Typical Opinion

Conclusion

Opinion Dynamics on Directed Inhomogeneous Networks

Panagiotis Andreou

University of North Carolina at Chapel Hill

pandreou@email.unc.edu

Joint work with Prof. Mariana Olvera-Cravioto

Seminar of Statistics & Operations Research Department of Mathematics, NKUA

October 20, 2023

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion

Table of contents

1 Introduction

- 2 The Model
- **3** Mean-Field Approximation
- **4** Typical Opinion

5 Conclusion

Typical Opinion

Conclusion

Motivation for Opinion Dynamics

1 Political Science:

- Understand polarization in modern societies
- Influence of the media in opinion shaping
- Debunk myths about political personas

Typical Opinion

Conclusion

Motivation for Opinion Dynamics

1 Political Science:

- Understand polarization in modern societies
- Influence of the media in opinion shaping
- Debunk myths about political personas
- 2 Probability Theory:
 - Stochastic Processes on Networks
 - Influence maximization in Social Networks
 - Community detection and clustering

Introduction 0●000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

Goals

• Study the behavior of the system under varying **density** regimes and check for phase transitions.

Introduction ○●○○○	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

Goals

- Study the behavior of the system under varying **density** regimes and check for phase transitions.
- Output the opinion process is affected by the passing of time and the change of the network size.

Introduction ○●○○○	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

Goals

- Study the behavior of the system under varying **density** regimes and check for phase transitions.
- Output the opinion process is affected by the passing of time and the change of the network size.
- **3** Study the **typical** stationary opinion on an inhomogeneous network.

Introduction 00000	The Model 0000000000	Typical Opinion

Mathematical Tools

- 1 Random Graphs
- Ø Mean-field approximation
- **3** Local Weak Convergence
- 4 Stochastic fixed-point equations

Opinion Models on Fixed Graphs

DeGroot model

- The first opinion model to formally study consensus.
- The simplest form of linear opinion updating:

$$\mathbf{R}^{(t)} = W \mathbf{R}^{(t-1)},$$

for a stochastic matrix W.

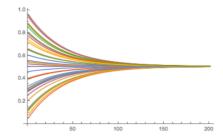


Figure: Evolution of the DeGroot model towards consensus (Source: Noorazar '20)

Introduction 0000●	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

2 Friedkin - Johnsen model

• Extension of the DeGroot model:

$$\mathbf{R}^{(t)} = DW\mathbf{R}^{(t-1)} + (I-D)\mathbf{R}^{(0)}$$

• Allows for stubborn agents via the matrix I - D.

2 Friedkin - Johnsen model

• Extension of the DeGroot model:

$$\mathbf{R}^{(t)} = DW\mathbf{R}^{(t-1)} + (I-D)\mathbf{R}^{(0)}$$

• Allows for stubborn agents via the matrix I - D.

Bounded confidence models

• Agents interact only when their opinions are close:

$$\begin{cases} R_i^{(t)} = R_i^{(t-1)} + \mu(R_j^{(t-1)} - R_i^{(t-1)}) \\ R_j^{(t)} = R_j^{(t-1)} + \mu(R_i^{(t-1)} - R_j^{(t-1)}) \end{cases}$$

when $|R_i^{(t-1)} - R_j^{(t-1)}| \le \epsilon$, for a specified confidence radius ϵ .

Model selective exposure

The Model •0000000000

Mean-Field Approximation

Typical Opinio

Conclusion

Modeling via Random Graphs

• In practice, we have a specified social network G.

The Model •0000000000

Mean-Field Approximation

Typical Opinion

Conclusion

Modeling via Random Graphs

- In practice, we have a specified social network G.
- *Idea:* think of G as a realization of a random graph model.

The Model •0000000000 Mean-Field Approximation

Typical Opinio

Conclusion

Modeling via Random Graphs

- In practice, we have a specified social network G.
- *Idea:* think of G as a realization of a random graph model.
- *Insight:* Even though the math of random graphs is harder, this idea allows us to talk about the *typical* stationary opinion and get way more general results that don't depend on the specific *G*.

Introduction 00000	The Model o●ooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

Random Graphs

- Graphs where each edge is present with some probability.
- Useful for modeling first-order properties:
 - Degree distribution
 - 2 Connectivity
 - **3** Community structure
 - **4** Average distances (small-world phenomenon)

Typical Opinion

Conclusion

Classification of Random Graphs

1 Static:

- Snapshots of large networks
- $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ can be quite different
- Examples: Erdös-Rényi, Stochastic Block Model, Configuration Model

Typical Opinio

Conclusion

Classification of Random Graphs

1 Static:

- Snapshots of large networks
- $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ can be quite different
- Examples: Erdös-Rényi, Stochastic Block Model, Configuration Model

2 Dynamic:

- Addition of new vertices to the existing network
- $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ share most edges
- Examples: Barabási-Albert model, Preferential Attachment networks

Typical Opinion

Conclusion

Classification of Random Graphs

1 Static:

- Snapshots of large networks
- $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ can be quite different
- Examples: Erdös-Rényi, Stochastic Block Model, Configuration Model

2 Dynamic:

- Addition of new vertices to the existing network
- $G(V_n, E_n)$ and $G(V_{n+1}, E_{n+1})$ share most edges
- Examples: Barabási-Albert model, Preferential Attachment networks

Our opinion process is evolving on a **static** random graph.

Introduction 00000 The Model

Mean-Field Approximation

Typical Opinio

Conclusion

Erdös - Rényi (static)

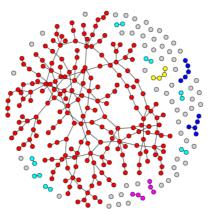


Figure: Different colors for different connected components (source: Fluid Limits and Random Graphs)

Introduction 00000 The Model

Mean-Field Approximation

Typical Opinio

Conclusion

Stochastic Block Model (static)

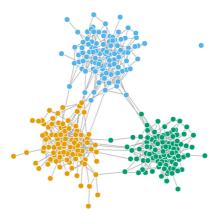


Figure: SBM with 3 communities (source: Mathematics sin Fronteras)

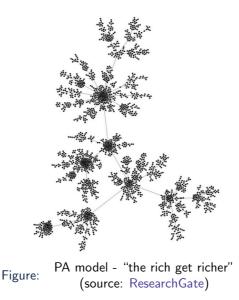
Introduction 00000 The Model

Mean-Field Approximation

Typical Opinic

Conclusion

Preferential Attachment (dynamic)



Introduction 00000	The Model 000000●0000	Mean-Field Approximation	Typical Opinion	Conclusion 000
dSBM				
ac Bin				

• Marked directed random graph $G(V_n, E_n; \mathscr{A}_n)$.

Introduction	The Model	Mean-Field Approximation	Typical Opinion	Conclusion
00000	ooooooooooo		000	000
dSBM				

- Marked directed random graph $G(V_n, E_n; \mathscr{A}_n)$.
- Each vertex $i \in V_n$ has a **community label** $J_i \in [K]$.

Introduction	The Model	Mean-Field Approximation	Typical Opinion	Conclusion
00000	oooooo●oooo		000	000
dSBM				

- Marked directed random graph $G(V_n, E_n; \mathscr{A}_n)$.
- Each vertex $i \in V_n$ has a **community label** $J_i \in [K]$.
- Two nodes $i, j \in V_n$ are connected with an edge with probability

$$p_{ij}^{(n)} = rac{\kappa(J_i, J_j) heta_n}{n} \wedge 1,$$

where $\kappa \in \mathbb{R}^{K \times K}_+$ and θ_n is a **density** parameter.

Introduction 00000	The Model ooooooo●ooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

Density regimes

- The expected degree of a vertex is of order θ_n .
- We call the graph **sparse** if $\theta_n = O(1)$.
- We call the graph **semi-sparse** if $\theta_n \to \infty$ and $\theta_n = O(\log n)$.
- We call the graph **dense** if $\frac{\theta_n}{\log n} \to \infty$ as $n \to \infty$.
- Our work covers the entire spectrum of sequences satisfying $\theta_n \to \infty$ as $n \to \infty$.

Introduction 00000	The Model 0000000●00	Mean-Field Approximation	Typical Opinion	Conclusion 000

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from *j* to *i* means "*i* listens to *j*".

Introduction 00000	The Model ooooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from *j* to *i* means "*i* listens to *j*".
- $R_i^{(k)} \in [-1, 1]$: opinion of individual *i* at time *k*.
- $W_i^{(k)} \in [-d, d]$: media signal that *i* receives at time *k*.
- $C_{ij} \in [0, c]$: the weight that *i* puts in *j*'s opinion.

Introduction 00000	The Model ooooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from *j* to *i* means "*i* listens to *j*".
- $R_i^{(k)} \in [-1, 1]$: opinion of individual *i* at time *k*.
- $W_i^{(k)} \in [-d, d]$: media signal that *i* receives at time *k*.
- $C_{ij} \in [0, c]$: the weight that *i* puts in *j*'s opinion.
- At each time step $k \ge 1$, individual *i* updates their opinion according to

$$R_i^{(k)} = \sum_{j=1}^n C_{ij}R_j^{(k-1)} + W_i^{(k)} + (1-c-d)R_i^{(k-1)},$$

where $0 \leq c + d \leq 1$.

Introduction 00000	The Model ooooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

The Weights

• Define the weight C_{ij} that i puts on j's opinion as

$$C_{ij} = rac{cB_{ij}1(j o i)}{\sum_{r=1}^{n} B_{ir}1(r o i)} 1(D_i^- > 0, i \neq j),$$

where $D_i^- := \sum_{r=1}^n \mathbb{1}(r \to i)$ is the in-degree of *i*.

• The random variables B_{ij} are bounded and their distributions depend only on the communities J_i, J_j .

Introduction 00000	The Model 00000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

The Weights

• Define the weight C_{ij} that i puts on j's opinion as

$$C_{ij} = rac{cB_{ij}1(j o i)}{\sum_{r=1}^{n} B_{ir}1(r o i)} 1(D_i^- > 0, i \neq j),$$

where $D_i^- := \sum_{r=1}^n \mathbb{1}(r \to i)$ is the in-degree of *i*.

- The random variables B_{ij} are bounded and their distributions depend only on the communities J_i, J_j .
- Note that $\sum_{j=1}^{n} C_{ij} = c < 1$ for every $i \in V_n$, i.e., C is sub-stochastic.
- This is key in our analysis, as it creates a **contraction**.

Introduction 00000	The Model ooooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

The Weights

• Define the weight C_{ij} that i puts on j's opinion as

$$C_{ij} = \frac{cB_{ij}1(j \rightarrow i)}{\sum_{r=1}^{n} B_{ir}1(r \rightarrow i)} \mathbb{1}(D_i^- > 0, i \neq j),$$

where $D_i^- := \sum_{r=1}^n \mathbb{1}(r \to i)$ is the in-degree of *i*.

- The random variables B_{ij} are bounded and their distributions depend only on the communities J_i, J_j .
- Note that $\sum_{j=1}^{n} C_{ij} = c < 1$ for every $i \in V_n$, i.e., C is sub-stochastic.
- This is key in our analysis, as it creates a **contraction**.
- Assume that the external media signals $\{W_i^{(k)}: k \ge 0, i \in V_n\}$ are independent.

Introduction 00000	The Model oooooooooo	Mean-Field Approximation	Typical Opinion	Conclusion 000

Simulations

- dSBM with 2 communities
- Expected degree $\sim \log n$
- Run the Markov chain until stationarity (roughly 500 iterations)



Introduction	The Model	Mean-Field Approximation	Typical Opinion	Conclusion
00000	0000000000	•0000000000		000

• Originally from Statistical Mechanics (P. Curie & P. Weiss, early 1900s).

Introduction 00000	The Model 0000000000	Mean-Field Approximation •0000000000	Typical Opinion	Conclusion

- Originally from Statistical Mechanics (P. Curie & P. Weiss, early 1900s).
- *Idea:* replace all the interactions in a complex system by an average interaction.

Introduction 00000	The Model 0000000000	Mean-Field Approximation •0000000000	Typical Opinion	Conclusion

- Originally from Statistical Mechanics (P. Curie & P. Weiss, early 1900s).
- *Idea:* replace all the interactions in a complex system by an average interaction.
- *Intuition:* the presence of many particles should reduce the effect of each particle on the entire system.

Introduction 00000	The Model 0000000000	Mean-Field Approximation •0000000000	Typical Opinion	Conclusion

- Originally from Statistical Mechanics (P. Curie & P. Weiss, early 1900s).
- *Idea:* replace all the interactions in a complex system by an average interaction.
- *Intuition:* the presence of many particles should reduce the effect of each particle on the entire system.
- *Practicality:* reduce the initial high-dimensional problem of a stochastic process on a network to one of much lower dimension.

Introduction 00000	The Model 0000000000	Mean-Field Approximation 0●000000000	Typical Opinion	Conclusion 000

Notation

- Define $\mathscr{A}_n := \{J_i : i \in V_n\}, \ \mathscr{F}_n := \sigma(\mathscr{A}_n), \ \mathbb{E}_n[\cdot] := E[\cdot|\mathscr{F}_n].$
- $\pi_r^{(n)} := \frac{1}{n} \sum_{i=1}^n \mathbb{1}(J_i = r)$, the proportion of vertices having community $r \in [K]$.
- Assumption: $\pi_r^{(n)} \xrightarrow{P} \pi_r$, where $\pi_1 + \cdots + \pi_K = 1$.
- Define the matrix $M \in [0,1]^{K imes K}$ by

$$m_{rs} = \frac{c \pi_s \beta_{r,s} \kappa(s,r)}{\pi_1 \beta_{r1} \kappa(1,r) + \cdots + \pi_K \beta_{rK} \kappa(K,r)},$$

where $\beta_{r,s} = E[B_{ij}|J_i = r, J_j = s]$.

• Let $a_{l,s} = {s \choose l} (1-c-d)^{s-l}$, for $0 \le l \le s$.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

The mean-field limit

• Define the process $\mathcal{R}^{(k)} = (\mathcal{R}_1^{(k)}, \dots, \mathcal{R}_n^{(k)})'$ according to

$$\mathcal{R}_i^{(0)} = R_i^{(0)}$$

and for $k \geq 1$,

$$\mathcal{R}_{i}^{(k)} = \sum_{t=0}^{k-1} (1-c-d)^{t} W_{i}^{(k-t)} + 1(k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^{t} a_{s,t} (M^{s} \mathbf{w})_{J_{i}} + \sum_{s=1}^{k} a_{s,k} (M^{s} \mathbf{r}_{0})_{J_{i}} + (1-c-d)^{k} R_{i}^{(0)},$$

 $i \in [n]$, where $w(l) = E[W_i^{(0)}|J_i = l]$ and $r_0(l) = E[R_i^{(0)}|J_i = l]$, $l \in [K]$.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

The mean-field limit

• Define the process $\mathcal{R}^{(k)} = (\mathcal{R}_1^{(k)}, \dots, \mathcal{R}_n^{(k)})'$ according to

$$\mathcal{R}_i^{(0)} = R_i^{(0)}$$

and for $k \geq 1$,

$$\mathcal{R}_{i}^{(k)} = \sum_{t=0}^{k-1} (1-c-d)^{t} W_{i}^{(k-t)} + 1(k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^{t} a_{s,t} (M^{s} \mathbf{w})_{J_{i}} + \sum_{s=1}^{k} a_{s,k} (M^{s} \mathbf{r}_{0})_{J_{i}} + (1-c-d)^{k} R_{i}^{(0)},$$

 $i \in [n]$, where $w(l) = E[W_i^{(0)}|J_i = l]$ and $r_0(l) = E[R_i^{(0)}|J_i = l]$, $l \in [K]$.

• *Key-observation*: The components of $\mathcal{R}^{(k)}$ are **independent**.

Introduction 00000 The Model

Mean-Field Approximation

Typical Opinion

Conclusion

Main Theorem

Theorem (A., Olvera-Cravioto '23)

Suppose $\theta_n / \log n \to \infty$ as $n \to \infty$. Then,

$$\sup_{k\geq 0} \mathbb{E}_n \left[\|\mathbf{R}^{(k)} - \mathbf{\mathcal{R}}^{(k)}\|_{\infty} \right] = O\left(\sqrt{\frac{\log n}{\theta_n}} + \max_{1\leq r,s\leq K} \left| \frac{\pi_s^{(n)} \pi_r - \pi_s \pi_r^{(n)}}{\pi_r^{(n)} \pi_s} \right| \right).$$

Introduction 00000 The Model

Mean-Field Approximation

Typical Opinion

Conclusion

Main Theorem

Theorem (A., Olvera-Cravioto '23)

Suppose $\theta_n / \log n \to \infty$ as $n \to \infty$. Then,

$$\sup_{k\geq 0} \mathbb{E}_n \left[\|\mathbf{R}^{(k)} - \mathcal{R}^{(k)}\|_{\infty} \right] = O\left(\sqrt{\frac{\log n}{\theta_n}} + \max_{1\leq r,s\leq K} \left| \frac{\pi_s^{(n)} \pi_r - \pi_s \pi_r^{(n)}}{\pi_r^{(n)} \pi_s} \right| \right).$$

Moreover, for any sequence θ_n satisfying $\theta_n \to \infty$ as $n \to \infty$,

$$\sup_{k\geq 0}\frac{1}{n}\mathbb{E}_n\left[\|\mathbf{R}^{(k)}-\boldsymbol{\mathcal{R}}^{(k)}\|_1\right]\xrightarrow{P} 0.$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000
Remarks				

• Since $\|\mathbf{x}\|_1 \leq n \|\mathbf{x}\|_{\infty}$ for any $\mathbf{x} \in \mathbb{R}^n$, Theorem 1 shows that the approximation is stronger when $\theta_n / \log n \to \infty$, and it gradually weakens as the rate at which θ_n grows drops below the *critical* rate log *n*.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000
Remarks				

- Since $\|\mathbf{x}\|_1 \leq n \|\mathbf{x}\|_{\infty}$ for any $\mathbf{x} \in \mathbb{R}^n$, Theorem 1 shows that the approximation is stronger when $\theta_n / \log n \to \infty$, and it gradually weakens as the rate at which θ_n grows drops below the *critical* rate log *n*.
- Intuition: the average number of neighbors that any vertex has grows with θ_n. The larger the number of neighbors, the more their aggregate contributions behave as the average opinion.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000
Remarks				

- Since $\|\mathbf{x}\|_1 \leq n \|\mathbf{x}\|_{\infty}$ for any $\mathbf{x} \in \mathbb{R}^n$, Theorem 1 shows that the approximation is stronger when $\theta_n / \log n \to \infty$, and it gradually weakens as the rate at which θ_n grows drops below the *critical* rate log *n*.
- Intuition: the average number of neighbors that any vertex has grows with θ_n. The larger the number of neighbors, the more their aggregate contributions behave as the average opinion.
- The weakest result is valid for any $\theta_n \to \infty$, regardless of how slow the growth is.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000
Remarks				

- Since $\|\mathbf{x}\|_1 \leq n \|\mathbf{x}\|_{\infty}$ for any $\mathbf{x} \in \mathbb{R}^n$, Theorem 1 shows that the approximation is stronger when $\theta_n / \log n \to \infty$, and it gradually weakens as the rate at which θ_n grows drops below the *critical* rate log *n*.
- Intuition: the average number of neighbors that any vertex has grows with *θ_n*. The larger the number of neighbors, the more their aggregate contributions behave as the average opinion.
- The weakest result is valid for any $\theta_n \to \infty$, regardless of how slow the growth is.
- Since the components of {*R*^(k) : k ≥ 1} are independent of each other, Theorem 1 yields that the trajectories of the process {*R*^(k) : k ≥ 0} are asymptotically independent, i.e., the system exhibits propagation of chaos.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion

Proof steps

1 First, write the opinion recursion in matrix form:

$$\mathbf{R}^{(k)} = A\mathbf{R}^{(k-1)} + \mathbf{W}^{(k)},$$

where $A_{ij} = C_{ij}1(i \neq j) + (1 - c - d)1(i = j)$.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion

Proof steps

1 First, write the opinion recursion in matrix form:

$$\mathbf{R}^{(k)} = A\mathbf{R}^{(k-1)} + \mathbf{W}^{(k)},$$

where
$$A_{ij} = C_{ij}1(i \neq j) + (1 - c - d)1(i = j)$$
.

2 Iterate the recursion:

$$\mathbf{R}^{(k)} = \sum_{t=0}^{k-1} A^{t} \mathbf{W}^{(k-t)} + A^{k} \mathbf{R}^{(0)}.$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

ONOTE that

$$A^{t} = (C + (1 - c - d)I)^{t} = \sum_{s=0}^{t} {t \choose s} (1 - c - d)^{t-s} C^{s} = \sum_{s=0}^{t} a_{s,t} C^{s}.$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

ONOTE that

$$A^{t} = (C + (1 - c - d)I)^{t} = \sum_{s=0}^{t} {t \choose s} (1 - c - d)^{t-s} C^{s} = \sum_{s=0}^{t} a_{s,t} C^{s}.$$

4 Thus, the recursion becomes

$$\mathbf{R}^{(k)} = \sum_{t=0}^{k-1} \sum_{s=0}^{t} a_{s,t} C^{s} \mathbf{W}^{(k-t)} + \sum_{s=0}^{k} a_{s,k} C^{s} \mathbf{R}^{(0)}.$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

3 Define the *approximate* mean \tilde{M} of the matrix *C*:

$$\tilde{M}_{ij} = \frac{c\beta_{J_i,J_j}\kappa(J_j,J_i)}{n\left(\beta_{J_i,1}\pi_1^{(n)}\kappa(1,J_i) + \cdots + \beta_{J_i,K}\pi_K^{(n)}\kappa(K,J_i)\right)}1(i\neq j).$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

3 Define the *approximate* mean \tilde{M} of the matrix *C*:

$$\tilde{M}_{ij} = \frac{c\beta_{J_i,J_j}\kappa(J_j,J_i)}{n\left(\beta_{J_i,1}\pi_1^{(n)}\kappa(1,J_i) + \dots + \beta_{J_i,K}\pi_K^{(n)}\kappa(K,J_i)\right)}1(i\neq j).$$

Approximate meaning that

$$\tilde{M}_{ij} = \frac{\mathbb{E}_n[cB_{ij}1(j \to i)]}{\mathbb{E}_n\left[\sum_{i=1}^n B_{ir}1(r \to i)\right]} \approx \mathbb{E}_n[C_{ij}].$$

troduction 0000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

6 *Key idea:* Define the **intermediate** process

$$\begin{split} \tilde{\textbf{R}}^{(k)} &= \sum_{t=0}^{k-1} (1-c-d)^t \textbf{W}^{(k-t)} + 1 (k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^t a_{s,t} \tilde{M}^s \bar{\textbf{w}} \\ &+ \sum_{s=1}^k a_{s,k} \tilde{M}^s \bar{\textbf{r}}_0 + (1-c-d)^k \textbf{R}^{(0)}, \quad k \ge 1, \qquad \tilde{\textbf{R}}^{(0)} = \textbf{R}^{(0)}, \end{split}$$

where $\mathbf{\bar{w}} := \mathbb{E}_n \left[\mathbf{W}^{(0)} \right]$ and $\mathbf{\bar{r}}_0 := \mathbb{E}_n \left[\mathbf{R}^{(0)} \right]$.

troduction 0000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

6 *Key idea:* Define the **intermediate** process

$$\begin{split} \tilde{\textbf{R}}^{(k)} &= \sum_{t=0}^{k-1} (1-c-d)^t \textbf{W}^{(k-t)} + 1 (k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^t a_{s,t} \tilde{M}^s \bar{\textbf{w}} \\ &+ \sum_{s=1}^k a_{s,k} \tilde{M}^s \bar{\textbf{r}}_0 + (1-c-d)^k \textbf{R}^{(0)}, \quad k \ge 1, \qquad \tilde{\textbf{R}}^{(0)} = \textbf{R}^{(0)}, \end{split}$$

where
$$\mathbf{\bar{w}} := \mathbb{E}_n \left[\mathbf{W}^{(0)} \right]$$
 and $\mathbf{\bar{r}}_0 := \mathbb{E}_n \left[\mathbf{R}^{(0)} \right]$.

Intuition: $\tilde{\mathbf{R}}^{(k)}$ replaces all neighbor contributions with their approximate means, i.e., every term of the form C^sX with s ≥ 1 and X a random vector is replaced with $\tilde{M}^s \mathbb{E}_n[X]$. That's the essence of mean-field approximation!

troduction 0000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

6 *Key idea:* Define the **intermediate** process

$$\begin{split} \tilde{\textbf{R}}^{(k)} &= \sum_{t=0}^{k-1} (1-c-d)^t \textbf{W}^{(k-t)} + 1 (k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^t a_{s,t} \tilde{M}^s \bar{\textbf{w}} \\ &+ \sum_{s=1}^k a_{s,k} \tilde{M}^s \bar{\textbf{r}}_0 + (1-c-d)^k \textbf{R}^{(0)}, \quad k \ge 1, \qquad \tilde{\textbf{R}}^{(0)} = \textbf{R}^{(0)}, \end{split}$$

where
$$\mathbf{\bar{w}} := \mathbb{E}_n \left[\mathbf{W}^{(0)} \right]$$
 and $\mathbf{\bar{r}}_0 := \mathbb{E}_n \left[\mathbf{R}^{(0)} \right]$.

- **(3** Key fact: The components of $\tilde{\mathbf{R}}^{(k)}$ are independent, since the only randomness comes from the media signals.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

• Goal: bound
$$\mathbb{E}_n\left[\|\mathbf{R}^{(k)}-\tilde{\mathbf{R}}^{(k)}\|_p\right]$$
 and $\mathbb{E}_n\left[\|\tilde{\mathbf{R}}^{(k)}-\mathcal{R}^{(k)}\|_\infty\right]$, for $p \ge 1$.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

$$\mathbf{O} \ \text{Goal:} \text{ bound } \mathbb{E}_n\left[\|\mathbf{R}^{(k)}-\mathbf{\tilde{R}}^{(k)}\|_p\right] \text{ and } \mathbb{E}_n\left[\|\mathbf{\tilde{R}}^{(k)}-\mathbf{\mathcal{R}}^{(k)}\|_\infty\right], \text{ for } p \geq 1.$$

8 Bound these terms for different ranges of θ_n :

- If $\theta_n / \log n \to \infty$, use concentration inequalities.
- If $\theta_n / \log n \rightarrow 0$, use local weak convergence.

Introduction	The Model	Mean-Field Approximation	Typical Opinion	Conclusion
00000	0000000000		000	000

Local Weak Convergence

• *Idea:* if the graph is sparse enough, then cycles take long to form, so it **locally** looks like a tree.

Local Weak Convergence

- *Idea:* if the graph is sparse enough, then cycles take long to form, so it **Iocally** looks like a tree.
- Pick vertex I_n uniformly at random and explore its inbound neighborhood.

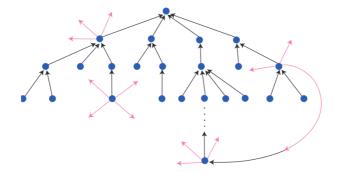


Figure: Graph created by M. Olvera-Cravioto.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

Local Weak Limit

• In a general random graph, we can't compute $E[C^s \mathbf{X}]$ for $s \ge 2$:

$$(C^s\mathbf{X})_i = \sum_{j_1,\ldots,j_s} C_{ij_1}C_{j_1j_2}\cdots C_{j_{s-1}j_s}X_{j_s},$$

since the existence of the edge (j_1, j_2) is no longer Bernoulli.

• Random graphs are hard because they contain cycles!

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion

Local Weak Limit

• In a general random graph, we can't compute $E[C^s \mathbf{X}]$ for $s \ge 2$:

$$(C^s\mathbf{X})_i = \sum_{j_1,\ldots,j_s} C_{ij_1}C_{j_1j_2}\cdots C_{j_{s-1}j_s}X_{j_s},$$

since the existence of the edge (j_1, j_2) is no longer Bernoulli.

- Random graphs are hard because they contain cycles!
- The local weak limit of our *K*-community dSBM is a *K*-type Galton-Watson process.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 000

Local Weak Limit

• In a general random graph, we can't compute $E[C^{s}\mathbf{X}]$ for $s \geq 2$:

$$(C^{s}\mathbf{X})_{i}=\sum_{j_{1},\ldots,j_{s}}C_{ij_{1}}C_{j_{1}j_{2}}\cdots C_{j_{s-1}j_{s}}X_{j_{s}},$$

since the existence of the edge (j_1, j_2) is no longer Bernoulli.

- Random graphs are hard because they contain cycles!
- The local weak limit of our *K*-community dSBM is a *K*-type Galton-Watson process.
- *Key-insight:* The **conditional independence** of branching processes balances the lack of enough averaging in the subcritical regimes.

The Model

Mean-Field Approximation

Typical Opinion

Conclusion

Typical Opinion

Theorem (Fraiman, Lin, Olvera-Cravioto '22)

Suppose G is locally finite and d > 0. Then, there exists a random vector **R** such that $\mathbf{R}^{(k)} \Rightarrow \mathbf{R}$ as $k \to \infty$. This is the stationary distribution of the Markov Chain.

The Model

Mean-Field Approximation

Typical Opinion

Conclusion

Typical Opinion

Theorem (Fraiman, Lin, Olvera-Cravioto '22)

Suppose G is locally finite and d > 0. Then, there exists a random vector **R** such that $\mathbf{R}^{(k)} \Rightarrow \mathbf{R}$ as $k \to \infty$. This is the stationary distribution of the Markov Chain.

- Typical opinion: R_{I_n} , for I_n uniformly chosen vertex.
- The typical opinion reflects the average behavior on the graph.

Introduction	The Model	Mean-Field Approximation	Typical Opinion	Conclusion
00000	0000000000		○●○	000

Theorem (A., Olvera-Cravioto '23)

Fix $k \ge 0$ and define the random variables $(\{\mathcal{R}_{\emptyset}^{(k)} : k \ge 0\}, \mathcal{J}_{\emptyset})$ according to:

$$\mathsf{P}\left(\left(\mathcal{R}_{\emptyset}^{(0)},\mathcal{R}_{\emptyset}^{(1)},\ldots,\mathcal{R}_{\emptyset}^{(k)}\right)\in A\middle|\mathcal{J}_{\emptyset}=s\right)=\mathbb{P}_{n}\left(\left(\mathcal{R}_{i}^{(0)},\mathcal{R}_{i}^{(1)},\ldots,\mathcal{R}_{i}^{(k)}\right)\in A\middle|\mathcal{J}_{i}=s\right)$$

and $P(\mathcal{J}_{\emptyset} = s) = \pi_s, 1 \leq s \leq K$. Then, $\forall 1 \leq r \leq K$, $\forall f \in C_b([-1, 1]^{k+1})$, we have

$$\frac{1}{n}\sum_{i=1}^{n}f(R_{i}^{(0)},R_{i}^{(1)},\ldots,R_{i}^{(k)})\mathbf{1}(J_{i}=r)\xrightarrow{P} E\left[f(\mathcal{R}_{\emptyset}^{(0)},\mathcal{R}_{\emptyset}^{(1)},\ldots,\mathcal{R}_{\emptyset}^{(k)})\mathbf{1}(\mathcal{J}_{\emptyset}=r)\right].$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion ⊙●⊙	Conclusion 000
Theorem (A.,	Olvera-Cravioto	'23)		

Fix $k \ge 0$ and define the random variables $(\{\mathcal{R}_{\emptyset}^{(k)} : k \ge 0\}, \mathcal{J}_{\emptyset})$ according to:

$$\mathsf{P}\left(\left(\mathcal{R}_{\emptyset}^{(0)},\mathcal{R}_{\emptyset}^{(1)},\ldots,\mathcal{R}_{\emptyset}^{(k)}\right)\in A\middle| \mathcal{J}_{\emptyset}=s\right)=\mathbb{P}_{n}\left(\left(\mathcal{R}_{i}^{(0)},\mathcal{R}_{i}^{(1)},\ldots,\mathcal{R}_{i}^{(k)}\right)\in A\middle| J_{i}=s\right)$$

and $P(\mathcal{J}_{\emptyset}=s)=\pi_s, 1\leq s\leq K$. Then, $\forall 1\leq r\leq K$, $\forall f\in C_b([-1,1]^{k+1})$, we have

$$\frac{1}{n}\sum_{i=1}^{n}f(R_{i}^{(0)},R_{i}^{(1)},\ldots,R_{i}^{(k)})\mathbf{1}(J_{i}=r)\xrightarrow{P} E\left[f(\mathcal{R}_{\emptyset}^{(0)},\mathcal{R}_{\emptyset}^{(1)},\ldots,\mathcal{R}_{\emptyset}^{(k)})\mathbf{1}(\mathcal{J}_{\emptyset}=r)\right].$$

Furthermore, when $\theta_n / \log n \to \infty$, we have for any arbitrary collection of vertices $\{i_1, \ldots, i_m\} \subseteq V_n$ having community labels $\{r_1, \ldots, r_m\}$, $m \ge 1$,

$$E\left[\prod_{j=1}^m f_j(R_{i_j}^{(0)},\ldots,R_{i_j}^{(k)})\right] \xrightarrow{n\to\infty} \prod_{j=1}^m E\left[f_j(\mathcal{R}_{\emptyset}^{(0)},\ldots,\mathcal{R}_{\emptyset}^{(k)})\middle| \mathcal{J}_{\emptyset}=r_j\right],$$

for any set of continuous bounded functions $\{f_1, \ldots, f_m\}$ on $[-1, 1]^{k+1}$, $k \ge 0$.

Introduction 00000 The Model

Mean-Field Approximation

Typical Opinion

Conclusion

Time and Network Size

Theorem (A., Olvera-Cravioto '23)

There exists a random variable \mathcal{R}_{\emptyset} such that $R_{I_n} \Rightarrow \mathcal{R}_{\emptyset}$ as $n \to \infty$, and $\mathcal{R}_{\emptyset}^{(k)} \Rightarrow \mathcal{R}_{\emptyset}$ as $k \to \infty$. Hence, the following diagram commutes.

$$\begin{array}{ccc} R_{I_n}^{(k)} & \xrightarrow{k \to \infty} & R_{I_n} \\ & \downarrow^{n \to \infty} & \downarrow^{n \to \infty} \\ R_{\emptyset}^{(k)} & \xrightarrow{k \to \infty} & \mathcal{R}_{\emptyset} \end{array}$$

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion ●00

Key takeaways

- Mathematical insights:
 - When the graph is sufficiently dense, the high number of neighbors allows us to use Chernoff bounds.
 - 2 As the graph gets sparser, concentration inequalities are not useful, so we need to get independence from somewhere else. That's what branching processes do.
 - **3** Random graphs are hard because they contain cycles. When possible, couple them with trees.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion ●00

Key takeaways

- Mathematical insights:
 - When the graph is sufficiently dense, the high number of neighbors allows us to use Chernoff bounds.
 - 2 As the graph gets sparser, concentration inequalities are not useful, so we need to get independence from somewhere else. That's what branching processes do.
 - **3** Random graphs are hard because they contain cycles. When possible, couple them with trees.
- Practical implications:
 - **1** When the network is sparse, individual opinions matter significantly.
 - 2 As the network gets denser, individuals essentially don't interact but rather update based on the "average" opinion.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion ○●○

Future directions

• Replace linear opinion recursion by general contraction, namely

$$R_{i}^{(k)} = \Phi\left(W_{i}^{(k)}, \{R_{j}^{(k-1)}\}_{j \in V_{n}}, J_{i}\right),$$

where Φ is a ℓ -Lipschitz function with $\ell < 1$.

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion ○●○

Future directions

• Replace linear opinion recursion by general contraction, namely

$$R_{i}^{(k)} = \Phi\left(W_{i}^{(k)}, \{R_{j}^{(k-1)}\}_{j \in V_{n}}, J_{i}\right),$$

where Φ is a ℓ -Lipschitz function with $\ell < 1$.

• Extend the analysis to **multiopinion** dynamics, i.e., assume individuals are interacting on more than one topics. Try to explain mathematically the political scientists' hypothesis that "political personas are not real".

Introduction 00000	The Model 0000000000	Mean-Field Approximation	Typical Opinion	Conclusion 00●
References				

- Avrachenkov, Konstantin, Arun Kadavankandy, and Nelly Litvak. "Mean field analysis of personalized pagerank with implications for local graph clustering." *Journal of statistical physics* 173 (2018): 895-916.
- Fraiman, Nicolas, Tzu-Chi Lin, and Mariana Olvera-Cravioto. "Opinion dynamics on directed complex networks." *arXiv preprint arXiv:2209.00969* (2022).
- Mariana Olvera-Cravioto. "Strong couplings for static locally tree-like random graphs". In: Journal of Applied Probability 59.4 (2022), pp. 1261–1285.
- Noorazar, Hossein. "Recent advances in opinion propagation dynamics: A 2020 survey." *The European Physical Journal Plus* 135 (2020): 1-20.
- Noah E Friedkin and Eugene C Johnsen. "Social influence and opinions". In: Journal of Mathematical Sociology 15.3-4 (1990), pp. 193–206.

36 / 36