

ΔΡΟΜΟΛΟΓΗΣΗ ΥΠΟ ΣΥΝΘΗΚΕΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΕ ΔΙΚΤΥΑ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Τμήμα Μαθηματικών

(Σεμινάριο Στατιστικής & Επιχ. Έρευνας | ΕΚΠΑ, Τμήμα Μαθηματικών | 1 Μαρτίου, 2023)

1/32

Outline

1 Background & Motivation

2) The price of anarchy: theory and practice

Adaptive routing

1/3

1. Μερτικόπουλος

Traffic...

...how bad can it get?

Traffic...

...how bad can it get?

Background & Motivation

Athens at a glance

- ▶ 3,754,000 people
- ▶ 937,000 daily trips
- ▶ Up to 10⁴ trips/min
- ▶ 1393 nodes
- 5429 edges
- ▶ 1,360,000 O/D pairs
- $\approx 7 * 10^{18}$ paths

A very large game!

3/32

Two overarching questions

Part 1: How bad is selfish routing, really?

- ▶ The price of anarchy: worst-case bounds and beyond
- When practice meets theory

Part 2: How to reach an equilibrium?

- Optimal algorithms: from uncertainty to acceleration
- Universal algorithms: optimal rates without prior knowledge

The people

Background & Motivation

K. Antonakopoulos

R. Colini-Baldeschi

R. Cominetti

Y. G. Hsieh

M. Scarsin

D. Q. Vu

Antonakopoulos, Vu, Cevher, Levy & M., UnderGrad: A universal black-box optimization method with almost dimension-free convergence rate guarantees. ICML 2022

Colini-Baldeschi, Cominetti, M. & Scarsini, The asymptotic behavior of the price of anarchy. WINE 2017

Colini-Baldeschi, Cominetti, M. & Scarsini, When is selfish routing bad? The price of anarchy in light and heavy traffic. Operations Research, vol. 68(2), pp. 411-434, 2020.

Hsieh, Antonakopoulos & M., Adaptive learning in continuous games: Optimal regret bounds and convergence to Nash equilibrium. COLT 2021

[4] Vu, Antonakopoulos & M., Fast routing under uncertainty: Adaptive learning in congestion games with exponential weights. NeurlPS 2021

.Μερτικόπουλος

Outline

Background & Motivation

2 The price of anarchy: theory and practice

Adaptive routing

ΠΑ, Τμήμα Μαθηματικών

• **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i

- **Network:** multigraph G = (V, E)
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- ▶ **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$

- **Network:** multigraph G = (V, E)
- ▶ **O/D** *pairs* $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- ▶ **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- ▶ Routing flow f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e

ΕΚΠΑ, Τμήμα Μαθηματικών

- **Network:** multigraph G = (V, E)
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$

ΕΚΠΑ, Τμήμα Μαθηματικών

- **Network:** multigraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- ▶ **O/D** pairs $i \in \mathcal{N}$: origin O_i sends m_i units of traffic to destination D_i
- **Paths** \mathcal{P}_i : (sub)set of paths joining $O_i \rightsquigarrow D_i$
- **Routing flow** f_p : traffic along $p \in \mathcal{P} \equiv \bigcup_i \mathcal{P}_i$ generated by O/D pair owning p
- ▶ **Load** $x_e = \sum_{p \ni e} f_p$: total traffic along edge e
- **Edge cost function** $c_e(x_e)$: cost along edge e when edge load is x_e
- Path cost: $c_p(f) = \sum_{e \in p} c_e(x_e)$
- ▶ Nonatomic congestion game: $\mathcal{G} = (\mathcal{G}, \mathcal{N}, \{m_i\}_{i \in \mathcal{N}}, \{\mathcal{P}_i\}_{i \in \mathcal{N}}, \{c_e\}_{e \in \mathcal{E}})$

Traffic equilibrium

Wardrop equilibrium

A flow profile $f^* \in \mathcal{F} \equiv \{ f \in \mathbb{R}_+^{\mathcal{P}} : \sum_{p \in \mathcal{P}_i} f_p = m_i \}$ is a **Wardrop equilibrium** if

$$c_{p_i}(f^*) \le c_{q_i}(f^*)$$
 for all utilized paths $p_i \in \mathcal{P}_i, i \in \mathcal{N}$ (WE)

Equilibrium routing is envy-free: all traffic elements experience the same latency

Theorem (Beckmann et al., 1956)

A flow profile f^* is a Wardrop equilibrium if and only if it solves the convex problem

minimize
$$\sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(w) \ dw$$
 subject to
$$x_e = \sum f_p, \ f \in \mathcal{F}$$
 (Eq)

Price of Anarchy

Optimal flows

minimize
$$C(f) = \sum_{p \in \mathcal{P}} f_p c_p(f)$$

subject to $f \in \mathcal{F}$

(Opt)

Price of Anarchy (Koutsoupias & Papadimitriou, 1999; Papadimitriou, 2001)

Equilibrium cost:

$$\operatorname{Eq}(\mathcal{G}) = C(f^*)$$

Minimum cost:

$$Opt(\mathcal{G}) = \min_{f \in \mathcal{F}} C(f)$$

Price of Anarchy:

$$PoA(\mathcal{G}) = \frac{Eq(\mathcal{G})}{Opt(\mathcal{G})}$$

How bad is selfish routing?

Theorem (Roughgarden & Tardos, 2002; Roughgarden, 2003)

• Affine cost functions $(c_e(x_e) = a_e + b_e x_e)$

$$PoA(\mathcal{G}) \le 4/3$$

Quartic (BPR) cost functions

$$PoA(G) \le 5\sqrt[4]{5}/(5\sqrt[4]{5}-4) \approx 2.1505$$

Polynomials of degree at most d

$$PoA(\mathcal{G}) = \mathcal{O}(d/\log d)$$

Remarks

- Independent of network topology
- Valid for any number of O/D pairs
- Equilibrium routing can become arbitrarily bad: $d/\log d \to \infty$ as $d \to \infty$

ΕΚΠΑ, Τμήμα Μαθηματικών

How bad is selfish routing, really?

Delicately tuned worst-case instances are not representative of reality

000000000000

Source: Youn et al., 2008

ΕΚΠΑ, Τμήμα Μαθηματικών

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

$$c_{1}(x) = [1 + 1/2 \sin(\log x)] x^{2}$$

$$c_{2}(x) = x^{2}$$

$$c_{3}(x) = [1 + 1/2 \cos(\log x)] x^{2}$$

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

000000000000

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

In the above network:

$$\inf_{M} \operatorname{PoA}(\mathcal{G}_{M}) > 1$$

ΕΚΠΑ, Τμήμα Μαθηματικών

Pathological oscillations

Cost functions are C^{∞} -smooth, convex and grow polynomially - but irregularly:

$$\lim_{t \to \{0,\infty\}} \frac{c_e(tx)}{c_e(t)} \text{ does not exist}$$

- ► In light traffic: infinitely dense oscillations
- In heavy traffic: infinitely wide oscillations
- Sanity check: no such oscillations observed in practice

Regular variation

Definition (Karamata, 1930's)

A function $f:[0,\infty)\to (0,\infty)$ is called **regularly varying at** $\omega\in\{0,\infty\}$ if

$$\lim_{t \to \omega} \frac{f(tx)}{f(t)}$$
 is finite and nonzero for all $x \ge 0$ (RV)

- **Light traffic:** $\omega = 0$
- ▶ Heavy traffic: $\omega = \infty$

Examples

- 1. Affine functions: f(x) = ax + b
- 2. Polynomials: $f(x) = \sum_{k=1}^{d} a_k x^k$
- 3. Quasi-polynomials: $f(x) \sim x^q$ for some $q \ge 0$
- 4. Real-analytic at ω ; logarithms; etc.

NB: $\Theta(x^q) \not\subseteq (RV) \not\subseteq \Theta(x^q)$

Main idea: find a regularly varying function c(x) to use as a benchmark:

Main idea: find a regularly varying function c(x) to use as a benchmark:

- Edge index: $\operatorname{ind}_e = \lim_{x \to \omega} c_e(x)/c(x)$
- ► Fast / slow / tight edge: $ind_e = 0$, ∞ or in-between

14/3

Main idea: find a regularly varying function c(x) to use as a benchmark:

- Edge index: $\operatorname{ind}_e = \lim_{x \to \omega} c_e(x)/c(x)$
- ► Fast / slow / tight edge: $ind_e = 0$, ∞ or in-between
- ▶ **Path index:** $ind_p = max_{e \in p} ind_e$
- Fast / slow / tight path: ind_p = $0, \infty$ or in-between

bottleneck caused by slowest edge

Main idea: find a regularly varying function c(x) to use as a benchmark:

- Edge index: $\operatorname{ind}_e = \lim_{x \to \omega} c_e(x)/c(x)$
- ► Fast / slow / tight edge: $ind_e = 0$, ∞ or in-between
- ▶ Path index: $ind_p = max_{e \in p} ind_e$
- ► Fast / slow / tight path: $ind_p = 0$, ∞ or in-between
- **Pair index:** $\operatorname{ind}^{i} = \min_{p \in \mathcal{P}^{i}} \operatorname{ind}_{p}$
- ► Fast / slow / tight pair: indⁱ = $0, \infty$ or in-between

bottleneck caused by slowest edge

traffic routed via fastest path

14/32

Main idea: find a regularly varying function c(x) to use as a benchmark:

- Edge index: ind_e = $\lim_{x\to\omega} c_e(x)/c(x)$
- ► Fast / slow / tight edge: ind_e = $0, \infty$ or in-between
- ▶ Path index: ind_p = $\max_{e \in p}$ ind_e
- **Fast** / **slow** / **tight path**: ind_p = 0, ∞ or in-between
- **Pair index:** $\operatorname{ind}^{i} = \min_{p \in \mathcal{P}^{i}} \operatorname{ind}_{p}$
- Fast / slow / tight pair: indⁱ = $0, \infty$ or in-between
- **Network index:** ind = $\min_{p \in \mathcal{P}} \operatorname{ind}_p$
- **Tight network:** ind \in $(0, \infty)$

NB: Edges/paths that are slow in heavy traffic can be fast in light traffic and vice versa

bottleneck caused by slowest edge

traffic routed via fastest path

bottleneck caused by slowest pair

Benchmarks, light and heavy

Example: light and heavy traffic benchmarks in a Wheatstone network

- Heavy traffic benchmark: c(x) = x
- ▶ Light traffic benchmark: c(x) = 1

The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: $PoA(\mathcal{G}_M) \to 1$ as $M \to \{0, \infty\}$

The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: PoA(\mathcal{G}_M) \rightarrow 1 as $M \rightarrow \{0, \infty\}$

Corollary

In networks with polynomial cost functions, $PoA(\mathcal{G}_M) \to 1$ as $M \to \{0, \infty\}$.

Adaptive routing

Outline

Background & Motivation

② The price of anarchy: theory and practice

3 Adaptive routing

The road to equilibrium

How to reach an equilibrium state?

- Lack of information
- Very large problems

Will it rain in the next hour?

 $\# \approx 10^8$ user base

The road to equilibrium

How to reach an equilibrium state?

- Lack of information
- Very large problems

Will it rain in the next hour?

 $\# \approx 10^8$ user base

Recommender must be able to solve in real time:

minimize
$$L(f) = \sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(w) dw$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$ (WE)

Challenges

- ▶ Variability: traffic conditions fluctuate unpredictably
- Uncertainty: congestion metrics only partially observable
- Dimensionality: exponential number of state variables

Randomness and uncertainty:

Exogenous randomness $\omega \in \Omega$ reflected in observed costs $\sim c_e(x_e; \omega)$

#"State of the world": weather, accidents, added congestion...

Mean equilibrium flows

$$\mathbb{E}_{\omega}[c_{p_i}(f^*;\omega)] \leq \mathbb{E}_{\omega}[c_{q_i}(f^*;\omega)] \quad \text{for all utilized paths } p_i \in \mathcal{P}_i, i \in \mathcal{N}$$

Sequence of events

- 1: **for all** t = 1, 2, ... **do**
- Interface recommends flow profile $f_t \in \mathcal{F}$
- Nature determines state of the network $\omega_t \in \Omega$ 3.
- Traffic elements on path p incur $c_p(f_t; \omega_t)$ 4:
- 5. end for

 (\overline{Eq})

Equilibrium characterization

Stochastic convex programming characterization

 f^* is a **mean equilibrium flow** if and only if it solves

minimize
$$\tilde{L}(f) = \mathbb{E}\left[\sum_{e \in \mathcal{E}} \int_0^{x_e} c_e(u; \omega) du\right]$$

subject to $x_e = \sum_{p \ni e} f_p, f \in \mathcal{F}$

NB: **Observed cost vectors → stochastic gradients**

$$\nabla \bar{L}(f) = (\bar{c}_p(f))_{p \in \mathcal{P}} = \mathbb{E}[(c_p(f;\omega))_{p \in \mathcal{P}}]$$

Two sharply different regimes:

- **Static:** ω_t remains constant with time
- **Stochastic:** ω_t fluctuates with time

ΕΚΠΑ, Τμήμα Μαθηματικών

Stochastic gradient descent

Stochastic gradient descent:

$$f_{t+1} = \operatorname{pr}_{\mathcal{F}}(f_t - \gamma \hat{c}_t)$$
 (SGD)

Adaptive routing 00000000000000

where $\hat{c}_t = c(f_t; \omega_t)$ is the **cost profile** at time t and y > 0 is a **step-size** parameter

Stochastic gradient descent

Stochastic gradient descent:

$$f_{t+1} = \operatorname{pr}_{\mathcal{F}}(f_t - \gamma \hat{c}_t)$$
 (SGD)

where $\hat{c}_t = c(f_t; \omega_t)$ is the **cost profile** at time t and y > 0 is a **step-size** parameter

Theorem (folk)

If (SGD) is run for T iterations with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^{T} f_t$ enjoys

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}(\sqrt{P/T})$$

Stochastic gradient descent

Stochastic gradient descent:

$$f_{t+1} = \operatorname{pr}_{\mathcal{F}}(f_t - \gamma \hat{c}_t)$$
 (SGD)

Adaptive routing aaaaaaaaaaaaaaa

where $\hat{c}_t = c(f_t; \omega_t)$ is the **cost profile** at time t and y > 0 is a **step-size** parameter

Theorem (folk)

If (SGD) is run for T iterations with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^{T} f_t$ enjoys

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}(\sqrt{P/T})$$

Properties:

- ✓ Optimal in T: query complexity cannot be improved in the stochastic regime
- X Slow in P: query complexity is exponential in the network's size
- X Non-adaptive: requires tuning of y
- **X** Offline: \bar{f}_t is never recommended

ΕΚΠΑ, Τμήμα Μαθηματικών

Routing with exponential weights

The exponential weights (ExpWeight) algorithm

mirror descent for the simplex

$$f_{p,t+1} \propto f_{p,t} \exp(-\gamma \hat{c}_{p,t})$$
 (EW)

where " \propto " indicates normalization over all paths belonging to the same O/D pair

Routing with exponential weights

The exponential weights (ExpWeight) algorithm

mirror descent for the simplex

$$f_{p,t+1} \propto f_{p,t} \exp(-\gamma \hat{c}_{p,t})$$
 (EW)

where "∝" indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExpWeight is run for T steps with $\gamma \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^T f_t$ enjoys

$$\bar{L}(\bar{f}_T) - \min \bar{L} = \mathcal{O}(\sqrt{\log P/T})$$

Routing with exponential weights

The exponential weights (ExpWEIGHT) algorithm

mirror descent for the simplex

$$f_{p,t+1} \propto f_{p,t} \exp(-\gamma \hat{c}_{p,t})$$
 (EW)

Adaptive routing aaaaaaaaaaaaaaa

where "∝" indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExpWeight is run for T steps with $y \propto 1/\sqrt{T}$, the mean flow $\bar{f}_T = T^{-1} \sum_{t=1}^{T} f_t$ enjoys

$$\bar{L}(\bar{f}_T) - \min \bar{L} = \mathcal{O}(\sqrt{\log P/T})$$

Properties:

- ✓ Optimal in *T*: query complexity cannot be improved in the stochastic regime
- Optimal in P: query complexity is polynomial in the network's size
- X Non-adaptive: requires tuning of γ
- **X** Offline: \bar{f}_t is never recommended

The static case

Is the situation the same in static the static regime?

- ✓ Nesterov's accelerated gradient (NAG) method achieves $\mathcal{O}(1/T^2)$ in static programs
- **X** But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

The static case

Is the situation the same in static the static regime?

- ✓ Nesterov's accelerated gradient (NAG) method achieves $\mathcal{O}(1/T^2)$ in static programs
- $m{\mathsf{X}}$ But exponential dependence on $|\mathcal{G}|$

Can we get rates that are optimal in both T and P?

Algorithm Accelerated exponential weights (AcceleWeight)

NAG + ExpWeight

Require: initial score vector $y_0 \leftarrow 0$; moving weight $\alpha_0 \leftarrow 0$; step $\gamma_0 \leftarrow 1/(NM\beta)$

$\beta \sim$ Lipschitz modulus

- 1: **for all** t = 1, 2, ... T **do**
- 2: $\operatorname{set} z_t \propto \exp(y_{t-1})$
- 3: set $f_t \leftarrow \alpha_{t-1} f_{t-1} + (1 \alpha_{t-1}) z_t$
 - set $\gamma_t \leftarrow \frac{1}{2} [2\gamma_{t-1} + \gamma_0 + \sqrt{4\gamma_{t-1}\gamma_0 + \gamma_0^2}]$
- 5: set $\alpha_t \leftarrow \gamma_{t-1}/\gamma_t$
- 6: set $\bar{z}_t \leftarrow \alpha_t f_t + (1 \alpha_t) z_t$ and get $c_t \leftarrow c(\bar{z}_t)$
- 7: set $y_t \leftarrow y_{t-1} (1 \alpha_t) \gamma_t c_t$
- 8: end for
- 9: **return** f_t

ExpWeight step # Nesterov momentum

NAG step-size

moving weight update # route and measure costs

update path scores

#output flow

Π. Μερτικόπουλος

AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcceleWeight enjoys the rate of convergence

$$L(f_T) - \min L \le \frac{4\beta^2 N^2 M^2 \log P}{T^2} = \mathcal{O}\left(\frac{\log P}{T^2}\right)$$

AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcceleWeight enjoys the rate of convergence

$$L(f_T) - \min L \le \frac{4\beta^2 N^2 M^2 \log P}{T^2} = \mathcal{O}\left(\frac{\log P}{T^2}\right)$$

Adaptive routing ociococociocococo

Properties:

- ✓ Optimal in *T*: query complexity cannot be improved in the static regime
- ✓ Optimal in P: query complexity is polynomial in the network's size
- \times Non-adaptive: requires tuning of γ
- **X** Offline: f_t is never recommended

Adaptive routing

The good

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, AcceleWeight is optimal in T and P

Adaptive routing 00000000000000

The good, the bad

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, ACCELEWEIGHT is optimal in T and P

The bad:

- X In the static regime, ExpWeight is very slow in T
- ✗ In the stochastic regime, AcceleWeight does not converge

The good, the bad, and the ugly

The good:

- ✓ In the stochastic regime, ExpWeight is optimal in T and P
- ✓ In the static regime, AcceleWeight is optimal in T and P

The bad:

- X In the static regime, ExpWeight is very slow in T
- ✗ In the stochastic regime, AcceleWeight does not converge

The ugly:

- ▶ Tuning the step-size is impractical / impossible
- Output is never recommended

24/32

.Μερτικόπουλος

Adaptive algorithms

Observe:

- ▶ In the static regime: $||c_{t+1} c_t||_{\infty}$ should become small over time
- ▶ In the stochastic regime: $||c_{t+1} c_t||_{\infty}$ remains bounded away from zero

Adaptive routing

Adaptive algorithms

Observe:

- ▶ In the static regime: $||c_{t+1} c_t||_{\infty}$ should become small over time
- ▶ In the stochastic regime: $||c_{t+1} c_t||_{\infty}$ remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

$$\gamma_t = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|c_{s+1} - c_s\|_{\infty}^2}}$$

(Adapt)

Adaptive routing

Adaptive algorithms

Observe:

- ▶ In the static regime: $\|c_{t+1} c_t\|_{\infty}$ should become small over time
- ▶ In the stochastic regime: $||c_{t+1} c_t||_{\infty}$ remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

$$\gamma_t = \frac{1}{\sqrt{1 + \sum_{s=1}^{t-1} \|c_{s+1} - c_s\|_{\infty}^2}}$$

(Adapt)

Algorithm ExpWeight + Adapt

Antonakopoulos & M. 2021

#ExpWeight update

cost feedback

Initialize score vector $v \in \mathbb{R}^{\mathcal{P}}$

- 1: **for all** t = 1, 2, ... T **do**
- Route according to $f_t \sim \exp(y_t)$ 2:
- 3: Observe cost profile: $\hat{c}_t \leftarrow (c_p(f_t; \omega_t))_{p \in \mathcal{P}}$
- Update path scores: $y_{t+1} \leftarrow y_t \gamma_t \hat{c}_t$
- 5. end for
- 6: **return** $\bar{f}_T = (1/T) \sum_{t=1}^{T} f_t$

output flow

ADAPT step

Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, 2021)

Suppose that ExpWeight +Adapt is run for T steps. Then \bar{f}_T enjoys the rate

$$\mathbb{E}[\bar{L}(\bar{f}_T) - \min \bar{L}] = \mathcal{O}\left(\frac{\log(PT)}{T} + \sigma\sqrt{\frac{\log(PT)}{T}}\right)$$

Adaptive routing aaaaaaaaaaaaaaa

where σ^2 is the variance of $\|c'(x;\omega)\|_{\mathcal{L}^1}$.

Properties:

- ✓ Optimal in stochastic regime: query complexity cannot be improved in T if $\sigma > 0$
- Better than ExpWeight in the static regime, but worse than AcceleWeight
- Adaptive: no hyperparameter tuning required
- **X** Offline: \tilde{f}_t is never recommended

AdaWeight

Is there a path to universal acceleration?

AdaWeight

Is there a path to universal acceleration?

Algorithm Adaptive exponential weights (ADAWEIGHT)

Initialize score vector $y_1 \leftarrow 0$; moving weight $\alpha_0 \leftarrow 0$; step $\eta_1 \leftarrow 1$

- 1: **for all** t = 1, 2, ..., T **do**
- $\operatorname{set} z_t \propto \exp(n_t v_t)$ 7.
- set $\bar{z} \leftarrow (\alpha_t z_t + \sum_{s=0}^{t-1} \alpha_s z_{s+1/2}) / \sum_{s=0}^{t} \alpha_s$ and get $\bar{c}_t \leftarrow c(\bar{z}_t; \omega_t)$
- 4: set $y_{t+1/2} \leftarrow y_t - \alpha_t \bar{c}_t$
- 5: $\operatorname{set} z_{t+1/2} \propto \exp(\eta_t y_{t+1/2})$
- set $f_t \leftarrow \left(\sum_{s=0}^t \alpha_s z_{s+1/2}\right) / \sum_{s=0}^t \alpha_s$ and get $c_t \leftarrow c(f_t; \omega_t)$
- set $y_{t+1} \leftarrow y_t y_t c_t$
- set $\eta_{t+1} \leftarrow \eta_t / \sqrt{1 + \eta_t^2 \alpha_t^2 \|c_t \bar{c}_t\|_{\infty}^2}$
- 9. end for
- 10: return f_t

Vu et al., 2021

#ExpWeight step

#reweigh + explore

#score update #ExpWeight step

route and measure costs

#update scores

ADAPT Step

output flow

Borrows ideas from ExpWEIGHT + NAG + dual extrapolation methods

AdaWeight guarantees

Theorem (Vu et al., 2021; Antonakopoulos et al., 2022)

ADAWEIGHT enjoys the rate of convergence

$$\mathbb{E}[L(f_T) - \min L] = \mathcal{O}\left(\frac{\log P}{T^2} + \frac{\sigma \log P}{\sqrt{T}}\right)$$

Adaptive routing 00000000000000

Properties:

- ✓ Optimal in stochastic regime: query complexity cannot be improved in T if $\sigma > 0$
- Optimal in static regime: query complexity cannot be improved in T if $\sigma = 0$
- ✓ Fast in P: query complexity is polynomial in the network's size
- Adaptive: does not require any tuning or prior system knowledge
- Online: guarantees concern the recommended flows

AdaWeight in practice

Numerical experiments in the Anaheim metropolitan area

Figure: ExpWeight, AcceleWeight & AdaWeight in static (left) and stochastic (right) conditions

ΕΚΠΑ, Τμήμα Μαθηματικών

Two overarching questions

Q1: How bad is selfish routing, really?

- Not too bad: in realistic network conditions, no difference between selfish and socially optimum states
- ✓ Price of anarchy vanishes under low and heavy traffic

Q2: Is it possible to reach an equilibrium efficiently?

- ✓ Adaptive routing methods can achieve "best of all worlds" guarantees
 - No tuning required
 - Optimal in both static and stochastic regimes
 - Smooth transition between static and stochastic
 - Polynomial as opposed to exponential in network size

- Antonakopoulos, K. and Mertikopoulos, P. Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements. In NeurIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.
- Antonakopoulos, K., Vu, D. Q., Cevher, V., Levy, K. Y., and Mertikopoulos, P. UnderGrad: A universal black-box optimization method with almost dimension-free convergence rate guarantees. In ICML '22: Proceedings of the 39th International Conference on Machine Learning, 2022.
- Beckmann, M., McGuire, C. B., and Winsten, C. Studies in the Economics of Transportation. Yale University Press, 1956.
- Blum, A., Even-Dar, E., and Ligett, K. Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games. In PODC '06: Proceedings of the 25th annual ACM SIGACT-SIGOPS symposium on Principles of Distributed Computing, pp. 45–52, 2006.
- Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., and Scarsini, M. The asymptotic behavior of the price of anarchy. In WINE 2017: Proceedings of the 13th Conference on Web and Internet Economics, 2017.
- Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P., and Scarsini, M. When is selfish routing bad? The price of anarchy in light and heavy traffic. Operations Research, 68(2):411-434, March 2020.
- Hsieh, Y.-G., Antonakopoulos, K., and Mertikopoulos, P. Adaptive learning in continuous games: Optimal regret bounds and convergence to Nash equilibrium. In COLT '21: Proceedings of the 34th Annual Conference on Learning Theory, 2021.
- Koutsoupias, E. and Papadimitriou, C. H. Worst-case equilibria. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pp. 404-413, 1999.
- Papadimitriou, C. H. Algorithms, games, and the Internet. In STOC '01: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, 2001.
- Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS '13: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013.

31/3

References II

 $Roughgarden, T.\ The\ price\ of\ anarchy\ is\ independent\ of\ the\ network\ topology.\ \textit{Journal\ of\ Computer\ and\ System\ Sciences}, 67(2):341-364, 2003.$

 $Roughgarden, T.\ and\ Tardos, \'E.\ How\ bad\ is\ selfish\ routing?\ \textit{Journal\ of\ the\ ACM}, 49 (2): 236-259, 2002.$

Vu, D. Q., Antonakopoulos, K., and Mertikopoulos, P. Fast routing under uncertainty: Adaptive learning in congestion games with exponential weights. In NeurlPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.

Youn, H., Gastner, M. T., and Jeong, H. Price of anarchy in transportation networks: Efficiency and optimality control. *Physical Review Letters*, 101 (12):128701, September 2008.

32/3

Outline

4 UnderGrad

6 AdaLight

Is there a path to universal acceleration for arbitrary domains?

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad f_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad f_{t+1} = Q(\eta_{t+1} y_{t+1})$$

(DE)

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad f_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad f_{t+1} = Q(\eta_{t+1} y_{t+1})$$
(DE)

Adaptive learning rate

$$\eta_{t+1} = \sqrt{\frac{K_h(R_h + K_h \| \mathcal{X} \|^2)}{K_h + \sum_{s=1}^t \gamma_s^2 \| g_{s+1/2} - g_s \|^2}}$$
(Adapt)

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

$$y_{t+1/2} = y_t - \gamma_t g_t \qquad f_{t+1/2} = Q(\eta_t y_{t+1/2})$$

$$y_{t+1} = y_t - \gamma_t g_{t+1/2} \qquad f_{t+1} = Q(\eta_{t+1} y_{t+1})$$
(DE)

Adaptive learning rate

$$\eta_{t+1} = \sqrt{\frac{K_h(R_h + K_h \| \mathcal{X} \|^2)}{K_h + \sum_{s=1}^t \gamma_s^2 \| g_{s+1/2} - g_s \|^2}}$$

Iterate averaging

$$\bar{f}_t = \frac{\gamma_t f_t + \sum_{s=1}^{t-1} \gamma_s f_{s+1/2}}{\sum_{s=1}^{t} \gamma_s}$$
$$\bar{f}_{t+1/2} = \frac{\gamma_t f_{t+1/2} + \sum_{s=1}^{t-1} \gamma_s f_{s+1/2}}{\sum_{s=1}^{t} \gamma_s}$$

1/7

(Adapt)

Is there a path to universal acceleration for arbitrary domains?

Figure: The UNDERGRAD algorithm

Is there a path to universal acceleration for arbitrary domains?

Theorem (Antonakopoulos et al., 2022)

Suppose that UNDERGRAD is run for T iterations with $\gamma_t = t$. Then the algorithm's output state $\bar{x}_T \equiv \bar{f}_{T+1/2}$ concurrently enjoys the following guarantees:

a) If f satisfies (LC)/(BG), then

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le 2C_h \sqrt{\frac{K_h + 8(G^2 + \sigma^2)}{K_h T}}$$

b) If f satisfies (LS)/(LG), then

$$\mathbb{E}[f(\bar{x}_T) - \min f] \le \frac{32\sqrt{2}C_h^2L}{K_hT^2} + \frac{8\sqrt{2}C_h\sigma}{\sqrt{K_hT}}$$

where
$$C_h = \sqrt{R_h + K_h \|\mathcal{X}\|^2}$$
.

3/7

Outline

4 UnderGrad

6 AdaLight

Distribution in the control plane

Can we distribute the algorithm at the node level?

- ► Given: an O/D pair (O, D)
- **Each** node $v \in V$ has a subset of edges e_v that can be used to reach D
- ▶ No backtracking: acyclic routing (multi-)graph $\mathcal{G} = (\mathcal{V}, \bigcup_{v \in \mathcal{V}} e_v)$
- **ightharpoonup** Each node controls traffic allocation over \mathcal{E}_v , i.e., a vector

$$\chi=(\chi_e)_{e\in\mathcal{E}_v}\in\Delta(\mathcal{E}_v)$$

► Small dimensionality per control node - but how to implement EGD?

The role of weight propagation

Key steps in EGD:

- ▶ Update scores: $y_e \leftarrow y_e + \gamma \hat{v}_e$
- ► Traffic allocation: ???

X

Straightforward choice of weights:

$$\chi_e = \frac{\exp(y_e)}{\sum_{e' \in \mathcal{E}_u} \exp(y_{e'})}$$

OK in terms of dimension; complete failure in terms of optimization

Backpedaling

Key insight: must not be blind to what is happening down the road

0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$

Initialize: latent weight variables w_v for each $v \in \mathcal{V}$, w_e for each $e \in \mathcal{E}$.

Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.

Backpedaling

Key insight: must not be blind to what is happening down the road

- 0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$
 - **Initialize:** latent weight variables w_v for each $v \in \mathcal{V}$, w_e for each $e \in \mathcal{E}$. Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.
- 1. **Weigh and wait:** When node v receives weight information from connecting node v' via edge $e \in \mathcal{E}_v$, set

$$w_e = y_e + w_{v'}$$

Backpedaling

Key insight: must not be blind to what is happening down the road

- 0. **Require:** edge score vector $y = (y_e)_{e \in \mathcal{E}}$
 - **Initialize:** latent weight variables w_v for each $v \in \mathcal{V}$, w_e for each $e \in \mathcal{E}$. Set $w_D = 0$ at destination; backpropagate w_D through all edges linking to D.
- 1. **Weigh and wait:** When node v receives weight information from connecting node v' via edge $e \in \mathcal{E}_v$, set

$$w_e = y_e + w_{v'}$$

2. **Sum and send:** If node v has received an update via all outgoing edges \mathcal{E}_v , set

$$w_v = \log \sum_{e \in \mathcal{E}_v} \exp(w_e)$$

and push w_v back through all edges linking to v

Exponential weights and backpedaling

Proposition

Let $y \in \mathbb{R}^{\mathcal{E}}$ be an edge score vector and suppose each node $v \in \mathcal{V}$ allocates traffic following the exponential rule

$$\chi_e = \frac{\exp(w_e)}{\exp(w_v)}$$
 for all $e \in \mathcal{E}_v$,

with w_e and w_v defined via backpedaling. Then, the total traffic flowing through route $p \in \mathcal{P}$ is

$$f_p = \frac{\exp(y_p)}{\sum_{q \in \mathcal{P}} \exp(y_q)}$$

where $y_p = \sum_{e \in p} y_e$ denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!

