APOMOAOTHXZH YNO XYNOHKEXZ ABEBAIOTHTAX
ZE AIKTYA METAAHZ KAIMAKAX

Navayuwtng Meptikomoulog

EBvIkS kat Kamodiotpiakd Mavermotripio ABnvav

Turpa Mabnuatikov

(Zepvapio Ttatiotikig & Emiy. Epeuvag | EKMA, Tpripa Mabnuatikav | 1 Maptiou, 2023)

Outline

@ Background & Motivation

Traffic...

...how bad can it get?

|
1 t ESASESE

VEToK=Es3T

t get?

...how bad can

Background & Motivation

[e]e] le]e}

Game of roads

Kypselj 1
oninou Periou @
: / 4 Athens at a glance
o0 3 i £
3 niversity of £ NEA
% 4 Economics KYWEAH
Gl So0 B siness J NEA FILOTHEI
; o
Agorata #lSos Thekter Q) Protodikio Athinon RENAE > 3,754,000 people
H . Athens Gener; .
X [ao0asees o Qrogiencs > 937,000 daily trips
e ([neaioN Apeox < Kopyiah:
; | = 4 i i
R > Up to 10* trips/min
AupELdKIPol
National Avchzeu\og\ca\ AMMEAOKHNMOI.
\VATHI, ATHENS ObovTiatpikr
NA. BAGH / Es»uxu Apxmukawxo e AD
EIMUAGTLN. Nosokomelo > 1393 nodes
a KOUNTOURIOTIKA Paidon | Agia ¢
\GEi0— | @15 min KOYNTOYPIQTIKA oooropio
'rEIOY | 8km Laiko Hospital A
Lycabettus Hill TM‘A’\AT@" ok ooopeio > 5429 edges
> Tehegepik AvkaBnTToD: R A
L q o
EvANGELISMOS o8 1,360,000 O/D pairs
- BN TER MO
Noyikée KOLONAKI Zografou
*Keposuvo KEAGNAK! :
A Soririck Eotiee Zwypdgoy > ~7 %1018 paths
o 1 P gitron MavemioTnpiosToAng
MONASTIRAKI Ki IATO! Tou Naveruotnpiov
MONAETHPAKI @ BenakiMuseum A8V,
e
o EMATVIKOU okt
National y % AG.NIKOLAOS
pLAKA i AR NGRS A very large game!
MAAKA EBVIKOG KAMOS PL. ANAGENNISEOS ry g g
Acropolis of Athens MA. ANATENNHEEQE
= o A
Acropolis Museum . o ©
Mouoio AKporoAnG Kallimarmaro Kalsariani
Pangrati Kawapiavy % e
VETS y
METE Aoraan % /ANO KESARIANI

Background & Motivation
o]

Two overarching questions

Part 1: How bad is selfish routing, really?

*> The price of anarchy: worst-case bounds and beyond

> When practice meets theory

Part 2: How to reach an equilibrium?

> Optimal algorithms: from uncertainty to acceleration

> Universal algorithms: optimal rates without prior knowledge

Background & Motivation

[e]e]ele]]

The people

|

i

K. Antonakopoulos R. Colini-Baldeschi R. Cominetti Y. G. Hsieh M. Scarsini

Antonakopoulos & M., Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements. NeurIPS 2021

Antonakopoulos, Vu, Cevher, Levy & M., UnderGrad: A universal black-box optimization method with almost dimension-free convergence
rate guarantees. ICML 2022

Colini-Baldeschi, Cominetti, M. & Scarsini, The asymptotic behavior of the price of anarchy. WINE 2017

Colini-Baldeschi, Cominetti, M. & Scarsini, When is selfish routing bad? The price of anarchy in light and heavy traffic. Operations Research,
vol. 68(2), pp. 411-434,2020.

Hsieh, Antonakopoulos & M., Adaptive learning in continuous games: Optimal regret bounds and convergence to Nash equilibrium. COLT
2021

Vu, Antonakopoulos & M., Fast routing under uncertainty: Adaptive learning in congestion games with exponential weights. NeurlPS 2021

c r r
900000000000

Outline

@ The price of anarchy: theory and practice

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)
> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f,: traffic along p € P = U; P; generated by O/D pair owning p

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f,: traffic along p € P = U; P; generated by O/D pair owning p

> Load x. = ¥, fp: total traffic along edge e

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

>

>

>

>

Network: multigraph G = (V, €)

O/D pairs i € N: origin O; sends m; units of traffic to destination D;

Paths P;: (sub)set of paths joining O; ~ D;

Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p
Load x. = 3,5, fp: total traffic along edge e

Edge cost function c.(x.): cost along edge e when edge load is x.

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

>

>

>

>

Network: multigraph G = (V, €)

O/D pairs i € N: origin O; sends m; units of traffic to destination D;

Paths P;: (sub)set of paths joining O; ~ D;

Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p
Load x. = 3,5, fp: total traffic along edge e

Edge cost function c.(x.): cost along edge e when edge load is x.

Path cost: cp(f) = Xeep ce(xe)

The price of anarchy: theory and practice

O®0000000000

Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f,: traffic along p € P = U; P; generated by O/D pair owning p
> Load x. = ¥, fp: total traffic along edge e

> Edge cost function c.(x.): cost along edge e when edge load is x.

> Path cost: cp(f) = Xeep ce(xe)

> Nonatomic congestion game: G = (G, N, {m;}icnr, {Pi}ienr> {ce }ece)

The price of anarchy: theory and practice

O0®000000000

Traffic equilibrium

Wardrop equilibrium

Aflow profile f* € F = {f e RY : Y pep,; fp = mi} is a Wardrop equilibrium if

cp, (f7) <cq;(fF) forall utilized paths p; € Pi,i e N (WE)

Equilibrium routing is envy-free: all traffic elements experience the same latency

Theorem (Beckmann et al., 1956)

Aflow profile f* is a Wardrop equilibrium if and only if it solves the convex problem

X,
minimize Z/ ece(w) dw
ec€ V0

subjectto x. =Y f,, feF
pae

(Eg)

The price of anarchy: theory and practice

000800000000

Price of Anarchy

Optimal flows

minimize C(f) = Z foer(f)
peP

subjectto feF

(Opt)

Price of Anarchy (Koutsoupias & Papadimitriou, 1999; Papadimitriou, 2001)

Equilibrium cost: Eq(G) = C(f")
Minimum cost: Opt(G) = rfm}l C(f)
Price of Anarchy: PoA(G) = Cl)a;t((gg))

The price of anarchy: theory and practice

[e]e]e]e] Jeleje]ele]e]e]

How bad is selfish routing?

Theorem (Roughgarden & Tardos, 2002; Roughgarden, 2003)

> Affine cost functions (c.(x.) = ae + bexe)
PoA(G) < 4/3

> Quartic (BPR) cost functions
PoA(G) < 5v/5/(5v/5 — 4) ~ 2.1505

> Polynomials of degree at most d

PoA(G) = O(d/logd)

Remarks
*> Independent of network topology
» Valid for any number of O/D pairs

» Equilibrium routing can become arbitrarily bad: d/logd — oo asd — oo

EKMA, Turjpa MaBnuatikav

The price of anarchy: theory and practice

[e]e]e]e]e] Jeje]ele]e]e]

How bad is selfish routing, really?

Delicately tuned worst-case instances are not representative of reality

—— T
1.3
1.2}
1.1}

1.3F Boston

PoA

11F 10,000 20,000

10 . T BT BT T
0 10,000 20,000
Vehicles per hour

Source: Youn et al., 2008

The price of anarchy: theory and practice

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

The price of anarchy: theory and practice

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

1.5x 10 R

a(x) = [1+1/2sin(log x)] x* 10X 10']

@ D —

c3(x) = [1+1/2cos(logx)] x* o e —— J

0 2x107 4%107 6107 8x107 1x10°

The price of anarchy: theory and practice

[e]e]e]e]e]e] Jelele]e]e]

Price of anarchy: asymptotics

Does the price of anarchy always vanish in the limit?

Price of anarchy as a function of traffic inflow
T T

1015} . \g 4
a(x) = [1+1/2sin(log x)] x* i '\‘ i \‘,
PRTI - o]
£ } . A B
5 1.000- v ‘ 1
c3(x) =[1+1/2cos(logx)] x e 4 . i 00

Inflow (m)

Proposition (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

In the above network:
infM POA(gM) >1

The price of anarchy: theory and practice

[e]e]e]e]e]ele] Jelele]e]

Pathological oscillations

Cost functions are C*-smooth, convex and grow polynomially - but irregularly:

ce(tx)

does not exist
t—{0,00} Cg(t)

> In light traffic: infinitely dense oscillations

* In heavy traffic: infinitely wide oscillations

> Sanity check: no such oscillations observed in practice

The price of anarchy: theory and practice

000000008000

Regular variation

Definition (Karamata, 1930's)

A function f: [0, 00) — (0, 00) is called regularly varying at w € {0, co} if
lim M is finite and nonzero for all x > 0 (RV)
o f(2)
> Light traffic: w = 0
> Heavy traffic: w = o
V.

1. Affine functions: f(x) = ax +b
2. Polynomials: f(x) = X¢_, arx*

3. Quasi-polynomials: f(x) ~ x? for some g > 0

4. Real-analytic at w; logarithms; etc.

NB: ©(x7) ¢ (RV) ¢ ©(x)

The price of anal eory and practice

[e]e]e]e]e]ele]e] ©]

Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:

The price of anarchy: theory and practice

000000000800

Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:

» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

The price of anarchy: theory and practice

000000000800

Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

> Path index: indp = MaXeep ind. # bottleneck caused by slowest edge

> Fast / slow/ tight path: ind, = 0, oo or in-between

The price of anarchy: theory and practice

000000000800

Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

> Path index: indp = MaXeep ind. # bottleneck caused by slowest edge
> Fast / slow/ tight path: ind, = 0, oo or in-between

» Pair index: ind' = min,,.p: ind, # traffic routed via fastest path

> Fast / slow/ tight pair: ind’ = 0, oo or in-between

The price of anarchy: theory and practice

000000000800

Network benchmarks

Main idea: find a regularly varying function ¢(x) to use as a benchmark:
» Edgeindex: ind. = limy—., c.(x)/c(x)

> Fast/slow / tight edge: ind. = 0, co or in-between

> Path index: indp = MaXeep ind. # bottleneck caused by slowest edge
> Fast / slow/ tight path: ind, = 0, oo or in-between

» Pairindex: ind’ = min,.pi ind, # traffic routed via fastest path
> Fast / slow/ tight pair: ind’ = 0, oo or in-between

> Network index: ind = minyep indp # bottleneck caused by slowest pair

> Tight network: ind € (0, o)

NB: Edges/paths that are slow in heavy traffic can be fast in light traffic and vice versa

The price of anarchy: theory and practice

000000000080

Benchmarks, light and heavy

Example: light and heavy traffic benchmarks in a Wheatstone network

» Heavy traffic benchmark: c(x) = x
> Light traffic benchmark: c(x) =1

The price of anarchy: theory and practice

00000000000 e

The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: PoA(Gy) = las M — {0,007}

The price of anarchy: theory and practice

00000000000 e

The price of anarchy in light and heavy traffic

Theorem (Colini-Baldeschi, Cominetti, M & Scarsini, 2020)

Assume: the network admits a regularly varying benchmark function

Then: PoA(Gy) = las M — {0,007}

In networks with polynomial cost functions, PoA(Gy) — Las M — {0, oo }.

ptive routing
©0000000000000

Outline

© Adaptive routing

Adaptive routing
0®000000000000

The road to equilibrium

How to reach an equilibrium state?

> Lack of information # Will it rain in the next hour?

> Very large problems #10° user base

Adaptive routing
0®000000000000

The road to equilibrium

How to reach an equilibrium state?
» Lack of information # Will it rain in the next hour?

> Very large problems #10° user base

Recommender must be able to solve in real time:

minimize L(f) =), /xc ce(w) dw
ec€ Y0 (WE)
subjectto x. = pr, feF
pae

Challenges
> Variability: traffic conditions fluctuate unpredictably
> Uncertainty: congestion metrics only partially observable

> Dimensionality: exponential number of state variables

Adaptive routing
0000000000000

The model

Randomness and uncertainty:

» Exogenous randomness w € Q) reflected in observed costs ~ c.(x.; w)

“State of the world”: weather, accidents, added congestion...

> Mean equilibrium flows

Eolcp, (f50)] <Ealcq, (f"50)] forall utilized paths p; € Py, i e N

Sequence of events

1. forallt=1,2,... do

2 Interface recommends flow profile f; € F
3: Nature determines state of the network w; € Q
4. Traffic elements on path p incur ¢, (fi; w¢)

5: end for

anarchy: theory and p ce Adaptive routing

O00®0000000000

Equilibrium characterization

Stochastic convex programming characterization

f* is a mean equilibrium flow if and only if it solves

minimize L(f) = E[Z '/(‘)Xe ce(u; w) du]

ecE

subjectto x. =Y. fp, f€F
pae

NB: Observed cost vectors ~ stochastic gradients

VL(f) = (& (1) yep = B[(65 (f:©)) yep |

Two sharply different regimes:

» Static: w; remains constant with time

» Stochastic: w; fluctuates with time

Adaptive routing
0000®000000000

Stochastic gradient descent

Stochastic gradient descent:

fin = Pl’]:(ft -)/ét) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Adaptive routing

0000000000000

Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) is run for T iterations with y o< 1/x/T, the mean flow fr = T™' £, f; enjoys

E[L(fr) - minL] = O(\/P/T)

Adaptive routing

0000000000000

Stochastic gradient descent

Stochastic gradient descent:
ft+1 =P1‘]:(ft—)/5t) (SGD)

where ¢ = c(fi; w¢) is the cost profile at time t and y > 0 is a step-size parameter

Theorem (folk)

If (SGD) is run for T iterations with y o< 1/x/T, the mean flow fr = T™' £, f; enjoys

E[L(fr) - minL] = O(\/P/T)

Properties:
v/ Optimal in T: query complexity cannot be improved in the stochastic regime
X Slow in P: query complexity is exponential in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended

Adaptive routing
00000®00000000

Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair

Adaptive routing

0O0000e00000000

Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExPWEIGHT is run for T steps with y o< 1/x/T, the mean flow fr = T™' ¥, f; enjoys

L(fr) -minL = (’)(\/logP/T)

Adaptive routing

0O0000e00000000

Routing with exponential weights

The exponential weights (ExPWEIGHT) algorithm # mirror descent for the simplex

foer1 o< fpur exp(=yép.r) (EW)

where “oc” indicates normalization over all paths belonging to the same O/D pair

Theorem (Blum et al., 2006)

If ExPWEIGHT is run for T steps with y o< 1/x/T, the mean flow fr = T™' ¥, f; enjoys

L(fr) -minL = (’)(\/logP/T)

Properties:

v/ Optimal in T: query complexity cannot be improved in the stochastic regime
v/ Optimal in P: query complexity is polynomial in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended

Adaptive routing
000000@0000000

The static case

Is the situation the same in static the static regime?
v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

Adaptive routing
000000@0000000

The static case

Is the situation the same in static the static regime?

v Nesterov’s accelerated gradient (NAG) method achieves O(1/T?) in static programs

X But exponential dependence on |G|

Can we get rates that are optimal in both T and P?

Algorithm Accelerated exponential weights (AcCELEWEIGHT) #NAG + ExPWEeIGHT

Require: initial score vector yo < 0; moving weight ag < 0; step yo < 1/(NMpB) # B ~ Lipschitz modulus
1: forallt=1,2,... T do
2: setzy o< exp(yi-1) # ExPWEIGHT step
3: set f[<~ Ult—lft—l + (1 - (xf_])zt # Nesterov momentum
4: setyp <+ %[2)};4 +90 +\/4yi-1y0 + 2] #NAG step-size
5: set oy <)’t—l/)’t # moving weight update
6: setzy « (Xff[+ (l —at)zs and get ¢ < C(ét) # route and measure costs
7: set yr < yr-1— (l - lxt)ytcr # update path scores
8: end for

9: return f; #output flow

Adaptive routing

0000000000000

AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

L(fr)-minL <

48*N*M*log P log P
T?) O(T?)

Adaptive routing

0000000000000

AcceleWeight guarantees

Theorem (Vu et al., 2021)

In the static regime, AcCELEWEIGHT enjoys the rate of convergence

L(fr)-minL <

48*N*M*log P log P
T?) O(T?)

Properties:
v/ Optimal in T: query complexity cannot be improved in the static regime
v Optimal in P: query complexity is polynomial in the network’s size

X Non-adaptive: requires tuning of y

X Offline: f; is never recommended

Adaptive routing
00000000800000

The good

The good:

v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

Adaptive routing
00000000800000

The good, the bad

The good:
v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:

X In the static regime, ExPWEIGHT is very slow in T

X In the stochastic regime, AcceLEWEIGHT does not converge

Adaptive routing
00000000800000

The good, the bad, and the ugly

The good:
v In the stochastic regime, EXPWEIGHT is optimal in T and P

v In the static regime, AccELEWEIGHT is optimal in T and P

The bad:
X In the static regime, ExPWEIGHT is very slow in T

X In the stochastic regime, AcceLEWEIGHT does not converge

The ugly:

> Tuning the step-size is impractical / impossible

> Output is never recommended

Adaptive routing
00000000080000

Adaptive algorithms

Observe:

> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[oo remains bounded away from zero

Adaptive routing

0000000008000 0

Adaptive algorithms

Observe:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[oo remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

1
Yt =
V1+ E e = el

(Adapt)

und & Motivatior

Adaptive routing
00000000080000

Adaptive algorithms

Observe:
> In the static regime: |c¢+1 — ¢¢] oo should become small over time

> In the stochastic regime: ||ct+1 — ¢t[oo remains bounded away from zero

Adaptive step-size (Rakhlin & Sridharan, 2013; Hsieh, Antonakopoulos & M, 2021)

1

ye = — = (Adapt)
Vi Tilesn - ol
Algorithm ExpPWEIGHT + ADAPT # Antonakopoulos & M, 2021
Initialize score vector y € RP

1: forallt=1,2,... T do
2. Route according to f; ~ exp(y:) #ExpWEIGHT update
3: Observe cost profile: ¢ < (cp(fes @t)) per # cost feedback
4: Update path scores: yi41 < yi — yile # ADAPT step

5: end for
6: return fT =(1/T) Z?:l fi # output flow

Adaptive routing

0000000000800 0

Guarantees of ExpWeight + Adapt

Theorem (Antonakopoulos & M, 2021)

Suppose that EXPWEIGHT +ADAPT is run for T steps. Then fr enjoys the rate

E[L(fr) - mini] - @(logg{m))

where o is the variance of ||c’ (x; @) | z1.

Properties:

v Optimal in stochastic regime: query complexity cannot be improved in T if 6 > 0
> Better than ExPWEIGHT in the static regime, but worse than AcceLEWEIGHT

v Adaptive: no hyperparameter tuning required

X Offline: f; is never recommended

Adaptive routing
0000000000000

AdaWeight

Is there a path to universal acceleration?

Adaptive routing
0000000000000

AdaWeight

Is there a path to universal acceleration?

Algorithm Adaptive exponential weights (ADAWEIGHT) #Vuetal, 2021

Initialize score vector y; < 0; moving weight ag < 0;step 71 < 1
1: forallt=1,2,... T do

2: setz; o< exp(myt) # EXPWEIGHT step
3: setZ « ((tht + Zg;é ocszsﬂ/z)/ ZE:O o and get ¢ < c(Zr; wy) #reweigh + explore
4: set Yri1/2 < Yt — &y #score update
5: setzyyy/y o< exp(n[yt+1/2) # ExPWEIGHT step
6: set ft <~ (Z;:O (ngs+1/2)/ Zé:o as and get ¢y < C(f[;(l)f) # route and measure costs
7: set Y1 < Ve — Yt # update scores
8: set 41 < m/\ /1+ tﬁocf ||C, - 5r\|zoo # ADAPT step
9: end for

10: return f; # output flow

Borrows ideas from ExWEiGHT + NAG + dual extrapolation methods

Adaptive routing

000000000000 e0

AdaWeight guarantees

Theorem (Vu et al., 2021; Antonakopoulos et al., 2022)

ApAWEIGHT enjoys the rate of convergence

E[L(fr) -minL] = o(logp Glogp)

72 T

Properties:

v Optimal in stochastic regime: query complexity cannot be improved in T if ¢ > 0
v/ Optimal in static regime: query complexity cannot be improved in T' if ¢ = 0
v Fastin P: query complexity is polynomial in the network’s size

v Adaptive: does not require any tuning or prior system knowledge

v Online: guarantees concern the recommended flows

Adaptive routing
0000000000000e

AdaWeight in practice

Numerical experiments in the Anaheim metropolitan area

103 <4
102 4
102 <4
101 1 101 4
100 5 100 4
1011 AcceleWeight,y® = 2E-02
—¥- AcceleWeight,y° = 2E-05 10-1]
1072 § -¥-- AcceleWeight,y® = 2E-08 —¥— AcceleWeight
—e— ExpWeight 72 —e— ExpWeight
107§ s AdaWeight 1071 _a— AdaWeight
10° 10t 102 103 104 10° 10t 102 103 104

Figure: ExPWEIGHT, AccELEWEIGHT & ADAWEIGHT in static (left) and stochastic (right) conditions

Conclusions
[

Two overarching questions

Q1: How bad is selfish routing, really?

v Not too bad: in realistic network conditions, no difference between selfish and socially optimum states

v Price of anarchy vanishes under low and heavy traffic

Q2: Is it possible to reach an equilibrium efficiently?
v Adaptive routing methods can achieve “best of all worlds” guarantees
> No tuning required
> Optimal in both static and stochastic regimes

> Smooth transition between static and stochastic

> Polynomial - as opposed to exponential - in network size

References |

Antonakopoulos, K. and Mertikopoulos, P. Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements. In
NeurlPS °21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.

Antonakopoulos, K., Vu, D. Q, Cevher, V., Levy, K. Y, and Mertikopoulos, P. UnderGrad: A universal black-box optimization method with almost
dimension-free convergence rate guarantees. In ICML "22: Proceedings of the 39th International Conference on Machine Learning, 2022.

Beckmann, M., McGuire, C. B, and Winsten, C. Studies in the Economics of Transportation. Yale University Press, 1956.

Blum, A, Even-Dar, E., and Ligett, K. Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games.
In PODC "06: Proceedings of the 25th annual ACM SIGACT-SIGOPS symposium on Principles of Distributed Computing, pp. 45-52, 2006.

Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P, and Scarsini, M. The asymptotic behavior of the price of anarchy. In WINE 2017:
Proceedings of the 13th Conference on Web and Internet Economics, 2017.

Colini-Baldeschi, R., Cominetti, R., Mertikopoulos, P, and Scarsini, M. When is selfish routing bad? The price of anarchy in light and heavy traffic.
Operations Research, 68(2):411-434, March 2020.

Hsieh, Y-G., Antonakopoulos, K., and Mertikopoulos, P. Adaptive learning in continuous games: Optimal regret bounds and convergence to
Nash equilibrium. In COLT "21: Proceedings of the 34th Annual Conference on Learning Theory, 2021.

Koutsoupias, E. and Papadimitriou, C. H. Worst-case equilibria. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, pp. 404-413,1999.

Papadimitriou, C. H. Algorithms, games, and the Internet. In STOC '01: Proceedings of the 33rd Annual ACM Symposium on the Theory of
Computing, 2001.

Rakhlin, A. and Sridharan, K. Optimization, learning, and games with predictable sequences. In NIPS "13: Proceedings of the 27th International
Conference on Neural Information Processing Systems, 2013.

References Il

Roughgarden, T. The price of anarchy is independent of the network topology. Journal of Computer and System Sciences, 67(2):341-364, 2003.
Roughgarden, T. and Tardos, E. How bad is selfish routing? Journal of the ACM, 49(2):236-259, 2002.

Vu, D. Q., Antonakopoulos, K., and Mertikopoulos, P. Fast routing under uncertainty: Adaptive learning in congestion games with exponential
weights. In NeurlPS "21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021.

Youn, H., Gastner, M. T, and Jeong, H. Price of anarchy in transportation networks: Efficiency and optimality control. Physical Review Letters, 101
(12):128701, September 2008.

UnderGrad
0000

Outline

@ UnderGrad

UnderGrad
[e] Je]e]

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

UnderGrad
[e] Je]e]

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt = Yt gt fz+1/2 = Q("]t}’tﬂ/z)
Y1 = Yt = VtGr+1/2 ft+1 = Q(mﬂym)

(DE)

UnderGrad
[e] Je]e]

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt = Yt gt fz+1/2 = Q("]t}’tﬂ/z)
(DE)
Y1 = Yt = VtGr+1/2 ft+1 = Q(mﬂym)

Adaptive learning rate

Ky (Ry + Ki | X2
M:\J R - KT (Adapy)

Ky + 25 vil gorra — g5

UnderGrad
[e] Je]e]

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Dual extrapolation (DE)

Yir1/2 = Yt = Yt gt fz+1/2 = Q("]t}’tﬂ/z)

(DE)
Y1 = Yt = VtGr+1/2 ft+1 = Q(mﬂym)
Adaptive learning rate
Kyu(Ry + Ky | X2
o = | o AR (Adapy)
Ky + X vilgsny2 = 95|

Iterate averaging

f _ yife + Z;i Psfory2
o LT Ssm PoJsrlf2
Tia Vs

f 2= Yifenj2 + Z;} Vsfry2
t+ -

Yie1 Vs

UnderGrad
[e]e] le]

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

(initialized) Y
Vi1

Q(’// Y/,)

Figure: The UNDERGRAD algorithm

UnderGrad

000e

UnderGrad: The theory under the hood

Is there a path to universal acceleration for arbitrary domains?

Theorem (Antonakopoulos et al., 2022)

Suppose that UNDERGRAD is run for T iterations with y; = t. Then the algorithm’s output state X = fr41/2
concurrently enjoys the following guarantees:

a) If f satisfies (LC)/(BG), then

; . Ky +8(G? + 02)
E[f(xT) - mlnf] <2Cy 7KhT
b) If f satisfies (LS)/(LG), then

324/2C1L . 8v/2Cy0

K, T? VK, T

E[f(%r) —min f] <

where Ch =+/Ry + K} HX”Z

EKTA, Turjiia MaBnuatikv

AdaLight
[Je]e]ele]e}

Outline

@O Adalight

AdaLight
[o] Je]ele]e}

Distribution in the control plane

Can we distribute the algorithm at the node level?

» Given: an O/D pair (O, D)

> Each node v € V has a subset of edges e, that can be used to reach D

» No backtracking: acyclic routing (multi-)graph G = (V, U,y €v)

» Each node controls traffic allocation over &, i.e., a vector

X = (Xe)eee, € A(EL)

> Small dimensionality per control node - but how to implement EGD?

AdaLight
[e]e] lele]le}

The role of weight propagation

Key steps in EGD:

> Update scores: y. < y. + y0. v
> Traffic allocation: 222 X

Straightforward choice of weights:
o= — 20
Leree, eXp(yer)

OK'in terms of dimension; complete failure in terms of optimization

AdaLight
000e00

Backpedaling

Key insight: must not be blind to what is happening down the road

0. Require: edge score vector y = (¥)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

AdaLight
000e00

Backpedaling

Key insight: must not be blind to what is happening down the road

0. Require: edge score vector y = (¥)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

1. Weigh and wait: When node v receives weight information from connecting node v’ via edge e € &,, set

We = Ve + Wyr

AdaLight
000e00

Backpedaling

Key insight: must not be blind to what is happening down the road

0. Require: edge score vector y = (¥)eee

Initialize: latent weight variables w, for each v € V, w, foreach e € £.
Set wp = 0 at destination; backpropagate wp through all edges linking to D.

1. Weigh and wait: When node v receives weight information from connecting node v’ via edge e € &,, set
We = Ve + Wy
2. Sum and send: If node v has received an update via all outgoing edges &,, set

wy = log Z exp(we)

ee&y

and push w, back through all edges linking to v

AdaLight

[e]e]e]e] Jo]

Exponential weights and backpedaling

Let y € R be an edge score vector and suppose each node v € V allocates traffic following the exponential rule

Xe = exp(w) foralle € &,

- exp(wy)

with w. and w, defined via backpedaling. Then, the total traffic flowing through route p € P is

5, - exp(yp)
P S er exp(y)

where y, = 3., y. denotes the corresponding path score.

Exponential node weights with backpedaling induce exponential path weights!

EKTA, Turjiia MaBnuatikv

AdaLight
[e]e]e]e]

	Background & Motivation
	The price of anarchy: theory and practice
	Adaptive routing
	Conclusions
	References
	Appendix
	UnderGrad
	AdaLight

