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Motivation for Opinion Dynamics

1 Political Science:

• Understand polarization in modern societies

• Influence of the media in opinion shaping

• Debunk myths about political personas

2 Probability Theory:

• Stochastic Processes on Networks

• Influence maximization in Social Networks

• Community detection and clustering
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Goals

1 Study the behavior of the system under varying density regimes and check
for phase transitions.

2 Understand how the opinion process is affected by the passing of time and
the change of the network size.

3 Study the typical stationary opinion on an inhomogeneous network.
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Mathematical Tools

1 Random Graphs

2 Mean-field approximation

3 Local Weak Convergence

4 Stochastic fixed-point equations
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Opinion Models on Fixed Graphs

1 DeGroot model

• The first opinion model to formally study consensus.

• The simplest form of linear opinion updating:

R(t) = WR(t−1),

for a stochastic matrix W .

Figure: Evolution of the DeGroot model towards consensus
(Source: Noorazar ’20)
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2 Friedkin - Johnsen model

• Extension of the DeGroot model:

R(t) = DWR(t−1) + (I − D)R(0)

• Allows for stubborn agents via the matrix I − D.

3 Bounded confidence models

• Agents interact only when their opinions are close:{
R

(t)
i = R

(t−1)
i + µ(R

(t−1)
j − R

(t−1)
i )

R
(t)
j = R

(t−1)
j + µ(R

(t−1)
i − R

(t−1)
j )

when |R(t−1)
i − R

(t−1)
j | ≤ ϵ, for a specified confidence radius ϵ.

• Model selective exposure
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Modeling via Random Graphs

• In practice, we have a specified social network G .

• Idea: think of G as a realization of a random graph model.

• Insight: Even though the math of random graphs is harder, this idea allows
us to talk about the typical stationary opinion and get way more general
results that don’t depend on the specific G .
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Random Graphs

• Graphs where each edge is present with some probability.

• Useful for modeling first-order properties:

1 Degree distribution

2 Connectivity

3 Community structure

4 Average distances (small-world phenomenon)

Panagiotis Andreou Opinion Dynamics on Inhomogeneous Networks October 20, 2023 9 / 36
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Classification of Random Graphs

1 Static:

• Snapshots of large networks

• G (Vn,En) and G (Vn+1,En+1) can be quite different

• Examples: Erdös-Rényi, Stochastic Block Model, Configuration Model

2 Dynamic:

• Addition of new vertices to the existing network

• G (Vn,En) and G (Vn+1,En+1) share most edges

• Examples: Barabási-Albert model, Preferential Attachment networks

Our opinion process is evolving on a static random graph.
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Erdös - Rényi (static)

Figure:
Different colors for different connected components

(source: Fluid Limits and Random Graphs)
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Stochastic Block Model (static)

Figure: SBM with 3 communities
(source: Mathematics sin Fronteras)
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Preferential Attachment (dynamic)

Figure:
PA model - “the rich get richer”

(source: ResearchGate)
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dSBM

• Marked directed random graph G (Vn,En;An).

• Each vertex i ∈ Vn has a community label Ji ∈ [K ].

• Two nodes i , j ∈ Vn are connected with an edge with probability

p
(n)
ij =

κ(Ji , Jj)θn
n

∧ 1,

where κ ∈ RK×K
+ and θn is a density parameter.
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Density regimes

• The expected degree of a vertex is of order θn.

• We call the graph sparse if θn = O(1).

• We call the graph semi-sparse if θn → ∞ and θn = O(log n).

• We call the graph dense if θn
log n → ∞ as n → ∞.

• Our work covers the entire spectrum of sequences satisfying θn → ∞ as
n → ∞.
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Our Opinion Process

• Individuals are represented by nodes on a directed SBM.

• An edge from j to i means “i listens to j”.

• R
(k)
i ∈ [−1, 1]: opinion of individual i at time k .

• W
(k)
i ∈ [−d , d ]: media signal that i receives at time k.

• Cij ∈ [0, c]: the weight that i puts in j ’s opinion.

• At each time step k ≥ 1, individual i updates their opinion according to

R
(k)
i =

n∑
j=1

CijR
(k−1)
j +W

(k)
i + (1− c − d)R

(k−1)
i ,

where 0 ≤ c + d ≤ 1.
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The Weights

• Define the weight Cij that i puts on j ’s opinion as

Cij =
cBij1(j → i)∑n
r=1 Bir1(r → i)

1(D−
i > 0, i ̸= j),

where D−
i :=

∑n
r=1 1(r → i) is the in-degree of i .

• The random variables Bij are bounded and their distributions depend only on
the communities Ji , Jj .

• Note that
∑n

j=1 Cij = c < 1 for every i ∈ Vn, i.e., C is sub-stochastic.

• This is key in our analysis, as it creates a contraction.

• Assume that the external media signals {W (k)
i : k ≥ 0, i ∈ Vn} are

independent.
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Simulations

• dSBM with 2 communities

• Expected degree ∼ log n

• Run the Markov chain until stationarity (roughly 500 iterations)

Figure: Polarization Figure: Consensus
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Mean Field Theory

• Originally from Statistical Mechanics (P. Curie & P. Weiss, early 1900s).

• Idea: replace all the interactions in a complex system by an average
interaction.

• Intuition: the presence of many particles should reduce the effect of each
particle on the entire system.

• Practicality: reduce the initial high-dimensional problem of a stochastic
process on a network to one of much lower dimension.
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Notation

• Define An := {Ji : i ∈ Vn}, Fn := σ(An), En[·] := E [·|Fn].

• π
(n)
r := 1

n

n∑
i=1

1(Ji = r), the proportion of vertices having community r ∈ [K ].

• Assumption: π
(n)
r

P−→ πr , where π1 + · · ·+ πK = 1.

• Define the matrix M ∈ [0, 1]K×K by

mrs =
c πsβr ,sκ(s, r)

π1βr1κ(1, r) + · · ·+ πKβrKκ(K , r)
,

where βr ,s = E [Bij |Ji = r , Jj = s].

• Let al ,s =
(s
l

)
(1− c − d)s−l , for 0 ≤ l ≤ s.
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The mean-field limit

• Define the process R(k) = (R(k)
1 , . . . ,R(k)

n )′ according to

R(0)
i = R

(0)
i

and for k ≥ 1,

R(k)
i =

k−1∑
t=0

(1− c − d)tW
(k−t)
i + 1(k ≥ 2)

k−1∑
t=1

t∑
s=1

as,t(M
sw)Ji

+
k∑

s=1

as,k(M
sr0)Ji + (1− c − d)kR

(0)
i ,

i ∈ [n], where w(l) = E [W
(0)
i |Ji = l ] and r0(l) = E [R

(0)
i |Ji = l ], l ∈ [K ].

• Key-observation: The components of R(k) are independent.
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Main Theorem

Theorem (A., Olvera-Cravioto ’23)

Suppose θn/ log n → ∞ as n → ∞. Then,

sup
k≥0

En

[
∥R(k) −R(k)∥∞

]
= O

(√
log n

θn
+ max

1≤r ,s≤K

∣∣∣∣∣π(n)
s πr − πsπ

(n)
r

π
(n)
r πs

∣∣∣∣∣
)
.

Moreover, for any sequence θn satisfying θn → ∞ as n → ∞,

sup
k≥0

1

n
En

[
∥R(k) −R(k)∥1

]
P−→ 0.
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Remarks

• Since ∥x∥1 ≤ n∥x∥∞ for any x ∈ Rn, Theorem 1 shows that the
approximation is stronger when θn/ log n → ∞, and it gradually weakens as
the rate at which θn grows drops below the critical rate log n.

• Intuition: the average number of neighbors that any vertex has grows with
θn. The larger the number of neighbors, the more their aggregate
contributions behave as the average opinion.

• The weakest result is valid for any θn → ∞, regardless of how slow the
growth is.

• Since the components of {R(k) : k ≥ 1} are independent of each other,
Theorem 1 yields that the trajectories of the process {R(k) : k ≥ 0} are
asymptotically independent, i.e., the system exhibits propagation of chaos.
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Proof steps

1 First, write the opinion recursion in matrix form:

R(k) = AR(k−1) +W(k),

where Aij = Cij1(i ̸= j) + (1− c − d)1(i = j).

2 Iterate the recursion:

R(k) =
k−1∑
t=0

AtW(k−t) + AkR(0).
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3 Note that

At = (C + (1− c − d)I )t =
t∑

s=0

(
t

s

)
(1− c − d)t−sC s =

t∑
s=0

as,tC
s .

4 Thus, the recursion becomes

R(k) =
k−1∑
t=0

t∑
s=0

as,tC
sW(k−t) +

k∑
s=0

as,kC
sR(0).
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3 Define the approximate mean M̃ of the matrix C :

M̃ij =
cβJi ,Jjκ(Jj , Ji )

n
(
βJi ,1π

(n)
1 κ(1, Ji ) + · · ·+ βJi ,Kπ

(n)
K κ(K , Ji )

)1(i ̸= j).

4 Approximate meaning that

M̃ij =
En[cBij1(j → i)]

En [
∑n

i=1 Bir1(r → i)]
≈ En[Cij ].
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6 Key idea: Define the intermediate process

R̃
(k)

=
k−1∑
t=0

(1− c − d)tW(k−t) + 1(k ≥ 2)
k−1∑
t=1

t∑
s=1

as,tM̃
sw̄

+
k∑

s=1

as,kM̃
s r̄0 + (1− c − d)kR(0), k ≥ 1, R̃

(0)
= R(0),

where w̄ := En

[
W(0)

]
and r̄0 := En

[
R(0)

]
.

7 Intuition: R̃
(k)

replaces all neighbor contributions with their approximate
means, i.e., every term of the form C sX with s ≥ 1 and X a random vector is
replaced with M̃sEn[X]. That’s the essence of mean-field approximation!

8 Key fact: The components of R̃
(k)

are independent, since the only
randomness comes from the media signals.
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7 Goal: bound En

[
∥R(k) − R̃

(k)∥p
]
and En

[
∥R̃(k) −R(k)∥∞

]
, for p ≥ 1.

8 Bound these terms for different ranges of θn:

• If θn/ log n → ∞, use concentration inequalities.

• If θn/ log n → 0, use local weak convergence.
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Local Weak Convergence

• Idea: if the graph is sparse enough, then cycles take long to form, so it
locally looks like a tree.

• Pick vertex In uniformly at random and explore its inbound neighborhood.

Figure: Graph created by M. Olvera-Cravioto.
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Local Weak Limit

• In a general random graph, we can’t compute E [C sX] for s ≥ 2:

(C sX)i =
∑
j1,...,js

Cij1Cj1j2 · · ·Cjs−1jsXjs ,

since the existence of the edge (j1, j2) is no longer Bernoulli.

• Random graphs are hard because they contain cycles!

• The local weak limit of our K -community dSBM is a K -type Galton-Watson
process.

• Key-insight: The conditional independence of branching processes balances
the lack of enough averaging in the subcritical regimes.
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Typical Opinion

Theorem (Fraiman, Lin, Olvera-Cravioto ’22)

Suppose G is locally finite and d > 0. Then, there exists a random vector R such
that R(k) ⇒ R as k → ∞. This is the stationary distribution of the Markov Chain.

• Typical opinion: RIn , for In uniformly chosen vertex.

• The typical opinion reflects the average behavior on the graph.
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Theorem (A., Olvera-Cravioto ’23)

Fix k ≥ 0 and define the random variables ({R(k)
∅ : k ≥ 0},J∅) according to:

P
(
(R(0)

∅ ,R(1)
∅ , . . . ,R(k)

∅ ) ∈ A
∣∣∣J∅ = s

)
= Pn

(
(R(0)

i ,R(1)
i , . . . ,R(k)

i ) ∈ A
∣∣∣ Ji = s

)
and P(J∅ = s) = πs , 1 ≤ s ≤ K . Then, ∀1 ≤ r ≤ K , ∀f ∈ Cb([−1, 1]k+1), we have

1

n

n∑
i=1

f (R
(0)
i ,R

(1)
i , . . . ,R

(k)
i )1(Ji = r)

P−−−→
n→∞

E
[
f (R(0)

∅ ,R(1)
∅ , . . . ,R(k)

∅ )1(J∅ = r)
]
.

Furthermore, when θn/ log n → ∞, we have for any arbitrary collection of vertices
{i1, . . . , im} ⊆ Vn having community labels {r1, . . . , rm}, m ≥ 1,

E

 m∏
j=1

fj(R
(0)
ij

, . . . ,R
(k)
ij

)

 n→∞−−−→
m∏
j=1

E
[
fj(R(0)

∅ , . . . ,R(k)
∅ )
∣∣∣J∅ = rj

]
,

for any set of continuous bounded functions {f1, . . . , fm} on [−1, 1]k+1, k ≥ 0.
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Time and Network Size

Theorem (A., Olvera-Cravioto ’23)

There exists a random variable R∅ such that RIn ⇒ R∅ as n → ∞, and R(k)
∅ ⇒ R∅ as

k → ∞. Hence, the following diagram commutes.

R
(k)
In

RIn

R(k)
∅ R∅

k→∞

n→∞ n→∞

k→∞
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Key takeaways

• Mathematical insights:

1 When the graph is sufficiently dense, the high number of neighbors allows us to
use Chernoff bounds.

2 As the graph gets sparser, concentration inequalities are not useful, so we need
to get independence from somewhere else. That’s what branching processes do.

3 Random graphs are hard because they contain cycles. When possible, couple
them with trees.

• Practical implications:

1 When the network is sparse, individual opinions matter significantly.

2 As the network gets denser, individuals essentially don’t interact but rather
update based on the “average” opinion.
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Future directions

• Replace linear opinion recursion by general contraction, namely

R
(k)
i = Φ

(
W

(k)
i , {R(k−1)

j }j∈Vn , Ji

)
,

where Φ is a ℓ-Lipschitz function with ℓ < 1.

• Extend the analysis to multiopinion dynamics, i.e., assume individuals are
interacting on more than one topics. Try to explain mathematically the
political scientists’ hypothesis that “political personas are not real”.
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