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Motivation Count time series

Examples of correlated counts observed at di↵erent time points:

• Number of patients with di↵erent but related symptoms

• Occurrences of physical phenomena at di↵erent locations

• Number of occurrences of various crime types

• Number of trades of di↵erent stocks in a portfolio

Literature:

• (Multivariate) INAR, INGARCH

Survey: Discussion of (dis)advantages for several classes of count time series; see Davis et al. (2021).
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Applied front

[KFP22] but using a factor model for latent process: Zt = �Ft + �t and
e.g. Ft = �Ft�1 + �t .

C
1

C
2

C
3

C
4

C
5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 90

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Time

X
i,t

Item

lazy

industrious

persistent

reckless

changeable

responsible

dynamic

sociable

shy

silent

lively

reserved

selfish

goodnatured

domineering

helpful

obstinate

considerate

unimaginative

witty

knowledgeable

prudent

fanciless

uninformed

irritable

emotionallystable

calm

badtempered

resistant

vulnerable

Vladas Pipiras (UNC) LGCM VTSS, December, 2022 16 / 20
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Model Copula transformation and latent Gaussian variable

• Latent: Zt = (Z1,t , . . . , Zd,t)0, t 2 Z, is a d-dimensional stationary Gaussian series with zero mean
and unit variance: E[Zi,t ] = 0, E[Z 2

i,t ] = 1.

• Observed: Xt = (X1,t , . . . , Xd,t)0, t 2 Z, is a d-dimensional stationary count time series
(Xi,t 2 N0 := {0, 1, 2, . . . }) with marginal CDF Fi (x) = P[Xi,t  x ].

• We model {Xt} as

Xt = (X1,t , . . . , Xd,t)
0 = (G1(Z1,t), . . . , Gd(Zd,t))

0 = G (Zt),

with
Gi (zi ) = F

�1

i (�(zi )), G (z) = (G1(z1), . . . , Gd(zd))0, z 2 Rd .

• By construction {Xt} has marginal CDF Fi . Fi depends on a parameter vector ✓i 2 RKi .
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Example with d = 1 and Bernoulli marginals. Xt ⇠ Bernoulli(p), Zt = �Zt�1 + "t .

G (z) = F
�1(�(z)) =

(
1, z � ��1(1 � p),

0, z < ��1(1 � p).
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Model Autocovariance matrices and their relationships

Recall that Gi (zi ) = F
�1

i (�(zi )).

How can we associate the dependences structure of {Zt} and {Xt}?

• Expand Gi using Hermite polynomials

Gi (z) =
1X

k=0

ci,k

k!
Hk(z), ci,k = E(Gi (Zi,0)Hk(Zi,0));

with the kth Hermite polynomial defined as

Hk(z) = (�1)ke
z2

2

@k

@zk
e

�z2

2 .

Examples: H0(z) = 1, H1(z) = z , H2(z) = z
2 � 1, H3(z) = z

3 � 3z , H4(z) = z
4 � 6z

2 + 3, . . .
• Jia et al. (2021):

ci,k =
1p
2⇡

1X

n=0

e
�Q2

i,n/2
Hk�1(Qi,n)

with Qi,n = ��1(Ci,n) and Ci,n = P[Xi,t  n]. Ci,n depends on parameter vector ✓i 2 RKi .
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Model Autocovariance matrices and their relationships

Recall that Gi (zi ) = F
�1

i (�(zi )) =
P1

k=0

ci,k

k!
Hk(z).

• The autocovariances of {Zt} (latent) can be associated to {Xt} (observed) through

�X (h) := E[Xt+hX
0
t ] � E[Xt+h] E[X 0

t ] =

 1X

k=1

ci,kcj,k

k!
RZ ,ij(h)k

!

i,j=1,...,d

, RZ (h) = E[Zt+hZ
0
t ].

• More compactly

�X (h) = `(�Z (h)), `(u) = (`ij(u))i,j=1,...,d with `ij(u) =
1X

k=1

ci,kcj,k

k!
u

k .

• ci,k depends on ✓i ! `ij depends on ✓i , ✓j .
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Example

Example with d = 2 and Bernoulli marginals.

• Zt = (Z1,t , Z2,t)0, t 2 Z, stationary Gaussian series with E[Zi,t ] = 0, E[Z 2

i,t ] = 1 and lag-h
autocovariance matrix

�Z (h) =

✓
⇢1,1(h) ⇢1,2(h)
⇢2,1(h) ⇢2,2(h)

◆
.

• Xi,t ⇠ Bernoulli(p).

• Then,

Gi (z) = F
�1

i (�(z)) =

(
1, z � ��1(1 � p),

0, z < ��1(1 � p).

Suppose p = 1

2
such that ��1(1 � p) = 0

• Then,

�X (h) =
1

2⇡

✓
arcsin(⇢1,1(h)) arcsin(⇢1,2(h))
arcsin(⇢2,1(h)) arcsin(⇢2,2(h))

◆
.
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Model Properties of link function

Recall that `(u) = (`ij(u))i,j=1,...,d with `ij(u) =
P1

k=1

ci,k cj,k

k!
u

k .

Proposition (Jia et al. (2021))

For u 2 (�1, 1), the link function ` satisfies

`0ij(u) =
1

2⇡
p

1 � u2

1X

n0,n1=0

exp

✓
� 1

2(1 � u2)
(Q2

i,n0
+ Q

2

j,n1
� 2uQi,n0

Qj,n1
)

◆

with Qi,n = ��1(Ci,n) and Ci,n = P[Xi,t  n].

There is no explicit representation of `.
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ACVF matrices and their relations
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Goals

• Find estimator for autocovariance matrices of latent process.

• Establish concentration bounds for the di↵erences between the estimated and true latent Gaussian
autocovariances, in terms of those for the observed count series and the estimated marginal
parameters. (Main result I)

• Impose parametric model on latent process (e.g. VAR).

• Utilize Main result I to find high probability bound on sparse estimators for transition matrices of
VAR. (Main result II)
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Literature

• Univariate case (d = 1): Jia et al. (2021) suggests several approaches to estimate parameters in
�Z . Kong and Lund (2022) studied seasonal case.

• Multivariate case (d = 2): Livsey et al. (2018) for Poisson marginals.

• Survey: Discussion of (dis)advantages for several classes of count time series; see Davis et al.
(2021).

• Psychometrics: Here t may no longer refer to time but, for example, di↵erent individuals; see Lee
et al. (1992).

• Statistical literature: Studies of Gaussian copula models guaranteeing consistent estimation of
latent correlation structures have been done when entries of the copula correlation matrix relate to
the entries of the Kendall’s tau or Spearman’s rho matrices through an explicit link function; see
Liu et al. (2012); Mitra and Zhang (2014); Wegkamp and Zhao (2016); Han and Liu (2017); Fan
et al. (2017).

Our contributions: Theoretical guarantees for consistent estimation of a latent parametric model in a
possibly high-dimensional regime.
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Model Estimation

Recall that `(u) = (`ij(u))i,j=1,...,d with `ij(u) =
P1

k=1

ci,k cj,k

k!
u

k .
• The function `ij depends on the marginal CDF parameters ✓i , ✓j only, so that for all lags h,

�X (h) = `(�Z (h)).

• If b✓i is an estimator of ✓i and b̀ one of `, one estimator of b�Z is

b�Z (h) = b̀�1(b�X (h)),

where b�X (h) is a standard ACVF estimator of �X (h) based on X1, . . . , XT .
• Assuming that the observations have a zero mean, the autocovariance matrices

�X = (�X (r � s))r ,s=1,...,L can be estimated as b�X = 1

N X 0
XXX with N = T � L and

XX =

0

B@
X

0
L . . . X

0
1

...
. . .

...
X

0
T�1

. . . X
0
T�L

1

CA .

With a slight abuse of notation, we write both �X = `(�Z ) and �X (h) = `(�Z (h)).
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Main result I

Recall that b�Z (h) = b̀�1(b�X (h)) and set �X = (�X (r � s))r ,s=1,...,L

Proposition (D., Lund, Pipiras)

Under mild moment conditions on {Xt}, we have, for �, " > 0,

P
h
kb�Z � �Zks > Q(�Z )�

i
- P[kb�X � �Xks > �] + P[kb�X � �Xk2

s > �]

+ P[kb✓ � ✓kmax > � ^ "] + P[kb✓ � ✓k2

max
> �]

with Q(�Z ) := Q(�Z , ", �).

The constant Q(�Z ) depends on

µ(k)

i (u) =
1p
2⇡

1X

n=0

exp

✓
� 1

2u
Q

2

i,n

◆
|Qi,n|k

⇣
kr✓i Qi,nk1

⌘b
, b 2 {0, 1}.
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Sparse estimation for latent VAR processes

Zt =
pX

u=1

�uZt�u + "t , t 2 Z,

for some �u 2 Rd⇥d and white noise series {"t}t2Z characterized by

E["t ] = 0, E["t"
0
t ] = ⌃", E["s"

0
t ] = 0 for s 6= t.

The VAR(p) model can be written in a linear models form as
0

B@
Z

0
p+1

...
Z

0
T

1

CA =

0

B@
Z

0
p . . . Z

0
1

...
. . .

...
Z

0
T�1

. . . Z
0
T�p

1

CA

0

B@
�0

1

...
�0

p

1

CA+

0

B@
"0p+1

...
"0T

1

CA or YZ = XZB0 + E .

A vectorized version:

vec(YZ ) = vec(XZB0) + vec(E)

= (Id ⌦ XZ ) vec(B0) + vec(E),

Y = Z�0 + E ,

Marie Düker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023 15 / 24



Estimation

Recall that vec(YZ ) = vec(XZB0) + vec(E) and Y = Z�0 + E

The transition matrices can be estimated through

b� = arg min
�2Rq

⇣
� 2�0b� + �0b�� + �Nk�k1

⌘
.

• observed Basu and Michailidis (2015)

b� = vec(b�Z ) = vec(X 0
ZYZ ),

b� = Id ⌦ b�Z = Id ⌦ X 0
ZXZ/N.

• unobserved D., Lund, Pipiras (2023)

b� = vec(b�Z ) = vec(b̀�1(b�X )),

b� = Id ⌦ b�Z = Id ⌦ b̀�1(b�X ).
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General path to consistency

Observed Basu and Michailidis (2015)

b� = arg min
�2Rq

⇣
� 2�0b� + �0b�� + �Nk�k1

⌘
.

Restricted Eigenvalue: A symmetric matrix b� 2 Rq⇥q satisfies the restricted eigenvalue condition with
curvature ↵ > 0 and tolerance ⌧ > 0 if

x
0b�x � ↵kxk2 � ⌧kxk2

1
for all x 2 Rq.

We write b� ⇠ RE (↵, ⌧) for short.
Deviation bound: There exists a deterministic function Q(�0) such that

kb� � b��0kmax  Q(�0)

r
log(q)

N
, N = T � p, q = d

2
p.

Both properties can be reduced to finding bounds on:

P[|v 0(b�Z � �Z )v | > �]
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Path to consistency for latent process

Unobserved D., Lund, Pipiras (2023)

b� = arg min
�2Rq

⇣
� 2�0b� + �0b�� + �Nk�k1

⌘
.

with
b� = vec(b�Z ) = vec(b̀�1(b�X )),

b� = Id ⌦ b�Z = Id ⌦ b̀�1(b�X ).

Restricted Eigenvalue condition and Deviation bound can be proven by reducing problem to finding
bound on

P[ sup
v2K(2s)

|v 0(b�Z � �Z )v | > �].

Apply Main result I:

P
h
kb�Z � �Zks > Q(�Z )�

i
- P[kb�X � �Xks > �] + P[kb�X � �Xk2

s > �]

+ P[kb✓ � ✓kmax > � ^ "] + P[kb✓ � ✓k2

max
> �].
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Main result II

Recall that b� = arg min�2Rq

⇣
� 2�0b� + �0b�� + �Nk�k1

⌘
.

There exist finite positive constants c1 and c2 such that for any v 2 K(2s),

P[|v 0(b�X � �X )v | > �]  c1 exp

✓
�c2

N�2

s2

◆
, N = T � p.

There exist finite positive constants c1 and c2 such that

P[kb✓ � ✓kmax > "]  c1dK exp
�
�c2T"2

�
.

Proposition (D., Lund, Pipiras)

Then, with high probability, for any �N � 4Q(�0)
q

log(q)

N ,

kb� � �0k  64s
�N

↵
.

Same convergence rate as in Basu and Michailidis (2015)!
More
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Figure 2: Estimation error of the LASSO kb���k2 plotted against T (left column) and the theoretical
rate (T � 1)/(s log(d2)) (right column) for three di�erent settings: First row: d-dimensional count
series with marginal Bernoulli distributions and latent Gaussian VAR(1) process. Second row: d-
dimensional count series with marginal Bernoulli distributions and latent Gaussian VAR(1) process
with known link function. Third row: d-dimensional Gaussian VAR(1).
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Conclusions
• Summary

- Possibly high-dimensional count time series model whose correlation structure is determined through
the correlation of an underlying latent Gaussian process.

- Derived a relation between consistent estimation of the autocorrelation matrices of the latent process
and the autocovariance matrices of the observed process.

- Results can be used to estimate underlying parametric model.
- Assuming that the latent process follows a VAR model, our results ensure consistent estimation of the
transition matrices of a VAR at the same rate as for an observable VAR series.

- Non-asymptotic results can be used to infer consistency in a high-dimensional regime where the
number of component series is allowed to grow with the sample size.

• Related future work
- Other shrinkage methods, for example, adaptive penalization.
- Assume that the latent process follows a dynamic factor model.
- Theoretical verifications for consistent model selection.
- Extensions to non-stationary models, particularly those involving covariates.
- Estimation of related model parameters of the latent process like the VAR order.
- Extensions to spatial settings.
- Can we use other distributions for the latent process? For example to achieve tail dependence?
- How to derive consistency for possibly unbounded functions of the latent Gaussian process.
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Marie Düker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023 22 / 24



Conclusions
• Summary

- Possibly high-dimensional count time series model whose correlation structure is determined through
the correlation of an underlying latent Gaussian process.

- Derived a relation between consistent estimation of the autocorrelation matrices of the latent process
and the autocovariance matrices of the observed process.

- Results can be used to estimate underlying parametric model.
- Assuming that the latent process follows a VAR model, our results ensure consistent estimation of the
transition matrices of a VAR at the same rate as for an observable VAR series.

- Non-asymptotic results can be used to infer consistency in a high-dimensional regime where the
number of component series is allowed to grow with the sample size.

• Related future work
- Other shrinkage methods, for example, adaptive penalization.
- Assume that the latent process follows a dynamic factor model.
- Theoretical verifications for consistent model selection.

- Extensions to non-stationary models, particularly those involving covariates.
- Estimation of related model parameters of the latent process like the VAR order.
- Extensions to spatial settings.
- Can we use other distributions for the latent process? For example to achieve tail dependence?
- How to derive consistency for possibly unbounded functions of the latent Gaussian process.
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