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Game of roads
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Background & Motivation
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Two overarching questions

Part 1: How bad is selfish routing, really?

*> The price of anarchy: worst-case bounds and beyond

> When practice meets theory

Part 2: How to reach an equilibrium?

> Optimal algorithms: from uncertainty to acceleration

> Universal algorithms: optimal rates without prior knowledge
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Nonatomic congestion games
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Network: multigraph G = (V, €)

O/D pairs i € N: origin O; sends m; units of traffic to destination D;

Paths P;: (sub)set of paths joining O; ~ D;

Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p
Load x. = 3,5, fp: total traffic along edge e

Edge cost function c.(x.): cost along edge e when edge load is x.
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Network: multigraph G = (V, €)

O/D pairs i € N: origin O; sends m; units of traffic to destination D;

Paths P;: (sub)set of paths joining O; ~ D;

Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p
Load x. = 3,5, fp: total traffic along edge e

Edge cost function c.(x.): cost along edge e when edge load is x.

Path cost: cp(f) = Xeep ce(xe)
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Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f,: traffic along p € P = U; P; generated by O/D pair owning p
> Load x. = ¥, fp: total traffic along edge e

> Edge cost function c.(x.): cost along edge e when edge load is x.

> Path cost: cp(f) = Xeep ce(xe)

> Nonatomic congestion game: G = (G, N, {m;}icnr, {Pi}ienr> {ce }ece)
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Traffic equilibrium

Wardrop equilibrium

Aflow profile f* € F = {f e RY : Y pep,; fp = mi} is a Wardrop equilibrium if

cp, (f7) <cq;(fF) forall utilized paths p; € Pi,i e N (WE)

# Equilibrium routing is envy-free: all traffic elements experience the same latency

Theorem (Beckmann et al., 1956)

Aflow profile f* is a Wardrop equilibrium if and only if it solves the convex problem

X,
minimize Z/ ece(w) dw
ec€ V0

subjectto x. =Y f,, feF
pae

(Eg)
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Price of Anarchy

Optimal flows

minimize C(f) = Z foer(f)
peP

subjectto feF

(Opt)

Price of Anarchy (Koutsoupias & Papadimitriou, 1999; Papadimitriou, 2001)

Equilibrium cost: Eq(G) = C(f")
Minimum cost: Opt(G) = rfm}l C(f)
Price of Anarchy: PoA(G) = Cl)a;t((gg))
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How bad is selfish routing?

Theorem (Roughgarden & Tardos, 2002; Roughgarden, 2003)

> Affine cost functions (c.(x.) = ae + bexe)
PoA(G) < 4/3

> Quartic (BPR) cost functions
PoA(G) < 5v/5/(5v/5 — 4) ~ 2.1505

> Polynomials of degree at most d

PoA(G) = O(d/logd)

Remarks
*> Independent of network topology
» Valid for any number of O/D pairs

» Equilibrium routing can become arbitrarily bad: d/logd — oo asd — oo

EKMA, Turjpa MaBnuatikav
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How bad is selfish routing, really?

Delicately tuned worst-case instances are not representative of reality

—— T
1.3
1.2}
1.1}

1.3F Boston

PoA

11F 10,000 20,000

10 . T BT BT T
0 10,000 20,000
Vehicles per hour

# Source: Youn et al., 2008
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Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?
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Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

1.5x 10 R

a(x) = [1+1/2sin(log x)] x* 10X 10' ]

@ D —
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Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

Price of anarchy as a function of traffic inflow
T T

1015} . \g 4
a(x) = [1+1/2sin(log x)] x* i '\‘ i \‘,
PRTI - o]
£ } . A B
5 1.000- v ‘ 1
c3(x) =[1+1/2cos(logx)] x e 4 . i 00

Inflow (m)

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

In the above network:
infM POA(gM) >1
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Pathological oscillations

Cost functions are C*-smooth, convex and grow polynomially - but irregularly:

ce(tx)

does not exist
t—{0,00} Cg(t)

> In light traffic: infinitely dense oscillations

* In heavy traffic: infinitely wide oscillations

> Sanity check: no such oscillations observed in practice
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Regular variation

Definition (Karamata, 1930's)

A function f: [0, 00) — (0, 00) is called regularly varying at w € {0, co} if
lim M is finite and nonzero for all x > 0 (RV)
o f(2)
> Light traffic: w = 0
> Heavy traffic: w = o
V.

1. Affine functions: f(x) = ax +b
2. Polynomials: f(x) = X¢_, arx*

3. Quasi-polynomials: f(x) ~ x? for some g > 0

4. Real-analytic at w; logarithms; etc.

NB: ©(x7) ¢ (RV) ¢ ©(x)
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Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
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Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

> Path index: indp = MaXeep ind. # bottleneck caused by slowest edge
> Fast / slow/ tight path: ind, = 0, oo or in-between

» Pair index: ind' = min,,.p: ind, # traffic routed via fastest path

> Fast / slow/ tight pair: ind’ = 0, oo or in-between
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Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

> Path index: indp = MaXeep ind. # bottleneck caused by slowest edge
> Fast / slow/ tight path: ind, = 0, oo or in-between

» Pairindex: ind’ = min,.pi ind, # traffic routed via fastest path
> Fast / slow/ tight pair: ind’ = 0, oo or in-between

> Network index: ind = minyep indp # bottleneck caused by slowest pair

> Tight network: ind € (0, o)

NB: Edges/paths that are slow in heavy traffic can be fast in light traffic and vice versa
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Benchmarks, light and heavy

Example: light and heavy traffic benchmarks in a Wheatstone network

» Heavy traffic benchmark: c(x) = x
> Light traffic benchmark: c(x) =1
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The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: PoA(Gy) = las M — {0,007}
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The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: PoA(Gy) = las M — {0,007}

In networks with polynomial cost functions, PoA(Gy) — Las M — {0, oo }.
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The road to equilibrium

How to reach an equilibrium state?

> Lack of information # Will it rain in the next hour?

> Very large problems #10° user base
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The road to equilibrium

How to reach an equilibrium state?
» Lack of information # Will it rain in the next hour?

> Very large problems #10° user base

Recommender must be able to solve in real time:

minimize L(f) =), /xc ce(w) dw
ec€ Y0 (WE)
subjectto x. = pr, feF
pae

Challenges
> Variability: traffic conditions fluctuate unpredictably
> Uncertainty: congestion metrics only partially observable

> Dimensionality: exponential number of state variables
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The model

Randomness and uncertainty:

» Exogenous randomness w € Q) reflected in observed costs ~ c.(x.; w)

# “State of the world”: weather, accidents, added congestion...

> Mean equilibrium flows

Eolcp, (f50)] <Ealcq, (f"50)] forall utilized paths p; € Py, i e N

Sequence of events

1. forallt=1,2,... do

2 Interface recommends flow profile f; € F
3: Nature determines state of the network w; € Q
4. Traffic elements on path p incur ¢, (fi; w¢)

5: end for
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Equilibrium characterization

Stochastic convex programming characterization

f* is a mean equilibrium flow if and only if it solves

minimize L(f) = E[Z '/(‘)Xe ce(u; w) du]

ecE

subjectto x. =Y. fp, f€F
pae

NB: Observed cost vectors ~ stochastic gradients

VL(f) = (& (1) yep = B[ (65 (f:©)) yep |

Two sharply different regimes:

» Static: w; remains constant with time

» Stochastic: w; fluctuates with time
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Stochastic gradient descent

Stochastic gradient descent:

fin = Pl’]:(ft - )/ét) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter




Adaptive routing

0000000000000

Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) is run for T iterations with y o< 1/x/T, the mean flow fr = T™' £, f; enjoys

E[L(fr) - minL] = O(\/P/T)
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Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) is run for T iterations with y o< 1/x/T, the mean flow fr = T™' £, f; enjoys

E[L(fr) - minL] = O(\/P/T)

Properties:
v/ Optimal in T: query complexity cannot be improved in the stochastic regime
X Slow in P: query complexity is exponential in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended




Adaptive routing
00000®00000000

Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair
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Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExPWEIGHT is run for T steps with y o< 1/x/T, the mean flow fr = T™' ¥, f; enjoys

L(fr) -minL = (’)(\/logP/T)
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Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExPWEIGHT is run for T steps with y o< 1/x/T, the mean flow fr = T™' ¥, f; enjoys

L(fr) -minL = (’)(\/logP/T)

Properties:

v/ Optimal in T: query complexity cannot be improved in the stochastic regime
v/ Optimal in P: query complexity is polynomial in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended
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The static case

Is the situation the same in static the static regime?
v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?




Adaptive routing
000000@0000000

The static case

Is the situation the same in static the static regime?

v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

Algorithm Accelerated exponential weights (AcCELEWEIGHT) #NAG + ExPWEeIGHT

Require: initial score vector yo < 0; moving weight ag < 0; step yo < 1/(NMpB) # B ~ Lipschitz modulus
1: forallt=1,2,... T do
2: setzy o< exp(yi-1) # ExPWEIGHT step
3: set f[ <~ Ult—lft—l + (1 - (xf_])zt # Nesterov momentum
4: setyp <+ %[2)};4 +90 +\/4yi-1y0 + 2] #NAG step-size
5: set oy < )’t—l/)’t # moving weight update
6: setzy « (Xff[ + (l —at)zs and get ¢ < C(ét) # route and measure costs
7: set yr < yr-1— (l - lxt)ytcr # update path scores
8: end for

9: return f; #output flow
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AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

L(fr)-minL <

48*N*M*log P log P
T? ) O( T? )
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AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

L(fr)-minL <

48*N*M*log P log P
T? ) O( T? )

Properties:
v/ Optimal in T: query complexity cannot be improved in the static regime
v Optimal in P: query complexity is polynomial in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended
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The good

The good:

v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P
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The good, the bad

The good:
v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:

X In the static regime, ExPWEIGHT is very slow in T

X In the stochastic regime, AcceLEWEIGHT does not converge
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The good, the bad, and the ugly

The good:
v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:
X In the static regime, ExPWEIGHT is very slow in T

X In the stochastic regime, AcceLEWEIGHT does not converge

The ugly:

> Tuning the step-size is impractical / impossible

> Output is never recommended
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Adaptive algorithms

Observe:

> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero
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Adaptive algorithms

Observe:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

1
Yt =
V1+ E e = el

(Adapt)
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Adaptive algorithms

Observe:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[ oo remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

1

ye = — = (Adapt)
Vi Tilesn - ol
Algorithm ExpPWEIGHT + ADAPT # Antonakopoulos & M, 2021
Initialize score vector y € RP

1: forallt=1,2,... T do
2. Route according to f; ~ exp(y:) #ExpWEIGHT update
3: Observe cost profile: ¢ < (cp(fes @t)) per # cost feedback
4: Update path scores: yi41 < yi — yile # ADAPT step

5: end for
6: return fT =(1/T) Z?:l fi # output flow
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Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, 2021)

Suppose that EXPWEIGHT +ADAPT is run for T steps. Then fr enjoys the rate

E[L(fr) - mini] - @(logg{m ) )

where o is the variance of ||c’ (x; @) | z1.

Properties:

v Optimal in stochastic regime: query complexity cannot be improved in T if 6 > 0
> Better than ExPWEIGHT in the static regime, but worse than AcceLEWEIGHT

v Adaptive: no hyperparameter tuning required

X Offline: f; is never recommended
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AdaWeight

Is there a path to universal acceleration?
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AdaWeight

Is there a path to universal acceleration?

Algorithm Adaptive exponential weights (ADAWEIGHT) #Vuetal, 2021

Initialize score vector y; < 0; moving weight ag < 0;step 71 < 1
1: forallt=1,2,... T do

2: setz; o< exp(myt) # EXPWEIGHT step
3: setZ « ((tht + Zg;é ocszsﬂ/z)/ ZE:O o and get ¢ < c(Zr; wy) #reweigh + explore
4: set Yri1/2 < Yt — &y #score update
5: setzyyy/y o< exp(n[yt+1/2) # ExPWEIGHT step
6: set ft <~ (Z;:O (ngs+1/2)/ Zé:o as and get ¢y < C(f[;(l)f) # route and measure costs
7: set Y1 < Ve — Yt # update scores
8: set 41 < m/\ /1+ tﬁocf ||C, - 5r\|zoo # ADAPT step
9: end for

10: return f; # output flow

# Borrows ideas from ExWEiGHT + NAG + dual extrapolation methods




Adaptive routing

000000000000 e0

AdaWeight guarantees

Theorem (Vu et al., 2021; Antonakopoulos et al., 2022)

ApAWEIGHT enjoys the rate of convergence

E[L(fr) -minL] = o(logp Glogp)

72 T

Properties:

v Optimal in stochastic regime: query complexity cannot be improved in T if ¢ > 0
v/ Optimal in static regime: query complexity cannot be improved in T' if ¢ = 0
v Fastin P: query complexity is polynomial in the network’s size

v Adaptive: does not require any tuning or prior system knowledge

v Online: guarantees concern the recommended flows
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AdaWeight in practice

Numerical experiments in the Anaheim metropolitan area

103 <4
102 4
102 <4
101 1 101 4
100 5 100 4
1011 AcceleWeight,y® = 2E-02
—¥- AcceleWeight,y° = 2E-05 10-1]
1072 § -¥-- AcceleWeight,y® = 2E-08 —¥— AcceleWeight
—e— ExpWeight 72 —e— ExpWeight
107§ s AdaWeight 1071 _a— AdaWeight
10° 10t 102 103 104 10° 10t 102 103 104

Figure: ExPWEIGHT, AccELEWEIGHT & ADAWEIGHT in static (left) and stochastic (right) conditions
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Two overarching questions

Q1: How bad is selfish routing, really?

v Not too bad: in realistic network conditions, no difference between selfish and socially optimum states

v Price of anarchy vanishes under low and heavy traffic

Q2: Is it possible to reach an equilibrium efficiently?
v Adaptive routing methods can achieve “best of all worlds” guarantees
> No tuning required
> Optimal in both static and stochastic regimes

> Smooth transition between static and stochastic

> Polynomial - as opposed to exponential - in network size
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Is there a path to universal acceleration for arbitrary domains?
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Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt = Yt gt fz+1/2 = Q("]t}’tﬂ/z)
(DE)
Y1 = Yt = VtGr+1/2 ft+1 = Q(mﬂym)

Adaptive learning rate
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UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt = Yt gt fz+1/2 = Q("]t}’tﬂ/z)

(DE)
Y1 = Yt = VtGr+1/2 ft+1 = Q(mﬂym)
Adaptive learning rate
Kyu(Ry + Ky | X2
o = | o AR (Adapy)
Ky + X vilgsny2 = 95|

Iterate averaging

f _ yife + Z;i Psfory2
o LT Ssm PoJsrlf2
Tia Vs

f 2= Yifenj2 + Z;} Vsfry2
t+ -
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UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

(initialized) Y
Vi1

Q(’// Y/,)

Figure: The UNDERGRAD algorithm
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UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Theorem (Antonakopoulos et al., 2022)

Suppose that UNDERGRAD is run for T iterations with y; = t. Then the algorithm’s output state X = fr41/2
concurrently enjoys the following guarantees:

a) If f satisfies (LC)/(BG), then

; . Ky +8(G? + 02)
E[f(xT) - mlnf] <2Cy 7KhT
b) If f satisfies (LS)/(LG), then

324/2C1L . 8v/2Cy0

K, T? VK, T

E[f(%r) —min f] <

where Ch =+/Ry + K} HX”Z

EKTA, Turjiia MaBnuatikv



AdaLight
[ Je]e]ele]e}

Outline

@O Adalight




AdaLight
[o] Je]ele]e}

Distribution in the control plane

Can we distribute the algorithm at the node level?

» Given: an O/D pair (O, D)

> Each node v € V has a subset of edges e, that can be used to reach D

» No backtracking: acyclic routing (multi-)graph G = (V, U,y €v)

» Each node controls traffic allocation over &, i.e., a vector

X = (Xe)eee, € A(EL)

> Small dimensionality per control node - but how to implement EGD?
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The role of weight propagation

Key steps in EGD:

> Update scores: y. < y. + y0. v
> Traffic allocation: 222 X

Straightforward choice of weights:
o= — 20
Leree, eXp(yer)

OK'in terms of dimension; complete failure in terms of optimization
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Backpedaling

Key insight: must not be blind to what is happening down the road

0. Require: edge score vector y = (¥ )eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.
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Backpedaling

Key insight: must not be blind to what is happening down the road

0. Require: edge score vector y = (¥ )eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

1. Weigh and wait: When node v receives weight information from connecting node v’ via edge e € &,, set
We = Ve + Wy
2. Sum and send: If node v has received an update via all outgoing edges &,, set

wy = log Z exp(we)

ee&y

and push w, back through all edges linking to v
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Exponential weights and backpedaling

Let y € R be an edge score vector and suppose each node v € V allocates traffic following the exponential rule

Xe = exp(w) foralle € &,

- exp(wy)

with w. and w, defined via backpedaling. Then, the total traffic flowing through route p € P is

5, - exp(yp)
P S er exp(y)

where y, = 3., y. denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!

EKTA, Turjiia MaBnuatikv
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