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Athens at a glance
> 3,754,000 people
> 937,000 daily trips
> Up to 10* trips/min
> 1393 nodes
> 5429 edges
> 1,360,000 O/D pairs

> ~ 7 %108 paths

A very large game!




Online learning

A generic online decision process:

repeat

At each epoch t

Choose action #single-/ multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) #fullinfo/ oracle / payoff-based
until end
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Online learning

A generic online decision process:

repeat

At each epoch t

Choose action #single-/ multi-player

Receive reward # endogenous / exogenous
Get feedback (maybe) #fullinfo/ oracle / payoff-based
until end

Defining elements

> Time: continuous or discrete?
> Players: continuous or finite?
> Actions: continuous or finite?
> Reward mechanism: endogenous or exogenous (determined by other players or by “Nature”)?

> Feedback: observe other actions / other rewards / only received?
P. Mertikopoulos




Online learning

A generic online decision process:

repeat

At each epoch t

Choose action #single-/ multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) #fullinfo/ oracle / payoff-based
until end

Defining elements

> Time: continuous or discrete?

> Players: continuous or finite?

> Actions: ¢MtiAUBIE LY finite

> Reward mechanism: endogenous/df/#@xtgétois (determined by other players/@r/By//NAatUvE7)

> Feedback: observe other actions / other rewards / only received?
P. Mertikopoulos




Game-theoretic learning

> Multiple agents, individual objectives

> Payoffs determined by actions of all agents

> Agents receive payoffs, adjust actions, and the process repeats

P. Mertikopoulos



Game-theoretic learning

> Multiple agents, individual objectives

[Select a route from home to work]

> Payoffs determined by actions of all agents

[Encounter other commuters on the road]

> Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]
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Game-theoretic learning

> Multiple agents, individual objectives

[Select a route from home to work]

> Payoffs determined by actions of all agents

[Encounter other commuters on the road]

> Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]

Does learning lead to stable / rational outcomes?

P. Mertikopoulos
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% Some basics

A game in normal form is a collection of three basic elements:

1. A set of players N
2. A set of actions (or pure strategies) A; per player i e N’

3. An ensemble of payoff functions u;: IT; A; — R per player i € N

P. Mertikopoulos UoA & CNRS
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% Some basics

A game in normal form is a collection of three basic elements:

1. A set of players N
2. A set of actions (or pure strategies) A; per player i e N’

3. An ensemble of payoff functions u;: IT; A; — R per player i € N

Important:
*> Player set: atomic vs. nonatomic
» Action sets: finite vs. continuous; shared vs. individual; ...

> NB: do not mix game classes!

P. Mertikopoulos UoA & CNRS
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Taxonomy

Actions

Population Games Finite Finite Games

Players

Continuous Finite

Mean Field Games
Continuous Continuous Games
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ickgrounc
% Taxonomy

CONGESTION GAMES .
Actions
N tomi i Atomic
lonatomic Finite Non-SplittabIe
Players
Conti Finite
Mean Field Games
Continuous Atomic Splittable

P. Mertikopoulos
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Nonatomic congestion games

> Network: multigraph G = (V,€)
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Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D; [nonatomic, splittable]
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Nonatomic congestion games

> Network: multigraph G = (V,€)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D; [nonatomic, splittable]
> Paths P;: (sub)set of paths joining O; ~ D; [not necessarily all paths]
> Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p [congestion elements]

P. Mertikopoulos
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Nonatomic congestion games

v

Network: multigraph G = (V, €)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

> Paths P;: (sub)set of paths joining O; ~ D;

> Routing flow f): traffic along p € P = U; P; generated by O/D pair owning p
> Load x, = ¥ 5, fp: total traffic along edge e

> Edge cost function c.(x.): cost along edge e when edge load is x.

P. Mertikopoulos

[nonatomic, splittable]
[not necessarily all paths]
[congestion elements]

[congestion mechanism]

[congestion cost]
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Nonatomic congestion games

v

v

v
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Network: multigraph G = (V, €)

O/D pairs i € N: origin O; sends m; units of traffic to destination D;

Paths P;: (sub)set of paths joining O; ~ D;

Routing flow f: traffic along p € P = U; P; generated by O/D pair owning p
Load x. = 3,5, fp: total traffic along edge e

Edge cost function c.(x.): cost along edge e when edge load is x.

Path cost: cp(f) = Xeep ce(xe)

Nonatomic congestion game: C = (G, N, {m; }icnr, {Pi }ien'> {ce }ees)

[nonatomic, splittable]
[not necessarily all paths]
[congestion elements]
[congestion mechanism]
[congestion cost]

[aggregate cost]




v

Network: multigraph G = (V, €)

> O/D pairs i € N: origin O; sends m; units of traffic to destination D;

v

Paths P;: (sub)set of paths joining O; ~ D;

> Route choice p; € P; ~ congestion load of m; units along each edge e € p;
» Load x, = ¥, ., m;: total congestion load on edge e

> Edge cost function c.(x.): cost along edge e when edge load is x.

> Path cost: cp(f) = Xeep ce(e)

> Atomic congestion game: C = (G, N, {m; }ienr> {Pi}ienr> {ce }eeg)

P. Mertikopoulos

[atomic, non-splittable]
[not necessarily all paths]
[congestion elements]
[congestion mechanism]
[congestion cost]

[aggregate cost]
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Finite games

Finite games: [sometimes known as (poly)matrix games]
» Finite set of players N = {1,..., N}
» Finite set of actions (or “pure strategies”) A; = {1,...,m;} per player

> Action profile a = (ai,...,an) € A:=T]; A;

> Payoffs given by payoff functions u;: A — R
ui(a) =ui(ai,...,an) = ui(ai;a-;)

> Payoff vector of player i:
vi(a) = (ui(aj;a-1))area,

> Notation: T = T(N, A, u)

P. Mertikopoulos
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Mixed extensions

Mixed extension of a finite game:
» Given: finite game T = T(N, A, u)
> Mixed strategy of player i:

(-xia)aeA,- € A(/L) = X;

Xi

> Mixed payoff of player i

ui(x) =Eqanxui(a) Z Z XlayXN,ay Ui(d1,...,aN)

ajeA; ayeAyn

> Payoff vector of player i:
vi(a) = (ui(ai;a-i))area,

» Notation: T = A(T)

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

> Pl : ={1,2 .
ayers: N = {1,2} Scissors

beats paper

P. Mertikopoulos
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

» Players: N = {1,2}

> Actions: A; = {R,P,S} ®

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

» Players: N = {1,2}

> Actions: A; = {R,P,S}

> Mixed strategy space: X; = A{R,P,S}

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

» Players: N = {1,2}

> Actions: A; = {R,P,S}

RS

> Mixed strategy space: X; = A{R,P,S} A{R,P,S}

(xR Xps X5)

> Choose mixed strategy x; € X;

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

» Players: N = {1,2}

> Actions: A; = {R,P,S}

R3

> Mixed strategy space: X; = A{R,P,S} A{R,P,S}

> Choose mixed strategy x; € X; ( )
XR> XP; XS

» Choose action a; ~ x;

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

» Players: N = {1,2}

> Actions: A; = {R,P,S}

R3

> Mixed strategy space: X; = A{R,P,S} A{R,P,S}

> Choose mixed strategy x; € X; ( )
XR> XP; XS

» Choose action a; ~ x;

> Mixed strategy payoffs:

ur(x1,x2) = x Mx,

uz(xbxz) = —Ml(xl,xz) -1 1 0

P. Mertikopoulos UoA & CNRS
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Single-population games

» Population of players: Z = [0,1] [endowed with Lebesgue measure ]
» Common set of actions A = {1,...,m}

> Strategy proﬁle: measurable function XN - A [measurable assignment of players to actions]

> Population state x == yjy = po X_l, ie., [viewed as element of X' := A(\A)]
xa = u(x "' (a)) = mass of players playing a € A
> Payoffs given by payoff functions v,: X - R [Players are anonymous]
va(x) = payoff to a-strategists when the population is at state x € X

» Mean population payoff: u(x) = ¥, xava(x)

P. Mertikopoulos
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% Single-population games
» Population of players: Z = [0,1] [endowed with Lebesgue measure ]
» Common set of actions A = {1,...,m}
> Strategy proﬁle: measurable function XN - A [measurable assignment of players to actions]
> Population state x == yjy = po X_l, ie, [viewed as element of X' := A(\A)]

xa = u(x "' (a)) = mass of players playing a € A
> Payoffs given by payoff functions v,: X — R [Players are anonymous]

va(x) = payoff to a-strategists when the population is at state x € X

» Mean population payoff: u(x) = ¥, xava(x)

Example (Symmetric / Single-population random matching)
> Given: symmetric m x m payoff matrix M
> Players drawn randomly from population at state x to play M

> Mean payoff to a-strategists: v4(x) = ¥ pre g MaarXar = (Mx)a

P. Mertikopoulos
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Multi-population games

> Multiple populations: Z = [0, 1] X ee X [0, 1] [endowed with Lebesgue measure ]

» Population-specific action sets A;, i =1,..., N

> Population state x € X' := []; A(A;)
Xia; = mass of players of population i playing a; € A;
> Payoffs given by payoff functions v;,,;: X - R
Via, (x) = payoff to a;-strategists when the population is at state x € X’

» Mean population payoff: ui(x) = ¥, c 4, Xia; Via; (X)

P. Mertikopoulos UoA & CNRS
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Multi-population games

> Multiple populations: Z = [0, 1] X ee X [0, 1] [endowed with Lebesgue measure ]
» Population-specific action sets A;, i =1,..., N

> Population state x € X := []; A(A;)

Xia; = mass of players of population i playing a; € A;
> Payoffs given by payoff functions v;,,;: X - R

Via, (x) = payoff to a;-strategists when the population is at state x € X’

» Mean population payoff: ui(x) = ¥, c 4, Xia; Via; (X)

Example (Asymmetric / Multi-population random matching)
> Given: finite game T = T(N, A, u)
> N players drawn randomly from each population to play T

> Mean payoff to a;-strategists in the i-th population: via, (x) = u;(ai;x-;)

P. Mertikopoulos UoA & CNRS
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Mix'n'match

15 Symmetric Random matching + Mixed extension

[Population matched against itself == symmetric interactions |
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Mix'n'match

15 Symmetric Random matching + Mixed extension

[Population matched against itself == symmetric interactions |

15 Asymmetric random matching = Mixed Extension

[Populations matched against each other == asymmetric interactions |
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Mix'n'match

15 Symmetric Random matching + Mixed extension

[Population matched against itself == symmetric interactions |

15 Asymmetric random matching = Mixed Extension

[Populations matched against each other == asymmetric interactions |

1= Multi-population games 2 Mixed Extensions

[Nonatomic congestion games, ...|
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% Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

P. Mertikopoulos
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% Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> In finite games (mixed extension formulation):
wi(x]sx%) 2 ui(xisxl;) forallx; e X ie N

> In i :
population games . ) .
Via;(x7) 2 v;r(x”7) whenever a; € supp(x”)

P. Mertikopoulos
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% Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

> In finite games (mixed extension formulation):
wi(x]sx%) 2 ui(xisxl;) forallx; e X ie N
» In population games:

Via; (x") 2 vir(x")  whenever a; € supp(x")

Variational formulation (Stampacchia, 1964)

(v(x™),x—x")<0 forallxeX

where v(x) = (vi(x), ..., vn(x)) is the payoff field of the game

Geometric interpretation: v(x*) is outward-pointin
P P 8

P. Mertikopoulos UoA & CNRS
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Learning, evolution and dynamics

What is “learning” in games?

P. Mertikopoulos UoA & CNRS



Learning, evolution and dynamics
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What is “learning” in games?

The basic process:
> Players choose strategies and receive corresponding payoffs

> Depending on outcome and information revealed, they choose new strategies and they play again

> Rinse, repeat

P. Mertikopoulos
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Learning, evolution and dynamics

What is “learning” in games?

The basic process:

> Players choose strategies and receive corresponding payoffs
> Depending on outcome and information revealed, they choose new strategies and they play again

> Rinse, repeat

The basic questions:

> How do populations evolve over time? [Population biology]
> How do people learn in a game? [Economics]
> What algorithms should we use to learn in a game? [Computer science]
»> Given a dynamical system on X, what is its long-term behavior? [Mathematics]

UoA & CNRS

P. Mertikopoulos
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Learning in continuous time
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% Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species
z, = absolute population mass of type a € A

z= Za z, = absolute population mass

P. Mertikopoulos UoA & CNRS
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% Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species
z, = absolute population mass of type a € A

z= Za z, = absolute population mass

» Utilities measure fecundity / reproductive fitness:
v, = per capita growth rate of type a

> Population evolution:
Za = ZaUg

P. Mertikopoulos
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% Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species
z, = absolute population mass of type a € A

z= Za z, = absolute population mass

» Utilities measure fecundity / reproductive fitness:
v, = per capita growth rate of type a

> Population evolution:
Za = ZaUg

> Evolution of population shares (x, = z./2):

dzi ZaZ—2ZaYgZa Za Za Z Zar
Xg=—F——=—""""T—"=—1U4 — Uy
dt z z2 z z ~7 2

P. Mertikopoulos UoA & CNRS
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% Age the First (1970's-1990's): Population Biology

> Strategies are phenotypes in a given species
z, = absolute population mass of type a € A

z= Za z, = absolute population mass
> Utilities measure fecundity / reproductive fitness:
v, = per capita growth rate of type a

> Population evolution:
Za = ZaUg

> Evolution of population shares (x, = z./2):

Xa = = = a
dt z 22 z z z

Replicator dynamics (Taylor & Jonker, 1978)

Xa = Xa[va(x) —u(x)] (RD)

dzi ZaZ—2ZaYgZa Za Za Zar
o GEthyel G, g

P. Mertikopoulos
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

Paar (x) = conditional switch rate from a to a’

[NB: dropping player index for simplicity]

P. Mertikopoulos



Learning in continuous time
00@®0000000000000000000

Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

Paar (x) = conditional switch rate from a to a’

[NB: dropping player index for simplicity]
*> Pairwise proportional imitation:

Paa’(x) = xu’[va’(x) - Uﬂ(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

P. Mertikopoulos
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

Paar (x) = conditional switch rate from a to a’

[NB: dropping player index for simplicity]
*> Pairwise proportional imitation:
Paa (x) = Xar[var (x) = va(x)]+
[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]
> Inflow/outflow:

Incoming toward a = Za, mass(a’ ~ a) = Za,sA XarPara(x)

Outgoing froma = )" , mass(a ~ a') = x, Zu,eA Paar (%)

P. Mertikopoulos
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Age the Second (1990's-2010's): Economics

> Agents receive revision opportunities to switch strategies

Paar (x) = conditional switch rate from a to a’

[NB: dropping player index for simplicity]
*> Pairwise proportional imitation:
Paa (x) = Xar[var (x) = va(x)]+
[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]
> Inflow/outflow:

Incoming toward a = Za, mass(a’ ~ a) = Za,sA XarPara(x)

Outgoing froma = )" , mass(a ~ a') = x, Zu,eA Paar (%)

> Detailed balance:
Xq = inflow, (x) — outflow, (x) = -+ = x4 [va(x) — u(x)] (RD)

P. Mertikopoulos UoA & CNRS
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Age the Third (2000's-present): Computer Science

Evolution of mixed strategies in a finite game:

> Agents record cumulative payoff of each strategy

ya(t) = /Otu,l('r) dr

== propensity OfChOOSing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

P. Mertikopoulos UoA & CNRS
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Age the Third (2000's-present): Computer Science

Evolution of mixed strategies in a finite game:

> Agents record cumulative payoff of each strategy

t
ya(t) = [ va(r) de
0
== propensity OfChOOSing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

» Choice probabilities ~ exponentially proportional to propensity scores

xa(t) o< exp(ya(t))

P. Mertikopoulos UoA & CNRS
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Age the Third (2000's-present): Computer Science

Evolution of mixed strategies in a finite game:

> Agents record cumulative payoff of each strategy

t
ya(t) = / va(7) d7
0
== propensity OfChOOSing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]
» Choice probabilities ~ exponentially proportional to propensity scores

RS J6210))
D= S e O (D)
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Age the Third (2000's-present): Computer Science

Evolution of mixed strategies in a finite game:

> Agents record cumulative payoff of each strategy

t
ya(t) = / va(7) d7
0
== propensity OfChOOSing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]
» Choice probabilities ~ exponentially proportional to propensity scores

RS J6210))
D= S e O (D)

> Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

$0 = e = xa[va(x) ~ ()] (RD)

P. Mertikopoulos
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% Basic properties

layer replicator dynamics
xiui :xui[viai (x) _ui(x)] (RD)

[NB: focus on multi-population version from now on]

P. Mertikopoulos
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% Basic properties

-player replicator dynamics
xiui :xui[viai (x) _ui(x)] (RD)

[NB: focus on multi-population version from now on]

Structural properties [Hofbauer & Sigmund, 1998; Weibull, 1995]

> Well-posed: every initial condition x € X admits unique solution trajectory x(¢) that exists for all time
[Assuming u; is Lipschitz]

> Consistent: x(t) € X forall t >0
[Assuming x(0) € X]

»> Faces are forward invariant (“strategies breed true”):

Xia;(0) >0 <= xq,(t) >0 forallt>0
Xia;(0) =0 < x40, (t) =0 forallt>0

P. Mertikopoulos UoA & CNRS
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Phase portraits

What do the dynamics look like?

Replicator dynamics in a Congestion Game
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Phase portraits

What do the dynamics look like?

Replicator dynamics in the Battle of the Sexes
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What do the dynamics look like?

P. Mertikopoulos

Replicator dynamics in Matching Pennies
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Phase portraits

What do the dynamics look like?

Replicator dynamics in the Prisoner's Dil
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% Phase portraits

What do the dynamics look like?

P. Mertikopoulos UoA & CNRS



Learning in continuous time

0000080000000 000000000

% Phase portraits

What do the dynamics look like?
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% Phase portraits

What do the dynamics look like?

P. Mertikopoulos UoA & CNRS
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Rationality analysis

Are game-theoretic solution concepts consistent with the players’ dynamics? y

> Are Nash equilibria stationary?
> Are they stable? Are they attracting?
> Do the replicator dynamics always converge?

» What other behaviors can we observe?

P. Mertikopoulos UoA & CNRS
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Stationarity of equilibria

Equilibrium: via, (x*) > v,/ (x*) forall a;, a; € A; with x, >0
! i

> Supported strategies have equal payoffs:

Vig, (x¥) = v,-a:(x*) forall a;, a} € supp(x}")

> Mean payoff equal to equilibrium payoff:

ui(x*) = vig,(x*) forall a; e supp(x])

> Replicator field vanishes at Nash equilibria:

%, [Via; (™) —ui(x*)] =0 foralla; € A;

P. Mertikopoulos
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% Stationarity of equilibria

Equilibrium: vig, (x*) > via;(x*) forall a;, a} € A; with Xig, >0

> Supported strategies have equal payoffs:
Via; (x*) = v, (x*) forall a;,aj € supp(x;)
> Mean payoff equal to equilibrium payoff:
ui(x*) = vig,(x*) forall a; e supp(x])

> Replicator field vanishes at Nash equilibria:

%, [Via; (™) —ui(x*)] =0 foralla; € A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium = x(t) = x(0) forall t > 0

P. Mertikopoulos UoA & CNRS
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% Stationarity of equilibria

Equilibrium: vig, (x*) > via;(x*) forall a;, a} € A; with Xig, >0

> Supported strategies have equal payoffs:

Vig, (x¥) = v,-a:(x*) forall a;, a} € supp(x}")

> Mean payoff equal to equilibrium payoff:

ui(x*) = vig,(x*) forall a; e supp(x])

> Replicator field vanishes at Nash equilibria:

%, [Via; (™) —ui(x*)] =0 foralla; € A;

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x(0) is a Nash equilibrium = x(t) = x(0) forall t > 0

X The converse does not hold! [See previous portraits]

P. Mertikopoulos
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Are all stationary points created equal?

Definitio apunov stability)

x* is (Lyapunov) stable if, for every neighborhood U of x* in X, there exists a neighborhood U’ of x* such that

x(0) el = x(t)eU forallt>0

[Trajectories that start close to x* remain close for all time]

P. Mertikopoulos



% Stability

Are all stationary points created equal?

Learning in continuous time
000000000 0O0000000e0000000000000 0000000000000 000

Definition (Lyapunov stability)

x* is (Lyapunov) stable if, for every neighborhood U of x* in X, there exists a neighborhood U’ of x* such that

x(0) el = x(t)eU forallt>0

[Trajectories that start close to x* remain close for all time]

Suppose that x* is Lyapunov stable under (RD). Then x* is a Nash equilibrium.

Proposition (Folk) J

P. Mertikopoulos UoA & CNRS
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% Asymptotic stability

Are all equilibria created equal?

» x” is attracting if lim;~.. x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

P. Mertikopoulos UoA & CNRS
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% Asymptotic stability

Are all equilibria created equal?

Definition

» x” is attracting if lim;~.. x(t) = x™ whenever x(0) is close enough to x*

> x* is asymptotically stable if it is stable and attracting

Proposition (Folk) J

Strict Nash equilibria are asymptotically stable under (RD).

P. Mertikopoulos
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% The "folk theorem" of evolutionary game theory

eorem (' Hofbauer & Sigmund, 2003)

Let T be a finite game. Then, under (RD), we have:

1. x* is a Nash equilibrium == x~ is stationary
2. x* is the limit of an interior trajectory == x"* is a Nash equilibrium
3. x" isstable = x* is a Nash equilibrium

4. x* is asymptotically stable <= x* is a strict Nash equilibrium

Notes:

#» Concerns multi-population replicator dynamics
X Converse to (1), (2) and (3) does not hold!

# Symmetric version: all true except == in (4)

P. Mertikopoulos
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Single-population: different ball game

The replicator dynamics in “good” RPS (win > loss):

P. Mertikopoulos
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Convergence in potential games

Potential games (Sandholm, 2001)
00

Xia;

Via, = — for some potential function ®: X — R

NASC (Poincaré’s lemma):
av,‘ui avia:

otential < =
P axiu; 0Xia,

P. Mertikopoulos
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Convergence in potential games

Potential games (Sandholm, 2001)
00

Xia;

vm,- -

for some potential function ®: X - R

NASC (Poincaré’s lemma):
av,‘ui avia:

axiu; 0Xia,

potential <=

Positive correlation / Lyapunov property:

‘i%) <0 under (RD)

P. Mertikopoulos UoA & CNRS
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% Convergence in potential games

Potential games (Sandholm, 2001)
00

Viag; = —
Xia;

for some potential function ®: X - R

NASC (Poincaré’s lemma):
aU,‘ui aUia;

ax,% 0Xia,

potential <=

Positive correlation / Lyapunov property:

% <0 under (RD)

Theorem (Sandholm, 2001)

> In potential games, (RD) converges to its set of stationary points

*> In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

P. Mertikopoulos
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NO"'COHVQl’geﬂCQ in zero-sum games

The landscape is very different in zero-sum games:

P. Mertikopoulos
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NO"'COHVQl’geﬂCQ in zero-sum games

The landscape is very different in zero-sum games:

x” is full-support equilibrium == (RD) admits a constant of motion

*
xia,-

KL divergence: Dxi(x",x) =) . > Xy log

ia;

P. Mertikopoulos UoA & CNRS
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% Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x” is full-support equilibrium == (RD) admits a constant of motion

*
xia[

KL divergence: Dxi(x",x) =) . > Xy log

ia;

Theorem (Hofbauer et al., 2009)

Assume a bilinear zero-sum game admits an interior equilibrium. Then:

> Interior trajectories of (RD) do not converge (unless stationary)

> Time-averages (t) =t fO' x(7) d7 converge to Nash equilibrium

P. Mertikopoulos

UoA & CNRS
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Convergence of time-averages

The replicator dynamics in a game of Matching Pennies

Time—Averaged Replicator Dynamics

P. Mertikopoulos UoA & CNRS



Learning in continuous time

0000000000000 00e000000

% Poincaré recurrence in zero-sum games

Defini

A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

UoA & CNRS
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Poincaré recurrence in zero-sum games

Definition (Poincaré)

A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

ertikopoulos
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% Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015) J

The dynamics (RD) are volume-preserving under the Shahshahani metric g,,7 (x) = 8447 /%2 on ri X.

Volume preservation == no concentration == no convergence v

P. Mertikopoulos
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% Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015) J

The dynamics (RD) are volume-preserving under the Shahshahani metric g,,7 (x) = 8447 /%2 on ri X.

Volume preservation == no concentration == no convergence

...but the Shahshahani metric becomes singular at the boundary of X X

P. Mertikopoulos
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% Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015) J

The dynamics (RD) are volume-preserving under the Shahshahani metric g,,7 (x) = 8447 /%2 on ri X.

Volume preservation == no concentration == no convergence

...but the Shahshahani metric becomes singular at the boundary of X X

Theorem (M et al., 2018) J

(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

P. Mertikopoulos
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% Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015) J

The dynamics (RD) are volume-preserving under the Shahshahani metric g,,7 (x) = 8447 /%2 on ri X.

Volume preservation == no concentration == no convergence 4

...but the Shahshahani metric becomes singular at the boundary of X X

Theorem (M et al., 2018)

|

(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy. J

P. Mertikopoulos UoA & CNRS
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Follow the regularized leader

Are the nice propeties of (RD) a “fluke™?

P. Mertikopoulos
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% Follow the regularized leader

Are the nice propeties of (RD) a “fluke™?

> The logit map A(y) = (exp(ya))aEA/ ¥ . exp(ya) approximates the “leader” (best response map)

y > argmax__ (¥, x)

P. Mertikopoulos UoA & CNRS
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% Follow the regularized leader

Are the nice propeties of (RD) a “fluke™?

> The logit map A(y) = (exp(ya))aEA/ ¥ . exp(ya) approximates the “leader” (best response map)

y = argmax,  {(y, x) — h(x)}

where h(x) = ¥, 4 xa log x, is the (negative) entropy of x € X

P. Mertikopoulos UoA & CNRS
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% Follow the regularized leader

Are the nice propeties of (RD) a “fluke™?

> The logit map A(y) = (exp(ya))aEA/ ¥ . exp(ya) approximates the “leader” (best response map)

y = argmax,  {(y, x) — h(x)}

where h(x) = ¥, 4 xa log x, is the (negative) entropy of x € X

*> Regularized best responses
Q(y) = argmax, » {{y,x) ~h(x)}

where h: X — Ris a (strictly) convex regularizer function

P. Mertikopoulos UoA & CNRS
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% Follow the regularized leader

Are the nice propeties of (RD) a “fluke™?
> The logit map A(y) = (exp(ya))aEA/ > . exp(ya) approximates the “leader” (best response map)
y = argmax,  {(y, x) — h(x)}

where h(x) = ¥, 4 xa log x, is the (negative) entropy of x € X

> Regularized best responses
Q(y) = argmax, o {(y, ) = h(x)}

where h: X — Ris a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

j’t=Ut

xe=Q(yr)

(FTRL)

P. Mertikopoulos

UoA & CNRS



Learning in continuous time
0000000000000000008000

The projection dynamics

Example: Quadratic (Euclidean) regularization

W) =5 8,

P. Mertikopoulos UoA & CNRS



Learning in continuous time
0000000000000000008000

The projection dynamics

Example: Quadratic (Euclidean) regularization

W) =5 8,

Choice map ~ closest point projection:

(y) = argr;l(ax{mx) - (1/2)]x]3} = argr;ﬁnlly —x

P. Mertikopoulos UoA & CNRS
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The projection dynamics

Example: Quadratic (Euclidean) regularization

W) =5 8,

Choice map ~ closest point projection:

(y) = argr;l(ax{mx) - (1/2)]x]3} = argr;ﬁnlly —x

Projection dynamics [M & Sandholm, 2016]

PL
xe = T11(yt) b

P. Mertikopoulos
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In and out of the boundary

Q

choice map

xe=Q(yr)

Payoff space Strategy space

P. Mertikopoulos
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In and out of the boundary

Q

choice map

xe=Q(yr)

Payoff space Strategy space

Key difference with replicator: faces no longer forward invariant

P. Mertikopoulos
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% Portraits and examples
The Tsallis-Havrda -Charvét kernel: h(x) = [g(1-¢)]™" > (xa—xd)

Projection Dynamics (q=2)

=X
©
INN—
| D

P. Mertikopoulos



Learning in continuous time

0000000000000 0000000e0

% Portraits and examples
The Tsallis-Havrda -Charvét kernel: h(x) = [g(1-¢)]™" > (xa—xd)

g—Replicator Dynamics (q=3/2)

=X
)
INN— )
| e

P. Mertikopoulos UoA & CNRS
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% Portraits and examples
The Tsallis-Havrda -Charvat kernel: h(x) = [q(1-¢g)]" Z (xa -

Replicator Dynamics (q=1)

-1L1 @, -1-

//é\N
k\i//

P. Mertikopoulos UoA & CNRS
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% Portraits and examples
The Tsallis-Havrda -Charvat kernel: h(x) = [q(1-¢g)]" Z (xq —x1)

Log-Barrier Dynamics (q—0)

10, 4
-1, 1/)// A
f
0.8
0.6f
) ( . >
0.4f {
\\_/// \
0.2f /
-1 R //(—1. |-
0.0f 4
0.0 0.2 04 06 0.8 10
X1

P. Mertikopoulos



Rational behavior under FTRL

Learning in continuous time
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Do the rationality properties of (RD) extend to (FTRL)?

P. Mertikopoulos
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% Rational behavior under FTRL

Do the rationality properties of (RD) extend to (FTRL)?

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Let T be a finite game. Then, under (FTRL), we have:

1. x* is a Nash equilibrium == x™ is stationary
2. x* is the limit of an interior trajectory == x* is a Nash equilibrium
3. x* isstable == x" is a Nash equilibrium

4. x* is asymptotically stable <= x™ is a strict Nash equilibrium

P. Mertikopoulos UoA & CNRS
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The model
Require: finite game I = T(N, A, u) # atomic setting
repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N/ # discrete time
Choose mixed strategy X; , € Xi := A(A;) # mixed extension
Choose action a; , ~ Xi # random action selection
Observe mixed payoff vector v; (X; 3 X-i,n) #feedback phase
until end

Defining elements
> Time:n=12,...
*> Players: finite
> Actions: finite
> Mixing: yes

> Feedback: mixed payoff vectors

P. Mertikopoulos
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The model
Require: finite game I = T(N, A, u) # atomic setting
repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N/ # discrete time
Choose mixed strategy X; , € Xi := A(A;) # mixed extension
Choose action a; , ~ Xi # random action selection
Observe pure payoff vector v;(a;, 3 a—in) #feedback phase
until end

Defining elements
> Time:n=12,...
*> Players: finite
> Actions: finite
> Mixing: yes

> Feedback: pure payoff vectors

P. Mertikopoulos
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The model
Require: finite game I = T(N, A, u) # atomic setting
repeat
Ateach epoch n =1,2,... do simultaneously for all players i ¢ N/ # discrete time
Choose mixed strategy X; , € Xi := A(A;) # mixed extension
Choose action a; , ~ Xi # random action selection
Observe realized payoff u;(a; n;a—in) #feedback phase
until end

Defining elements
> Time:n=12,...
*> Players: finite
> Actions: finite
> Mixing: yes
»> Feedback: realized payoffs

P. Mertikopoulos
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% The feedback process

Different types of feedback (from best to worst):

> Mixed payoff vectors:  v;(Xin; X—in)
> Pure payoffvectors:  vi(ai,u;ai,n)

» Bandit/ Payoff-based:  u; . (ain;a—in)

P. Mertikopoulos UoA & CNRS
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% The feedback process

Different types of feedback (from best to worst):

> Mixed payoff vectors:  v;(Xin; X—in)
> Pure payoffvectors:  vi(ai,u;ai,n)

» Bandit/ Payoff-based:  u; . (ain;a—in)

Features:
> Vector (mixed / pure payoff vecs) VS. Scalar (bandit)
» Deterministic (mixed payoff vecs) VS. Stochastic (pure payoff vecs, bandit)

NB1: Randomness defined relative to history of play F,, := F(X,...,X»)

NB2: Other feedback models also possible (noisy observations,...)

P. Mertikopoulos UoA & CNRS
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From payoffs to payoff vectors

How to estimate the payoff u;(a;; a—;») of an unplayed action a; + a; ,?

P. Mertikopoulos
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% From payoffs to payoff vectors

How to estimate the payoff u;(a;; a—;») of an unplayed action a; + a; ,?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector v € R4 given a mixed strategy x € A(A) is defined as

1, Va/Xa if a is drawn (a = a)
D= — v4
Xa 0 otherwise (a # d)

(IWE)

P. Mertikopoulos UoA & CNRS
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% From payoffs to payoff vectors

How to estimate the payoff u;(a;; a—;») of an unplayed action a; + a; ,?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector v € R4 given a mixed strategy x € A(A) is defined as

1, Va/Xa if aisdrawn (a = a
Dg = — V4 = / ( : (IWE)
Xa 0 otherwise (a # d)
Statistical properties of (IWE)
> Unbiased:
E[ba] = va
> Second moment: ,
v
E[9;] = =2
[6t] = 2

P. Mertikopoulos
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% The oracle model

Black-box oracle)

A stochastic first-order oracle of v(X,) is a random vector of the form
Oy = v(Xn) + Uy + by

where U, is zero-mean and b, = E[0, | Fu] — v(X») is the bias of D,.

P. Mertikopoulos
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The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of v(X,) is a random vector of the form

Oy = v(Xn) + Uy + by

where U, is zero-mean and b, = E[0, | Fu] — v(X») is the bias of D,.

> Mixed payoff vectors: 9i,n = v;(Xi,n3 X—i,n) [noise U, = 0; bias b, = 0]
> Pure payoff vectors: Dy = 0;(@i,n3d—i,n) [noise U, = O(1); bias b, = 0]

Mi(ﬂi,n;a—i,n)

> Payoff-based: 0;,, = B ) €a;,
Ain = Ai

[noise U, = O(1/ ming; X"ﬂp”); bias b, = 0]

V.

P. Mertikopoulos UoA & CNRS
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% Follow the regularized leader in discrete time

The FTRL template

Yi,n+l = Yi,n + Ynﬁi,n

Xine1 = Qi(Yinn) = argmax{( Y1, x) — hi(x:) }
X €X;

(FTRL)

[Algorithm due to Shalev-Shwartz, 2011; Shalev-Shwartz & Singer, 2006]

> y, > 0is the method’s step-size [To be specialized later]
> 0;,, is an stochastic first-order oracle (SFO) model for v; (x,) [To be specialized later]
> Every player’s regularizer h;: X; - R is continuous on X, differentiable on ri X;, and strongly convex on X;

hi(xp) > hi(xi) + (VR (xi), 51— xi) + (Ki/2) |x] = xi]°

P. Mertikopoulos UoA & CNRS
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% Examples
Example 1: Ridge regularization

> Regularizer:

h(x) = 3]«

> Algorithm:

Yo=Y, + Ynﬁn Xus1 = HX(YnH)

P. Mertikopoulos
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% Examples
Example 1: Ridge regularization

> Regularizer:

h(x) = 3]«

> Algorithm:
Yn+1 = Yn + Ynﬁn Xn+1 = HX(Yn+1)

Example 2: Entropic regularization

> Regularizer:

h(x) = Z Xalogx,
acA

> Algorithm:

Yn+1 = Yn + ))nf)n Xn+1 = A(Y,H.l)

P. Mertikopoulos UoA & CNRS
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Exponential weights redux

Algorithm Exponential weights in discrete time (ExPWEIGHT)

Require: finite game I' = I'(N\/, A, u); stochastic first-order oracle O

Initialize: Y; e RAi,i=1,...,N

forall n=1,2,... all players i € A do simultaneously
set X; , o< exp(Yi,n) # mixed strategy
play ai , ~ Xi n # choose action
getd; , € RA # receive feedback
set Yipq1 < Yin + Ynbin # update scores
end for
Basic idea:

> Score actions by aggregating payoff vector estimates provided by oracle
> Choose actions with probability exponentially proportional to their scores
> Rinse/repeat

P. Mertikopoulos
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Model 1: ExpWeight with mixed payoff vector observations

If players observe mixed payoff vectors:
z’>i,n = Ui(Xi,n§ X—i,n)

Oracle features:
» Deterministic: no randomness!
» Bias: B, =0
» Variance: 0, = 0

» Second moment: M, = O(1)

P. Mertikopoulos
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Model 2: ExpWeight with pure payoff vector observations

If players observe pure payoff vectors:

ﬁi,n = Ui(”i,n; a—i,n)

Oracle features:
» Stochastic: random action selection
» Bias: B, =0
» Variance: 0, = O(1)
» Second moment: M, = O(1)

NB: this algorithm is known as as HEpGe [Auer et al, 1995,2002)]

P. Mertikopoulos
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% Model 3: ExpWeight with bandit feedback

If players observe realized payoffs only:

b = Mi(ai,n;a—i,n) e
i,n P(ﬂi,n _ ai) Ain

Oracle features:
» Stochastic: random action selection
» Bias: B, =0
> Variance: 0, = O(1/Xia,n)
> Second moment: M,, = O(1/Xja;,n)

NB: this algorithm is known as as EXP3 [Auer et al, 1995,2002)

P. Mertikopoulos

UoA & CNRS
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% Model 4: ExpWeight with bandit feedback

If players observe realized payoffs only:

b = Mi(ai,n;a—i,n) e
i,n P(ﬂi,n _ ai) Ain

Oracle features:
» Stochastic: random action selection
»> Explicit exploration: draw a; , ~ X; , with prob. 1— §,, otherwise uniformly
> Bias: B, = O(8x)
» Variance: 0, = O(1/52)
» Second moment: M, = O(1/6%)

NB: this algorithm is known as as EXP3 wiTH ExPLICIT EXPLORATION  [Lattimore & Szepesvéri, 2020; Shalev-Shwartz, 2011]

P. Mertikopoulos
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What does the sequence of play look like?
0.8
“:}
| 1
\
0.6

|
!

Congestion Game

0.4]
}/
\
0.2
\
S -
— -— »
0.0
0.0 0.2 0.4 0.6 08 1.0
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% Visualization

What does the sequence of play look like?

Battle of the Sexes

S~

%
S
L=

04 0.6 08 1.0

-

UoA & CNRS

P. Mertikopoulos
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% Visualization

What does the sequence of play look like?

Matching Pennies

P. Mertikopoulos UoA & CNRS
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% Visualization

What does the sequence of play look like?

Prisoner's Dilemma

P. Mertikopoulos UoA & CNRS
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% Notions of stability

Definition (Stochastic stability)

x* € X is stochastically stable under X,, if, for every confidence level § > 0 and every neighborhood U of x*,
there exists a neighborhood U of x* such that

P(X,eUforalln=1,2,... | Xielh) >1-6

[Intuition: with high probability, if X,, starts near x*, it remains nearby |

P. Mertikopoulos
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% Notions of stability

Definition (Stochastic stability)

x* € X is stochastically stable under X,, if, for every confidence level § > 0 and every neighborhood U of x*,
there exists a neighborhood U of x* such that

P(X,eUforalln=1,2,... | Xielh) >1-6

[Intuition: with high probability, if X,, starts near x*, it remains nearby |

Definition (Stochastic asymptotic stability)

> x* € Xis attracting if, for every confidence level & > 0, there exists a neighborhood ¢4 of x* such that
P(X, > x"asn—oo|Xielhy)21-6

> x* € X is stochastically asymptotically stable if it is stochastically stable and attracting.

[ Intuition: with high probability, if X,, starts near x* then, it remains nearby and eventually converges to x*]

P. Mertikopoulos
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% The behavior of regularized learning in games

Theorem

= Assume: all players run (FTRL) with step-size y, and oracle parameters b, (bias) and U, (noise) such that:
(A1) yn>0and ¥, yn = o0
(A2) by — 0
(A3) E[||Un]?] < oy for some q > 2

(A4) i, y}:q/zag/[zzzl yi )14 is summmable for some a € (0,1)

P. Mertikopoulos UoA & CNRS



Learning in discrete time

0000000000000 0e0

% The behavior of regularized learning in games

Theorem

= Assume: all players run (FTRL) with step-size y, and oracle parameters b, (bias) and U, (noise) such that:
(A1) yu = y/nP for some p € [0,1]
(A2) by = O(1/n") for some b > 0
(A3) E[|Un||7] = O@/n") for some g > 2, r < 1/2
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Learning in discrete time
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% The behavior of regularized learning in games

Theorem

= Assume: all players run (FTRL) with step-size y, and oracle parameters b, (bias) and U, (noise) such that:
(A1) yu = y/nP for some p € [0,1]
(A2) by = O(1/n") for some b > 0
(A3) E[|Un||7] = O@/n") for some g > 2, r < 1/2

# Then: the sequence X, generated by (FTRL) enjoys the following properties

(P1) If Xy, converges, its limit is a Nash equilibrium [M & Zhou, 2019]
(P2) If x* is stochastically stable, it is a Nash equilibrium [Giannou et al, 2021]
(P3) x* is stochastically asymptotically stable if and only if it is a strict Nash equilibrium [Giannou et al, 2021]
(P4) If p>1/2and G is a congestion game, then X, converges to a Nash equilibrium (a.s.) [Cohen et al, 2017]
4
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% Rate of convergence

Theorem (Giannou et al., 2021)

= Assume: all players run (FTRL) with step-size y, and oracle parameters b,, (bias) and U, (noise) as before

#y Then: if x™ is a strict Nash equilibrium and X, converges to x*, we have
n
*
IXu=x"lhs 3 ¢(A*BZ)’k)
agsupp(x*) k=1

where

> A, B > 0 are initialization- and game-dependent constants

> The rate function ¢ is determined by the method’s regularizer

> For exponential weights: ¢(z) = exp(z) = geometric convergencein S, = Y;_; V&

> For projection dynamics: ¢(z) = [z]+ = convergence in a finite number of iterations!

P. Mertikopoulos



Overview

I. Learning in continuous time
v Nash equilibrium == stationarity

v Lyapunov stability == equilibrium

v Asymptotic stability <= strict equilibrium
v Potential games == convergence to equilibrium

v Zero-sum games == Poincaré recurrence

Il. Learning in discrete time
X Depends on feedback, step-size, ...
X Nash equilibrium =~ stationarity
v Lyapunov stability == equilibrium
v Asymptotic stability <= strict equilibrium
v Potential games == convergence to equilibrium

X Zero-sum games =/= Poincaré recurrence

P. Mertikopoulos




& Open questions

> Robustness to delays / corruptions / ...

> Non-singleton attractors? Other limit behaviors?

> Learning in continuous games?

-15 -1.0 -0.5 00 05 1.0 15 -15 -1.0 -0.5 00 05 1.0 1.5
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