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Motivating Example

Trying to measure extreme meteorological events (ex. temperature or
rainfall) over some spatial area.

Goal is to model the annual maxima at multiple sites, capturing
dependence structure.

We assume these underlying processes are Gaussian.
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(Max) Domains of Attraction

Xt Xy ~ F,ilid.
M,, == max{Xj, ..., X;p}. Fis in the (max) domain of attraction of

H iff, for a,, > 0, b,, as m — oo:

p (Mm m < a;) = F™(apa + by) — H(z).

am

In the univariate case, H must be a Generalized Extreme Value
Distribution.

Hio) {exp{—<1+<?3+”<} C#0
exp{—exp{- 1} (=0
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Max-Stable Processes

Extension of max-stability from finite dimensional distributions to
processes.
A process Y is considered max-stable iff for any finite set of points
{z;}%_, in the domain of this process, the law of m{Z(x), ..., Z(z4)}
is the same as {max(Z;(z1)), ..., max(Z(zq))}.

jelm] jelm]

General construction: {R;} are points of a Poisson process on R™
with intensity s72ds. Let W be a strictly positive process with
expectation 1 at the origin.

\/ B WD) 1)

i=1
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Brown-Resnick Process

A class of max-stable models

Let U; be points of a Poisson point process with intensity e~%dy, and
W;(t) is some stationary Gaussian process with variance o2(t),

(7 U; + Wz(t) — U(t)2/2 (2)
=1

For any two points, the joint law of a Brown-Resnick process is
Hiisler-Reiss.
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Husler-Reiss Distribution

(X;, Y;) distributed by 0-mean, unit-variance bivariate normal
distribution with correlation parameter p,,.

b by the relationship b, = m¢(by,), where ¢ is the standard normal
density function.

The Husler-Reiss Distribution arises as the limiting distribution of

b max{(X1, Y1), ..., (X, Yom)} — b2,

Hy(z,y) = exp {—e "B\ + L5) — e VO + 554)}

When correlation is constant, H) is a product of independent Gumbel
distributions (A = c0)[5]
The single parameter arises from the limit In(m)(1 — p,;,) — A2
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Block Maxima Method

Given a sample x1, ..., , how do we estimate the distribution of the
maxima of these random variables?

Split sample of size n into k groups of size m.

Take the maximum for each of the & blocks.

Proceed with a sample of k£ maxima.

We will use Maximum Likelihood Estimator
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Problem Set-Up

(X, Yi) ~ N <<8> ’ (fjn p1m>)

We want to estimate the limiting parameter A of the Hisler-Reiss
distribution

Treat the scaled maximum of each block as if it were exactly
distributed according to a Hiisler-Reiss distribution, performing
maximum likelihood estimation with the misspecified Hiisler-Reiss
density.
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Problem Statement

Since convergence to the Hiisler-Reiss distribution is only
asymptotic, do we introduce bias by assuming our sample from
a Hiisler-Reiss distribution?
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Problem Statement

Since convergence to the Hisler-Reiss distribution is only asymptotic,
do we introduce bias by assuming our sample from a Hiisler-Reiss
distribution?

How do we decide the values of m and k for optimal inference?
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Main Result

Main Result

Let (X;, Y;) be i.i.d. standard bivariate normal random variables with
correlation p,,, such that In(m)(1 — p,,) — A3 € (0,00). Define An as the
maximum likelihood estimator using the misspecified likelihood. Where k,,,
the number of blocks in the block maxima method, and m,,, the block
size, both converge to infinity with sample size, we have

Ve (do=3n) S N (104,17

where I is the Fisher Information Matrix of the Hiisler-Reiss distribution
and A is a depends on k,, m, and Aq.
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Preliminary Results

Denote hy(z,y) and ¢, (z,y) to be the relevant densities.
¢pm(xa y) — hA(.’E, y)
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Preliminary Results

Denote hy(z,y) and ¢, (z,y) to be the relevant densities.
¢Pnz(x7 y) — h)\(fE y)

Define L(X, Y, ) Zln ha(x;, y5)), log-likelihood function of the

Husler-Reiss dlstrlbutlon
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Preliminary Results

Denote hy(z,y) and ¢, (z,y) to be the relevant densities.
¢Pnz(x7 y) — h)\(fE y)

Define L(X, Y, ) Zln ha(x;, y5)), log-likelihood function of the

Hiisler-Reiss dlstrlbutlon
En, (BQAL(X, Y, /\0)> := — 1, is finite, negative for all values of
Ao € (0, OO)
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Preliminary Results

Denote hy(z,y) and ¢, (z,y) to be the relevant densities.
¢Pnz(x7 y) — h)\(fE y)

Define L(X, Y, ) Zln ha(x;, y5)), log-likelihood function of the

Hiisler-Reiss dlstrlbutlon
En, (BQAL(X, Y, /\0)> := — 1, is finite, negative for all values of
Ao € (0, OO)

Result 1: Eg,, (

92\

L(X, Y, )\0)> ~ Ep, (w

L(X, Y, AO)) =1,
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Preliminary Results

Denote hy(z,y) and ¢, (z,y) to be the relevant densities.
¢Pnz(x7 y) — h)\(fE y)

Define L(X, Y, ) Zln ha(x;, y5)), log-likelihood function of the
Hisler-Reiss dlstrlbutlon

En, (BQAL(X, Y, /\0)> := — 1, is finite, negative for all values of

Ao € (0, OO)

Result 1: By, (ML(X Y, )\0)> ~ Ep, (

Dominated Convergence Theorem

GRLX, Y, M) 1=~y
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Sketch of Proof

Define Ly(X, Y, h) := L(X, Y, A\ + %) to be the "localized"

log-likelihood function.
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Sketch of Proof

Define Ly(X, Y, h) := L(X, Y, A\ + %) to be the "localized"

log-likelihood function.

Result 2: %Zlk(){, Y,h) — Iy = 0p(1)
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Sketch of Proof

Define Ly(X, Y,h) := L(X, Y, o + \[) to be the "localized"
log-likelihood function.

Result 2: 82th(X Y, h)— I, = op(l)
02 1 92 1< 82
82hL WX, Y, h) = E%L(X Y, ,\0+ %ET )\0+%(x¢,yi))
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Sketch of Proof

Define Ly(X, Y,h) := L(X, Y, o + \[) to be the "localized"
log-likelihood function.
Result 2: 82th(X Y, h)— I, = op(l)

0 10 1 0

82hL X, Y h) = 2o (X, Y, ,\0+ %ET AM%(aci,yi))
Split quantity into 3 terms:
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Sketch of Proof

Define Ly(X, Y,h) := L(X, Y, o +
log-likelihood function.

\[) to be the "localized"

Result 2: 82th(X Y, h)— I, = op(l)
02 10? 1~ 02
82hL X, Y h) = 2o (X, Y, ,\0+ %ET AM%(aci,yi))

Split quantity into 3 terms:

k
1
EZ N (i, yi) ]E<15T,1(fz>\(JJr 1y (X Y)): Chebyshev's Inequality
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Sketch of Proof

Define Ly(X, Y,h) := L(X, Y, o +
log-likelihood function.

\[) to be the "localized"

Result 2: 82th(X Y, h)— I, = op(l)
02 10? 1~ 02
82hL X, Y h) = 2o (X, Y, ,\0+ %ET AM%(aci,yi))

Split quantity into 3 terms:
k

% thﬁ 1 (i, ys) — ]E<15T,1(fz>\(JJr 1y (X Y)): Chebyshev's Inequality

E%(hxﬁ b (X Y)) - E%(hxg(X, Y)): DCT

Hank Flury Gaussian Spatial Dependences



Sketch of Proof

Define Ly(X, Y,h) := L(X, Y, o +
log-likelihood function.

\[) to be the "localized"

Result 2: 82th(X Y, h)— I, = op(l)
02 10? 1~ 02
82hL X, Y h) = 2o (X, Y, ,\0+ %2::87 AM%(aa,yi))

Split quantity into 3 terms:
k

% thﬁ 1 (i, ys) — ]E<15T,1(fz>\(JJr 1y (X Y)): Chebyshev's Inequality

E%(hxﬁ A (X Y)) - E@,L(hAO(X, Y)): DCT
E¢m(h>\0(X7 Y)) - I)\O Result 1

S
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Sketch of Proof (cont.)

Integrating %I)k(X, Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
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Sketch of Proof (cont.)

Integrating %I)k(X, Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
Eg, (ZL(X, Y, \) = Eg, (ZL(X,Y,\)=0
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Sketch of Proof (cont.)

Integrating %f)k(X, Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
Ey,, (LX, Y )\)) HEHA( LL(X, Y, \) =0
QQL ( ) \[Zz 19X 11’1(h,\0($,,y,))
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Sketch of Proof (cont.)

Integrating a%Lk(X Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
E¢ (LLX, Y )\)) = Eu (L L(X,Y,\) =0

Lk( )_ 2= Zz 1 68)\ 1n(h/\o($ﬂy1))'
By Lmdeberg FeIIer CLT, this converges in distribution to N'(4, I))

: 0
where A := nh_}n;O \/knE%(aL(Xa Y, )
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Sketch of Proof (cont.)

Integrating 82th(X Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
E¢ (LLX, Y )\)) = Eu (L L(X,Y,\) =0

Lk( )_ 2= Zz 1 68)\ 1n(h/\o($ﬂy1))'
By Lmdeberg FeIIer CLT, this converges in distribution to N'(4, I))

: 0
where A := nh_}n;O \/anE(j)m(aL(X7 Y, )

A may be infinite, depending on balance between k and m.
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Sketch of Proof (cont.)

Integrating %I)k(X, Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
E¢ (LLX, Y )\))*)EHA( LL(X,Y,\) =0

Lk( )_ 2= Zz 1 68)\ 1n(h/\o($ﬂy1))'
By Lmdeberg FeIIer CLT, this converges in distribution to N'(4, I))

where A := lim \/knE(ﬁm((%\L(X7 Y, A)
A may be infinite, depending on balance between k and m.

1

1
Most terms converge at a rate of 52 ™ 3(m)
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Sketch of Proof (cont.)

Integrating %I)k(X, Y,h) — I\ = 0p(1) we get:
Li(h) = L(0) + h:&: Li,(0) — Sh2L\ + 0,(1).
E¢ (LLX, Y )\))*)EHA( LL(X,Y,\) =0
FLe(0) = 2 Sy gk g (o, 30)-
By Lmdeberg FeIIer CLT, this converges in distribution to N'(4, I))
where A := lim \/EE%((%L(& Y, \)

A may be infinite, depending on balance between k and m.

1
21In(m)

Other terms depend on the convergence rate of A\g — b,/ };—Z”

Most terms converge at a rate of b% ~
m
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Convergence of Maximizers

By breaking up the above equation we can define the two random
processes
My (h) = L(h) — L(0)
M(h) = hN (A, I,) — $h%I,
Argmax Theorem is used to show the maximizer of M,, converges in
distribution to the maximizer of M

Argmax Corollary [6]

Suppose M, 4 M in I°°(K) for every compact subset K of R¥ and M has
continuous sample paths thatAhave unique maxima h. If tbe domain of M,
converges to that of M, M, (h) > M, (H,) — op(1), and h,, is uniformly

tight, then hy, 2 h.
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Interpreting the Result

Since convergence to the Hisler-Reiss distribution is only asymptotic,
do we introduce bias by assuming our sample from a Hiisler-Reiss
distribution?

Yes, but it can be managed.

Non-trivial bias exists, but can be handled either by picking a

suboptimal bias-variance trade-off, or estimating the theoretical bias.

How do we decide the values of m and k for optimal inference?

Bias term A := lim k,Eg ( L(X,Y )\0)> shows the

n— o0
bias-variance trade-off.
The optimal value of &, depends on the behavior of p,,, but is no
greater than C'In(n).
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Finding a value for A

) 0
A= nh_{?(f)lo \/EE(bm <8)\L(X’ Y, )‘0)>

Since E¢m(a,\L(X Y, \) — IEHA(mL(X Y,\)) =0, we can use a
Taylor Series expansion for ¢,,, cancelling any terms which are
non-zero in the limit.

2 2
Vi ol
m— m—1 —Y=T— "5 — Um () — L Uim, (2 um (y) — L Um, (T
o (o () )" 2[ . i q)( n (@) = pm mm) q)( i (4) ~ i ))
m

V1-r2 V1-r2

2
R N _ N 1
+(I>pm (um (), um () e T 2b72n é (U n (v) PmUm (2) ) :|

V1i-r2 bmy/1 = P,
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Simulation Results

Density of ﬁ m = 24480, k = 408

Hank Flury

'

o
>> 24

Gaussian Spatial Dependences



Explaining the Second Mode

Taking the limit of log-likelihood as A — oo has the same sign as
e(l—e¥)+eV(1l—e?)—1
Equivalent to z,y < —In(.5) or z,y > —In(.5).

o .
. -~
k-4
g
]
2
E
k]
o
, o3
CFUCIS TG TR
S 0% Gl e o o
.._'.:v-.. Y, w X .

300 325 350 a7s
Sum of Difference of Points on Opposite Sides of -In(.5)
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Second Simulation

p increased from .668 to .865

Density of &, m=172117, k=581

Density

sample Quantiles

Normal Q-Q Plot

Theoretical Quantiles

1. Empirical variance: .006464. Theoretical variance: .006061

Hank Flury
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Limitations

Restricted to bivariate sites
Husler-Reiss distribution has multivariate extensions

Correlation depending on m seems artificial
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Composite Likelihood

Given a family {f(¢,y);y € Y C R¥, ¢ € ¥ C R} and a set of
events {Z, : k € K C N}, and non-negative weights wj,

lo(,y) == > wef (. {yi : yi € Ii}) (3)

keK

Let {Z;} be every bivariate observation from our data {z;}? € R’

n J—1

lo(z, ) = _1 ZZ Z f(( xn,]a$nh V) (4)

i=1 j=1 h=j+1

Use composite bivariate composite likelihood to estimate
Brown-Resnick Processes
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Spatial Scaling

From [3]:

m

Nm(t) = \/ bin(X (8 % ) — i) (5)

i=1
Spatial scaling allows us to control p,,.

Paired with infill-statistics to ensure our samples are sufficiently dense.
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Future Work

Combine composite likelihood and spatial scaling to estimate
Brown-Resnick processes

Extending the misspecification from finite dimensional distributions to
processes

Increase number of sites to higher dimensions

New distributions
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