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The problem

In a nutshell:

Let 
 be a closed, connected, and symmetric union (possibly uncountable) of
subsquares in [0; 1]2 covering the diagonal:

Let K
(s ; t) : 
! R be a partial covariance kernel2 on 
.

We consider the following problem:

How can K
(s ; t) be completed to a covariance kernel K (s ; t) on [0; 1]2?

2i.e. 8 I � I � 
, the restriction K
jI�I is a covariance kernel
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Refinements/Variations

Do there always exist completions? How many?

Is there canonical choice among them? Is it constructible?

Is a unique completion necessarily canonical?

Can we find necessary and sufficient conditions for unique completion?

Can we constructively characterise all completions?

How do completions vary when we perturb K
? (estimation)

How do these questions relate to a process fX (t) : t 2 [0; 1]g such that

CovfX (u);X (v)g = K
(u ; v); (u ; v) 2 
:
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Serrated and Nearly Serrated Domains

Answers can depend on the form of the domain 
.

We primarily consider serrated domains

... and discuss extensions to nearly serrated domains

Enough to cover motivating problems.
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Motivation

1 Probability/Analysis: continuation of positive definite functions

is a p.d. function � determined by its restriction on (��; �)?

Equivalent to our problem in stationary case,

K
(u ; v) = �(u � v); 
 = fju � v j < �g

Related to moment problem and continuation of characteristic functions
(e.g. Gnedenko, Esseen)
Major results by Krein and co-workers.

2 Statistics:

Matrix case & Multivariate Analysis: e.g. Gohberg, Johnson, Dempster.
Functional Data Analysis: Descary & Panaretos (2019), Delaigle et al. (2020),
Lin et al (2020), Kneip & Leibl (2020)...

Recovering Covariance from Sample Path Fragments/Snippets

Can we estimate K = CovfX (u);X (v)g on [0; 1]2 when only observing copies of
X on subintervals of [0; 1] of length � < 1?
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Recovering Covariance from Sample Path Fragments
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Example: Bone Mineral Density

BMD measurements for 117 females taken between the ages of 9.5 and 21 years
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The Completion Set

Define the set of completions as

C(K
) = fK � 0 on [0; 1]2 : K j
 = K
g:

Previous work focusses on sufficient conditions for jC(K
)j = 1.

We wish to comprehensively understand the set C(K
)

A priori, it is unclear if C(K
) is empty or not – did not define K
 as a
restriction of a covariance

C(K
) is convex & bounded (when K
 bounded), though.

Therefore:

C(K
) can either be empty, a singleton, or uncountably infinite.

It turns out that:

Theorem (Waghmare & Panaretos, 2021)

The set of completions C(K
) over a serrated domain is always non-empty. In
particular, it always includes an explicitly constructible element.
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The simplest non-trivial case

We start with an easy case: the 2-serrated case.


 = (I1 � I1) [ (I2 � I2) with I1 = [0; b]; I2 = [a ; 1] a � b:

For notational ease, we write

KA = K
jA�A:

for any product set A�A � 
.
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The simplest non-trivial case

Define K? : [0; 1]
2 ! R as

K?(s ; t) =

(
K
(s ; t); (s ; t) 2 


K
(s ; �);K
(�; t)

�
H(KI1\I2 )

; (s ; t) =2 


where H(C ) denotes the RKHS of a covariance C .

Proposition (Waghmare & Panaretos, 2021)

K? is a bona fide covariance and K? 2 C(K
).
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General Serrated Domains

Theorem (Waghmare & Panaretos, 2021)

Recursive application of the 2-serrated formula yields a valid completion
K � 2 C(K
), indeed the same completion irrespective of the order it is applied in.
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An Example

As an example, let I = [0; 1]

K
(s ; t) = s ^ t ; (s ; t) 2 
 = ([0; 2=3]� [0; 2=3])| {z }
I1

[ ([1=3; 1]� [1=3; 1])| {z }
I2

:

Clearly, this can be completed to the covariance of standard Brownian motion,

K (s ; t) = s ^ t ; (s ; t) 2 [0; 1]2:

Let’s check if this is what our construction yields:

For f ; g : [1=3; 2=3]| {z }
I1\I2

! R, hf ; giH(K[1=3;2=3]) =
1

(1=3)

R 2=3
1=3

f 0(u)g 0(u)du :

Thus, for s 2 (2=3; 1] and t 2 [0; 1=3),

K �(s ; t) =
1

(1=3)

Z 2=3

1=3

@

@u
K
(s ;u)| {z }
=1

@

@u
K
(u ; t)| {z }
=t

du = t = s^t ; since t < s :

Iterating, we see that the extension method yields Brownian motion for any
serrated domain.
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So is K? somehow canonical?

Theorem (Waghmare & Panaretos, 2021)

The covariance K � is the only completion of K
 such that the associated
Gaussian process forms an undirected graphical model w.r.t. G = ([0; 1];
)

What does it mean to say

“the Gaussian process X forms an undirected graphical model w.r.t. ([0; 1];
)”

Define an (uncountable) graph G = ([0; 1];
), i.e. s $ t whenever (s ; t) 2 
.

Allows a usual conditional independence interpretation of the graph:

fX (t) : t 2 I g ?? fX (t) : t 2 Jg
��� fX (t) : t 2 Sg| {z }

mz }| {
S separates I from J w.r.t. 


Say that S � [0; 1] separates I � [0; 1] from J � [0; 1] w.r.t. G = ([0; 1];
) if,
1 S2 � 

2 for any path I 3 t1 < t2 < : : : < tn 2 J with (tj ; tj+1) 2 
 for
j 2 f2; :::;n � 1g, there exists an m 2 f2; :::;n � 1g such that tm 2 S
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Is K � Somehow Canonical?

K � has the global Markov property w.r.t. edge set 


Intuitively, relies exclusively on correlations intrinsic to 
 — propagates only
“observed” correlations via the Markov property, without introducing
arbitrary unseen correlations.

It is unique in doing so among all possible completions

For all these reasons:

We call the completion K � the canonical completion.

Interestingly, best linear prediction of fragments based on K? is equivalent to
optimal predictors introduced by Kneip & Leibl (2020).
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Is K? somehow canonical?

Based on the method of constructing K?, we can go backwards and prove that:

Theorem (Characterisation of Graphical Models)

Let fXt : t 2 I g be a Gaussian process with covariance K . Then, X forms an
undirected graphical model with respect to a serrated 
 if and only if K 2 G
,
where

G
 =
n
K 2 C : K (s ; t) =



K j
(s ; �);K j
(�; t)

�
H(KJ )

for all J � I separating s ; t 2 I in 

o
:

So our previous result can now be interpreted as saying:

Completions and Graphical Models

C(K
) \ G
 = fK?g
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Necessary and Sufficient Conditions for jC(K
)j = 1

For A � B � 
, let KB=KA be the Schur complement of KB w.r.t. KA,

(KB=KA)(s ; t) = KB (s ; t)�


KB (s ; �);KB (�; t)

�
H(KA)

i.e. the covariance of the residuals fXt � �(Xt jXA) : t 2 B nAg.

Theorem (Waghmare & Panaretos, 2021)

Let K
 be a partial covariance kernel on a serrated domain 
 of m intervals.

The following two statements are equivalent:

1 K
 admits a unique completion on [0; 1]2, i.e. C(K
) is a singleton.

2 there exists an r 2 f1; : : : ;mg, such that

KIp=KIp\Ip+1
= 0; for 1 � p < r and KIq+1

=KIq\Iq+1
= 0; for r � q < m :
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Consequences of Unique Completion

Condition (2) is strictly weaker than any previous sufficient condition (so
those were not necessary)

It implies that X (t) = �[X (t)jfX (s) : t 2 Irg] for one of the intervals Ir
defining the serrated domain.

So when unique completion is possible, the process fX (t) : t 2 [0; 1]g is a
deterministic linear transformation of its restriction fX (t) : t 2 Irg to one
of the intervals Ir defining the serrated domain.

In any case, when a unique completion exists, it must be the canonical one.

Condition is checkable at the level of K
, i.e. at the level of observables

Notice that identifiability of K from K j
 does not require unique completion
conditions on K j
 – can assume, for example that K 2 G
 (a strictly weaker
assumption)
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Characterisation of All Completions — The 2-Serrated Case

K is a completion of K
 if and only if

K = K? +C

where C is a valid cross-covariance between

X1 � N (0;KI1=KI1\I2) and X2 � N (0;KI2=KI1\I2)
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Valid C are easily but arbitrarily obtained:

Any coupling of X1 � N (0;KI1=KI1\I2) and X2 � N (0;KI2=KI1\I2) will yield
valid cross-covariance C (s ; t) = covfX1(s);X2(t)g
Like assigning a correlation to two variances – think of 3� 3 matrices 

�21 � ?
� � �
? � �22

!
Can characterise in operator notation – choose k	k = 1 arbitrarily, then

Kf = K?f +

0B@ 0 0 (L
1=2
1 	L

1=2
2 )�

0 0 0

L
1=2
1 	L

1=2
2 0 0

1CA
| {z }

C

0@ f jI1nI2
f jI1\I2
f jI2nI1

1A

Any completion other than canonical one introduces arbitrary correlations
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Characterisation of all Completions — General Serrated Domains

Everything in black depends only on K
 (equiv. on its canonical extension K?):

Theorem (Waghmare & Panaretos, 2021)

Let K
 be a continuous partial covariance on a serrated domain 
 of m intervals.
Then K is a completion of K
 if and only if its operator f 7! Kf has the form

Kf (t) =
X
j :t2Ij

Kj fIj (t)+
X
p:t2Sp

RpfDp
(t)+

X
p:t2Dp

R�pfSp (t)�
X

p:t2Ip\Ip+1

JpfJp (t) a:e:

where for 1 � p < m ,

Rp =
h
J�1=2p S�p

i� h
J�1=2p Dp

i
| {z }

w/ kernel K?jRp ; step p of algorithm

+ U1=2
p 	pV

1=2
p

Up = KSp �
h
J�1=2p S�p

i� h
J�1=2p S�p

i
; Vp = KDp

�
h
J�1=2p D�

p

i� h
J�1=2p D�

p

i
and 	p : L

2(Dp)! L2(Sp) are bounded linear maps with k	pk � 1.

Furthermore, taking 	1 = 	2 = : : : = 	m = 0 yields the canonical completion.
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The Picture that Illustrates the Formula
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Estimation

Makes sense to choose canonical completion as target of estimation:

When completion is unique, it will be canonical

When completion non-unique, canonical completion is least presumptuous

=) It is always an identifiable and interpretable target of estimation

Estimating specifically the canonical completion is qualitatively different under
non-uniqueness than all previous approaches (which focussed on uniqueness)

1 If we impose uniqueness by way of assumption (a very strong assumption),
then one can use, for example, series estimators or matrix completion.

2 However such estimators will yield arbitrary (almost certainly non-canonical)
completions if uniqueness does not actually hold.

3 To guarantee canonicity, we need to satisfy the system of operator equations
on the previous slide – an inverse problem

4 Can be seen as an adaptive approach: will yield the unique completion when
uniqueness holds, and a stable/canonical one otherwise.
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Estimation

Let bK
 be an estimator of K
.

Define bK? to be the estimator of K? based on solving a regularised version of the
linear operator system defining K? (i.e. with all 	p = 0).

Concretely, since

Rp =
h
J�1=2p S�p

i� h
J�1=2p Dp

i
we start from p = 1 and recursively define the regularised empirical versions of Rp :

R̂p =

NpX
k=1

1

�̂p;k
� Ŝp êp;k 
 D̂�

p êp;k ;

where:

�̂p;k and êp;k denote the k th eigenvalue and eigenfunction of Ĵp

Np is the truncation parameter

Ŝp has kernel K̂?jSp�Jp .
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Rate of Convertence

Let Ap;k be the squared Hilbert-Schmidt error when approximating

Rp =
�
Jp
�1=2S�p

�� �
Jp
�1=2Dp

�
by replacing Jp with its rank-k truncation.

Theorem (Waghmare & Panaretos, 2021 (perturbation version))

Assume that for every 1 � p < m , we have

�p;k � k��

Ap;k � k�� .

then
k bK? �K?kL2(I�I ) � kK̂
 �K
k

m�1
L2(
)

where

m�1 =
�

4�+�+3

h
�

2�+�+1

im�2
; m > 1;

provided the regularisation parameters are chosen to satisfy

Np � kK̂
 �K
k
�2p=�
L2(
) :
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Rate of Convergence

Theorem (Waghmare & Panaretos, 2021 (statistical version))

Assume that for every 1 � p < m , we have

�p;k � k��

Ap;k � k��

If
kK̂
 �K
kL2(
) = OP(1=n

�)

then for every " > 0,

kK̂? �K?kL2(I�I ) = OP(1=n
�m�1�")

provided the truncation parameters N = (Np)
m�1
p=1 scale according to the rule

Np � np=�

where m�1 =
�

�+2�+3=2

h
�

�+�+1=2

im�2
:
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Rate of Convergence

k bK? �K?kL2(I�I ) � kK̂
 �K
k
m�1
L2(
)

where m�1 =
�

4�+�+3

h
�

2�+�+1

im�2
for m > 1.

Remarks on the exponent m�1:

It strictly decreases as a function of the number of intervals m

It can get arbitrarily close to 1 for a large enough rate of decay of
approximation errors �.

An increase in the rate of decay of eigenvalues � is accompanied by a
decrease in the rate of convergence.

If K
 2 C r (
) then the same applies to the kernels K
jJp�Jp of Jp implying
�p;k is o(1=k r+1) for every 1 � p < m and thus � = r + 1 .

All other things being equal, an increase in the smoothness of K
 also tends
to a decrease in the rate of convergence
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Numerical Study

K1(s ; t) =

4X
j=1

�j (s)�j (t)

2j�1
K2(s ; t) = s ^ t K3(s ; t) = 10ste�10js�t j

2
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Numerical Study – Ratios of Relative Errors

RRE =

R

c jK̂? �K j2=

R

c jK j

2R


jK̂
 �K
j2=

R


jK j2

:

K̂
 ! empirical covariance on 
 based on n = 100 fragments
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Some Plots: K1(s ; t) =
P

4

j=1

1

2j�1
�j (s)�j (t)
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Some Plots: K2(s ; t) = s ^ t
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Some Plots: K3(s ; t) = 10ste�10js�tj2
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Nearly Serrated Domains

Definitione
 � I � I is a nearly serrated domain if for every � > 0, there exist serrated
domains 
� � e
 � 
� such that dH (e
;
�); dH (e
;
�) < �

Of particular importance is a band e
 = f(s ; t) 2 I � I : js � t j � �g which occurs
when fragments are observable only over intervals of constant length.

Main takeaway: can glean information via 
� � e
 � 
�
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Nearly Serrated Domains – Uniqueness and Canonicity

Proposition (Waghmare & Panaretos, 2021) – Checking uniqueness via serration

Let Ke
 be a partial covariance on a nearly serrated domain e
 and let 
 � e
 be a

serrated domain. If the restriction Ke
��
 admits a unique completion, so does Ke
.

The proposition, via our checkable necessary and sufficient conditions for
uniqueness on serrated domains, gives can yield uniqueness under weaker
conditions than previously known for banded domains.
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Nearly Serrated Domains – Uniqueness and Canonicity

Theorem (Waghmare & Panaretos, 2021) – Unique completions remain canonical

If Ke
 on a nearly serrated e
 completes uniquely, then the completion is canonical.

So targeting a canonical completion remains a good strategy – under
uniqueness, the unique completion is canonical.

Canonical, in this case, means 
-Markov.

But how do we construct it?
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Nearly Serrated Domains – Constructibility

Theorem (Waghmare & Panaretos, 2021) – Constructibility of Canonical Completion

A covariance K? on I can be recovered as the canonical completion of its
restriction K?j
 on a serrated domain 
 if and only if it is the canonical
completion of a partial covariance on some nearly serrated domain e
 � 
.

In particular, if a unique completion of K je
 exists then it equals the

canonical completion of K j
 for a (in fact any) serrated 
 � e

Alternatively, if the process X � N (0;K ) is e
-Markov for e
 nearly serrated,
then K = (K j
)? for any serrated 
 � e

Consequential for inference from sample path fragments.
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Consequences for Inference

In practice: observable domain unclear a priori
Can consistently estimate any serrated restriction within 
1 = lim supk Ik � Ik

So need K 2 G
 with 
 � 
1 for identifiability, and can estimate from any


 � 
m � 
1

Remarks:

We can’t know 
1 and [j�nI
2
j is a bad (overfitting) estimator thereof.

“Well populated” regions are better proxies for 
1

m should represent a “well populated” nearly serrated region.

Balance with choosing small m – large m introduces additional ill-posedness.

Choosing 
m does not necessarily discard information, to the contrary it
protects from boundary effects.
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Example: Bone Mineral Density

BMD measurements for 117 females taken between the ages of 9.5 and 21 years
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Example: Bone Mineral Density

Figure: Completed covariance of the BMD data.
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