High-dimensional latent Gaussian count time series

Marie Diiker (FAU Erlangen)
with R. Lund (UC-Santa Cruz) and V. Pipiras (UNC-Chapel Hill)

University of Athens, December 1st, 2023



Outline

@ Motivation for (vector-valued) count time series models

® Model

© Concentration inequalities for autocovariance matrix estimates
O Sparse estimation for latent VAR processes

® Conclusions

Marie Diiker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023



I\/Iotivation Count time series

Examples of correlated counts observed at different time points:

® Number of patients with different but related symptoms
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I\/Iotivation Count time series

Examples of correlated counts observed at different time points:
® Number of patients with different but related symptoms
® Qccurrences of physical phenomena at different locations
® Number of occurrences of various crime types

® Number of trades of different stocks in a portfolio

Marie Diiker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023



I\/Iotivation Count time series

Examples of correlated counts observed at different time points:
® Number of patients with different but related symptoms
® Qccurrences of physical phenomena at different locations
® Number of occurrences of various crime types
® Number of trades of different stocks in a portfolio

Literature:
® (Multivariate) INAR, INGARCH

Discussion of (dis)advantages for several classes of count time series; see Davis et al. (2021).
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Model Copula transformation and latent Gaussian variable

o |atent: Zy = (Zut,.--,2Z4,t), t € Z, is a d-dimensional stationary Gaussian series with zero mean
and unit variance: E[Z; ;] = 0,E[Z?,] = 1.
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Model Copula transformation and latent Gaussian variable

° Zy=(Z1t,...,2Z4¢), t €Z, is a d-dimensional stationary Gaussian series with zero mean
and unit variance: E[Z; ;] = 0,E[Z?,] = 1.

Xe=(X1,t,...,Xqt), t €Z, is a d-dimensional stationary count time series
(Xi+ € Ng:={0,1,2,...}) with marginal CDF Fj(x) = P[X;: < x].

® We model {X;} as
Xt = (Xl,u o ,Xd7t)/ = (Gl(Zl,t)7 ceey Gd(Zd,t))/ = G(Zt)’

with
Gi(z) = l-_,.fl(cb(z,-))7 G(z) = (Gi(z1), .-, Gu(za)), z€ RC.
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Model Copula transformation and latent Gaussian variable

° Zy=(Z1t,...,2Z4¢), t €Z, is a d-dimensional stationary Gaussian series with zero mean
and unit variance: E[Z; ;] = 0,E[Z?,] = 1.

Xe=(X1,t,...,Xqt), t €Z, is a d-dimensional stationary count time series
(Xi+ € Ng:={0,1,2,...}) with marginal CDF Fj(x) = P[X;: < x].

We model {X;} as
Xt = (Xl,u o ,Xd7t)/ = (Gl(Zl,t)7 ceey Gd(Zd,t))/ = G(Zt)’

with
Gi(z) = l-_,.fl(cb(z,-))7 G(z) = (Gi(z1), .-, Gu(za)), z€ RC.

By construction {X;} has marginal CDF F;. F; depends on a parameter vector §; € RXi.

Marie Diiker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023



Example with d = 1 and Bernoulli marginals. X; ~ Bernoulli(p), Z; = ¢Z;—1 + .

1, z>0 11— p),

G(z) = FY(d(2)) = {0 2 <o 11— p)
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Example with d = 1 and Bernoulli marginals. X; ~ Bernoulli(p), Z; = ¢Z;—1 + .

1, z> o (1- p),
0, z< d~1(1—p).

G(z) = FH(®(2) =

X

RN 1Y
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t t

—— AR(1) with ¢ = 0.7 —— AR(1) with ¢ = 0.7.p=0.2 —— AR(1) with ¢ = 0.7,p=0.7
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Model Autocovariance matrices and their relationships

Recall that Gi(z;) = F,*(®(z)).
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Model Autocovariance matrices and their relationships

Recall that Gi(z;) = F,*(®(z)).

l

How can we associate the dependences structure of {Z;} and {X;}?

® Expand G; using Hermite polynomials

o0

Gi(z) = Y. THH(2), G = E(Gi(Zi0)H(Zio)):

with the kth Hermite polynomial defined as

L 2 0% e
Hi(z) = (~1)*e® S e .
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Model Autocovariance matrices and their relationships

Recall that Gi(z;) = F,*(®(z)).

l

How can we associate the dependences structure of {Z;} and {X;}?

® Expand G; using Hermite polynomials

o0

Gi(z) = Y. THH(2), G = E(Gi(Zi0)H(Zio)):

with the kth Hermite polynomial defined as

L 2 0% e
Hi(z) = (~1)*e® S e .

Examples: Ho(z) = 1, Hi(z) = z, Ha(z) = 22 — 1, H3(2) = 2% — 3z, Hy(2z) = z2* — 62° + 3, ...
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Model Autocovariance matrices and their relationships

Recall that Gi(z) = F, 1(d(z)).
How can we associate the dependences structure of {Z;} and {X;}?
® Expand G; using Hermite polynomials

G,'(Z) _ Z Cik

k=0

) cik = E(Gi(Zi0)Hi(Zio));

with the kth Hermite polynomial defined as
2 0k -2
Hi(z) = (-1)ke® 97k e .

Examples: Ho(z) = 1, Hi(z) = z, Ha(z) = 22 — 1, H3(2) = 2% — 3z, Hy(2z) = z2* — 62° + 3, ...
® Jia et al. (2021):

) -Q./2y Q;
Cj e i,n
*= mz k-1(Qin)

with Q;, = ®71(C:,) and G, = P[X;+ < n]. G, depends on parameter vector §; € R
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Model Autocovariance matrices and their relationships

Recall that Gi(z) = F. H(®(2)) = Yre S Hi(2).
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Model Autocovariance matrices and their relationships

Recall that Gi(z) = F. H(®(2)) = Yre S Hi(2).

1

® The autocovariances of {Z;} (latent) can be associated to {X;} (observed) through

> Ci kCj
Mx(h) == E[XernX{] — EXern] E[X{] = ( i Rz,fj(h)k) \Rz(h) = E[Ze:sZ]).
k=1 ' ij=1,...,d
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Model Autocovariance matrices and their relationships

Recall that Gi(z) = F. H(®(2)) = Yre S Hi(2).

1

® The autocovariances of {Z;} can be associated to {X;} through

> Ci kCj
Mx(h) == E[XernX{] — EXern] E[X{] = ( i Rz,fj(h)k> \Rz(h) = E[Ze:sZ]).
k=1 ' ij=1,...,d

® More compactly

Cx(h) = (T 2(W). €)= (C5(u))ijor,a with £5(u) = D7 =05k,

® ¢; x depends on 0; — ¢ depends on ;,0;.
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Example with d = 2 and Bernoulli marginals.
® 7y =(Z1t,2,:), t € Z, stationary Gaussian series with E[Z; ;] = 0, E[Z,%t] =1 and lag-h
autocovariance matrix h) )
p1,1(h)  pr2(h
Mz(h) = ’ ’ .
Z( ) <P2,1(h) Pz,z(h)>
® X; . ~ Bernoulli(p).
® Then,

17 z2> ¢71(1 - p)a

Gi(z) = F(®(2)) = {o z< o7 (1-p).

Suppose p = 1 such that ®~1(1 — p) =0
® Then,

Mx(h) = 1 (arcsin(Pu(h)) arcsin(pl,z(h))).

2 \arcsin(pz,1(h))  arcsin(pz,2(h))
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Model Properties of link function

Recall that £(u) = (¢;(u))ij=1,..a with C(u) =2, Cj(f”

Proposition (Jia et al. (2021))

For u € (—1,1), the link function ¢ satisfies

1
f(v) = 27rm > eXp( )(Q"%“Qﬁ”l_Q”Q"’"°Q"’”1)>

ng,n=0

with Q,",, = ¢_1(C,-7,,) and C,",, = P[X,"t < n].

There is no explicit representation of £.
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® Find estimator for autocovariance matrices of latent process.
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® Find estimator for autocovariance matrices of latent process.

® Establish concentration bounds for the differences between the estimated and true latent Gaussian
autocovariances, in terms of those for the observed count series and the estimated marginal
parameters.
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Goals

® Find estimator for autocovariance matrices of latent process.

® Establish concentration bounds for the differences between the estimated and true latent Gaussian
autocovariances, in terms of those for the observed count series and the estimated marginal
parameters.

® Impose parametric model on latent process (e.g. VAR).

e Utilize to find high probability bound on sparse estimators for transition matrices of
VAR.
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Literature

® Univariate case (d = 1): Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.
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® Univariate case (d = 1): Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.

® Multivariate case (d = 2): Livsey et al. (2018) for Poisson marginals.
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° Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.

° Livsey et al. (2018) for Poisson marginals.

° Discussion of (dis)advantages for several classes of count time series; see Davis et al.
(2021).
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° Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.

° Livsey et al. (2018) for Poisson marginals.

° Discussion of (dis)advantages for several classes of count time series; see Davis et al.
(2021).

° Here t may no longer refer to time but, for example, different individuals; see Lee
et al. (1992).
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° Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.

° Livsey et al. (2018) for Poisson marginals.

° Discussion of (dis)advantages for several classes of count time series; see Davis et al.
(2021).

° Here t may no longer refer to time but, for example, different individuals; see Lee
et al. (1992).

° Studies of Gaussian copula models guaranteeing consistent estimation of

latent correlation structures have been done when entries of the copula correlation matrix relate to
the entries of the Kendall's tau or Spearman’s rho matrices through an explicit link function; see
Liu et al. (2012); Mitra and Zhang (2014); Wegkamp and Zhao (2016); Han and Liu (2017); Fan
et al. (2017).
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° Jia et al. (2021) suggests several approaches to estimate parameters in
7. Kong and Lund (2022) studied seasonal case.

° Livsey et al. (2018) for Poisson marginals.

° Discussion of (dis)advantages for several classes of count time series; see Davis et al.
(2021).

° Here t may no longer refer to time but, for example, different individuals; see Lee
et al. (1992).

° Studies of Gaussian copula models guaranteeing consistent estimation of

latent correlation structures have been done when entries of the copula correlation matrix relate to
the entries of the Kendall's tau or Spearman’s rho matrices through an explicit link function; see
Liu et al. (2012); Mitra and Zhang (2014); Wegkamp and Zhao (2016); Han and Liu (2017); Fan
et al. (2017).

Theoretical guarantees for consistent estimation of a latent parametric model in a
possibly high-dimensional regime.
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I\/Iodel Estimation

Recall that f(u) = (é,-j(u)),-ﬁjilw_,d with /U(U) = :(,:1 %Uk
® The function ¢;; depends on the marginal CDF parameters 0;, 0; only, so that for all lags h,

Mx(h) = €(Tz(h))-
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I\/Iodel Estimation

Recall that ((u) = (£(u))ij=1,...a with £5(u) =0, A2y,
® The function ¢;; depends on the marginal CDF parameters 0;, 0; only, so that for all lags h,

Mx(h) = €(Tz(h))-

® |f 5, is an estimator of #; and 7 one of /, one estimator of FZ is
Tz(h) =7} (Tx(h)),
where Fx(h) is a standard ACVF estimator of I'x(h) based on Xy, ..., Xr.
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I\/Iodel Estimation

Recall that ((u) = (£(u))ij=1,...a with £5(u) =0, A2y,
® The function ¢;; depends on the marginal CDF parameters 0;, 0; only, so that for all lags h,

Mx(h) = €(Tz(h))-

® |f 5, is an estimator of #; and 7 one of /, one estimator of FZ is
Fz(h) = 171 (Tx(h)).
where Fx(h) is a standard ACVF estimator of I'x(h) based on Xy, ..., Xr.
¢ Assuming that the observations have a zero mean, the autocovariance matrices
Ix = (x(r —s))rs=1,...,. can be estimated as I'x = %X)QXX with N=T — L and
X .. X
x=1 S
Xy oo Xb_,
With a slight abuse of notation, we write both T'x = ¢(I'z) and I'x(h) = £(I' z(h)).
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Main result |

~

Recall that T(h) = £=2(Tx(h)) and set Tx = (Tx(r — s))y.s-1....L

Proposition (D., Lund, Pipiras)

Under mild on {X:}, we have, for d,e > 0,

P[ITz — Tz]ls > Q(T2)6] 3 PIITx — Txlls > o] + P[|Fx — Tx[2 > ]
+ P18 — llmax > 6 A€l + P18 — O], > 0]

with Q(T'z) := Q(T'z,¢,9).

The constant Q(T'z) depends on

o0

W)= L Lo )0 )
W) = = S e (50 ) 1@l (190 @inlh) ' b (0.1

n=0
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Sparse estimation for latent VAR processes

2
Zo=) O Ziute, teL
u=1

for some ¢, € R9%9 and white noise series {et}tez characterized by
E[e:] =0, Elecc}] = Z., E[ese] =0 fors #t.

The VAR(p) model can be written in a linear models form as

Z Zh oz (¥ [eh
= + or Vr=XsBy+E.
z oy oz ,) \e, e

A vectorized version:
vec(Yz) = vec(XzBy) + vec(&)

= (Id & Xz)vec(Bg) + vec(é’),
Y = ZﬁO + E7
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Recall that vec(Yz) = vec(XzBy) + vec(E) and Y = Zfy + E

The transition matrices can be estimated through

~

B = argmin ( —28'7 + ﬁ/F5 + )\NH/BHI)-

BERY
® observed Basu and Michailidis (2015)

7 = vec(7z) = vec(X7)z),
T=Il,0T7=1l4®XyXz/N.

® unobserved D., Lund, Pipiras (2023)

7 = vec(7z) = vec({(7x)).
F =L® f‘z =ILK® Zfl(fx).
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General path to consistency

Observed Basu and Michailidis (2015)

B = argmin ( — 28"+ BTB+ )\NHBHI)'

BERY
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General path to consistency

Basu and Michailidis (2015)

~

B = argmin < - 287 + ﬁ/Fﬁ + )\N||B||1)'

BERY

Restricted Eigenvalue: A symmetric matrix T € R9%9 satisfies the restricted eigenvalue condition with
curvature o > 0 and tolerance 7 > 0 if

XTx > allx||> = 7||x||? forall xeR9.

We write T ~ RE(a, 7) for short.
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General path to consistency

Basu and Michailidis (2015)

~

B = argmin < - 287 + ﬁ/Fﬁ + )\N||B||1)'

BERY

Restricted Eigenvalue: A symmetric matrix T € R9%9 satisfies the restricted eigenvalue condition with
curvature o > 0 and tolerance 7 > 0 if

XTx > allx||> = 7||x||? forall xeR9.

We write T ~ RE(a, 7) for short.
Deviation bound: There exists a deterministic function Q(y) such that

o = lo
15 = T Bollmar < Q(B0) g,\(,‘”, N=T p q=d».
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General path to consistency

Basu and Michailidis (2015)

~

B = argmin < - 287 + ﬁ/Fﬁ + )\N||B||1)'

BERY

Restricted Eigenvalue: A symmetric matrix T € R9%9 satisfies the restricted eigenvalue condition with
curvature o > 0 and tolerance 7 > 0 if

XTx > allx||> = 7||x||? forall xeR9.

We write T ~ RE(a, 7) for short.
Deviation bound: There exists a deterministic function Q(y) such that

o = lo
15 = T Bollmar < Q(B0) g,\(,‘”, N=T p q=d».

Both properties can be reduced to finding bounds on:

P[V/(Tz — Tz)v| > 4]
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Path to consistency for latent process

Unobserved D., Lund, Pipiras (2023)

B = argmin ( — 28"+ BTB+ )\NHBHI)'

BERY

Marie Diiker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023 18 /24



Path to consistency for latent process

Unobserved D., Lund, Pipiras (2023)

B = argmin ( — 28"+ BTB+ )\NHBHI)'

BERY
with
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Path to consistency for latent process

D., Lund, Pipiras (2023)

B = argmin ( — 28"+ BTB+ )\NHBHI)'

BERY
with

Restricted Eigenvalue condition and Deviation bound can be proven by reducing problem to finding
bound on

P[ sup |V/(Tz—Tz)v|>4].
veK(2s)
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Path to consistency for latent process

D., Lund, Pipiras (2023)

B = argmin < — 28"+ BTB+ )\NHBHI)'

BERY
with

Restricted Eigenvalue condition and Deviation bound can be proven by reducing problem to finding
bound on

P[ sup |V/(Tz—Tz)v|>4].
veK(2s)

Apply
P [IT2 —Tzlls > Q(T2)8| % PlITx — Txlls > 6] + P[|Fx — Tx|2 > ]

+ P10 = 0]|max > 6 A ] + P[||6 — 0., > 6]

max

Marie Diiker (FAU Erlangen) High-dimensional latent Gaussian count time series December 1st, 2023



Main result Il

Recall that 5 = arg MiNgcpa ( — 283+ BTB + /\N||£3H1>_
There exist finite positive constants ¢; and ¢, such that for any v € K(2s),
‘T N§?
P[[v/(Tx — Tx)v| > 0] < crexp _C2ST ., N=T—p.

There exist finite positive constants ¢; and ¢, such that

P[Hé\_ 9||max > 5] < cidK exp (—C2T€2) .

Proposition (D., Lund, Pipiras)

Then, with high probability, for any Ay > 4Q(fo) IO%\(,q),

= A
18— Bol| < 645~

Same convergence rate as in Basu and Michailidis (2015)!
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Series 177 d=15 + d=25
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Conclusions

® Summary
- Possibly high-dimensional count time series model whose correlation structure is determined through
the correlation of an underlying latent Gaussian process.
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Conclusions

® Summary
- Possibly high-dimensional count time series model whose correlation structure is determined through

the correlation of an underlying latent Gaussian process.
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