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Statistics in the 20th Century

▶ Once upon a time in the UK — Fisher, Pearson, Gosset, etc.

▶ Data: Y1, . . . ,Yn i.i.d. from some distribution Fθ(x)

▶ i.i.d.= independent, identically distributed

▶ Shape of Fθ(x) is known — parameter θ is unknown
e.g. Fθ is N(θ, 1) or N(θ, σ2) with σ2 being a “nuisance”(!)

▶ Fθ(x) belongs to a parametric family of distributions

▶ Goal: Use the data to estimate θ — but also quantify
estimation accuracy (standard error, confidence interval, etc.)
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R.A. Fisher and Maximum Likelihood Estimation (MLE)

▶ θ̂MLE is the value maximizing the Likelihood function

▶ Under regularity conditions, θ̂MLE is consistent for θ and ...
... asymptotically normal, i.e., θ̂MLE ∼ N(θ, I (θ)/n) for large n

▶ The Fisher information I (θ) can be computed from Fθ
▶ Can use the asymptotic normal distribution to construct

confidence intervals and hypothesis tests for θ

▶ MLE is a complete theory for statistical inference.
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What’s the catch?

▶ 100 years ago, sample sizes were quite small

▶ W.S. Gosset (AKA “a student”) was working with n = 9 at
the Guiness Brewery in 1908

▶ Asymptotic normality can not be justified

▶ Assuming Fθ is N(θ, σ2), Gosset figured out the exact

distribution of the “studentized” sample mean X̄−θ
σ̂ .

▶ But how about statistics other than the sample mean X̄?
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What’s the catch–part II

▶ Why/how can we assume that Fθ belongs to any given
parametric family? E.g. why assume Fθ is N(θ, σ2)?

▶ Answer: for convenience, in view of a small sample

▶ With a large sample Y1, . . . ,Yn, the common distribution
F (x) can be readily estimated from the data.

▶ F (x) = P{Yi ≤ x} can be estimated by F̂ (x) = #{Yi≤x}
n

i.e., the proportion of data points that are ≤ x .

▶ This is a modern, nonparametric setup.
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An example under the nonparametric setup

▶ Y1, . . . ,Yn are house sale prices in San Diego in Jan. 2022

▶ The median house price θ can be estimated by the sample
median θ̂, i.e., the median of the data points Y1, . . . ,Yn

▶ What is the standard error of the sample median θ̂?

▶ So if θ̂ = 555K , how sure are you that this figure —which was
based on (say) n = 300 points— is close to the true median?
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A thought experiment

▶ Statistic θ̂ was computed from data Y1, . . . ,Yn i.i.d. from F

▶ If we knew F we could generate more samples, and witness
how θ̂ varies across samples.

▶ Parallel universes:

Generate sample Y
(1)
1 , . . . ,Y

(1)
n i.i.d. from F and compute θ̂(1)

Generate sample Y
(2)
1 , . . . ,Y

(2)
n i.i.d. from F and compute θ̂(2)

· · · · · · · · · · · · · · · · · · · · · · · ·
Generate sample Y

(B)
1 , . . . ,Y

(B)
n i.i.d. from F and compute θ̂(B)

▶ Approximate the variance of θ̂ by the sample variance of the
artificial statistics: θ̂(1), · · · , θ̂(B).



A thought experiment

▶ Statistic θ̂ was computed from data Y1, . . . ,Yn i.i.d. from F

▶ If we knew F we could generate more samples, and witness
how θ̂ varies across samples.

▶ Parallel universes:

Generate sample Y
(1)
1 , . . . ,Y

(1)
n i.i.d. from F and compute θ̂(1)

Generate sample Y
(2)
1 , . . . ,Y

(2)
n i.i.d. from F and compute θ̂(2)

· · · · · · · · · · · · · · · · · · · · · · · ·
Generate sample Y

(B)
1 , . . . ,Y

(B)
n i.i.d. from F and compute θ̂(B)

▶ Approximate the variance of θ̂ by the sample variance of the
artificial statistics: θ̂(1), · · · , θ̂(B).



A thought experiment

▶ Statistic θ̂ was computed from data Y1, . . . ,Yn i.i.d. from F

▶ If we knew F we could generate more samples, and witness
how θ̂ varies across samples.

▶ Parallel universes:

Generate sample Y
(1)
1 , . . . ,Y

(1)
n i.i.d. from F and compute θ̂(1)

Generate sample Y
(2)
1 , . . . ,Y

(2)
n i.i.d. from F and compute θ̂(2)

· · · · · · · · · · · · · · · · · · · · · · · ·
Generate sample Y

(B)
1 , . . . ,Y

(B)
n i.i.d. from F and compute θ̂(B)

▶ Approximate the variance of θ̂ by the sample variance of the
artificial statistics: θ̂(1), · · · , θ̂(B).



A thought experiment

▶ Statistic θ̂ was computed from data Y1, . . . ,Yn i.i.d. from F

▶ If we knew F we could generate more samples, and witness
how θ̂ varies across samples.

▶ Parallel universes:

Generate sample Y
(1)
1 , . . . ,Y

(1)
n i.i.d. from F and compute θ̂(1)

Generate sample Y
(2)
1 , . . . ,Y

(2)
n i.i.d. from F and compute θ̂(2)

· · · · · · · · · · · · · · · · · · · · · · · ·
Generate sample Y

(B)
1 , . . . ,Y

(B)
n i.i.d. from F and compute θ̂(B)

▶ Approximate the variance of θ̂ by the sample variance of the
artificial statistics: θ̂(1), · · · , θ̂(B).



A thought experiment

▶ Statistic θ̂ was computed from data Y1, . . . ,Yn i.i.d. from F

▶ If we knew F we could generate more samples, and witness
how θ̂ varies across samples.

▶ Parallel universes:

Generate sample Y
(1)
1 , . . . ,Y

(1)
n i.i.d. from F and compute θ̂(1)

Generate sample Y
(2)
1 , . . . ,Y

(2)
n i.i.d. from F and compute θ̂(2)

· · · · · · · · · · · · · · · · · · · · · · · ·
Generate sample Y

(B)
1 , . . . ,Y

(B)
n i.i.d. from F and compute θ̂(B)

▶ Approximate the variance of θ̂ by the sample variance of the
artificial statistics: θ̂(1), · · · , θ̂(B).



Resampling and the bootstrap – circa 1980

▶ This is just a Monte Carlo simulation assuming F is known.
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From i.i.d. to non-i.i.d. data

▶ Efron’s bootstrap works for a variety of statistics assuming...
the data are i.i.d. i.e., independent, identically distributed.

▶ i.N.d. = independent, Non-identically distributed data
Regression: Yi = β0 + β1xi + ϵi where the errors ϵi are i.i.d.

▶ N.i.d. = Non-independent, identically distributed data
Stationary Time Series: Yi = β0 + β1Yi−1 + ϵi with ϵi i.i.d.

▶ Fit Regression and Autoregression models to reduce to i.i.d.
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From model-based to model-free – D.P. (2015)

▶ Data: Y1, . . . ,Yn not i.i.d.

▶ Let Y = (Y1, . . . ,Yn)
′

▶ Find an invertible transformation Hn such that the vector
ϵ = Hn(Y ) has i.i.d. components ϵ1, . . . , ϵn

▶ Resample the i.i.d. ϵ1, . . . , ϵn, and map back (using the inverse
transformation) to obtain bootstrap samples in the Y –domain.

▶ Steps: (i) Estimate the common distribution Fϵ of ϵ1, . . . , ϵn
▶ (ii) Resample from the estimated Fϵ to create a bootstrap

sample ϵ∗1, . . . , ϵ
∗
n

▶ (iii) Let Y ∗ = H−1
n (ϵ∗) where ϵ∗ = (ϵ∗1, . . . , ϵ

∗
n)
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To explain or to predict?

I Models are indispensable for exploring/utilizing relationships
between variables: explaining the world.

I Use of models for prediction can be problematic when:
I a model is overspecified
I parameter inference is highly model-specific (and sensitive to

model mis-specification)
I prediction is carried out by plugging in the estimated

parameters and treating the model as exactly true.

I ”All models are wrong but some are useful”— George Box.
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A Toy Example

I Assume regression model: Y = β0 + β1X + β2X
20+ error

I If β̂2 is barely statistically significant, do you still use it in
prediction?

I If the true value of β2 is close to zero, and var(β̂2) is large,
then it may be advantageous to omit β2: allow a nonzero Bias
but minimize MSE.

I A mis-specified model can be optimal for prediction!
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Prediction Framework

I a. Point predictors
b. Interval predictors
c. Predictive distribution

I Abundant Bayesian literature in parametric framework
—Cox (1975), Geisser (1993), etc.

I Frequentist and/or nonparametric literature scarse.
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Prediction Framework

I a. Point predictors
b. Interval predictors
c. Predictive distribution

I Abundant Bayesian literature in parametric framework
—Cox (1975), Geisser (1993), etc.

I Frequentist/nonparametric literature scarse -- except: 
Conformal Prediction in Machine Learning (Vovk, 
Wasserman, Candes, Chernozhukov, etc.)



I.i.d. set-up

I Let ε1, . . . , εn i.i.d. from the (unknown) cdf Fε

I GOAL: prediction of future εn+1 based on the data

I Fε is the predictive distribution, and its quantiles could be
used to form predictive intervals

I The mean and median of Fε are optimal point predictors
under an L2 and L1 criterion respectively.
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I.i.d. data

I Fε is unknown but can be estimated by the empirical
distribution (edf) F̂ε.

I Practical model-free predictive intervals will be based on
quantiles of F̂ε, and the L2 and L1 optimal predictors will be
approximated by the mean and median of F̂ε respectively.



I.i.d. data

I Fε is unknown but can be estimated by the empirical

distribution (edf) F̂ε.
I L2 and L1 optimal predictors will be approximated by the 

mean and median of F̂ε respectively. ``Naive'' model-free 
predictive intervals could be based on the quantiles of F̂ε but 
this ignores the variance due to estimation -- need bootstrap!  



Non-i.i.d. data

I In general, data Y n = (Y1, . . . ,Yn)′ are not i.i.d.

I So the predictive distribution of Yn+1 given the data will
depend on Y n and Xn+1 which is a matrix of observable,
explanatory (predictor) variables.

I Key Examples: Regression and Time series
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Models

I Regression: Yt = µ(x t) + σ(x t) εt with εt ∼ i.i.d. (0,1)

I Time series:
Yt = µ(Yt−1, · · · ,Yt−p; x t) + σ(Yt−1, · · · ,Yt−p; x t) εt

I The above are flexible, nonparametric models.

I Given one of the above models, optimal model-based
predictors of a future Y -value can be constructed.

I Nevertheless, the prediction problem can be carried out in a
fully model-free setting, offering—at the very
least—robustness against model mis-specification.
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Transformation vs. modeling

I DATA: Y n = (Y1, . . . ,Yn)′

I GOAL: predict future value Yn+1 given the data

I Find invertible transformation Hm so that (for all m) the

vector εm = Hm(Ym) has i.i.d. components εk where

εm = (ε1, . . . , εm)′

Y
Hm−→ ε

Y
H−1
m←− ε
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Transformation

(i) (Y1, . . . ,Ym)
Hm−→ (ε1, . . . , εm)

(ii) (Y1, . . . ,Ym)
H−1

m←− (ε1, . . . , εm)

I (i) implies that ε1, . . . , εn are known given the data Y1, . . . ,Yn

I (ii) implies that Yn+1 is a function of ε1, . . . , εn, and εn+1

I So, given the data Y n, Yn+1 is a function of εn+1 only, i.e.,

Yn+1 = h̃(εn+1)
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Model-free prediction principle

Yn+1 = h̃(εn+1)

I Suppose ε1, . . . , εn ∼ cdf Fε

I The mean and median of h̃(ε) where ε ∼ Fε are optimal point
predictors of Yn+1 under L2 or L1 criterion

I The whole predictive distribution of Yn+1 is the distribution of
h̃(ε) when ε ∼ Fε

I To predict Y 2
n+1, replace h̃ by h̃2;

to predict g(Yn+1), replace h̃ by g ◦ h̃.

I The unknown Fε can be estimated by F̂ε, the edf of ε1, . . . , εn.

I But the predictive distribution needs bootstrapping—also
because h̃ is estimated from the data.
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Nonparametric Regression

MODEL (?) : Yt = µ(xt) + σ(xt) εt

I xt univariate and deterministic

I Yt data available for t = 1, . . . , n.

I εt ∼ i.i.d. (0,1) from (unknown) cdf F

I the functions µ(·) and σ(·) unknown but smooth
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Nonparametric Regression

Note: µ(x) = E (Y |x) and σ2(x) = Var(Y |x).

I Let mx , sx be smoothing estimators of µ(x), σ(x).

I Examples: kernel smoothers, local linear fitting, wavelets, etc.

I E.g. Nadaraya-Watson estimator mx =
∑n

i=1 Yi K̃
(
x−xi
h

)
I here K (x) is the kernel, h the bandwidth, and

K̃
(
x−xi
h

)
= K
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k=1 K
(
x−xk
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.

I Similarly, s2x = Mx −m2
x where Mx =
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i=1 Y
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(a) Log-wage vs. age data with fitted kernel smoother mx .
(b) Unstudentized residuals Y −mx with superimposed sx .

I 1971 Canadian Census data cps71 from np package of R; wage
vs. age dataset of 205 male individuals with common education.

I Kernel smoother problematic at the left boundary; local linear is

better (Fan and Gijbels, 1996) or reflection (Hall and Wehrly, 1991).



Residuals

I (?): Yt = µ(xt) + σ(xt) εt

I fitted residuals: et = (Yt −mxt )/sxt

I predictive residuals: ẽt = (Yt −m
(t)
xt )/s

(t)
xt

I m
(t)
x and s

(t)
xt are the estimators m and s computed from the

delete-Yt dataset: {(Yi , xi ), for all i 6= t}.
I ẽt is the (standardized) error in trying to predict Yt from the

delete-Yt dataset.

I Selection of bandwidth parameters h and q is often done by
cross-validation, i.e., pick h, q to minimize PRESS=

∑n
t=1 ẽ

2
t .

I BETTER: L1 cross-validation: pick h, q to minimize
∑n

t=1 |ẽt |.
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Model-based (MB) point predictors

(?) Yt = µ(xt) + σ(xt) εt with εt ∼ i.i.d. (0, 1) with cdf F .

I GOAL: Predict a future response Yf associated with point xf .

I L2–optimal predictor of Yf is E (Yf |xf), i.e., µ(xf)
which is approximated by mxf .

I L1–optimal predictor of Yf is the conditional median, i.e.,
µ(xf) + σ(xf) ·median(F )
which is approximated by mxf + sxf ·median(F̂e)
where F̂e is the edf of the (fitted) residuals e1, . . . , en
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Model-based (MB) point predictors 2

(?) Yt = µ(xt) + σ(xt) εt with εt ∼ i.i.d. (0, 1) with cdf F .

I DATASET cps71: salaries are logarithmically transformed, i.e.,
Yt= log-salary.

I To predict salary at age xf we need to predict g(Yf) where
g(x) = exp(x).

I MB L2–optimal predictor of g(Yf) is E (g(Yf)|xf) estimated
by n−1

∑n
i=1 g (mxf + σxf ei ) .

I Naive predictor g(mxf ) is suboptimal when g is nonlinear.

I MB L1–optimal predictor of g(Yf) estimated by the sample
median of the set {g (mxf + σxf ei ) , i = 1, ..., n};
naive plug-in ok iff g is monotone!
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Which residuals to use?

(?) Yt = µ(xt) + σ(xt) εt with εt ∼ i.i.d. (0, 1) with cdf F .

I MB L2–optimal predictor of g(Yf) is E (g(Yf)|xf) estimated
by n−1

∑n
i=1 g (mxf + σxf ei ) .

I MB L1–optimal predictor of g(Yf) estimated by the sample
median of the set {g (mxf + σxf ei ) , i = 1, ..., n}.

I Traditionally, the above are calculated using the fitted
residuals: et = (Yt −mxt )/sxt .

I MF Prediction Principle suggests the transformation Y 7→ ẽ.

I ẽ is vector of predictive residuals: ẽt = (Yt −m
(t)
xt )/s

(t)
xt .

I et and ẽt are centered at zero but different scale: |et | < |ẽt |.
I Makes little difference for point predictors but huge difference

for prediction intervals: MF/MB alleviates undercoverage.
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(t)
xt )/s

(t)
xt .
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Model-based bootstrap for predictive distribution of g(Yf)

Prediction root: g(Yf)− Π where Π is the point predictor.

I Bootstrap the (fitted or predictive) residuals r1, ..., rn to create
pseudo-residuals r?1 , ..., r

?
n whose edf is denoted by F̂ ?

n .

I Create pseudo-data Y ?
i = mxi + sxi r

?
i , for i = 1, ...n.

I Calculate a bootstrap pseudo-response Y ?
f = mxf + sxf r where

r is drawn randomly from (r1, ..., rn).

I Based on the pseudo-data Y ?
1 , ...,Y

?
n , re-estimate the

functions µ(x) and σ(x) by m?
x and s?x .

I Calculate bootstrap root: g(Y ?
f )−Π(g ,m∗x , s

∗
x ,Y n,Xn+1, F̂n).

I Repeat the above B times, and collect the B bootstrap roots
in an empirical distribution with α—quantile denoted q(α).

I Our estimate of the predictive distribution of g(Yf) is the
empirical df of bootstrap roots shifted to the right by Π.

I Then, a (1− α)100% equal-tailed predictive interval for g(Yf)
is given by: [Π + q(α/2),Π + q(1− α/2)].
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Model-free prediction in regression

Previous discussion hinged on model: (?) Yt = µ(xt) + σ(xt) εt
with εt ∼ i.i.d. (0, 1) from cdf F .

I What happens if model (?) does not hold true?

I E.g., the skewness and/or kurtosis of Yt may depend on xt .

I cps71 data: skewness/kurtosis of salary depend on age.
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I Both skewness and kurtosis are nonconstant!
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General background

I The Yts are still independent but not identically distributed.

I We will denote the conditional distribution of Yf given xf by
Dx(y) = P{Yf ≤ y |xf = x}

I Assume the quantity Dx(y) is continuous in both x and y .

I With a categorical response, standard methods like
Generalized Linear Models can be invoked, e.g. logistic
regression, Poisson regression, etc.

I Since Dx(·) depends in a smooth way on x , we can estimate
Dx(y) by the ‘local’ empirical N−1x ,h

∑
t:|xt−x |<h/2 1{Yt ≤ y}

where 1{·} is indicator, and Nx ,h is the number of summands,
i.e., Nx ,h = # {t : |xt − x | < h/2}.
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Constructing the transformation

I More general estimator D̂x(y) =
∑n

i=1 1{Yi ≤ y}K̃
(
x−xi
h

)
.

I D̂x(y) is just a Nadaraya-Watson smoother of the variables
1{Yt ≤ y}, t = 1, . . . , n.

I Can use local linear smoother of 1{Yt ≤ y}, t = 1, . . . , n but
ensure the result is a proper c.d.f.–see e.g. Hansen (2004).

I Estimator D̂x(y) enjoys many good properties including
asymptotic consistency; see e.g. Li and Racine (2007).

I But D̂x(y) is discontinuous in y , and therefore unacceptable!

I Could use linear interpolation or smooth it by kernel methods,

i.e., D̃x(y) =
∑n

i=1 Λ
(
y−Yi
h0

)
K̃
(
x−xi
h

)
where h0 ∼ h2.
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Constructing the transformation–

I Since the Yts are continuous r.v.’s, the probability integral
transform is the key idea to transform them to ‘i.i.d.–ness’.

I To see why, note that if we let ηi = Dxi (Yi ) for i = 1, . . . , n
our transformation objective would be exactly achieved since
η1, . . . , ηn would be i.i.d. Uniform(0,1).

I Dx(·) not known but we have estimator D̃x(·) as its proxy.

I Therefore, our proposed transformation for the MF prediction
principle is ui = D̃xi (Yi ) for i = 1, . . . , n.

I D̃x(·) is consistent, so u1, . . . , un are approximately i.i.d.

I The probability integral transform was used in the past for
building better density estimators—Ruppert and Cline (1994).
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Model-free optimal predictors

I Transformation:ui = D̃xi (Yi ) for i = 1, . . . , n.

I Inverse transformation D̃−1x is well-defined since D̃x(·) is
strictly increasing.

I Let uf = Dxf (Yf) and Yf = D−1xf
(uf).

I D̃−1xf
(ui ) has (approximately) the same distribution as Yf

(conditionally on xf) for any i .

I So {D̃−1xf
(ui ), i = 1, ..., n} is a set of bona fide potential

responses that can be used as proxies for Yf .
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I These n valid potential responses {D̃−1xf
(ui ), i = 1, ..., n}

gathered together give an approximate empirical distribution
for Yf from which our predictors will be derived.

I The L2—optimal predictor of g(Yf) will be the expected value

of g(Yf) that is approximated by n−1
∑n

i=1 g
(
D̃−1xf

(ui )
)
.

I The L1—optimal predictor of g(Yf) will be approximated by

the sample median of the set {g
(
D̃−1xf

(ui )
)
, i = 1, ..., n}.
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I The L2—optimal predictor of g(Yf) will be the expected value

of g(Yf) that is approximated by n−1
∑n

i=1 g
(
D̃−1xf

(ui )
)
.

I The L1—optimal predictor of g(Yf) will be approximated by

the sample median of the set {g
(
D̃−1xf

(ui )
)
, i = 1, ..., n}.



Model-free optimal point predictors

Model-free method

L2—predictor of Yf n−1
∑n

i=1 D̃
−1
xf

(ui )

L1—predictor of Yf median{D̃−1xf
(ui )}

L2—predictor of g(Yf) n−1
∑n

i=1 g
(
D̃−1xf

(ui )
)

L1—predictor of g(Yf) median{g
(
D̃−1xf

(ui )
)
}

TABLE. Model-free (MF) and Limit Model-free (LMF) predictors.
Basic MF: ui = D̃xi (Yi )
Limit MF: ui ∼i.i.d. Uniform(0, 1).



Model-free model-fitting

I The MF predictors (mean or median) can be used to give the
equivalent of a model fit.

I Focus on the L2—optimal case with g(x) = x .

I Calculating the MF predictor Π(xf) = n−1
∑n

i=1 g
(
D̃−1xf

(ui )
)

for many different xf values—say on a grid—, the equivalent
of a nonparametric smoother of a regression function is
constructed—Model-Free Model-Fitting.
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M.o.a.T.

I MF relieves the practitioner from the need to find the optimal
transformation for additivity and variance stabilization such as
Box/Cox, ACE, AVAS, etc.—see Figures 3 and 4.

I No need for log-transformation of salaries!

I MF is totally automatic!!
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FIGURE 3: (a) Wage vs. age scatterplot. (b) Circles indicate the salary

predictor n−1
∑n

i=1 g
(
D̃−1

xf (ui )
)

calculated from log-wage data with

g(x) exponential. For both figures, the superimposed solid line represents

the MF salary predictor calculated from the raw data (without log).
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FIGURE 4: Q-Q plots of the ui vs. the quantiles of Uniform (0,1).

(a) The ui ’s are obtained from the log-wage vs. age dataset of Figure 1

using bandwidth 5.5; (b) The ui ’s are obtained from the raw

(untransformed) dataset of Figure 3 using bandwidth 7.3.



MF predictive distributions

I For MF we can always take g(x) = x ; no need for other
preliminary transformations.

I Let g(Yf)− Π be the prediction root where Π is either the

L2– or L1–optimal predictor, i.e., Π = n−1
∑n

i=1 g
(
D̃−1xf

(ui )
)

or Π = median {g
(
D̃−1xf

(ui )
)
}.

I Based on the Y –data, estimate the conditional distribution
Dx(·) by D̃x(·), and let ui = D̃xi (Yi ) to obtain the
transformed data u1, ..., un that are approximately i.i.d.
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MF bootstrap predictive distribution of g(Yf)

I Let u∗1 , ..., u
∗
n ∼i.i.d.F̂n (the e.d.f. of u1, ..., un); alternatively,

let u∗1 , ..., u
∗
n ∼i.i.d. Uniform(0,1)—LMF version.

I Use the inverse transformation D̃−1x to create pseudo-data in
the Y domain, i.e., Y ∗t = D̃−1xt (u∗t ) for t = 1, ...n.

I Generate a bootstrap pseudo-response Y ∗f = D̃
−1

xf
(u) with u

drawn randomly from set (u1, ..., un)—or from Uniform(0,1).

I Based on the pseudo-data Y ?
t , re-estimate the conditional

distribution Dx(·); denote the bootstrap estimator by D̃∗x (·).

I Calculate the bootstrap root g(Y ∗f )− Π∗ where

Π∗ = n−1
∑n

i=1 g
(
D̃∗

−1

xf
(u∗i )

)
or Π∗ =median {g

(
D̃∗

−1

xf
(u∗i )

)
}

I Repeat the above steps B times, and collect the B bootstrap
roots in the form of an e.d.f. with α—quantile denoted q(α).

I Predictive distribution of g(Yf) is the above edf shifted to the
right by Π, and MF/LMF (1− α)100% equal-tailed,
prediction interval for g(Yf) is [Π + q(α/2),Π + q(1− α/2)].
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Simulation: regression under model (?)

(?) Yt = µ(xt) + σ(xt) εt with εt ∼ i.i.d. (0, 1) with cdf F .

I Design points x1, . . . , xn for n = 100 equi-spaced on (0, 2π)

I µ(x) = sin(x), σ(x) = 1/2 and errors N(0,1) or Laplace.

I Prediction points: xf = π; µ(x) has high slope but zero
curvature—easy case for estimation.

I xf = π/2 and xf = 3π/2; µ(x) has zero slope but high
curvature—peak and valley so large bias of mx .
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FIGURE 6: Typical scatterplots with superimposed kernel smoothers;

(a) Normal data; (b) Laplace data.



Simulation: regression without model (?)

Instead: Y = µ(x) + σ(x) εx with εx = cxZ+(1−cx )W√
c2x+(1−cx )2

I Z ∼ N(0, 1) independent of W that is also (0,1) but has
exponential shape, i.e., 1

2χ
2
2 − 1.

I εx independent but not i.i.d.: cx = x/(2π) for x ∈ [0, 2π]

I Large x : εx is close to Normal.
Small x : εx is skewed/kurtotic.
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xf/π 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm
0.878
1.6147
0.006

0.886
1.6119
0.006

0.854
1.6117
0.006

0.886
1.6116
0.006

0.878
1.6117
0.006

0.860
1.6116
0.006

0.876
1.6117
0.006

0.866
1.6119
0.006

0.870
1.6146
0.006

MB
0.852
1.6021
0.013

0.864
1.5326
0.013

0.818
1.4547
0.012

0.854
1.5855
0.014

0.878
1.7120
0.015

0.866
1.5955
0.013

0.802
1.4530
0.012

0.808
1.5223
0.012

0.818
1.5666
0.013

MFMB
0.904
1.8918
0.017

0.894
1.8097
0.016

0.890
1.7248
0.017

0.900
1.8602
0.016

0.928
2.006
0.016

0.910
1.8669
0.015

0.870
1.7170
0.016

0.888
1.7930
0.015

0.896
1.8482
0.016

LMF
0.916
1.8581
0.016

0.872
1.7730
0.015

0.860
1.6877
0.014

0.898
1.8286
0.016

0.926
1.9685
0.017

0.910
1.8334
0.015

0.888
1.6921
0.015

0.914
1.7681
0.015

0.890
1.8213
0.015

MF
0.910
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0.016

0.888
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0.014

0.892
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0.016
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0.017
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1.8139
0.016

0.874
1.6808
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0.896
1.7500
0.015

0.894
1.8085
0.015

PMF
0.900
1.8734
0.016

0.884
1.7814
0.014

0.880
1.7013
0.014

0.906
1.8394
0.015

0.912
1.9705
0.016
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1.8462
0.015

0.884
1.7076
0.014

0.890
1.7759
0.014

0.902
1.8339
0.015

90% Prediction intervals: i.i.d. Normal errors.
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MF
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0.946
1.9953
0.021

0.928
1.8995
0.022

0.882
1.7236
0.021

0.842
1.8144
0.021

0.878
1.8341
0.020

90% Prediction intervals: i.i.d. Laplace errors.



xf/π 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm
0.906
1.5937
0.009

0.890
1.5911
0.009

0.890
1.5908
0.009

0.884
1.5908
0.009

0.908
1.5908
0.009

0.900
1.5908
0.009

0.870
1.5908
0.009

0.890
1.5911
0.009

0.872
1.5937
0.009

MB
0.846
1.4846
0.021

0.878
1.4530
0.019

0.860
1.3485
0.018

0.882
1.5421
0.019

0.894
1.6795
0.019

0.862
1.5329
0.017

0.804
1.4012
0.015

0.814
1.4745
0.014

0.826
1.5315
0.014

MFMB
0.928
1.8161
0.031

0.946
1.7776
0.025

0.886
1.6409
0.023

0.964
1.8833
0.026

0.932
2.051
0.024

0.912
1.8695
0.022

0.846
1.7162
0.021

0.862
1.8017
0.019

0.880
1.8609
0.019

LMF
0.916
1.7555
0.027

0.934
1.7460
0.025

0.908
1.5870
0.023

0.928
1.8489
0.024

0.918
1.9798
0.024

0.898
1.7985
0.020

0.846
1.6652
0.019

0.884
1.7407
0.017

0.900
1.8094
0.017

MF
0.908
1.7344
0.027

0.932
1.7265
0.025

0.882
1.5561
0.023

0.910
1.8300
0.025

0.906
1.9345
0.023

0.910
1.7707
0.020

0.860
1.6355
0.019

0.876
1.7181
0.017

0.876
1.7963
0.018

PMF
0.926
1.7748
0.026

0.936
1.7636
0.024

0.932
1.5991
0.022

0.922
1.8550
0.023

0.932
1.9898
0.023

0.872
1.8083
0.019

0.872
1.6737
0.019

0.902
1.6737
0.016

0.902
1.8246
0.017

90% Prediction intervals: non-i.i.d. errors.



Local Linear Estimation of a Conditional Distribution

I Objective: Nonparametric regression at boundary points

I Local regression applied for problems involving conditional
moment estimation at both interior and boundary points e.g.
µ(x) = E (Y |X = x)

I Our interest: Estimate conditional distribution at boundary
points using local linear regression

I Known issues: Estimated distribution may not be monotone
increasing and may not lie in [0,1]

I Proposed solution corrects for monotonicity, superior
performance demonstrated for both synthetic and real-life
datasets versus existing estimators



Local Linear Setup

Conditional Mean:
µ(x) = E (Y |X = x)

estimated by
Local Constant Estimator (Nadaraya-Watson) :∑n

i=1 K̃i,xYi∑n
i=1 K̃i,x

where K̃i ,x = K
(
x−xi
b

)
or by Local Linear Estimator:∑n

j=1 wjYj∑n
j=1 wj

where wi = K̃i ,x

(
1− β̂(x − xi )

)
and β̂ =

∑n
i=1 K̃i,x (x−xi )∑n
i=1 K̃i,x (x−xi )2



Local Linear Distribution

Conditional Distribution is a Mean:
Dx(y) = E (W |X = x) where W = 1{Y ≤ y}

Local Constant Distribution Estimator:
D̂LC
x (y) =

∑n
i=1 K̃i,x1{Yi≤y}∑n

i=1 K̃i,x

where K̃i ,x = K
(
x−xi
b

)
Local Linear Distribution Estimator:

D̂LL
x (y) =

∑n
j=1 wj1{Yj≤y}∑n

j=1 wj

where wi = K̃i ,x

(
1− β̂(x − xi )

)
and β̂ =

∑n
i=1 K̃i,x (x−xi )∑n
i=1 K̃i,x (x−xi )2

Smooth Version of Local Linear Estimator:

D̄LL
x (y) =

∑n
j=1 wjΛ(

y−Yj
h0

)∑n
j=1 wj

where Λ is a smooth cdf.



Hansen Local Linear Estimator

Issues with LL-based distribution estimation:
(?) Weights in local linear estimation can be
negative

I D̄LL
x (y) not guaranteed to be in [0, 1]

I D̄LL
x (y) not guaranteed to be monotonic

Hansen proposal:

D̄LLH
x (y) =

∑n
i=1 w

�
i Λ(

y−Yi
h0

)∑n
i=1 w

�
i

wi = K̃i ,x

(
1− β̂(x − xi )

)
α = β̂(x − xi )

w�i =

{
0 when α > 1

K̃i ,x (1− α) when α ≤ 1.



Monotone Local Linear Estimation (joint with S. Das)
I Recall that the derivative of D̄LL

x (y) with respect to y is given
by

d̄LL
x (y) =

1
h0

∑n
j=1 wjλ(

y−Yj

h0
)∑n

j=1 wj

where λ(y) is the derivative of Λ(y).

I Define a nonnegative version of d̄LL
x (y) as

d̄LL+
x (y) = max(d̄LL

x (y), 0).

I To make the above a proper density function, renormalize it
to area one, i.e., let

d̄LLM
x (y) =

d̄LL+
x (y)∫∞

−∞ d̄LL+
x (s)ds

. (1)

I Finally, define D̄LLM
x (y) =

∫ y
−∞ d̄LLM

x (s)ds.

Note: Other algorithms for monotonicity correction are also
possible which directly use the estimated distribution D̄LL

x (y).



Results with synthetic data - (KS statistic)
Model:
Yi = sin(2πxi )+σ(xi )εi for i = 1, 2, . . . , 1001, xi = i

n , σ(xi ) = 0.1,
and εi = N(0, 1), Prediction at i=1001

Bandwidth KS-LC KS-LLH KS-LLM

3.7 0.23508 0.252884 0.275132

7.4 0.241992 0.233996 0.23606

11.1 0.2767 0.232064 0.218948

14.8 0.31528 0.240476 0.20744

18.5 0.349924 0.2554 0.2009
22.2 0.38438 0.273648 0.204404

25.9 0.418316 0.288032 0.21502

29.6 0.448772 0.307672 0.231588

33.3 0.474796 0.326224 0.253472

37.0 0.502768 0.342884 0.275936

40.7 0.5264 0.360888 0.2993

44.4 0.54664 0.37786 0.320348

48.1 0.56692 0.393392 0.34248

51.8 0.58646 0.407108 0.359404



Results with synthetic data - (Point Prediction)

Model:
Yi = sin(2πxi )+σ(xi )εi for i = 1, 2, . . . , 1001, xi = i

n , σ(xi ) = 0.1,
and εi = N(0, 1), Prediction at i=1001

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL

3.7 -0.01887676 0.01265856 -0.0087034 0.01453471 0.0004694887 0.01667712 0.00279478 0.01713243

7.4 -0.03782673 0.01261435 -0.01818502 0.0126929 0.0005444976 0.01323652 0.003247646 0.01340418

11.1 -0.05753609 0.01418224 -0.02725602 0.01232877 -0.001022256 0.01200918 0.0039133 0.01219628

14.8 -0.07724901 0.01672728 -0.03718728 0.01259729 -0.005397138 0.01148354 0.00354838 0.01167496

18.5 -0.09692561 0.0200906 -0.04758345 0.01327841 -0.01222596 0.01130622 0.002834568 0.01139095

22.2 -0.116533 0.02423279 -0.05831195 0.01431087 -0.02106315 0.01142789 0.002008806 0.01120327

25.9 -0.1359991 0.02911512 -0.06918129 0.0156254 -0.03138586 0.01185914 0.001102312 0.01106821

29.6 -0.1555938 0.03480583 -0.08021998 0.01722284 -0.04274234 0.01263368 8.912064e-05 0.01096947

33.3 -0.1752324 0.04128715 -0.09144259 0.01910772 -0.05473059 0.01375585 -0.001070282 0.01089842

37.0 -0.1947342 0.04848954 -0.1027918 0.02127558 -0.0670785 0.01521865 -0.002416635 0.01084951

40.7 -0.2145001 0.05656322 -0.1142845 0.02374615 -0.07967838 0.01704094 -0.003988081 0.01081946

44.4 -0.2343967 0.06548142 -0.1259372 0.02651703 -0.09236019 0.01919461 -0.005818943 0.01080699
48.1 -0.2543523 0.07522469 -0.1377167 0.02960364 -0.1050934 0.02168698 -0.007939144 0.01081259

51.8 -0.2740635 0.08563245 -0.1496325 0.03301117 -0.1178388 0.02451228 -0.01037417 0.01083832



Results with synthetic data - (Quantile Estimation)
Model:
Yi = sin(2πxi )+σ(xi )εi for i = 1, 2, . . . , 1001, xi = i

n , σ(xi ) = 0.3,
and εi = N(0, 1), Prediction at i=1001



Results with real-life data
Model: Wage dataset from ISLR package in R. 
Objective: point prediction over last 231 values of backward 
dataset.



Point Prediction with ISLR data

Method Bias MSE

LC 0.0004954944 0.08236025

LLH -0.001962329 0.0808793

LLM -6.005305e-05 0.08044857

LL 0.0002608775 0.08055141
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