

What is your mobile's battery percentage?

When will your mobile shut down?

Exploring the Power of Markov Models for Comprehensive Prognostics

Dr. Nick Eleftheroglou

Assistant Professor

Head of Intelligent Sustainable Prognostics Group

Faculty of Aerospace Engineering

11000

25 Apr 2024

mun

000

Prognosis 'Πρόγνωσις'

PHM - Prognostics & Health Management

Degradation Model

$$\boldsymbol{\theta}^* = arg \max_{\boldsymbol{\theta}} \left(\sum_{k=1}^{K} log \left(Pr(\boldsymbol{y}^{(k)} | \boldsymbol{\theta}) \right) \right)$$

Diagnostics

Assess the current damage state *conditional* on the available data (**y**) and the trained model parameters θ^* :

Assess the conditional reliability given the available data (y) and the trained model parameters θ^* :

$$R\left(t\left|y_{1:t_{p}}, L > t_{p}, \boldsymbol{\theta}^{*}\right) = Pr\left(L > t\left|y_{1:t_{p}}, L > t_{p}, \boldsymbol{\theta}^{*}\right)\right)$$

$$Pr\left(RUL_{t_{p}} \leq t\left|y_{1:t_{p}}, \boldsymbol{\theta}^{*}\right) = 1 - R\left(t + t_{p}\left|y_{1:t_{p}}, \boldsymbol{\theta}^{*}\right)\right)$$

$$\underbrace{\left|\begin{array}{c}t_{p=1.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}}\\t_{p=31.5 \text{ kcycles}\\t_{p=31.5 \text{ kcycles}\\t_$$

fatigue life (kcycles)

ŤUDelft

0.2

9

Prognostics of Aircraft Engines

NASA C-MAPSS (Turbofan Engine Degradation Simulation Data Set)

Prognostics of Aircraft Engines

HMM - B

HMM – Γ of S1

ŤUDelft

НММ - Г

Duration distribution HMM

state 1 state 2 state 3 state 4 state 5 state 6

НММ - Г

Duration distribution HMM

0.00

ò

25

50

75

100

Duration

125

150

175

200

state 7

state 8 state 9

HSMM - B

$HSMM - \Gamma$

Prognostics of Aircraft Engines – Testing phase

Prognostics of Aircraft Engines – Testing phase

RUL

Prognostics of Aircraft Engines – Testing phase

RUL

Case-Study Composites

NHHSMM – B

NHHSMM – **Г**

Unexpected phenomena

Unexpected phenomena

Specimen	Experimental Conditions	Lifetime (hours	3)			
1		22.5				
2	R=0.1	16.1				
3	f=10 Hz	16.6				
4	A=36 x 90% kN	13.6				
5		18.9				
6	[0/45/90/-45]2s	21.1				
7	Prepreg tape Hexply®	26.5				
8	F6376C-HTS(12K)-5-35%	29.7				
Testing	Fatigue + Impact	10.5				
Testing	Manufacturing Defect	4.2				
	0.013 - 0.012 - 0.011 - 0.01 - 0.00 - 0.009		Market and		pecimen01 pecimen02 pecimen03 pecimen04 pecimen05 pecimen07 pecimen08 atigue & Impact lanufacturing Defect	
ŤU Delft	0.008 0 2	4 6	8 10 Lifetime (sec)	12	14 ×10 ⁴	」 28 1

Specimen Fatigue & Impact

TUDelft

Specimen Manufacturing Defect

Eleftheroglou, N., Zarouchas, D. & Benedictus, R. An adaptive probabilistic data-driven methodology for prognosis of the fatigue life of composite structures. Composite Structures, 245 (2020) 112386. 32

Specimen Fatigue & Impact - Adaptive Prognosis

Specimen Fatigue & Impact - Prognostics

Specimen Manufacturing Defect - Prognosis

Specimen Manufacturing Defect - Prognosis

Prognostics Case-Studies

[1] Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the **Lithium-Polymer batteries of unmanned aerial vehicles** with uncertainty quantification.

TUDelft

[2] Remaining useful life prognosis of **aircraft brakes**. International Journal of Prognostics and Health Management.

[3] Valve Failure Prognostics In Reciprocating **Compressors** Utilizing Temperature Measurements, PCA-based Data Fusion And Probabilistic Algorithms. Transactions of Industrial Electronics.

[4] **Similarity Learning Hidden Semi-Markov Model** for Adaptive Prognostics of Composite Structures. Reliability Engineering & System Safety.

Conclusions

Exploring the Power of Markov Models for Comprehensive Prognostics

Comprehensive? Robust

elft)

Reliable

Applicable

Thank you!

110000

N.Eleftheroglou@tudelft.nl

4005

mm

