large sample Y₁,..., Y_n, the common distribution F(x) can be readily estimated from the data.
- F(x) = P{Y_i ≤ x} can be estimated by Â(x) = #{Y_i≤x}/n i.e., the proportion of data points that are ≤ x.

- Why/how can we assume that F_θ belongs to any given parametric family? E.g. why assume F_θ is N(θ, σ²)?
- Answer: for convenience, in view of a small sample
- With a large sample Y₁,..., Y_n, the common distribution F(x) can be readily estimated from the data.
- ► $F(x) = P\{Y_i \le x\}$ can be estimated by $\hat{F}(x) = \frac{\#\{Y_i \le x\}}{n}$ i.e., the proportion of data points that are $\le x$.

This is a modern, nonparametric setup.

▶ Y_1, \ldots, Y_n are house sale prices in San Diego in Jan. 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Y₁,..., Y_n are house sale prices in San Diego in Jan. 2022
 The median house price θ can be estimated by the sample median θ̂, i.e., the median of the data points Y₁,..., Y_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Y_1, \ldots, Y_n are house sale prices in San Diego in Jan. 2022
- The median house price θ can be estimated by the sample median $\hat{\theta}$, i.e., the median of the data points Y_1, \ldots, Y_n

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• What is the standard error of the sample median $\hat{\theta}$?

- ▶ *Y*₁,..., *Y_n* are house sale prices in San Diego in Jan. 2022
- The median house price θ can be estimated by the sample median θ̂, i.e., the median of the data points Y₁,..., Y_n
- What is the standard error of the sample median $\hat{\theta}$?
- So if $\hat{\theta} = 555K$, how sure are you that this figure —which was based on (say) n = 300 points— is close to the true median?

A thought experiment
▶ Statistic $\hat{\theta}$ was computed from data Y_1, \ldots, Y_n i.i.d. from F

- Statistic $\hat{\theta}$ was computed from data Y_1, \ldots, Y_n i.i.d. from F
- ► If we knew *F* we could generate more samples, and witness how $\hat{\theta}$ varies across samples.

- Statistic $\hat{\theta}$ was computed from data Y_1, \ldots, Y_n i.i.d. from F
- ▶ If we knew *F* we could generate more samples, and witness how $\hat{\theta}$ varies across samples.
- Parallel universes:

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from *F* and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from *F* and compute $\hat{\theta}^{(2)}$ Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from *F* and compute $\hat{\theta}^{(B)}$

- Statistic $\hat{\theta}$ was computed from data Y_1, \ldots, Y_n i.i.d. from F
- ▶ If we knew *F* we could generate more samples, and witness how $\hat{\theta}$ varies across samples.
- Parallel universes:

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from *F* and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from *F* and compute $\hat{\theta}^{(2)}$ Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from *F* and compute $\hat{\theta}^{(B)}$

Approximate the variance of θ̂ by the sample variance of the artificial statistics: θ̂⁽¹⁾, · · · , θ̂^(B).

Resampling and the bootstrap - circa 1980

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Resampling and the bootstrap - circa 1980

This is just a Monte Carlo simulation assuming F is known.

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from *F* and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from *F* and compute $\hat{\theta}^{(2)}$

Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Resampling and the bootstrap - circa 1980

▶ This is just a Monte Carlo simulation assuming *F* is known.

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from *F* and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from *F* and compute $\hat{\theta}^{(2)}$

Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

But F is unknown...

Resampling and the bootstrap – circa 1980

▶ This is just a Monte Carlo simulation assuming *F* is known.

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from *F* and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from *F* and compute $\hat{\theta}^{(2)}$

Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from F and compute $\hat{\theta}^{(B)}$

• But F is unknown... plugging in \hat{F} for F makes this bootstrap

Generate sample $Y_1^{(1)}, \ldots, Y_n^{(1)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(1)}$ Generate sample $Y_1^{(2)}, \ldots, Y_n^{(2)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(2)}$

Generate sample $Y_1^{(B)}, \ldots, Y_n^{(B)}$ i.i.d. from \hat{F} and compute $\hat{\theta}^{(B)}$

・ロト ・西ト ・ヨト ・ヨー うへぐ

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

i.N.d. = independent, Non-identically distributed data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data Regression: Y_i = β₀ + β₁x_i + ε_i where the errors ε_i are i.i.d.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data Regression: Y_i = β₀ + β₁x_i + ε_i where the errors ε_i are i.i.d.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

N.i.d. = Non-independent, identically distributed data

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- i.N.d. = independent, Non-identically distributed data Regression: Y_i = β₀ + β₁x_i + ε_i where the errors ε_i are i.i.d.
- ► N.i.d. = Non-independent, identically distributed data Stationary Time Series: $Y_i = \beta_0 + \beta_1 Y_{i-1} + \epsilon_i$ with ϵ_i i.i.d.

- Efron's bootstrap works for a variety of statistics assuming... the data are i.i.d. i.e., independent, identically distributed.
- ▶ i.N.d. = independent, Non-identically distributed data Regression: Y_i = β₀ + β₁x_i + ε_i where the errors ε_i are i.i.d.
- ► N.i.d. = Non-independent, identically distributed data Stationary Time Series: $Y_i = \beta_0 + \beta_1 Y_{i-1} + \epsilon_i$ with ϵ_i i.i.d.
- ▶ Fit Regression and Autoregression models to reduce to i.i.d.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \blacktriangleright Data: Y_1, \ldots, Y_n not i.i.d.

- \blacktriangleright Data: Y_1, \ldots, Y_n not i.i.d.
- Let $\underline{Y} = (Y_1, \ldots, Y_n)'$
- Find an invertible transformation H_n such that the vector $\underline{\epsilon} = H_n(\underline{Y})$ has i.i.d. components $\epsilon_1, \ldots, \epsilon_n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Data: Y_1, \ldots, Y_n not i.i.d.
- Let $\underline{Y} = (Y_1, \ldots, Y_n)'$
- Find an invertible transformation H_n such that the vector $\underline{\epsilon} = H_n(\underline{Y})$ has i.i.d. components $\epsilon_1, \ldots, \epsilon_n$
- ▶ Resample the i.i.d. e₁,..., e_n, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.

- $\blacktriangleright \text{ Data: } Y_1, \ldots, Y_n \text{ not i.i.d.}$
- Let $\underline{Y} = (Y_1, \ldots, Y_n)'$
- Find an invertible transformation H_n such that the vector $\underline{\epsilon} = H_n(\underline{Y})$ has i.i.d. components $\epsilon_1, \ldots, \epsilon_n$
- Resample the i.i.d. \(\epsilon_1, \dots, \epsilon_n\) and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_1, \ldots, \epsilon_n$

- $\blacktriangleright \text{ Data: } Y_1, \ldots, Y_n \text{ not i.i.d.}$
- Let $\underline{Y} = (Y_1, \ldots, Y_n)'$
- Find an invertible transformation H_n such that the vector $\underline{\epsilon} = H_n(\underline{Y})$ has i.i.d. components $\epsilon_1, \ldots, \epsilon_n$
- Resample the i.i.d. ε₁,..., ε_n, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_1, \ldots, \epsilon_n$
- ► (ii) Resample from the estimated F_ϵ to create a bootstrap sample ϵ^{*}₁,..., ϵ^{*}_n

- Data: Y_1, \ldots, Y_n not i.i.d.
- Let $\underline{Y} = (Y_1, \ldots, Y_n)'$
- Find an invertible transformation H_n such that the vector $\underline{\epsilon} = H_n(\underline{Y})$ has i.i.d. components $\epsilon_1, \ldots, \epsilon_n$
- Resample the i.i.d. ε₁,..., ε_n, and map back (using the inverse transformation) to obtain bootstrap samples in the Y-domain.

- ▶ Steps: (i) Estimate the common distribution F_{ϵ} of $\epsilon_1, \ldots, \epsilon_n$
- ► (ii) Resample from the estimated F_ϵ to create a bootstrap sample ϵ^{*}₁,..., ϵ^{*}_n
- (iii) Let $\underline{Y}^* = H_n^{-1}(\underline{\epsilon}^*)$ where $\underline{\epsilon}^* = (\epsilon_1^*, \dots, \epsilon_n^*)'$

Data

Modeling

Models are indispensable for exploring/utilizing relationships between variables: explaining the world.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Models are indispensable for exploring/utilizing relationships between variables: explaining the world.

• Use of models for prediction can be problematic when:

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.
- Use of models for prediction can be problematic when:
 - a model is overspecified
 - parameter inference is highly model-specific (and sensitive to model mis-specification)

prediction is carried out by plugging in the estimated parameters and treating the model as exactly true.

- Models are indispensable for exploring/utilizing relationships between variables: explaining the world.
- Use of models for prediction can be problematic when:
 - a model is overspecified
 - parameter inference is highly model-specific (and sensitive to model mis-specification)

- prediction is carried out by plugging in the estimated parameters and treating the model as exactly true.
- ▶ "All models are wrong but some are useful"— George Box.

► Assume regression model: $Y = \beta_0 + \beta_1 X + \beta_2 X^{20} + \text{error}$

- Assume regression model: $Y = \beta_0 + \beta_1 X + \beta_2 X^{20} + \text{ error}$
- ► If Â₂ is barely statistically significant, do you still use it in prediction?

- Assume regression model: $Y = \beta_0 + \beta_1 X + \beta_2 X^{20} + \text{ error}$
- If β̂₂ is barely statistically significant, do you still use it in prediction?
- If the true value of β₂ is close to zero, and var(β̂₂) is large, then it may be advantageous to omit β₂: allow a nonzero Bias but minimize MSE.

- Assume regression model: $Y = \beta_0 + \beta_1 X + \beta_2 X^{20} + \text{ error}$
- If β̂₂ is barely statistically significant, do you still use it in prediction?
- If the true value of β₂ is close to zero, and var(β̂₂) is large, then it may be advantageous to omit β₂: allow a nonzero Bias but minimize MSE.

A mis-specified model can be optimal for prediction!
Prediction Framework

- a. Point predictors
 - b. Interval predictors
 - c. Predictive distribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Prediction Framework

- a. Point predictors
 - b. Interval predictors
 - c. Predictive distribution
- Abundant Bayesian literature in parametric framework —Cox (1975), Geisser (1993), etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prediction Framework

- a. Point predictors
 - b. Interval predictors
 - c. Predictive distribution
- Abundant Bayesian literature in parametric framework —Cox (1975), Geisser (1993), etc.
- Frequentist/nonparametric literature scarse -- except: Conformal Prediction in Machine Learning (Vovk, Wasserman, Candes, Chernozhukov, etc.)

• Let $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. from the (unknown) cdf F_{ε}

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Let $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. from the (unknown) cdf F_{ε}
- ► GOAL: prediction of future ε_{n+1} based on the data

・ロト・日本・モト・モート ヨー うへで

- Let $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. from the (unknown) cdf F_{ε}
- GOAL: prediction of future ε_{n+1} based on the data
- ► F_ε is the predictive distribution, and its quantiles could be used to form predictive intervals

- Let $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. from the (unknown) cdf F_{ε}
- GOAL: prediction of future ε_{n+1} based on the data
- ► F_ε is the predictive distribution, and its quantiles could be used to form predictive intervals
- ► The mean and median of F_ε are optimal point predictors under an L₂ and L₁ criterion respectively.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

I.i.d. data

F_ε is unknown but can be estimated by the empirical distribution (edf) F̂_ε.

I.i.d. data

- F_ε is unknown but can be estimated by the empirical distribution (edf) F̂_ε.
- ► L2 and L1 optimal predictors will be approximated by the mean and median of *F*_ε respectively. ``Naive" model-free predictive intervals could be based on the quantiles of *F*_ε but this ignores the variance due to estimation -- need bootstrap!

▶ In general, data $\underline{Y}_n = (Y_1, \ldots, Y_n)'$ are not i.i.d.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Non-i.i.d. data

- ▶ In general, data $\underline{Y}_n = (Y_1, \ldots, Y_n)'$ are not i.i.d.
- So the predictive distribution of Y_{n+1} given the data will depend on Y_n and X_{n+1} which is a matrix of observable, explanatory (predictor) variables.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-i.i.d. data

- ▶ In general, data $\underline{Y}_n = (Y_1, \ldots, Y_n)'$ are not i.i.d.
- So the predictive distribution of Y_{n+1} given the data will depend on Y_n and X_{n+1} which is a matrix of observable, explanatory (predictor) variables.

Key Examples: Regression and Time series

• Regression: $Y_t = \mu(\underline{x}_t) + \sigma(\underline{x}_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Regression: $Y_t = \mu(\underline{x}_t) + \sigma(\underline{x}_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$
- Time series:

$$Y_t = \mu(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) + \sigma(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) \varepsilon_t$$

- Regression: $Y_t = \mu(\underline{x}_t) + \sigma(\underline{x}_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$
- Time series:
 - $Y_t = \mu(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) + \sigma(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) \varepsilon_t$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► The above are flexible, nonparametric models.

- Regression: $Y_t = \mu(\underline{x}_t) + \sigma(\underline{x}_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$
- Time series:

 $Y_t = \mu(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) + \sigma(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) \varepsilon_t$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The above are flexible, nonparametric models.
- ► Given one of the above models, optimal model-based predictors of a future *Y*-value can be constructed.

- Regression: $Y_t = \mu(\underline{x}_t) + \sigma(\underline{x}_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$
- Time series:

 $Y_t = \mu(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) + \sigma(Y_{t-1}, \cdots, Y_{t-p}; \underline{x}_t) \varepsilon_t$

- The above are flexible, nonparametric models.
- ► Given one of the above models, optimal model-based predictors of a future *Y*-value can be constructed.
- Nevertheless, the prediction problem can be carried out in a fully model-free setting, offering—at the very least—robustness against model mis-specification.

• DATA:
$$\underline{Y}_n = (Y_1, \ldots, Y_n)'$$

<□ > < @ > < E > < E > E のQ @

• DATA:
$$\underline{Y}_n = (Y_1, \ldots, Y_n)'$$

• GOAL: predict future value Y_{n+1} given the data

• DATA:
$$\underline{Y}_n = (Y_1, \ldots, Y_n)'$$

- GOAL: predict future value Y_{n+1} given the data
- Find invertible transformation H_m so that (for all m) the

vector $\underline{\epsilon}_m = H_m(\underline{Y}_m)$ has i.i.d. components ϵ_k where

 $\underline{\epsilon}_m = (\epsilon_1, \ldots, \epsilon_m)'$

• DATA:
$$\underline{Y}_n = (Y_1, \ldots, Y_n)'$$

- GOAL: predict future value Y_{n+1} given the data
- Find invertible transformation H_m so that (for all m) the

vector $\underline{\epsilon}_m = H_m(\underline{Y}_m)$ has i.i.d. components ϵ_k where

$$\underline{\epsilon}_m = (\epsilon_1, \ldots, \epsilon_m)'$$

$$\underline{Y} \xrightarrow{H_m} \underline{\epsilon}$$

$$\underline{Y} \stackrel{H_m^{-1}}{\longleftarrow} \underline{\epsilon}$$

Transformation

(*i*)
$$(Y_1, \ldots, Y_m) \xrightarrow{H_m} (\epsilon_1, \ldots, \epsilon_m)$$

(*ii*) $(Y_1, \ldots, Y_m) \xleftarrow{H_m^{-1}} (\epsilon_1, \ldots, \epsilon_m)$

• (i) implies that $\epsilon_1, \ldots, \epsilon_n$ are known given the data Y_1, \ldots, Y_n

Transformation

(*i*)
$$(Y_1, \ldots, Y_m) \xrightarrow{H_m} (\epsilon_1, \ldots, \epsilon_m)$$

(*ii*) $(Y_1, \ldots, Y_m) \xleftarrow{H_m^{-1}} (\epsilon_1, \ldots, \epsilon_m)$

(i) implies that €₁,..., €_n are known given the data Y₁,..., Y_n
 (ii) implies that Y_{n+1} is a function of €₁,..., €_n, and €_{n+1}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Transformation

(*i*)
$$(Y_1, \ldots, Y_m) \xrightarrow{H_m} (\epsilon_1, \ldots, \epsilon_m)$$

(*ii*) $(Y_1, \ldots, Y_m) \xleftarrow{H_m^{-1}} (\epsilon_1, \ldots, \epsilon_m)$

- (i) implies that $\epsilon_1, \ldots, \epsilon_n$ are known given the data Y_1, \ldots, Y_n
- (ii) implies that Y_{n+1} is a function of $\epsilon_1, \ldots, \epsilon_n$, and ϵ_{n+1}
- ▶ So, given the data \underline{Y}_n , Y_{n+1} is a function of ϵ_{n+1} only, i.e.,

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

・ロト・日本・モート モー うへぐ

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

• Suppose
$$\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$$

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

Suppose
$$\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$$

► The mean and median of *h*(*ϵ*) where *ϵ* ~ *F_ε* are optimal point predictors of *Y_{n+1}* under *L*₂ or *L*₁ criterion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

Suppose $\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$

- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

Suppose $\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$

- ► The mean and median of h
 (
 ϵ) where ϵ ~ F_ε are optimal point predictors of Y_{n+1} under L₂ or L₁ criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$

► To predict Y²_{n+1}, replace *h* by *h*²; to predict g(Y_{n+1}), replace *h* by g ∘ *h*.

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

Suppose $\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$

- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$
- ► To predict Y²_{n+1}, replace h̃ by h²; to predict g(Y_{n+1}), replace h̃ by g ∘ h̃.
- The unknown F_{ε} can be estimated by \hat{F}_{ε} , the edf of $\epsilon_1, \ldots, \epsilon_n$.

(日) (同) (三) (三) (三) (○) (○)

$$Y_{n+1} = \tilde{h}(\epsilon_{n+1})$$

Suppose $\epsilon_1, \ldots, \epsilon_n \sim \operatorname{cdf} F_{\varepsilon}$

- ► The mean and median of *h*(*ϵ*) where *ϵ* ~ *F_ε* are optimal point predictors of *Y_{n+1}* under *L*₂ or *L*₁ criterion
- The whole predictive distribution of Y_{n+1} is the distribution of $\tilde{h}(\epsilon)$ when $\epsilon \sim F_{\varepsilon}$
- ► To predict Y²_{n+1}, replace h̃ by h²; to predict g(Y_{n+1}), replace h̃ by g ∘ h̃.
- The unknown F_{ε} can be estimated by \hat{F}_{ε} , the edf of $\epsilon_1, \ldots, \epsilon_n$.
- But the predictive distribution needs bootstrapping—also because *h* is estimated from the data.

MODEL (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

x_t univariate and deterministic

MODEL (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- x_t univariate and deterministic
- Y_t data available for $t = 1, \ldots, n$.

MODEL (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- x_t univariate and deterministic
- Y_t data available for $t = 1, \ldots, n$.
- $\varepsilon_t \sim \text{i.i.d.} (0,1)$ from (unknown) cdf F

$$MODEL(\star): \quad Y_t = \mu(x_t) + \sigma(x_t) \ \varepsilon_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- x_t univariate and deterministic
- Y_t data available for $t = 1, \ldots, n$.
- $\varepsilon_t \sim \text{i.i.d.} (0,1)$ from (unknown) cdf F
- the functions $\mu(\cdot)$ and $\sigma(\cdot)$ unknown but smooth

Note: $\mu(x) = E(Y|x)$ and $\sigma^2(x) = Var(Y|x)$.

• Let m_x, s_x be smoothing estimators of $\mu(x), \sigma(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note: $\mu(x) = E(Y|x)$ and $\sigma^2(x) = Var(Y|x)$.

- Let m_x, s_x be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.
Nonparametric Regression

Note: $\mu(x) = E(Y|x)$ and $\sigma^2(x) = Var(Y|x)$.

- Let m_x, s_x be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.

• E.g. Nadaraya-Watson estimator $m_x = \sum_{i=1}^n Y_i \tilde{K} \left(\frac{x - x_i}{h} \right)$

Nonparametric Regression

Note: $\mu(x) = E(Y|x)$ and $\sigma^2(x) = Var(Y|x)$.

- Let m_x, s_x be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.

- E.g. Nadaraya-Watson estimator $m_x = \sum_{i=1}^n Y_i \tilde{K} \left(\frac{x x_i}{h} \right)$
- ▶ here K(x) is the kernel, *h* the bandwidth, and $\tilde{K}\left(\frac{x-x_i}{h}\right) = K\left(\frac{x-x_i}{h}\right) / \sum_{k=1}^{n} K\left(\frac{x-x_k}{h}\right)$.

Nonparametric Regression

Note: $\mu(x) = E(Y|x)$ and $\sigma^2(x) = Var(Y|x)$.

- Let m_x, s_x be smoothing estimators of $\mu(x), \sigma(x)$.
- Examples: kernel smoothers, local linear fitting, wavelets, etc.
- E.g. Nadaraya-Watson estimator $m_x = \sum_{i=1}^n Y_i \tilde{K} \left(\frac{x x_i}{h} \right)$
- ▶ here K(x) is the kernel, *h* the bandwidth, and $\tilde{K}\left(\frac{x-x_i}{h}\right) = K\left(\frac{x-x_i}{h}\right) / \sum_{k=1}^{n} K\left(\frac{x-x_k}{h}\right)$.
- Similarly, $s_x^2 = M_x m_x^2$ where $M_x = \sum_{i=1}^n Y_i^2 \tilde{K}\left(\frac{x-x_i}{q}\right)$

(a) Log-wage vs. age data with fitted kernel smoother m_x . (b) Unstudentized residuals $Y - m_x$ with superimposed s_x .

- 1971 Canadian Census data cps71 from np package of R; wage vs. age dataset of 205 male individuals with common education.
- Kernel smoother problematic at the left boundary; local linear is better (Fan and Gijbels, 1996) or reflection (Hall and Wehrly, 1991).

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

• fitted residuals:
$$e_t = (Y_t - m_{x_t})/s_{x_t}$$

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

- fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$
- predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

- fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$
- predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$
- *m_x^(t)* and *s_{xt}^(t)* are the estimators *m* and *s* computed from the delete-*Y_t* dataset: {(*Y_i*, *x_i*), for all *i* ≠ *t*}.

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

- fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$
- predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$
- *m_x^(t)* and *s_{xt}^(t)* are the estimators *m* and *s* computed from the delete-*Y_t* dataset: {(*Y_i*, *x_i*), for all *i* ≠ *t*}.
- ▶ *ẽ_t* is the (standardized) error in trying to predict Y_t from the delete-Y_t dataset.

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

- fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$
- predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$
- *m_x^(t)* and *s_{xt}^(t)* are the estimators *m* and *s* computed from the delete-*Y_t* dataset: {(*Y_i*, *x_i*), for all *i* ≠ *t*}.
- ▶ *ẽ_t* is the (standardized) error in trying to predict Y_t from the delete-Y_t dataset.
- Selection of bandwidth parameters h and q is often done by cross-validation, i.e., pick h, q to minimize PRESS=∑_{t=1}ⁿ e_t².

• (*):
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$

- fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$
- predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$
- *m_x^(t)* and *s_{xt}^(t)* are the estimators *m* and *s* computed from the delete-*Y_t* dataset: {(*Y_i*, *x_i*), for all *i* ≠ *t*}.
- ▶ *ẽ_t* is the (standardized) error in trying to predict Y_t from the delete-Y_t dataset.
- Selection of bandwidth parameters h and q is often done by cross-validation, i.e., pick h, q to minimize PRESS=∑_{t=1}ⁿ e_t².
- ▶ BETTER: L_1 cross-validation: pick h, q to minimize $\sum_{t=1}^{n} |\tilde{e}_t|$.

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• GOAL: Predict a future response Y_f associated with point x_f .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• GOAL: Predict a future response $Y_{\rm f}$ associated with point $x_{\rm f}$.

• L_2 -optimal predictor of Y_f is $E(Y_f|x_f)$, i.e., $\mu(x_f)$

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• GOAL: Predict a future response $Y_{\rm f}$ associated with point $x_{\rm f}$.

L₂−optimal predictor of Y_f is E(Y_f|x_f), i.e., μ(x_f) which is approximated by m_{x_f}.

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

- GOAL: Predict a future response Y_f associated with point x_f .
- L₂−optimal predictor of Y_f is E(Y_f|x_f), i.e., μ(x_f) which is approximated by m_{x_f}.
- L_1 -optimal predictor of Y_f is the conditional median, i.e., $\mu(x_f) + \sigma(x_f) \cdot median(F)$

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

- GOAL: Predict a future response $Y_{\rm f}$ associated with point $x_{\rm f}$.
- ► L₂-optimal predictor of Y_f is E(Y_f|x_f), i.e., µ(x_f) which is approximated by m_{x_f}.
- ► L_1 -optimal predictor of Y_f is the conditional median, i.e., $\mu(x_f) + \sigma(x_f) \cdot median(F)$ which is approximated by $m_{x_f} + s_{x_f} \cdot median(\hat{F}_e)$ where \hat{F}_e is the edf of the (fitted) residuals e_1, \ldots, e_n

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_t = \text{log-salary}.$

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• DATASET cps71: salaries are logarithmically transformed, i.e., $Y_t =$ log-salary.

► To predict salary at age x_f we need to predict g(Y_f) where g(x) = exp(x).

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0, 1)$ with cdf F .

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_t = \text{log-salary}.$
- ► To predict salary at age x_f we need to predict g(Y_f) where g(x) = exp(x).
- MB L₂−optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f} e_i).

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

- DATASET cps71: salaries are logarithmically transformed, i.e., $Y_t =$ log-salary.
- ► To predict salary at age x_f we need to predict g(Y_f) where g(x) = exp(x).
- ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f}e_i).

▶ Naive predictor $g(m_{x_f})$ is suboptimal when g is nonlinear.

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.

- DATASET cps71: salaries are logarithmically transformed, i.e., *Y_t* = log-salary.
- ► To predict salary at age x_f we need to predict g(Y_f) where g(x) = exp(x).
- ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f}e_i).
- ▶ Naive predictor $g(m_{x_f})$ is suboptimal when g is nonlinear.
- ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{xf} + σ_{xf}e_i), i = 1,...,n}; naive plug-in ok iff g is monotone!

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
- ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f}e_i).
- ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{x_f} + σ_{x_f}e_i), i = 1,...,n}.

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
 - ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f} e_i).
 - ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{x_f} + σ_{x_f}e_i), i = 1,...,n}.

► Traditionally, the above are calculated using the fitted residuals: $e_t = (Y_t - m_{x_t})/s_{x_t}$.

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
 - ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f}e_i).
 - ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{x_f} + σ_{x_f}e_i), i = 1,...,n}.
 - ▶ Traditionally, the above are calculated using the fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$.
 - MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.

• $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_t = (Y_t - m_{x_t}^{(t)})/s_{x_t}^{(t)}$.

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
 - ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f}e_i).
 - ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{x_f} + σ_{x_f}e_i), i = 1,...,n}.
 - ▶ Traditionally, the above are calculated using the fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$.
 - MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.
 - $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$.
 - e_t and \tilde{e}_t are centered at zero but different scale: $|e_t| < |\tilde{e}_t|$.

- (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.
 - ► MB L₂-optimal predictor of g(Y_f) is E(g(Y_f)|x_f) estimated by n⁻¹ ∑ⁿ_{i=1} g (m_{x_f} + σ_{x_f} e_i).
 - ► MB L₁-optimal predictor of g(Y_f) estimated by the sample median of the set {g (m_{x_f} + σ_{x_f}e_i), i = 1,...,n}.
 - ▶ Traditionally, the above are calculated using the fitted residuals: $e_t = (Y_t m_{x_t})/s_{x_t}$.
 - MF Prediction Principle suggests the transformation $\underline{Y} \mapsto \underline{\tilde{e}}$.
 - $\underline{\tilde{e}}$ is vector of predictive residuals: $\tilde{e}_t = (Y_t m_{x_t}^{(t)})/s_{x_t}^{(t)}$.
 - e_t and \tilde{e}_t are centered at zero but different scale: $|e_t| < |\tilde{e}_t|$.
 - Makes little difference for point predictors but huge difference for prediction intervals: MF/MB alleviates undercoverage.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by F^{*}_n.

• Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i} r_i^{\star}$, for i = 1, ...n.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i} r_i^{\star}$, for i = 1, ...n.
- ► Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where *r* is drawn randomly from $(r_1, ..., r_n)$.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i}r_i^{\star}$, for i = 1, ...n.
- ► Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where *r* is drawn randomly from $(r_1, ..., r_n)$.

Based on the pseudo-data Y^{*}₁,..., Y^{*}_n, re-estimate the functions μ(x) and σ(x) by m^{*}_x and s^{*}_x.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i}r_i^{\star}$, for i = 1, ...n.
- ► Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where *r* is drawn randomly from $(r_1, ..., r_n)$.
- Based on the pseudo-data Y^{*}₁,..., Y^{*}_n, re-estimate the functions μ(x) and σ(x) by m^{*}_x and s^{*}_x.
- ► Calculate bootstrap root: $g(Y_{\rm f}^{\star}) \Pi(g, m_x^*, s_x^*, \underline{Y}_n, \mathbf{X}_{n+1}, \hat{F}_n)$.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i}r_i^{\star}$, for i = 1, ...n.
- Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where r is drawn randomly from $(r_1, ..., r_n)$.
- Based on the pseudo-data Y^{*}₁,..., Y^{*}_n, re-estimate the functions μ(x) and σ(x) by m^{*}_x and s^{*}_x.
- ► Calculate bootstrap root: $g(Y_{\rm f}^{\star}) \Pi(g, m_x^*, s_x^*, \underline{Y}_n, \mathbf{X}_{n+1}, \hat{F}_n)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α—quantile denoted q(α).

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i}r_i^{\star}$, for i = 1, ...n.
- Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where r is drawn randomly from $(r_1, ..., r_n)$.
- Based on the pseudo-data Y^{*}₁,..., Y^{*}_n, re-estimate the functions μ(x) and σ(x) by m^{*}_x and s^{*}_x.
- ► Calculate bootstrap root: $g(Y_{\rm f}^{\star}) \Pi(g, m_x^*, s_x^*, \underline{Y}_n, \mathbf{X}_{n+1}, \hat{F}_n)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α—quantile denoted q(α).

Our estimate of the predictive distribution of g(Y_f) is the empirical df of bootstrap roots shifted to the right by Π.

Prediction root: $g(Y_f) - \Pi$ where Π is the point predictor.

- ▶ Bootstrap the (fitted or predictive) residuals r₁, ..., r_n to create pseudo-residuals r^{*}₁, ..., r^{*}_n whose edf is denoted by Ê^{*}_n.
- Create pseudo-data $Y_i^{\star} = m_{x_i} + s_{x_i}r_i^{\star}$, for i = 1, ...n.
- Calculate a bootstrap pseudo-response $Y_{\rm f}^{\star} = m_{\rm x_f} + s_{\rm x_f} r$ where r is drawn randomly from $(r_1, ..., r_n)$.
- Based on the pseudo-data Y^{*}₁,..., Y^{*}_n, re-estimate the functions μ(x) and σ(x) by m^{*}_x and s^{*}_x.
- ► Calculate bootstrap root: $g(Y_{\rm f}^{\star}) \Pi(g, m_x^{\star}, s_x^{\star}, \underline{Y}_n, \mathbf{X}_{n+1}, \hat{F}_n)$.
- Repeat the above B times, and collect the B bootstrap roots in an empirical distribution with α—quantile denoted q(α).
- Our estimate of the predictive distribution of g(Y_f) is the empirical df of bootstrap roots shifted to the right by Π.
- Then, a (1 − α)100% equal-tailed predictive interval for g(Y_f) is given by: [Π + q(α/2), Π + q(1 − α/2)].

Model-free prediction in regression

Previous discussion hinged on model: (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.}$ (0,1) from cdf *F*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ What happens if model (★) does not hold true?

Model-free prediction in regression

Previous discussion hinged on model: (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.}$ (0,1) from cdf *F*.

- What happens if model (*) does not hold true?
- E.g., the skewness and/or kurtosis of Y_t may depend on x_t .
Model-free prediction in regression

Previous discussion hinged on model: (*) $Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$ with $\varepsilon_t \sim \text{i.i.d.}$ (0,1) from cdf *F*.

- What happens if model (*) does not hold true?
- E.g., the skewness and/or kurtosis of Y_t may depend on x_t .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

cps71 data: skewness/kurtosis of salary depend on age.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

(a) Log-wage SKEWNESS vs. age.(b) Log-wage KURTOSIS vs. age.

Both skewness and kurtosis are nonconstant!

 Could try skewness reducing transformations—but log already does that.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Could try skewness reducing transformations—but log already does that.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Could try ACE, AVAS, etc.

 Could try skewness reducing transformations—but log already does that.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Could try ACE, AVAS, etc.
- There is a simpler, more general solution!

▶ The Y_ts are still independent but not identically distributed.

- ▶ The Y_ts are still independent but not identically distributed.
- We will denote the conditional distribution of Y_f given x_f by D_x(y) = P{Y_f ≤ y|x_f = x}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The Y_ts are still independent but not identically distributed.
- We will denote the conditional distribution of Y_f given x_f by D_x(y) = P{Y_f ≤ y|x_f = x}
- Assume the quantity $D_x(y)$ is continuous in both x and y.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ The Y_ts are still independent but not identically distributed.
- We will denote the conditional distribution of Y_f given x_f by D_x(y) = P{Y_f ≤ y|x_f = x}
- Assume the quantity $D_x(y)$ is continuous in both x and y.

 With a categorical response, standard methods like Generalized Linear Models can be invoked, e.g. logistic regression, Poisson regression, etc.

- The Y_ts are still independent but not identically distributed.
- We will denote the conditional distribution of Y_f given x_f by D_x(y) = P{Y_f ≤ y|x_f = x}
- Assume the quantity $D_x(y)$ is continuous in both x and y.
- With a categorical response, standard methods like Generalized Linear Models can be invoked, e.g. logistic regression, Poisson regression, etc.
- Since $D_x(\cdot)$ depends in a smooth way on x, we can estimate $D_x(y)$ by the 'local' empirical $N_{x,h}^{-1} \sum_{t:|x_t-x| < h/2} \mathbf{1}\{Y_t \le y\}$ where $\mathbf{1}\{\cdot\}$ is indicator, and $N_{x,h}$ is the number of summands, i.e., $N_{x,h} = \#\{t: |x_t x| < h/2\}$.

• More general estimator $\hat{D}_x(y) = \sum_{i=1}^n \mathbf{1}\{Y_i \leq y\} \tilde{K}(\frac{x-x_i}{h})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- More general estimator $\hat{D}_x(y) = \sum_{i=1}^n \mathbf{1}\{Y_i \le y\} \tilde{K}\left(\frac{x-x_i}{h}\right)$.
- ▶ $\hat{D}_x(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}{Y_t \le y}, t = 1, ..., n.$

- More general estimator $\hat{D}_x(y) = \sum_{i=1}^n \mathbf{1}\{Y_i \le y\} \tilde{K}\left(\frac{x-x_i}{h}\right)$.
- ▶ $\hat{D}_x(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}\{Y_t \leq y\}, t = 1, ..., n.$
- ► Can use local linear smoother of 1{Y_t ≤ y}, t = 1,..., n but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).

- More general estimator $\hat{D}_x(y) = \sum_{i=1}^n \mathbf{1}\{Y_i \le y\} \tilde{K}(\frac{x-x_i}{h})$.
- ▶ $\hat{D}_x(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}\{Y_t \leq y\}, t = 1, ..., n.$
- ► Can use local linear smoother of 1{Y_t ≤ y}, t = 1,..., n but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).

- More general estimator $\hat{D}_x(y) = \sum_{i=1}^n \mathbf{1}\{Y_i \le y\} \tilde{K}\left(\frac{x-x_i}{h}\right)$.
- ▶ $\hat{D}_x(y)$ is just a Nadaraya-Watson smoother of the variables $\mathbf{1}{Y_t \leq y}, t = 1, ..., n.$
- ► Can use local linear smoother of 1{Y_t ≤ y}, t = 1,..., n but ensure the result is a proper c.d.f.-see e.g. Hansen (2004).
- But $\hat{D}_x(y)$ is discontinuous in y, and therefore unacceptable!
- ► Could use linear interpolation or smooth it by kernel methods, i.e., $\tilde{D}_x(y) = \sum_{i=1}^n \Lambda\left(\frac{y-Y_i}{h_0}\right) \tilde{K}\left(\frac{x-x_i}{h}\right)$ where $h_0 \sim h^2$.

Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.

► To see why, note that if we let η_i = D_{xi}(Y_i) for i = 1,..., n our transformation objective would be exactly achieved since η₁,..., η_n would be i.i.d. Uniform(0,1).

- Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- ► To see why, note that if we let η_i = D_{xi}(Y_i) for i = 1,..., n our transformation objective would be exactly achieved since η₁,..., η_n would be i.i.d. Uniform(0,1).
- $D_x(\cdot)$ not known but we have estimator $\tilde{D}_x(\cdot)$ as its proxy.

- Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let η_i = D_{xi}(Y_i) for i = 1,..., n our transformation objective would be exactly achieved since η₁,..., η_n would be i.i.d. Uniform(0,1).
- $D_x(\cdot)$ not known but we have estimator $\tilde{D}_x(\cdot)$ as its proxy.
- ► Therefore, our proposed transformation for the MF prediction principle is u_i = D_{xi}(Y_i) for i = 1,..., n.

- Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let η_i = D_{xi}(Y_i) for i = 1,..., n our transformation objective would be exactly achieved since η₁,..., η_n would be i.i.d. Uniform(0,1).
- $D_x(\cdot)$ not known but we have estimator $\tilde{D}_x(\cdot)$ as its proxy.
- ► Therefore, our proposed transformation for the MF prediction principle is u_i = D_{xi}(Y_i) for i = 1,..., n.

• $\tilde{D}_x(\cdot)$ is consistent, so u_1, \ldots, u_n are approximately i.i.d.

- Since the Y_ts are continuous r.v.'s, the probability integral transform is the key idea to transform them to 'i.i.d.-ness'.
- To see why, note that if we let η_i = D_{xi}(Y_i) for i = 1,..., n our transformation objective would be exactly achieved since η₁,..., η_n would be i.i.d. Uniform(0,1).
- $D_x(\cdot)$ not known but we have estimator $\tilde{D}_x(\cdot)$ as its proxy.
- ► Therefore, our proposed transformation for the MF prediction principle is u_i = D̃_{xi}(Y_i) for i = 1,..., n.
- $\tilde{D}_x(\cdot)$ is consistent, so u_1, \ldots, u_n are approximately i.i.d.
- The probability integral transform was used in the past for building better density estimators—Ruppert and Cline (1994).

• Transformation:
$$u_i = \tilde{D}_{x_i}(Y_i)$$
 for $i = 1, ..., n$.

- Transformation: $u_i = \tilde{D}_{x_i}(Y_i)$ for i = 1, ..., n.
- ► Inverse transformation D̃⁻¹_x is well-defined since D̃_x(·) is strictly increasing.

- Transformation: $u_i = \tilde{D}_{x_i}(Y_i)$ for i = 1, ..., n.
- Inverse transformation \tilde{D}_x^{-1} is well-defined since $\tilde{D}_x(\cdot)$ is strictly increasing.

• Let
$$u_{\mathrm{f}} = D_{\mathrm{x}_{\mathrm{f}}}(Y_{\mathrm{f}})$$
 and $Y_{\mathrm{f}} = D_{\mathrm{x}_{\mathrm{f}}}^{-1}(u_{\mathrm{f}})$.

- Transformation: $u_i = \tilde{D}_{x_i}(Y_i)$ for i = 1, ..., n.
- ► Inverse transformation \tilde{D}_x^{-1} is well-defined since $\tilde{D}_x(\cdot)$ is strictly increasing.
- Let $u_{\mathrm{f}} = D_{x_{\mathrm{f}}}(Y_{\mathrm{f}})$ and $Y_{\mathrm{f}} = D_{x_{\mathrm{f}}}^{-1}(u_{\mathrm{f}})$.
- ► D⁻¹_{xf}(u_i) has (approximately) the same distribution as Y_f (conditionally on x_f) for any i.

- Transformation: $u_i = \tilde{D}_{x_i}(Y_i)$ for i = 1, ..., n.
- ► Inverse transformation D̃⁻¹_x is well-defined since D̃_x(·) is strictly increasing.
- Let $u_{\mathrm{f}} = D_{\mathrm{x}_{\mathrm{f}}}(Y_{\mathrm{f}})$ and $Y_{\mathrm{f}} = D_{\mathrm{x}_{\mathrm{f}}}^{-1}(u_{\mathrm{f}})$.
- ► D⁻¹_{xf}(u_i) has (approximately) the same distribution as Y_f (conditionally on x_f) for any *i*.
- So { *D˜*_{xf}⁻¹(*u_i*), *i* = 1, ..., *n*} is a set of bona fide potential responses that can be used as proxies for *Y*_f.

► These *n* valid potential responses { *D*⁻¹_{xf}(*u_i*), *i* = 1,..., *n*} gathered together give an approximate empirical distribution for *Y*_f from which our predictors will be derived.

- ► These *n* valid potential responses { *D*⁻¹_{xf}(*u_i*), *i* = 1,..., *n*} gathered together give an approximate empirical distribution for *Y*_f from which our predictors will be derived.
- ▶ The L₂—optimal predictor of $g(Y_f)$ will be the expected value of $g(Y_f)$ that is approximated by $n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)$.

- ► These *n* valid potential responses { *D*⁻¹_{xf}(*u_i*), *i* = 1,..., *n*} gathered together give an approximate empirical distribution for *Y*_f from which our predictors will be derived.
- ▶ The L₂—optimal predictor of $g(Y_f)$ will be the expected value of $g(Y_f)$ that is approximated by $n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)$.
- ► The L₁—optimal predictor of g(Y_f) will be approximated by the sample median of the set {g (D̃_{xf}⁻¹(u_i)), i = 1,...,n}.

(日) (同) (三) (三) (三) (○) (○)

	Model-free method
L_2 —predictor of $Y_{\rm f}$	$n^{-1}\sum_{i=1}^{n}\tilde{D}_{x_{\rm f}}^{-1}(u_i)$
L_1 —predictor of $Y_{\rm f}$	median $\{\tilde{D}_{x_{\mathrm{f}}}^{-1}(u_i)\}$
L_2 —predictor of $g(Y_f)$	$n^{-1}\sum_{i=1}^{n}g\left(\tilde{D}_{x_{\mathrm{f}}}^{-1}(u_{i})\right)$
L_1 —predictor of $g(Y_f)$	median $\{g\left(\tilde{D}_{x_{\rm f}}^{-1}(u_i)\right)\}$

TABLE. Model-free (MF) and Limit Model-free (LMF) predictors. Basic MF: $u_i = \tilde{D}_{x_i}(Y_i)$ Limit MF: $u_i \sim \text{i.i.d. Uniform}(0, 1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Model-free model-fitting

The MF predictors (mean or median) can be used to give the equivalent of a model fit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model-free model-fitting

The MF predictors (mean or median) can be used to give the equivalent of a model fit.

Focus on the L_2 —optimal case with g(x) = x.

Model-free model-fitting

- The MF predictors (mean or median) can be used to give the equivalent of a model fit.
- Focus on the L_2 —optimal case with g(x) = x.
- Calculating the MF predictor Π(x_f) = n⁻¹ ∑_{i=1}ⁿ g (D̃_{x_f}⁻¹(u_i)) for many different x_f values—say on a grid—, the equivalent of a nonparametric smoother of a regression function is constructed—Model-Free Model-Fitting.

M.o.a.T.

 MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.—see Figures 3 and 4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

M.o.a.T.

 MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.—see Figures 3 and 4.

No need for log-transformation of salaries!

M.o.a.T.

 MF relieves the practitioner from the need to find the optimal transformation for additivity and variance stabilization such as Box/Cox, ACE, AVAS, etc.—see Figures 3 and 4.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- No need for log-transformation of salaries!
- MF is totally automatic!!

FIGURE 3: (a) Wage vs. age scatterplot. (b) Circles indicate the salary predictor $n^{-1} \sum_{i=1}^{n} g\left(\tilde{D}_{x_{\rm f}}^{-1}(u_i)\right)$ calculated from log-wage data with g(x) exponential. For both figures, the superimposed solid line represents the MF salary predictor calculated from the raw data (without log).

FIGURE 4: Q-Q plots of the u_i vs. the quantiles of Uniform (0,1). (a) The u_i 's are obtained from the log-wage vs. age dataset of Figure 1 using bandwidth 5.5; (b) The u_i 's are obtained from the raw (untransformed) dataset of Figure 3 using bandwidth 7.3.

MF predictive distributions

► For MF we can always take g(x) = x; no need for other preliminary transformations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MF predictive distributions

- ► For MF we can always take g(x) = x; no need for other preliminary transformations.
- ► Let $g(Y_f) \Pi$ be the prediction root where Π is either the L_2 or L_1 -optimal predictor, i.e., $\Pi = n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)$ or Π = median $\{g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)\}$.

MF predictive distributions

- ► For MF we can always take g(x) = x; no need for other preliminary transformations.
- ► Let $g(Y_f) \Pi$ be the prediction root where Π is either the L_2 or L_1 -optimal predictor, i.e., $\Pi = n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)$ or Π = median $\{g\left(\tilde{D}_{x_f}^{-1}(u_i)\right)\}$.
- ▶ Based on the Y-data, estimate the conditional distribution D_x(·) by D̃_x(·), and let u_i = D̃_{xi}(Y_i) to obtain the transformed data u₁,..., u_n that are approximately i.i.d.

Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.

- ► Let $u_1^*, ..., u_n^* \sim i.i.d. \hat{F}_n$ (the e.d.f. of $u_1, ..., u_n$); alternatively, let $u_1^*, ..., u_n^* \sim i.i.d.$ Uniform(0,1)—LMF version.
- ▶ Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.

- Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.
- ► Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.
- Generate a bootstrap pseudo-response Y^{*}_f = D⁻¹_{xf}(u) with u drawn randomly from set (u₁,..., u_n)—or from Uniform(0,1).

- Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.
- ► Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.
- Generate a bootstrap pseudo-response Y^{*}_f = D⁻¹_{xf}(u) with u drawn randomly from set (u₁,..., u_n)—or from Uniform(0,1).
- ► Based on the pseudo-data Y^{*}_t, re-estimate the conditional distribution D_x(·); denote the bootstrap estimator by D̃^{*}_x(·).

- Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.
- ► Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.
- Generate a bootstrap pseudo-response Y^{*}_f = D⁻¹_{xf}(u) with u drawn randomly from set (u₁,..., u_n)—or from Uniform(0,1).
- ► Based on the pseudo-data Y^{*}_t, re-estimate the conditional distribution D_x(·); denote the bootstrap estimator by D^{*}_x(·).
- ► Calculate the bootstrap root $g(Y_{\rm f}^*) \Pi^*$ where $\Pi^* = n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)$ or Π^* =median $\{g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)\}$

- Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.
- ► Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.
- Generate a bootstrap pseudo-response Y^{*}_f = D⁻¹_{xf}(u) with u drawn randomly from set (u₁,..., u_n)—or from Uniform(0,1).
- ► Based on the pseudo-data Y^{*}_t, re-estimate the conditional distribution D_x(·); denote the bootstrap estimator by D^{*}_x(·).
- ► Calculate the bootstrap root $g(Y_{\rm f}^*) \Pi^*$ where $\Pi^* = n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)$ or Π^* =median $\{g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)\}$
- Repeat the above steps B times, and collect the B bootstrap roots in the form of an e.d.f. with α—quantile denoted q(α).

- Let u₁^{*},..., u_n^{*} ∼i.i.d. F̂_n (the e.d.f. of u₁,..., u_n); alternatively, let u₁^{*},..., u_n^{*} ∼i.i.d. Uniform(0,1)—LMF version.
- ► Use the inverse transformation \tilde{D}_x^{-1} to create pseudo-data in the Y domain, i.e., $Y_t^* = \tilde{D}_{x_t}^{-1}(u_t^*)$ for t = 1, ...n.
- Generate a bootstrap pseudo-response Y^{*}_f = D⁻¹_{xf}(u) with u drawn randomly from set (u₁,..., u_n)—or from Uniform(0,1).
- ► Based on the pseudo-data Y^{*}_t, re-estimate the conditional distribution D_x(·); denote the bootstrap estimator by D̃^{*}_x(·).
- ► Calculate the bootstrap root $g(Y_{\rm f}^*) \Pi^*$ where $\Pi^* = n^{-1} \sum_{i=1}^n g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)$ or Π^* =median $\{g\left(\tilde{D}_{x_{\rm f}}^{*^{-1}}(u_i^*)\right)\}$
- Repeat the above steps B times, and collect the B bootstrap roots in the form of an e.d.f. with α—quantile denoted q(α).
- Predictive distribution of g(Y_f) is the above edf shifted to the right by Π, and MF/LMF (1 − α)100% equal-tailed, prediction interval for g(Y_f) is [Π + q(α/2), Π + q(1 − α/2)].

Simulation: regression under model (*)

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F.

• Design points x_1, \ldots, x_n for n = 100 equi-spaced on $(0, 2\pi)$

Simulation: regression under model (\star)

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• Design points x_1, \ldots, x_n for n = 100 equi-spaced on $(0, 2\pi)$

• $\mu(x) = \sin(x)$, $\sigma(x) = 1/2$ and errors N(0,1) or Laplace.

Simulation: regression under model (\star)

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

• Design points x_1, \ldots, x_n for n = 100 equi-spaced on $(0, 2\pi)$

- $\mu(x) = \sin(x)$, $\sigma(x) = 1/2$ and errors N(0,1) or Laplace.
- Prediction points: x_f = π; μ(x) has high slope but zero curvature—easy case for estimation.

Simulation: regression under model (\star)

(*)
$$Y_t = \mu(x_t) + \sigma(x_t) \varepsilon_t$$
 with $\varepsilon_t \sim \text{i.i.d.} (0,1)$ with cdf F .

- Design points x_1, \ldots, x_n for n = 100 equi-spaced on $(0, 2\pi)$
- $\mu(x) = \sin(x)$, $\sigma(x) = 1/2$ and errors N(0,1) or Laplace.
- Prediction points: x_f = π; μ(x) has high slope but zero curvature—easy case for estimation.
- x_f = π/2 and x_f = 3π/2; μ(x) has zero slope but high curvature—peak and valley so large bias of m_x.

FIGURE 6: Typical scatterplots with superimposed kernel smoothers; (a) Normal data; (b) Laplace data.

Instead:
$$Y = \mu(x) + \sigma(x) \varepsilon_x$$
 with $\varepsilon_x = \frac{c_x Z + (1 - c_x) W}{\sqrt{c_x^2 + (1 - c_x)^2}}$

<□ > < @ > < E > < E > E のQ @

Instead:
$$Y = \mu(x) + \sigma(x) \varepsilon_x$$
 with $\varepsilon_x = \frac{c_x Z + (1 - c_x) W}{\sqrt{c_x^2 + (1 - c_x)^2}}$

► Z ~ N(0,1) independent of W that is also (0,1) but has exponential shape, i.e., ½χ₂² - 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Instead:
$$Y = \mu(x) + \sigma(x) \varepsilon_x$$
 with $\varepsilon_x = \frac{c_x Z + (1 - c_x) W}{\sqrt{c_x^2 + (1 - c_x)^2}}$

► Z ~ N(0,1) independent of W that is also (0,1) but has exponential shape, i.e., ¹/₂ χ²₂ - 1.

▶ ε_x independent but not i.i.d.: $c_x = x/(2\pi)$ for $x \in [0, 2\pi]$

Instead:
$$Y = \mu(x) + \sigma(x) \varepsilon_x$$
 with $\varepsilon_x = \frac{c_x Z + (1 - c_x) W}{\sqrt{c_x^2 + (1 - c_x)^2}}$

- ► Z ~ N(0, 1) independent of W that is also (0,1) but has exponential shape, i.e., ¹/₂ χ²₂ - 1.
- ▶ ε_x independent but not i.i.d.: $c_x = x/(2\pi)$ for $x \in [0, 2\pi]$

Large x: ε_x is close to Normal.
 Small x: ε_x is skewed/kurtotic.

$x_{\rm f}/\pi$	0.15	0.3	0.5	0.75	1	1.25	1.5
	0.878	0.886	0.854	0.886	0.878	0.860	0.876
Norm	1.6147	1.6119	1.6117	1.6116	1.6117	1.6116	1.6117
	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	0.852	0.864	0.818	0.854	0.878	0.866	0.802
MB	1.6021	1.5326	1.4547	1.5855	1.7120	1.5955	1.4530
	0.013	0.013	0.012	0.014	0.015	0.013	0.012
MFMB	0.904	0.894	0.890	0.900	0.928	0.910	0.870
	1.8918	1.8097	1.7248	1.8602	2.006	1.8669	1.7170
	0.017	0.016	0.017	0.016	0.016	0.015	0.016
LMF	0.916	0.872	0.860	0.898	0.926	0.910	0.888
	1.8581	1.7730	1.6877	1.8286	1.9685	1.8334	1.6921
	0.016	0.015	0.014	0.016	0.017	0.015	0.015
	0.910	0.888	0.902	0.892	0.906	0.922	0.874
MF	1.8394	1.7531	1.6784	1.8117	1.9423	1.8139	1.6808
	0.016	0.015	0.014	0.016	0.017	0.016	0.015
PMF	0.900	0.884	0.880	0.906	0.912	0.912	0.884
	1.8734	1.7814	1.7013	1.8394	1.9705	1.8462	1.7076
	0.016	0.014	0.014	0.015	0.016	0.015	0.014

$x_{\rm f}/\pi$	0.15	0.3	0.5	0.75	1	1.25	1.5
Norm	0.886	0.892	0.872	0.896	0.896	0.878	0.894
	1.6296	1.6268	1.6266	1.6265	1.6266	1.6266	1.6266
	0.008	0.008	0.008	0.008	0.008	0.008	0.008
	0.872	0.836	0.856	0.868	0.890	0.860	0.846
MB	1.5881	1.5743	1.5114	1.6276	1.7526	1.6255	1.4487
	0.017	0.017	0.018	0.017	0.017	0.017	0.016
MFMB	0.914	0.904	0.906	0.898	0.938	0.898	0.892
	1.8663	1.8602	1.7735	1.9157	2.044	1.9043	1.7049
	0.021	0.022	0.022	0.020	0.020	0.020	0.020
LMF	0.902	0.868	0.904	0.912	0.910	0.912	0.870
	1.8418	1.8470	1.8034	1.8777	1.9907	1.8978	1.7110
	0.022	0.022	0.025	0.022	0.021	0.022	0.021
	0.898	0.884	0.886	0.914	0.938	0.904	0.874
MF	1.8134	1.8307	1.7847	1.8632	1.9704	1.8756	1.7054
	0.022	0.022	0.025	0.023	0.021	0.023	0.022
PMF	0.918	0.910	0.868	0.880	0.946	0.928	0.882
	1.8504	1.8633	1.8090	1.8954	1.9953	1.8995	1.7236
	0.022	0.022	0.024	0.022	0.021	0.022	0.021

90% Prediction intervals: i.i.d. Laplace errors: Distance and Alberta and Albe

$x_{\rm f}/\pi$	0.15	0.3	0.5	0.75	1	1.25	1.5
	0.906	0.890	0.890	0.884	0.908	0.900	0.870
Norm	1.5937	1.5911	1.5908	1.5908	1.5908	1.5908	1.5908
	0.009	0.009	0.009	0.009	0.009	0.009	0.009
	0.846	0.878	0.860	0.882	0.894	0.862	0.804
MB	1.4846	1.4530	1.3485	1.5421	1.6795	1.5329	1.4012
	0.021	0.019	0.018	0.019	0.019	0.017	0.015
MFMB	0.928	0.946	0.886	0.964	0.932	0.912	0.846
	1.8161	1.7776	1.6409	1.8833	2.051	1.8695	1.7162
	0.031	0.025	0.023	0.026	0.024	0.022	0.021
	0.916	0.934	0.908	0.928	0.918	0.898	0.846
LMF	1.7555	1.7460	1.5870	1.8489	1.9798	1.7985	1.6652
	0.027	0.025	0.023	0.024	0.024	0.020	0.019
MF	0.908	0.932	0.882	0.910	0.906	0.910	0.860
	1.7344	1.7265	1.5561	1.8300	1.9345	1.7707	1.6355
	0.027	0.025	0.023	0.025	0.023	0.020	0.019
PMF	0.926	0.936	0.932	0.922	0.932	0.872	0.872
	1.7748	1.7636	1.5991	1.8550	1.9898	1.8083	1.6737
	0.026	0.024	0.022	0.023	0.023	0.019	0.019

90% Prediction intervals: non-i.i.d. errors.

Local Linear Estimation of a Conditional Distribution

- ► Objective: Nonparametric regression at boundary points
- ► Local regression applied for problems involving conditional moment estimation at both interior and boundary points e.g. µ(x) = E(Y|X = x)
- Our interest: Estimate conditional distribution at boundary points using local linear regression
- Known issues: Estimated distribution may not be monotone increasing and may not lie in [0,1]

 Proposed solution corrects for monotonicity, superior performance demonstrated for both synthetic and real-life datasets versus existing estimators

Local Linear Setup

Conditional Mean:

$$\mu(x) = E(Y|X = x)$$

estimated by

Local Constant Estimator (Nadaraya-Watson) :

$$\frac{\sum_{i=1}^{n} \tilde{K}_{i,x} Y_{i}}{\sum_{i=1}^{n} \tilde{K}_{i,x}}$$

where $\tilde{K}_{i,x} = K\left(\frac{x-x_{i}}{b}\right)$

or by Local Linear Estimator:

$$\frac{\sum_{j=1}^{n} w_j Y_j}{\sum_{j=1}^{n} w_j}$$

where $w_i = \tilde{K}_{i,x} \left(1 - \hat{\beta}(x - x_i) \right)$ and $\hat{\beta} = \frac{\sum_{i=1}^{n} \tilde{K}_{i,x}(x - x_i)}{\sum_{i=1}^{n} \tilde{K}_{i,x}(x - x_i)^2}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Local Linear Distribution

Conditional Distribution is a Mean: $D_x(y) = E(W|X = x)$ where $W = \mathbf{1}{Y \le y}$

Local Constant Distribution Estimator: $\hat{D}_{x}^{LC}(y) = \frac{\sum_{i=1}^{n} \tilde{K}_{i,x} \mathbf{1}\{Y_{i} \leq y\}}{\sum_{i=1}^{n} \tilde{K}_{i,x}}$ where $\tilde{K}_{i,x} = K\left(\frac{x - x_{i}}{b}\right)$

Local Linear Distribution Estimator:

$$\hat{D}_x^{LL}(y) = \frac{\sum_{j=1}^n w_j \mathbf{1}\{Y_j \le y\}}{\sum_{j=1}^n w_j}$$

where $w_i = \tilde{K}_{i,x} \left(1 - \hat{\beta}(x - x_i)\right)$ and $\hat{\beta} = \frac{\sum_{i=1}^n \tilde{K}_{i,x}(x - x_i)}{\sum_{i=1}^n \tilde{K}_{i,x}(x - x_i)^2}$

Smooth Version of Local Linear Estimator:

$$ar{D}^{LL}_{\mathsf{x}}(y) = rac{\sum_{j=1}^n w_j \Lambda(rac{y-Y_j}{h_0})}{\sum_{j=1}^n w_j}$$
 where Λ is a smooth cdf.

Hansen Local Linear Estimator

Issues with LL-based distribution estimation: (*) Weights in local linear estimation can be negative

- $\bar{D}_x^{LL}(y)$ not guaranteed to be in [0, 1]
- $\bar{D}_x^{LL}(y)$ not guaranteed to be monotonic

Hansen proposal:

$$\begin{split} \bar{D}_{x}^{LLH}(y) &= \frac{\sum_{i=1}^{n} w_{i}^{\diamond} \wedge (\frac{y-Y_{i}}{h_{0}})}{\sum_{i=1}^{n} w_{i}^{\diamond}} \\ w_{i} &= \tilde{K}_{i,x} \left(1 - \hat{\beta}(x - x_{i}) \right) \\ \alpha &= \hat{\beta}(x - x_{i}) \\ w_{i}^{\diamond} &= \begin{cases} 0 & \text{when } \alpha > 1 \\ \tilde{K}_{i,x} \left(1 - \alpha \right) & \text{when } \alpha \leq 1. \end{cases} \end{split}$$

Monotone Local Linear Estimation (joint with S. Das)

Recall that the derivative of D
^{LL}_x(y) with respect to y is given by

$$ar{d}_{x}^{LL}(y) = rac{rac{1}{h_{0}}\sum_{j=1}^{n}w_{j}\lambda(rac{y-Y_{j}}{h_{0}})}{\sum_{j=1}^{n}w_{j}}$$

where $\lambda(y)$ is the derivative of $\Lambda(y)$.

- ► Define a nonnegative version of $\bar{d}_x^{LL}(y)$ as $\bar{d}_x^{LL+}(y) = \max(\bar{d}_x^{LL}(y), 0).$
- To make the above a proper density function, renormalize it to area one, i.e., let

$$\bar{d}_x^{LLM}(y) = \frac{\bar{d}_x^{LL+}(y)}{\int_{-\infty}^{\infty} \bar{d}_x^{LL+}(s)ds}.$$
 (1)

• Finally, define $\bar{D}_x^{LLM}(y) = \int_{-\infty}^y \bar{d}_x^{LLM}(s) ds$.

Note: Other algorithms for monotonicity correction are also possible which directly use the estimated distribution $\bar{D}_{x+}^{LL}(y)$.

Results with synthetic data - (KS statistic)

Model:

 $Y_i = \sin(2\pi x_i) + \sigma(x_i)\epsilon_i$ for $i = 1, 2, \dots, 1001, x_i = \frac{i}{n}, \sigma(x_i) = 0.1$, and $\epsilon_i = N(0, 1)$, Prediction at i=1001

Bandwidth	KS-LC	KS-LLH	KS-LLM
3.7	0.23508	0.252884	0.275132
7.4	0.241992	0.233996	0.23606
11.1	0.2767	0.232064	0.218948
14.8	0.31528	0.240476	0.20744
18.5	0.349924	0.2554	0.2009
22.2	0.38438	0.273648	0.204404
25.9	0.418316	0.288032	0.21502
29.6	0.448772	0.307672	0.231588
33.3	0.474796	0.326224	0.253472
37.0	0.502768	0.342884	0.275936
40.7	0.5264	0.360888	0.2993
44.4	0.54664	0.37786	0.320348
48.1	0.56692	0.393392	0.34248
51.8	0.58646	0.407108	0.359404

Results with synthetic data - (Point Prediction)

Model:

 $Y_i = \sin(2\pi x_i) + \sigma(x_i)\epsilon_i$ for $i = 1, 2, ..., 1001, x_i = \frac{i}{n}, \sigma(x_i) = 0.1$, and $\epsilon_i = N(0, 1)$, Prediction at i=1001

Ban	Bias-LC	MSE-LC	Bias-LLH	MSE-LLH	Bias-LLM	MSE-LLM	Bias-LL	MSE-LL
3.7	-0.01887676	0.01265856	-0.0087034	0.01453471	0.0004694887	0.01667712	0.00279478	0.01713243
7.4	-0.03782673	0.01261435	-0.01818502	0.0126929	0.0005444976	0.01323652	0.003247646	0.01340418
11.1	-0.05753609	0.01418224	-0.02725602	0.01232877	-0.001022256	0.01200918	0.0039133	0.01219628
14.8	-0.07724901	0.01672728	-0.03718728	0.01259729	-0.005397138	0.01148354	0.00354838	0.01167496
18.5	-0.09692561	0.0200906	-0.04758345	0.01327841	-0.01222596	0.01130622	0.002834568	0.01139095
22.2	-0.116533	0.02423279	-0.05831195	0.01431087	-0.02106315	0.01142789	0.002008806	0.01120327
25.9	-0.1359991	0.02911512	-0.06918129	0.0156254	-0.03138586	0.01185914	0.001102312	0.01106821
29.6	-0.1555938	0.03480583	-0.08021998	0.01722284	-0.04274234	0.01263368	8.912064e-05	0.01096947
33.3	-0.1752324	0.04128715	-0.09144259	0.01910772	-0.05473059	0.01375585	-0.001070282	0.01089842
37.0	-0.1947342	0.04848954	-0.1027918	0.02127558	-0.0670785	0.01521865	-0.002416635	0.01084951
40.7	-0.2145001	0.05656322	-0.1142845	0.02374615	-0.07967838	0.01704094	-0.003988081	0.01081946
44.4	-0.2343967	0.06548142	-0.1259372	0.02651703	-0.09236019	0.01919461	-0.005818943	0.01080699
48.1	-0.2543523	0.07522469	-0.1377167	0.02960364	-0.1050934	0.02168698	-0.007939144	0.01081259
51.8	-0.2740635	0.08563245	-0.1496325	0.03301117	-0.1178388	0.02451228	-0.01037417	0.01083832

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results with synthetic data - (Quantile Estimation)

Model:

 $Y_i = \sin(2\pi x_i) + \sigma(x_i)\epsilon_i$ for $i = 1, 2, ..., 1001, x_i = \frac{i}{n}, \sigma(x_i) = 0.3$, and $\epsilon_i = N(0, 1)$, Prediction at i=1001

y-values

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results with real-life data

Model: Wage dataset from ISLR package in R.

Objective: point prediction over last 231 values of backward dataset.

Point Prediction with ISLR data

Method	Bias	MSE	
LC	0.0004954944	0.08236025	
LLH	-0.001962329	0.0808793	
LLM	-6.005305e-05	0.08044857	
LL	0.0002608775	0.08055141	