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Background
Discrete time series
Variable-memory Markov chains

Bayesian Context Trees
Prior structure, marginal likelihood, the posterior

CTW, BCT, £-BCT, MCMC

Applications
Model selection Estimation Content recognition
Segmentation Anomaly detection = Markov order estimation
Filtering Prediction Entropy estimation
Causality testing ~ Compression Change-point detection

~~ Large-alphabets and continuous time series!
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Motivation

~~ Discrete time series are often hard
Inference Signal processing
Machine learning Communications

~~ Difficulty: Memory modelling

E.g. for a binary time series with memory length of only 20 bits

22 parameters must be estimated before even getting started

~+ Need astronomical amounts of data
~> Need smarter, parsimonious models

~~ Variable-memory Markov chains
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Variable-memory Markov chain models

Markov chain {..., X0, X1,...} with alphabet A ={0,1,...,m — 1}
of size m

Memory Iength d P(Xn|Xn_1, Xn_g, .. ) = P(Xn|Xn_1, Xn_Q, . 7Xn—d>

Distribution To fully describe it, we need to specify
m? conditional distributions P(X,|X,_1,..., X,_q)

Problem m< grows very fast!

Idea Use variable length contexts described by a context tree T’

Models = Trees
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corresponds to a unique context

on a leaf of the tree




Variable-memory Markov chains: An example

Alphabet m = 3 symbols 002000 s 0 Model:
I\/Iemory Iength d=2>5 902001 context tree T’

602002

Each past string X,,_1, X,,_o, ...
corresponds to a unique context

on a leaf of the tree

Parameters: 0 = {0, ; s € T}
The distr of X, given the past G022
is given by the distr on that leaf
Eg PX,=1X,1=0,X,2=2X,, =2 X, 3=1,...) = 0pa(1)



Variable-memory Markov chains: An example

Alphabet m = 3 symbols 002000 s 0 Model:
Memory length d = 5 6002001 context tree T

002002

Each past string X,,_1, X,,_o, ...
corresponds to a unique context

on a leaf of the tree

Parameters: 0 = {0, ; s € T}
The distr of X, given the past G022
is given by the distr on that leaf
Eg PX,=1X,1=0,X,2=2X,, =2 X, 3=1,...) = 0pa(1)

~ Parsimony
Instead of 3° = 243 conditional distributions only need 13
= potentially huge savings in general



Variable-memory Markov chains: An example

Alphabet m = 3 symbols 002000 s 0 Model:
Memory length d = 5 002001 context tree T

902002

Each past string X,,_1, X,,_o, ...
corresponds to a unique context

on a leaf of the tree

Parameters: 0 = {0, ; s € T}
The distr of X, given the past G022
is given by the distr on that leaf
Eg PX,=1X,1=0,X,2=2X,, =2 X, 3=1,...) = 0pa(1)

~ Parsimony

Instead of 3° = 243 conditional distributions only need 13
= potentially huge savings in general

~~ Determining the underlying context tree of an empirical time series
is of great scientific and engineering interest
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Bayesian modelling for VMMCs:
The Bayesian Context Trees (BCT) framework

Prior on models Indexed family of priors on trees 1" of depth < D
Given m, D, for each g € (0,1) :

(T = np(T; 8) = a/TI=18TI-Ln(T)
with o = (1 — )01 |T| = # leaves of T; Lp(T) = # leaves at D

Prior on parameters Given model 7', the parameters 0 = {6’5, seT}
are taken independent with each 7 (6,|T") ~ D|r|ch|et(2, 28 e %)

Observations X = X_D+1, ,XQ, Xl, e ,Xn
Write X7 = (X;, Xj11,..., X;) and suppress initial context X" .,

Likelihood Given model T" and parameters 6 = {0,;s € T'}:
F(XP1X2p0,0,T) = [ [] 0.()*¢

seT jeA
where a.(7) = # times letter j follows context s in X7



Bayesian inference for VMMCs

Given. Data X = X_pyq,..
Max model depth D

“The” goal of Bayesian inference
Determination of the posterior distributions:

(0, T

and w(T

X) =

X) =

X0, X1, ..., X,

m(T)m(0]T)f(X]6,T)

Jo f

f(X)
(X|0,T)x(0|T) d0 7(T)

f(X)



Bayesian inference for VMMCs

Given. Data X =X_piq,... X0, Xq,.... X,
Max model depth D

“The” goal of Bayesian inference
Determination of the posterior distributions:

m(T)m(0]T)f(X]6,T)

o Jo I |f<X> (0]T) do =(T)
' F(X|0,T)m(0|T) df =(T
and #(T|X) = 0

Main obstacle
Determination of the prior predictive likelihood:

= w1 /@ F(X10.T)x(0]T) d6

~~ the number of models in the sum grows doubly exponentially in D



Computation of the marginal likelihood

Given the structure of the model
the marginal likelihoods f(X|T) can be computed explicitly

Lemma The marginal likelihood f(X|T) can be computed as

FXIT) = ][ PuAas)

175 1(1/2)(3/2) - - (as(j) — 1/2)]
(m/2)(m/2+1)---(m/2+ M, — 1)

with the count vectors a; = (as(0),...,as(m — 1)) as before
and M, = as(0) 4+ -+ as(m —1)

where P.(a,) =



Computation of the marginal likelihood

Given the structure of the model
the marginal likelihoods f(X|T) can be computed explicitly

Lemma The marginal likelihood f(X|T) can be computed as

FXIT) = ][ PuAas)

175 1(1/2)(3/2) - - (as(j) — 1/2)]
(m/2)(m/2+1)---(m/2+ M, — 1)

with the count vectors a; = (as(0),...,as(m — 1)) as before
and M, = as(0) 4+ -+ as(m —1)

where P.(a,) =

What is quite surprising is that the entire
prior predictive likelihood f(X) =) . 7(T)f(X|T)
can also be computed effectively



The Context Tree Weighting algorithm (CTW)

Given. Data X :X_D+1,...,X0,X1,X2,...,Xn
Alphabet size m Maximum depth D
Prior parameter [

/N 1. [Tree. | Construct a tree with nodes corresponding to all contexts
of length 1,2,..., D contained in X

/\ 2. |Estimated probabilities. | At each node s compute the vectors ay
las(j) = # times letter j follows context s in X7]
and the probabilities P. ; = P.(as) as in the Lemma

/\ 3. [Weighted probabilities. | At each node s compute

P _ {PQ,S, if sis a leaf
| 6Pe,s+<1_6) HjeAPw,sja O/W



The CTW computes the prior predictive likelihood

Theorem

The weighted probability P, ) given by the CTW at the root A
is exactly equal to the prior predictive likelihood of the data X:

Par=J(X) = (T ) [ £xi8.T)m(61T) do



The CTW computes the prior predictive likelihood

Theorem

The weighted probability P, ) given by the CTW at the root A
is exactly equal to the prior predictive likelihood of the data X:

Par=J(X) = (T ) [ £xi8.T)m(61T) do

Note

The CTW computes a “doubly exponentially hard” quantity
in O(nmD) time
The CTW can be updated sequentially
This is one of the very few examples of nontrivial Bayesian models

for which the prior predictive likelihood is explicitly computable
probably the most complex/interesting one



Some CTW pre-history

~~ 1995: The original CTW paper appears
Special case of CTW algorithm, that computes
an effective, adaptive probability distribution
that can be used with arithmetic coding
for universal DATA COMPRESSION

~» 1996-1998: |IEEE IT Soc best paper award
Extensions in various directions
with primary focus still on data compression

Tanya Ignatenko
Ali Nowbakht
Yuri Shtarkov

Tjalling Tjalkens

Paul Volf
Frans Willems

~» 1996-2006: Parallel activity connects CTW with STATISTICS

Numerous papers (going back to original 1993 preprint)

explore the CTW in a Bayesian setting

introduce the Context Tree Maximising (CTM) algorithm
and examine applications to model selection [Peter Biihlmann et al]

~> . Presents a principled, unified Bayesian framework
for general inference and learning tasks on discrete time series

centered around CTW



Bayesian Context Tree algorithm (BCT)

[ The algorithm formerly known as
Context Tree Maximizing (CTM)]

Given. Data X :X_D+1,...,X0,X1,X2,...,Xn
Alphabet size m Maximum depth D
Prior parameter [

/N 1. [Tree. | and A 2. [Estimated probabilities. |
Construct the tree and compute a; and P, ¢ as before

/\ 3. [Maximal probabilities. |
At each node s compute

P {Pe,s, If sis a leaf
| maX{BPe,Sa (1 _6> HjeAPm,sj}a O/W

/N 4. [Pruning. |
For each node s, if the above max is achieved
by the first term, then prune all its descendants



The BCT computes the MAP model

Theorem

The (pruned) tree 17 resulting from the BCT procedure
has maximal a posteriori probability among all trees:

(X0, T)x(0|T) df W(T)}
f(X)

(17| X) = mTaXW(T]X) = max {fe



The BCT computes the MAP model

Theorem

The (pruned) tree 17 resulting from the BCT procedure
has maximal a posteriori probability among all trees:

7(T{]X) = max(T|X) = max {f9 19, Tf()fJT) 4 Wm}

Note — as with the CTW
The BCT also computes a doubly exponentially hard quantity
in O(nmD) time

Again, one of the very few examples of nontrivial Bayesian models
for which the mode of the posterior is explicitly computable
probably the most complex/interesting one



A first empirical result: Simulated data

5th order VMMC data X_p.q,..., X, X1, X9, ..., X,
Alphabet size m =3
VMMC with d =5 as in the example
Data length n = 10000 samples

BCT MAP model with max depth D =5, g = 3/47
~» D = b5: space of more than 10?* models

0
. 1
2



Finding the k& a posteriori most likely models:
The k-BCT algorithm

/N 1. [Construct full tree. | /A 2. [Compute asand P, . |

/\ 3. [Matrix representation. | Each node s contains a k x m matrix By
Line ¢ represents the ith best subtree starting at s
Either entire line consists of * meaning “prune at s”
Or jth element describes which line of the j child of s to follow

Line ¢ also contains the “maximal probab” RSZL associated with ith subtree

A 4. [At each leaf s. | Entire matrix B, contains 's and all P\; are = P.

/\ 5. [At each internal node s. ]
Consider all £™ combinations of subtrees of the children of s
For each combination compute the associated maximal prob as in BCT
Order the results by prob, keep the top k, describe them in the matrix B,

/\ 6. [Bottom-to-top-to-bottom. | Repeat (5.) recursively until the root
Starting at the root, read the top k trees



The k-BCT identifies the £ a posteriori most likely models

Theorem

The k trees 17,15, ..., 1} described recursively at the root
after the k-BCT procedure
are the k a posteriori most likely models w.r.t.:

[, £(X10,T)x(0|T) b =(T)
f(X)

m(TX) =

Note
The complexity of k-BCT is O(nmD x k™) in both time and space

Lower complexity implementations are possible



Additional results

7T<T) HseT Pe(as>

(i) Model posterior probabilities — 7(T|X) = =
w,A

for ANY model T', where P, \ = prior predictive likelihood
and P,(as) = P. s are the estimated probabilities in CTW

7(T1X) (D) [Lerer Polas)
m(TX) ~ 2(T) g gr Pelas)

for ANY pair of models T',T"

(ii) Posterior odds

(iii) Full conditional density of 6

(0T, X) ~ ] | Dirichlet(a,(0) + 1/2,as(1) + 1/2, ..., as(m — 1) + 1/2)

seT’



k-BCT models for the same 5th order chain

D = 10 ~ more than 10°”"Y models n = 10000, k =3, 3 =3/4

(17| X) =~ 0. 36>>i>‘>>

m(T}) ~ 3.8 x 1079

7(T7|X)/m(TE| X) ~ 6.29

7(TF| X) /(T X) =~ 8.82



MCMC exploration of the posterior

Given. Data X:X_D+1,...,XQ,X1,...,Xn
Parameters m, D,

Run BCT algorithm

Initialize: T'(0) = 17 and 0(0) ~ [[er() Unif

seT’
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MCMC exploration of the posterior

Given. Data X:X_D+1,...,X0,X1,...,Xn
Parameters m, D, (3

Run BCT algorithm >
Initialize: T'(0) = 17 and 0(0) ~ [ [,z Unif

seT’

Iterate: At each t:

/\ [Metropolis proposal | Given T'(t) propose T"
by randomly adding or removing m sibling leaves

/\ [Metropolis step | Define T'(t + 1) by accepting or rejecting T"
m(T'|X) . m(T") HseT’,ng(t) P.(as)

m(T)]X)  m(TE)] Lserw)ser Pelas)

/\ [Gibbs step | Take 6(t + 1) ~ sample from the full cond’al density

]| Dirichlet(ay(0) + 1/2,as(1) + 1/2, ..., as(m — 1) + 1/2)
seT(t+1)



A fun data set: Wood Peewee bird song

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs
Goal: Understand structure, complexity, variation and function

[Craig (1943) “The song of the wood pewee” ]
[Berchtold-Raftery (2002) “The MTD model”|

.l
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Wood Peewee bird song: MAP model

Data Recorded bird song data, transcribed as a sequence of (mono-)phthongs
Goal: Understand structure, complexity, variation and function

[Craig (1943) “The song of the wood pewee” ]
[Berchtold-Raftery (2002) “The MTD model”|

E-BCT With n = 1327 samples
m =3, B =3/4, k=5 and depth D =20

posterior: (17 |z) ~ 12.6%
prior: (1) ~ 4 x 1077



Wood Peewee bird song: Next 4 models

I

9)

Total posterior of top 5 models =~ 20.2%



MCMC results on Peewee data

2.5

151

0.5¢

x10*

model depths

14000

12000

10000

8000 [
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4000

2000 -

t of leaves

1
100
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After 10° iterations:
Acceptance rate ~ 59 — 61%
~ 306,000 models visited
posterior of models visited ~ 61.3%

w10

x104

0 1 2 3 4 5 6 7 8 9 10
x10*

[~ Markov order estimation]



Truly Bayesian entropy estimation

Given Data X:X_D+1,...,X0,X1,...,Xn
Parameters m, D, (5

Run BCT algorithm
Initialize: T'(0) = 17 and 0(0) ~ [[er() Unif
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Truly Bayesian entropy estimation

Given Data X:X_D+1,...,X0,X1,...,Xn
Parameters m, D, (3

Run BCT algorithm

Initialize: T'(0) =17 and 0(0) ~ []
Iterate: At each t:

seT’

/\ [Metropolis-Gibbs step |

(O) Unlf .//,/:::

Obtain model and parameters sample (7'(t),0(t))

/\ [Entropy step | Obtain entropy sample H(t):

~~ either compute H(t) = H(T(t),0(t)) directly

~ or generate Y/ ~ (T'(t),0(t))

and estimate H(t) = —1log P(Y{“|T'(t), 0(1))

Compute posterior of H from (H (1), H(2),...

 H(N))



Entropy of Peewee song
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Prediction

Observe

The posterior predictive distribution

flann| X p i) = ET:/Q J@nn| X p 0, 0,T) 70, T| X)) db

e .
likelihood posterior




Prediction

Observe

The posterior predictive distribution

f@nn| X py) = ET:/G f(anrl‘XﬁDnLl?@sz ZT(QvT‘XﬁDJrIZ do

e .
likelihood posterior

f<~’17n+1, X?|X9D+1)

0
FXTIXEp)
prior predictive likelihood up to n + 1

prior predictive likelihood up to n



Prediction

Observe

The posterior predictive distribution

f@nn| X py) = ET:/Q f(xnﬂLl‘XﬁDJrlvevTZ W(QaT\XﬁDHZ do

A

v .
likelihood posterior

f<117n+1, X?|X9D+1)

0
FXTIXEp)
prior predictive likelihood up to n + 1

prior predictive likelihood up to n

(2) can be computed sequentially, online
(7¢) converges to the true conditional distribution
(247) achieves the minimax optimal risk in terms of log-loss



Prediction results

Pewee song data SARS-CoV-2 protein S gene
training = 1185 (90%), testing = 132 (10%) training = prediction = 1906 samples
T T T T T T 142 1
0.9
14|
0.8
ozl 1.38|
7]
0
o
© 0.6 1.36
ke
05} 1.34 |;
04 132}
03 1 1 1 1 1 13 1 1 1 1 1 1 1 1 1
0 40 60 80 100 120 0 200 400 600 800 1000 1200 1400 1600 1800
prediction step prediction step

Raftery’s MTD (Markov Transition Distribution)

Dunson et al's (Conditional Tensor Factorization)
Biilhmann et al's VLMC (Variable Memory Markov Chains)
Xiong et al's SMC (Sparse Markov Chains)



Theoretical justifications

“Theorem 1” [BIC/MDL connection]
For every data string X of arbitrary length n, any initial context X9D+1
and any model T' of depth no more than D with parameters ¢

the prior predictive likelihood f(X) = f(X7'|X",,,) satisfies

T|(m —1)

log f(X) = log P(X|0,T) — 5

logn

and this is in a strong sense best possible



Theoretical justifications

“Theorem 1” [BIC/MDL connection]

For every data string X of arbitrary length n, any initial context XL)DH
and any model 7" of depth no more than D with parameters 6
the prior predictive likelihood f(X) = f(X7|X",,,) satisfies
Tl(m—1
log f(X) ~ log P(X|0,T) — | K”; ) logn

and this is in a strong sense best possible

Theorem 2 The BCT predictive distribution

fUIX p )

converges to the true underlying distribution as fast as possible:
(i) For data generated by any model T" of depth no more than D
with parameters 6, and for any j € A:

fUIX2py) — P X p,0,T) — 0 with prob 1

(ii) Theorem 1 = that it achieves the minimal log-loss



More theoretical justifications

Theorem 3 [Consistency]
For any ergodic VMMC {X,} of depth no more than D

7(, | X) =5 67vgv with prob 1

and
T = T* eventually, with prob 1



More theoretical justifications

Theorem 3 [Consistency]
For any ergodic VMMC {X,,} of depth no more than D

7(, | X) =5 67vgv with prob 1

and
T = T* eventually, with prob 1

Theorem 4 [Asymptotic normality]

Let {X,} be an ergodic VMMC of depth < D, with stationary distr 7
Suppose 0" ~ 7(-| X", ,,T*) and let 6™ denote its mean. Then:

V%Hm—@ﬂ—BHW&ﬂ with prob 1

[Let ©F be the diagonal matrix with entries 8¥(j), j € A, and let Js denote
the m X m matrix J, = == [0% — (0*)(0*)]. Then J is the m|T™| x m|T*|
7r(3) S S S

block-diagonal matrix consisting of all m X m blocks J]



Changepoint detection: A Bayesian setting
X by XoXy plk. P

*
l | |

x(0) x (1)
(9(0)7 T(O)) (9(1), T(l))

X2
(6@, 7))



Changepoint detection: A Bayesian setting
X by XoXy plk. P

*
l | |
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Changepoint detection: A Bayesian setting

Xopn XoXy P pe
I | | |
Number of changepoints X0 - x X2
0< <. (00, TO) (9, 7M) () 7))

Prior w(£) ~ Po(A\) |£ < £ax

Changepoint locations Given £, the prior 7 (p|£) of the locations
D = (P1,...,Pe) is the distr of the even points in 2 + 1 indep
ordered draws from {1,2,... n} without replacement

Prior on models Given /,p, the £ + 1 models {T"} are i.i.d.
under ({TV}|2, p) each with distr mp(T") as before

Prior on parameters Given ¢, p, {T"}, the parameter vectors {#)} are i.i.d.
under 7 ({0W} £, p, {T)}) each with a product Dirichlet distr as before

Likelihood f(XTX%p,,,6p, {6V}, {TV}) = [[ £(XVITO,00)
0<i<t
where each term in the product is a VMMC likelihood as before



BCT changepoint detection
Xpu XoXo P, = 2 e

X (0) x @) X (2)
(9(0)7 T(O)) (9(1)7 T(l)) (9(2)7 T(2))

Goal From the likelihood

FXTX pys 6, {09, ATY)
and the priors, determine the posterior 7 (£, p| X)

Ordinarily MCMC would require sampling from all
the parameters (£, p, {#)} {T}) ~» a nearly impossible task



BCT changepoint detection

Xpu XoXo P, = 2 e
l | I !
X (0) x @) X (2)
(00, 7)) (60, TW) (9@ TO)

Goal From the likelihood
FXTX pys 6, {09, ATY)
and the priors, determine the posterior 7 (£, p| X)

Ordinarily MCMC would require sampling from all
the parameters (£, p, {#)} {T}) ~» a nearly impossible task

But here (£, p|X) o f(X|E,p)r(plOm () = | Tyeiee SXO)] mlple)(0)
which can be computed by (¢ + 1) applications of the CTW!

~~ Effective MCMC We can sample from the desired posterior 7 (£, p| X)
with a Metropolis-Hastings sampler that employs the CTW in each step
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Goal Perform effective Bayesian inference with real-valued time series

First step: Define an appropriate model-class
Idea: Quantize and mix

i. Start with an existing model class M = {M}
e.g., AR(p), MA(p), ARMA(p), ARIMA(p), etc

1i. Quantize the continuous observations X to a discrete time series Y
on A=4{0,1,...,m — 1} in a meaningful way

ili. Select an m-ary context tree 1" of depth < D

iv. Place a model M, at each leaf s € T

v. Define the distribution of X, given its past (..., X, 2, X,,_1)
as the distribution dictated by (M, ¢,), where s € T' is the context
corresponding to Y,,_p, ..., Y, 1



Real-valued time series

Goal Perform effective Bayesian inference with real-valued time series

First step: Define an appropriate model-class
Idea: Quantize and mix

i. Start with an existing model class M = {M}
e.g., AR(p), MA(p), ARMA(p), ARIMA(p), etc

1i. Quantize the continuous observations X to a discrete time series Y
on A=4{0,1,...,m — 1} in a meaningful way

ili. Select an m-ary context tree 1" of depth < D

iv. Place a model M, at each leaf s € T

v. Define the distribution of X, given its past (..., X, 2, X,,_1)
as the distribution dictated by (M, ¢,), where s € T' is the context
corresponding to Y,,_p, ..., Y, 1

Main step: Inference
Idea: Generalize the CTW/BCT ideas, tools and algorithms
i. Perform inference jointly on (M, ¢) and on (T, 0)
ii. Develop new methodological tools in applications
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Example: The binary BCT-AR model class

Model class

> Binary context trees 1" of depth < D

> Binary quantizer: R — {0,1}

(M, )

> AR model M, and parameters ¢ at each s € T’

Application US unemployment data

Sequence X of differences of quarterly rates

1948-2019: n = 288 observations

Results With AR pp.x =5, D =10

and appropriate priors on p and on parameters:
Estimated quantizer threshold is ~ 0.15%

Mean squared error (MSE) of forecasts

15%

5%

T T T T T T T T T T
1948 1955 1962 1969 1976 1983 1980 1997 2004 2011 2018

Prediction step

Model 1 2 3 4 5)

Seas. ARIMA 540 7.71 10.1 11.6 11.0
SETAR H42 834 882 948 995
MAR 533 T7.61 &892 956 9.71
BCT-AR 490 7.33 8.44 9.08 9.48




Extensions and further results

~~ Applications

Model selection Estimation Change-point detection
Segmentation Anomaly detection  Markov order estimation
Filtering Prediction Entropy estimation
Causality testing  Compression Content recognition

+ Continuous time series

~~ Results on real data

[> Satellite imaging [> genetics [> neuroscience [> finance
> meteorology (wind and rainfall prediction),

> animal communication (whale/dolphin/bird song data)
+ R package: BCT

~~ Theoretical foundation

» Rich collection of asymptotics and non-asymptotic bounds



