
1/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ, ΕΞΕΛΙΚΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ

ΚΑΙ ΜΑΘΗΣΗ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

Παναγιώτης Μερτικόπουλος

⟨ Σεμινάριο Στατιστικής & Επιχ. Έρευνας | ΕΚΠΑ, Τμήμα Μαθηματικών | 4 Μαρτίου, 2022 ⟩

P. Mertikopoulos UoA & CNRS

2/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time

P. Mertikopoulos UoA & CNRS

3/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Traffic…

…how bad can it get?

P. Mertikopoulos UoA & CNRS

3/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Traffic…

…how bad can it get?

P. Mertikopoulos UoA & CNRS

4/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Game of roads

Athens at a glance

▸ , ,  people

▸ ,  daily trips

▸ Up to  trips/min

▸  nodes

▸  edges

▸ , ,  O/D pairs

▸ ≈  ∗  paths

A very large game!

P. Mertikopoulos UoA & CNRS

5/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Online learning

A generic online decision process:

repeat

At each epoch t
Choose action # single- / multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

until end

Defining elements
▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions:

▸ Reward mechanism:

▸ Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos UoA & CNRS

5/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Online learning

A generic online decision process:

repeat

At each epoch t
Choose action # single- / multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

until end

Defining elements
▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions: continuous or finite?

▸ Reward mechanism: endogenous or exogenous (determined by other players or by “Nature”)?

▸ Feedback: observe other actions / other rewards / only received?
P. Mertikopoulos UoA & CNRS

5/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Online learning

A generic online decision process:

repeat

At each epoch t
Choose action # single- / multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

until end

Defining elements
▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions: /////////////continuous ///or finite

▸ Reward mechanism: endogenous///or/////////////exogenous (determined by other players///or///by///////////“Nature”)

▸ Feedback: observe other actions / other rewards / only received?
P. Mertikopoulos UoA & CNRS

6/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Game-theoretic learning

▸ Multiple agents, individual objectives

[Select a route from home to work]

▸ Payoffs determined by actions of all agents

[Encounter other commuters on the road]

▸ Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]

Does learning lead to stable / rational outcomes?

P. Mertikopoulos UoA & CNRS

6/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Game-theoretic learning

▸ Multiple agents, individual objectives

[Select a route from home to work]

▸ Payoffs determined by actions of all agents

[Encounter other commuters on the road]

▸ Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]

Does learning lead to stable / rational outcomes?

P. Mertikopoulos UoA & CNRS

6/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Game-theoretic learning

▸ Multiple agents, individual objectives

[Select a route from home to work]

▸ Payoffs determined by actions of all agents

[Encounter other commuters on the road]

▸ Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]

Does learning lead to stable / rational outcomes?

P. Mertikopoulos UoA & CNRS

7/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time

P. Mertikopoulos UoA & CNRS

8/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of players N

2. A set of actions (or pure strategies) Ai per player i ∈N

3. An ensemble of payoff functions u i ∶∏ j A j → R per player i ∈N

Important:

▸ Player set: atomic vs. nonatomic

▸ Action sets: finite vs. continuous; shared vs. individual; …

▸ NB: do not mix game classes!

P. Mertikopoulos UoA & CNRS

8/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of players N

2. A set of actions (or pure strategies) Ai per player i ∈N

3. An ensemble of payoff functions u i ∶∏ j A j → R per player i ∈N

Important:

▸ Player set: atomic vs. nonatomic

▸ Action sets: finite vs. continuous; shared vs. individual; …

▸ NB: do not mix game classes!

P. Mertikopoulos UoA & CNRS

9/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Taxonomy

Actions

Players
Finite

Finite

Continuous

Continuous

Population Games

Mean Field Games

Finite Games

Continuous Games

P. Mertikopoulos UoA & CNRS

9/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Taxonomy

Actions

Players
Finite

Finite

Continuous

Continuous

Nonatomic

Mean Field Games

Atomic
Non-Splittable

Atomic Splittable

CONGESTION GAMES

P. Mertikopoulos UoA & CNRS

10/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nonatomic congestion games

▸ Network: multigraph G = (V , E)

▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)

P. Mertikopoulos UoA & CNRS

10/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nonatomic congestion games

O

D

O

D

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)

P. Mertikopoulos UoA & CNRS

10/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nonatomic congestion games

O

D

O

D

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)

P. Mertikopoulos UoA & CNRS

10/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nonatomic congestion games

O

D

O

D

c(x)

c(x)

c(x)

c(x)

c(x)

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)

P. Mertikopoulos UoA & CNRS

10/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nonatomic congestion games

O

D

O

D

c(x)

c(x)

c(x)

c(x)

c(x)

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)
P. Mertikopoulos UoA & CNRS

11/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Atomic congestion games

O

D

O

D

c(x)

c(x)

c(x)

c(x)

c(x)

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [atomic, non-splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Route choice p i ∈ Pi ; congestion load of m i units along each edge e ∈ p i [congestion elements]

▸ Load xe = ∑p i∋e m i : total congestion load on edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp(f) = ∑e∈p ce(xe) [aggregate cost]

▸ Atomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)
P. Mertikopoulos UoA & CNRS

12/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Finite games

Finite games: [sometimes known as (poly)matrix games]

▸ Finite set of players N = {, . . . ,N}

▸ Finite set of actions (or “pure strategies”) Ai = {, . . . ,m i} per player

▸ Action profile a = (a , . . . , aN) ∈ A ∶=∏i Ai

▸ Payoffs given by payoff functions u i ∶A→ R

u i(a) ≡ u i(a , . . . , aN) ≡ u i(a i ; a−i)

▸ Payoff vector of player i :
υ i(a) = (u i(a′i ; a−i))a′i∈Ai

▸ Notation: Γ ≡ Γ(N ,A, u)

P. Mertikopoulos UoA & CNRS

13/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Mixed extensions

Mixed extension of a finite game:

▸ Given: finite game Γ ≡ Γ(N ,A, u)

▸ Mixed strategy of player i :
x i = (x i a)a∈Ai ∈ ∆(Ai) =∶ Xi

▸ Mixed payoff of player i

u i(x) = Ea∼x u i(a) = ∑
a∈A

. . . ∑
aN∈AN

x,a⋯xN ,aN u i(a , . . . , aN)

▸ Payoff vector of player i :
υ i(a) = (u i(a′i ; a−i))a′i∈Ai

▸ Notation: Γ̄ ≡ ∆(Γ)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

S P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

S P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

S P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

S P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

14/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

S P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS

15/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Single-population games

▸ Population of players: I = [, ] [endowed with Lebesgue measure µ]

▸ Common set of actions A = {, . . . ,m}

▸ Strategy profile: measurable function χ∶N → A [measurable assignment of players to actions]

▸ Population state x ∶= χ ♯ µ ≡ µ ○ χ− , i.e., [viewed as element of X ∶= ∆(A)]

xa = µ(χ−(a)) = mass of players playing a ∈ A

▸ Payoffs given by payoff functions υa ∶X → R [Players are anonymous]

υa(x) = payoff to a-strategists when the population is at state x ∈ X

▸ Mean population payoff: u(x) = ∑a xaυa(x)

Example (Symmetric / Single-population random matching)
▸ Given: symmetric m ×m payoff matrix M
▸ Players drawn randomly from population at state x to play M
▸ Mean payoff to a-strategists: υa(x) = ∑a′∈A Maa′xa′ = (Mx)a

P. Mertikopoulos UoA & CNRS

15/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Single-population games

▸ Population of players: I = [, ] [endowed with Lebesgue measure µ]

▸ Common set of actions A = {, . . . ,m}

▸ Strategy profile: measurable function χ∶N → A [measurable assignment of players to actions]

▸ Population state x ∶= χ ♯ µ ≡ µ ○ χ− , i.e., [viewed as element of X ∶= ∆(A)]

xa = µ(χ−(a)) = mass of players playing a ∈ A

▸ Payoffs given by payoff functions υa ∶X → R [Players are anonymous]

υa(x) = payoff to a-strategists when the population is at state x ∈ X

▸ Mean population payoff: u(x) = ∑a xaυa(x)

Example (Symmetric / Single-population random matching)
▸ Given: symmetric m ×m payoff matrix M
▸ Players drawn randomly from population at state x to play M
▸ Mean payoff to a-strategists: υa(x) = ∑a′∈A Maa′xa′ = (Mx)a

P. Mertikopoulos UoA & CNRS

16/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Multi-population games

▸ Multiple populations: I = [, ] ×⋯ × [, ] [endowed with Lebesgue measure µ]

▸ Population-specific action sets Ai , i = , . . . ,N
▸ Population state x ∈ X ∶=∏i ∆(Ai)

x i a i = mass of players of population i playing a i ∈ Ai

▸ Payoffs given by payoff functions υ i a i ∶X → R

υ i a i (x) = payoff to a i -strategists when the population is at state x ∈ X

▸ Mean population payoff: u i(x) = ∑a i∈Ai
x i a i υ i a i (x)

Example (Asymmetric / Multi-population random matching)
▸ Given: finite game Γ ≡ Γ(N ,A, u)
▸ N players drawn randomly from each population to play Γ
▸ Mean payoff to a i -strategists in the i-th population: υ i a i (x) = u i(a i ; x−i)

P. Mertikopoulos UoA & CNRS

16/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Multi-population games

▸ Multiple populations: I = [, ] ×⋯ × [, ] [endowed with Lebesgue measure µ]

▸ Population-specific action sets Ai , i = , . . . ,N
▸ Population state x ∈ X ∶=∏i ∆(Ai)

x i a i = mass of players of population i playing a i ∈ Ai

▸ Payoffs given by payoff functions υ i a i ∶X → R

υ i a i (x) = payoff to a i -strategists when the population is at state x ∈ X

▸ Mean population payoff: u i(x) = ∑a i∈Ai
x i a i υ i a i (x)

Example (Asymmetric / Multi-population random matching)
▸ Given: finite game Γ ≡ Γ(N ,A, u)
▸ N players drawn randomly from each population to play Γ
▸ Mean payoff to a i -strategists in the i-th population: υ i a i (x) = u i(a i ; x−i)

P. Mertikopoulos UoA & CNRS

17/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Mix'n'match

+ Symmetric Random matching ≠ Mixed extension

[Population matched against itself Ô⇒ symmetric interactions]

+ Asymmetric random matching = Mixed Extension

[Populations matched against each other Ô⇒ asymmetric interactions]

+ Multi-population games ⊋ Mixed Extensions

[Nonatomic congestion games, …]

P. Mertikopoulos UoA & CNRS

17/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Mix'n'match

+ Symmetric Random matching ≠ Mixed extension

[Population matched against itself Ô⇒ symmetric interactions]

+ Asymmetric random matching = Mixed Extension

[Populations matched against each other Ô⇒ asymmetric interactions]

+ Multi-population games ⊋ Mixed Extensions

[Nonatomic congestion games, …]

P. Mertikopoulos UoA & CNRS

17/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Mix'n'match

+ Symmetric Random matching ≠ Mixed extension

[Population matched against itself Ô⇒ symmetric interactions]

+ Asymmetric random matching = Mixed Extension

[Populations matched against each other Ô⇒ asymmetric interactions]

+ Multi-population games ⊋ Mixed Extensions

[Nonatomic congestion games, …]

P. Mertikopoulos UoA & CNRS

18/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

▸ In finite games (mixed extension formulation):

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ In population games:
υ i a i (x

∗) ≥ υ i a′i
(x∗) whenever a i ∈ supp(x∗)

Variational formulation (Stampacchia, 1964)

⟨υ(x∗), x − x∗⟩ ≤  for all x ∈ X

where υ(x) = (υ(x), . . . , υN(x)) is the payoff field of the game

[Geometric interpretation: υ(x∗) is outward-pointing]

P. Mertikopoulos UoA & CNRS

18/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

▸ In finite games (mixed extension formulation):

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ In population games:
υ i a i (x

∗) ≥ υ i a′i
(x∗) whenever a i ∈ supp(x∗)

Variational formulation (Stampacchia, 1964)

⟨υ(x∗), x − x∗⟩ ≤  for all x ∈ X

where υ(x) = (υ(x), . . . , υN(x)) is the payoff field of the game

[Geometric interpretation: υ(x∗) is outward-pointing]

P. Mertikopoulos UoA & CNRS

18/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

▸ In finite games (mixed extension formulation):

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ In population games:
υ i a i (x

∗) ≥ υ i a′i
(x∗) whenever a i ∈ supp(x∗)

Variational formulation (Stampacchia, 1964)

⟨υ(x∗), x − x∗⟩ ≤  for all x ∈ X

where υ(x) = (υ(x), . . . , υN(x)) is the payoff field of the game

[Geometric interpretation: υ(x∗) is outward-pointing]

P. Mertikopoulos UoA & CNRS

19/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Learning, evolution and dynamics

What is “learning” in games?

The basic process:
▸ Players choose strategies and receive corresponding payoffs

▸ Depending on outcome and information revealed, they choose new strategies and they play again

▸ Rinse, repeat

The basic questions:
▸ How do populations evolve over time? [Population biology]

▸ How do people learn in a game? [Economics]

▸ What algorithms should we use to learn in a game? [Computer science]

▸ Given a dynamical system on X , what is its long-term behavior? [Mathematics]

P. Mertikopoulos UoA & CNRS

19/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Learning, evolution and dynamics

What is “learning” in games?

The basic process:
▸ Players choose strategies and receive corresponding payoffs

▸ Depending on outcome and information revealed, they choose new strategies and they play again

▸ Rinse, repeat

The basic questions:
▸ How do populations evolve over time? [Population biology]

▸ How do people learn in a game? [Economics]

▸ What algorithms should we use to learn in a game? [Computer science]

▸ Given a dynamical system on X , what is its long-term behavior? [Mathematics]

P. Mertikopoulos UoA & CNRS

19/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Learning, evolution and dynamics

What is “learning” in games?

The basic process:
▸ Players choose strategies and receive corresponding payoffs

▸ Depending on outcome and information revealed, they choose new strategies and they play again

▸ Rinse, repeat

The basic questions:
▸ How do populations evolve over time? [Population biology]

▸ How do people learn in a game? [Economics]

▸ What algorithms should we use to learn in a game? [Computer science]

▸ Given a dynamical system on X , what is its long-term behavior? [Mathematics]

P. Mertikopoulos UoA & CNRS

20/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time

P. Mertikopoulos UoA & CNRS

21/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the First (1970's–1990's): Population Biology

▸ Strategies are phenotypes in a given species

za = absolute population mass of type a ∈ A
z =∑a za = absolute population mass

▸ Utilities measure fecundity / reproductive fitness:

υa = per capita growth rate of type a

▸ Population evolution:
ża = zaυa

▸ Evolution of population shares (xa = za/z):

ẋa =
d
dt

za
z
= żaz − za∑a′ ża′

z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)

ẋa = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

21/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the First (1970's–1990's): Population Biology

▸ Strategies are phenotypes in a given species

za = absolute population mass of type a ∈ A
z =∑a za = absolute population mass

▸ Utilities measure fecundity / reproductive fitness:

υa = per capita growth rate of type a

▸ Population evolution:
ża = zaυa

▸ Evolution of population shares (xa = za/z):

ẋa =
d
dt

za
z
= żaz − za∑a′ ża′

z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)

ẋa = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

21/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the First (1970's–1990's): Population Biology

▸ Strategies are phenotypes in a given species

za = absolute population mass of type a ∈ A
z =∑a za = absolute population mass

▸ Utilities measure fecundity / reproductive fitness:

υa = per capita growth rate of type a

▸ Population evolution:
ża = zaυa

▸ Evolution of population shares (xa = za/z):

ẋa =
d
dt

za
z
= żaz − za∑a′ ża′

z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)

ẋa = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

21/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the First (1970's–1990's): Population Biology

▸ Strategies are phenotypes in a given species

za = absolute population mass of type a ∈ A
z =∑a za = absolute population mass

▸ Utilities measure fecundity / reproductive fitness:

υa = per capita growth rate of type a

▸ Population evolution:
ża = zaυa

▸ Evolution of population shares (xa = za/z):

ẋa =
d
dt

za
z
= żaz − za∑a′ ża′

z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)

ẋa = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

22/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
ẋa = inflowa(x) − outflowa(x) = ⋯ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

22/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
ẋa = inflowa(x) − outflowa(x) = ⋯ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

22/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
ẋa = inflowa(x) − outflowa(x) = ⋯ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

22/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
ẋa = inflowa(x) − outflowa(x) = ⋯ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

23/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Third (2000's–present): Computer Science

Evolution of mixed strategies in a finite game:
▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


υa(τ) dτ

Ô⇒ propensity of choosing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t)

▸ Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

ẋa = ⋅ ⋅ ⋅ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

23/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Third (2000's–present): Computer Science

Evolution of mixed strategies in a finite game:
▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


υa(τ) dτ

Ô⇒ propensity of choosing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t)∝ exp(ya(t))

▸ Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

ẋa = ⋅ ⋅ ⋅ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

23/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Third (2000's–present): Computer Science

Evolution of mixed strategies in a finite game:
▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


υa(τ) dτ

Ô⇒ propensity of choosing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t) =
exp(ya(t))
∑a′ exp(ya′(t))

▸ Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

ẋa = ⋅ ⋅ ⋅ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

23/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Third (2000's–present): Computer Science

Evolution of mixed strategies in a finite game:
▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


υa(τ) dτ

Ô⇒ propensity of choosing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t) =
exp(ya(t))
∑a′ exp(ya′(t))

▸ Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

ẋa = ⋅ ⋅ ⋅ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS

24/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Basic properties

Multi-player replicator dynamics

ẋ i a i = xa i [υ i a i (x) − u i(x)] (RD)

[NB: focus on multi-population version from now on]

Structural properties [Hofbauer & Sigmund, 1998; Weibull, 1995]

▸ Well-posed: every initial condition x ∈ X admits unique solution trajectory x(t) that exists for all time
[Assuming u i is Lipschitz]

▸ Consistent: x(t) ∈ X for all t ≥ 
[Assuming x() ∈ X]

▸ Faces are forward invariant (“strategies breed true”):

x i a i () >  ⇐⇒ x i a i (t) >  for all t ≥ 
x i a i () =  ⇐⇒ x i a i (t) =  for all t ≥ 

P. Mertikopoulos UoA & CNRS

24/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Basic properties

Multi-player replicator dynamics

ẋ i a i = xa i [υ i a i (x) − u i(x)] (RD)

[NB: focus on multi-population version from now on]

Structural properties [Hofbauer & Sigmund, 1998; Weibull, 1995]

▸ Well-posed: every initial condition x ∈ X admits unique solution trajectory x(t) that exists for all time
[Assuming u i is Lipschitz]

▸ Consistent: x(t) ∈ X for all t ≥ 
[Assuming x() ∈ X]

▸ Faces are forward invariant (“strategies breed true”):

x i a i () >  ⇐⇒ x i a i (t) >  for all t ≥ 
x i a i () =  ⇐⇒ x i a i (t) =  for all t ≥ 

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

(�� �)

(�� �)

(�� �)

(�� �)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��

� �

���������� �������� �� � ���������� ����

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

(�� �)

(�� �)

(�� �)

(�� �)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��

� �

���������� �������� �� ��� ������ �� ��� �����

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

(�� -�)

(-�� �)

(-�� �)

(�� -�)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��

� �

���������� �������� �� �������� �������

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

(�� �)

(�� �)

(�� �)

(�� �)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��

� �

���������� �������� �� ��� ���������� �������

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

P. Mertikopoulos UoA & CNRS

25/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Phase portraits

What do the dynamics look like?

P. Mertikopoulos UoA & CNRS

26/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Rationality analysis

Are game-theoretic solution concepts consistent with the players’ dynamics?

▸ Are Nash equilibria stationary?

▸ Are they stable? Are they attracting?

▸ Do the replicator dynamics always converge?

▸ What other behaviors can we observe?

▸ ⋯

P. Mertikopoulos UoA & CNRS

27/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Stationarity of equilibria

Equilibrium: υ i a i (x
∗) ≥ υ i a′i

(x∗) for all a i , a′i ∈ Ai with x∗i a i > 

▸ Supported strategies have equal payoffs:

υ i a i (x
∗) = υ i a′i (x

∗) for all a i , a′i ∈ supp(x
∗
i)

▸ Mean payoff equal to equilibrium payoff:

u i(x∗) = υ i a i (x
∗) for all a i ∈ supp(x∗i)

▸ Replicator field vanishes at Nash equilibria:

x∗i a i [υ i a i (x
∗) − u i(x∗)] =  for all a i ∈ Ai

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x() is a Nash equilibrium Ô⇒ x(t) = x() for all t ≥ 

7 The converse does not hold! [See previous portraits]

P. Mertikopoulos UoA & CNRS

27/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Stationarity of equilibria

Equilibrium: υ i a i (x
∗) ≥ υ i a′i

(x∗) for all a i , a′i ∈ Ai with x∗i a i > 

▸ Supported strategies have equal payoffs:

υ i a i (x
∗) = υ i a′i (x

∗) for all a i , a′i ∈ supp(x
∗
i)

▸ Mean payoff equal to equilibrium payoff:

u i(x∗) = υ i a i (x
∗) for all a i ∈ supp(x∗i)

▸ Replicator field vanishes at Nash equilibria:

x∗i a i [υ i a i (x
∗) − u i(x∗)] =  for all a i ∈ Ai

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x() is a Nash equilibrium Ô⇒ x(t) = x() for all t ≥ 

7 The converse does not hold! [See previous portraits]

P. Mertikopoulos UoA & CNRS

27/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Stationarity of equilibria

Equilibrium: υ i a i (x
∗) ≥ υ i a′i

(x∗) for all a i , a′i ∈ Ai with x∗i a i > 

▸ Supported strategies have equal payoffs:

υ i a i (x
∗) = υ i a′i (x

∗) for all a i , a′i ∈ supp(x
∗
i)

▸ Mean payoff equal to equilibrium payoff:

u i(x∗) = υ i a i (x
∗) for all a i ∈ supp(x∗i)

▸ Replicator field vanishes at Nash equilibria:

x∗i a i [υ i a i (x
∗) − u i(x∗)] =  for all a i ∈ Ai

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x() is a Nash equilibrium Ô⇒ x(t) = x() for all t ≥ 

7 The converse does not hold! [See previous portraits]

P. Mertikopoulos UoA & CNRS

28/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Stability

Are all stationary points created equal?

Definition (Lyapunov stability)

x∗ is (Lyapunov) stable if, for every neighborhood U of x∗ in X , there exists a neighborhood U ′ of x∗ such that

x() ∈ U ′ Ô⇒ x(t) ∈ U for all t ≥ 

[Trajectories that start close to x∗ remain close for all time]

Proposition (Folk)

Suppose that x∗ is Lyapunov stable under (RD). Then x∗ is a Nash equilibrium.

P. Mertikopoulos UoA & CNRS

28/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Stability

Are all stationary points created equal?

Definition (Lyapunov stability)

x∗ is (Lyapunov) stable if, for every neighborhood U of x∗ in X , there exists a neighborhood U ′ of x∗ such that

x() ∈ U ′ Ô⇒ x(t) ∈ U for all t ≥ 

[Trajectories that start close to x∗ remain close for all time]

Proposition (Folk)

Suppose that x∗ is Lyapunov stable under (RD). Then x∗ is a Nash equilibrium.

P. Mertikopoulos UoA & CNRS

29/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Asymptotic stability

Are all equilibria created equal?

Definition
▸ x∗ is attracting if limt→∞ x(t) = x∗ whenever x() is close enough to x∗

▸ x∗ is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

P. Mertikopoulos UoA & CNRS

29/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Asymptotic stability

Are all equilibria created equal?

Definition
▸ x∗ is attracting if limt→∞ x(t) = x∗ whenever x() is close enough to x∗

▸ x∗ is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).

P. Mertikopoulos UoA & CNRS

30/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The "folk theorem" of evolutionary game theory

Theorem ("folk"; Hofbauer & Sigmund, 2003)

Let Γ be a finite game. Then, under (RD), we have:

1. x∗ is a Nash equilibrium Ô⇒ x∗ is stationary

2. x∗ is the limit of an interior trajectory Ô⇒ x∗ is a Nash equilibrium

3. x∗ is stable Ô⇒ x∗ is a Nash equilibrium

4. x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

Notes:

- Concerns multi-population replicator dynamics

7 Converse to (1), (2) and (3) does not hold!

- Symmetric version: all true except Ô⇒ in (4)

P. Mertikopoulos UoA & CNRS

31/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Single-population: different ball game

The replicator dynamics in “good” RPS (win > loss):
R

P S

P. Mertikopoulos UoA & CNRS

32/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Convergence in potential games

Potential games (Sandholm, 2001)

υ i a i = −
∂Φ
∂x i a i

for some potential function Φ∶X → R

NASC (Poincaré’s lemma):

potential ⇐⇒ ∂υ i a i

∂x i a′i
=
∂υ i a′i

∂x i a i

Positive correlation / Lyapunov property:

dΦ
dt
≤  under (RD)

Theorem (Sandholm, 2001)
▸ In potential games, (RD) converges to its set of stationary points

▸ In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

32/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Convergence in potential games

Potential games (Sandholm, 2001)

υ i a i = −
∂Φ
∂x i a i

for some potential function Φ∶X → R

NASC (Poincaré’s lemma):

potential ⇐⇒ ∂υ i a i

∂x i a′i
=
∂υ i a′i

∂x i a i

Positive correlation / Lyapunov property:

dΦ
dt
≤  under (RD)

Theorem (Sandholm, 2001)
▸ In potential games, (RD) converges to its set of stationary points

▸ In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

32/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Convergence in potential games

Potential games (Sandholm, 2001)

υ i a i = −
∂Φ
∂x i a i

for some potential function Φ∶X → R

NASC (Poincaré’s lemma):

potential ⇐⇒ ∂υ i a i

∂x i a′i
=
∂υ i a′i

∂x i a i

Positive correlation / Lyapunov property:

dΦ
dt
≤  under (RD)

Theorem (Sandholm, 2001)
▸ In potential games, (RD) converges to its set of stationary points

▸ In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

33/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x∗ is full-support equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a bilinear zero-sum game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

33/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x∗ is full-support equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a bilinear zero-sum game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

33/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x∗ is full-support equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a bilinear zero-sum game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS

34/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Convergence of time-averages

The replicator dynamics in a game of Matching Pennies

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Time-Averaged Replicator Dynamics

P. Mertikopoulos UoA & CNRS

35/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Definition (Poincaré)
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

P. Mertikopoulos UoA & CNRS

35/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Definition (Poincaré)
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

P. Mertikopoulos UoA & CNRS

36/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015)

The dynamics (RD) are volume-preserving under the Shahshahani metric aa′(x) = δaa′/xa on riX .

Volume preservation Ô⇒ no concentration Ô⇒ no convergence 3

…but the Shahshahani metric becomes singular at the boundary of X 7

Theorem (M et al., 2018)
(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy.

P. Mertikopoulos UoA & CNRS

36/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015)

The dynamics (RD) are volume-preserving under the Shahshahani metric aa′(x) = δaa′/xa on riX .

Volume preservation Ô⇒ no concentration Ô⇒ no convergence 3

…but the Shahshahani metric becomes singular at the boundary of X 7

Theorem (M et al., 2018)
(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy.

P. Mertikopoulos UoA & CNRS

36/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015)

The dynamics (RD) are volume-preserving under the Shahshahani metric aa′(x) = δaa′/xa on riX .

Volume preservation Ô⇒ no concentration Ô⇒ no convergence 3

…but the Shahshahani metric becomes singular at the boundary of X 7

Theorem (M et al., 2018)
(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy.

P. Mertikopoulos UoA & CNRS

36/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015)

The dynamics (RD) are volume-preserving under the Shahshahani metric aa′(x) = δaa′/xa on riX .

Volume preservation Ô⇒ no concentration Ô⇒ no convergence 3

…but the Shahshahani metric becomes singular at the boundary of X 7

Theorem (M et al., 2018)
(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy.

P. Mertikopoulos UoA & CNRS

37/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X
where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS

37/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X ⟨y, x⟩

where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS

37/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X{⟨y, x⟩ − h(x)}

where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS

37/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X{⟨y, x⟩ − h(x)}

where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS

37/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X{⟨y, x⟩ − h(x)}

where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS

38/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The projection dynamics

Example: Quadratic (Euclidean) regularization

h(x) = 
∑a x


a

Choice map ; closest point projection:

Π(y) = argmax
x∈X

{⟨y, x⟩ − (/)∥x∥} = argmin
x∈X

∥y − x∥

Projection dynamics [M & Sandholm, 2016]

ẏt = υt
xt = Π(yt)

(PL)

P. Mertikopoulos UoA & CNRS

38/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The projection dynamics

Example: Quadratic (Euclidean) regularization

h(x) = 
∑a x


a

Choice map ; closest point projection:

Π(y) = argmax
x∈X

{⟨y, x⟩ − (/)∥x∥} = argmin
x∈X

∥y − x∥

Projection dynamics [M & Sandholm, 2016]

ẏt = υt
xt = Π(yt)

(PL)

P. Mertikopoulos UoA & CNRS

38/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The projection dynamics

Example: Quadratic (Euclidean) regularization

h(x) = 
∑a x


a

Choice map ; closest point projection:

Π(y) = argmax
x∈X

{⟨y, x⟩ − (/)∥x∥} = argmin
x∈X

∥y − x∥

Projection dynamics [M & Sandholm, 2016]

ẏt = υt
xt = Π(yt)

(PL)

P. Mertikopoulos UoA & CNRS

39/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

In and out of the boundary

Payoff space Strategy space

yt xt = Q(yt)
Q

choice map

Key difference with replicator: faces no longer forward invariant

P. Mertikopoulos UoA & CNRS

39/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

In and out of the boundary

Payoff space Strategy space

yt xt = Q(yt)
Q

choice map

Key difference with replicator: faces no longer forward invariant

P. Mertikopoulos UoA & CNRS

40/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Portraits and examples
The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − x

q
a)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Projection Dynamics Hq=2L

P. Mertikopoulos UoA & CNRS

40/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Portraits and examples
The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − x

q
a)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

q-Replicator Dynamics Hq=3�2L

P. Mertikopoulos UoA & CNRS

40/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Portraits and examples
The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − x

q
a)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Replicator Dynamics Hq=1L

P. Mertikopoulos UoA & CNRS

40/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Portraits and examples
The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − x

q
a)

H1, -1L

H-1, 1L

H-1, 1L

H1, -1L

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Log-Barrier Dynamics Hq®0L

P. Mertikopoulos UoA & CNRS

41/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Rational behavior under FTRL

Do the rationality properties of (RD) extend to (FTRL)?

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Let Γ be a finite game. Then, under (FTRL), we have:

1. x∗ is a Nash equilibrium Ô⇒ x∗ is stationary

2. x∗ is the limit of an interior trajectory Ô⇒ x∗ is a Nash equilibrium

3. x∗ is stable Ô⇒ x∗ is a Nash equilibrium

4. x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

P. Mertikopoulos UoA & CNRS

41/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Rational behavior under FTRL

Do the rationality properties of (RD) extend to (FTRL)?

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Let Γ be a finite game. Then, under (FTRL), we have:

1. x∗ is a Nash equilibrium Ô⇒ x∗ is stationary

2. x∗ is the limit of an interior trajectory Ô⇒ x∗ is a Nash equilibrium

3. x∗ is stable Ô⇒ x∗ is a Nash equilibrium

4. x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

P. Mertikopoulos UoA & CNRS

42/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time

P. Mertikopoulos UoA & CNRS

43/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The model

Require: finite game Γ ≡ Γ(N ,A, u) # atomic setting

repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe mixed payoff vector υ i(X i ,n ; X−i ,n) # feedback phase

until end

Defining elements
▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: mixed payoff vectors
P. Mertikopoulos UoA & CNRS

43/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The model

Require: finite game Γ ≡ Γ(N ,A, u) # atomic setting

repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe pure payoff vector υ i(a i ,n ; a−i ,n) # feedback phase

until end

Defining elements
▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: pure payoff vectors
P. Mertikopoulos UoA & CNRS

43/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The model

Require: finite game Γ ≡ Γ(N ,A, u) # atomic setting

repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe realized payoff u i(a i ,n ; a−i ,n) # feedback phase

until end

Defining elements
▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: realized payoffs
P. Mertikopoulos UoA & CNRS

44/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The feedback process

Different types of feedback (from best to worst):

▸ Mixed payoff vectors: υ i(X i ,n ; X−i ,n)

▸ Pure payoff vectors: υ i(a i ,n ; a−i ,n)

▸ Bandit / Payoff-based: u i ,n(a i ,n ; a−i ,n)

Features:

▸ Vector (mixed / pure payoff vecs) vs. Scalar (bandit)

▸ Deterministic (mixed payoff vecs) vs. Stochastic (pure payoff vecs, bandit)

NB1: Randomness defined relative to history of play Fn ∶= F(X , . . . , Xn)

NB2: Other feedback models also possible (noisy observations,…)

P. Mertikopoulos UoA & CNRS

44/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The feedback process

Different types of feedback (from best to worst):

▸ Mixed payoff vectors: υ i(X i ,n ; X−i ,n)

▸ Pure payoff vectors: υ i(a i ,n ; a−i ,n)

▸ Bandit / Payoff-based: u i ,n(a i ,n ; a−i ,n)

Features:

▸ Vector (mixed / pure payoff vecs) vs. Scalar (bandit)

▸ Deterministic (mixed payoff vecs) vs. Stochastic (pure payoff vecs, bandit)

NB1: Randomness defined relative to history of play Fn ∶= F(X , . . . , Xn)

NB2: Other feedback models also possible (noisy observations,…)

P. Mertikopoulos UoA & CNRS

45/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

From payoffs to payoff vectors

How to estimate the payoff u i(a i ; a−i ,n) of an unplayed action a i ≠ a i ,n?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector υ ∈ RA given a mixed strategy x ∈ ∆(A) is defined as

υ̂a =
1a

xa
υa =

⎧⎪⎪⎨⎪⎪⎩

υa/xa if a is drawn (a = â)

 otherwise (a ≠ â)
(IWE)

Statistical properties of (IWE)

▸ Unbiased:
E[υ̂a] = υa

▸ Second moment:

E[υ̂a] =
υa
xa

P. Mertikopoulos UoA & CNRS

45/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

From payoffs to payoff vectors

How to estimate the payoff u i(a i ; a−i ,n) of an unplayed action a i ≠ a i ,n?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector υ ∈ RA given a mixed strategy x ∈ ∆(A) is defined as

υ̂a =
1a

xa
υa =

⎧⎪⎪⎨⎪⎪⎩

υa/xa if a is drawn (a = â)

 otherwise (a ≠ â)
(IWE)

Statistical properties of (IWE)

▸ Unbiased:
E[υ̂a] = υa

▸ Second moment:

E[υ̂a] =
υa
xa

P. Mertikopoulos UoA & CNRS

45/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

From payoffs to payoff vectors

How to estimate the payoff u i(a i ; a−i ,n) of an unplayed action a i ≠ a i ,n?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector υ ∈ RA given a mixed strategy x ∈ ∆(A) is defined as

υ̂a =
1a

xa
υa =

⎧⎪⎪⎨⎪⎪⎩

υa/xa if a is drawn (a = â)

 otherwise (a ≠ â)
(IWE)

Statistical properties of (IWE)

▸ Unbiased:
E[υ̂a] = υa

▸ Second moment:

E[υ̂a] =
υa
xa

P. Mertikopoulos UoA & CNRS

46/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of υ(Xn) is a random vector of the form

υ̂n = υ(Xn) +Un + bn

where Un is zero-mean and bn = E[υ̂n ∣Fn] − υ(Xn) is the bias of υ̂n .

Examples
▸ Mixed payoff vectors: υ̂ i ,n = υ i(X i ,n ; X−i ,n) [noise Un = ; bias bn = ]

▸ Pure payoff vectors: υ̂ i ,n = υ i(a i ,n ; a−i ,n) [noise Un =O(); bias bn = ]

▸ Payoff-based: υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n [noise Un =O(/minai x i a i ,n); bias bn = ]

P. Mertikopoulos UoA & CNRS

46/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of υ(Xn) is a random vector of the form

υ̂n = υ(Xn) +Un + bn

where Un is zero-mean and bn = E[υ̂n ∣Fn] − υ(Xn) is the bias of υ̂n .

Examples
▸ Mixed payoff vectors: υ̂ i ,n = υ i(X i ,n ; X−i ,n) [noise Un = ; bias bn = ]

▸ Pure payoff vectors: υ̂ i ,n = υ i(a i ,n ; a−i ,n) [noise Un =O(); bias bn = ]

▸ Payoff-based: υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n [noise Un =O(/minai x i a i ,n); bias bn = ]

P. Mertikopoulos UoA & CNRS

47/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Follow the regularized leader in discrete time

The FTRL template

Yi ,n+ = Yi ,n + γn υ̂ i ,n

X i ,n+ = Q i(Yi ,n+) ≡ argmax
x i∈Xi

{⟨Yn+ , x⟩ − h i(x i)} (FTRL)

[Algorithm due to Shalev-Shwartz, 2011; Shalev-Shwartz & Singer, 2006]

▸ γn >  is the method’s step-size [To be specialized later]

▸ υ̂ i ,n is an stochastic first-order oracle (SFO) model for υ i(xn) [To be specialized later]

▸ Every player’s regularizer h i ∶Xi → R is continuous on Xi , differentiable on riXi , and strongly convex on Xi

h i(x′i) ≥ h i(x i) + ⟨∇h i(x i), x′i − x i⟩ + (K i/)∥x′i − x i∥

P. Mertikopoulos UoA & CNRS

48/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Examples

Example 1: Ridge regularization

▸ Regularizer:
h(x) = 

 ∥x∥


▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = ΠX(Yn+)

Example 2: Entropic regularization

▸ Regularizer:
h(x) = ∑

a∈A
xa log xa

▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = Λ(Yn+)

P. Mertikopoulos UoA & CNRS

48/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Examples

Example 1: Ridge regularization

▸ Regularizer:
h(x) = 

 ∥x∥


▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = ΠX(Yn+)

Example 2: Entropic regularization

▸ Regularizer:
h(x) = ∑

a∈A
xa log xa

▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = Λ(Yn+)

P. Mertikopoulos UoA & CNRS

49/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Exponential weights redux

Algorithm Exponential weights in discrete time (EXPWEıGHT)

Require: finite game Γ ≡ Γ(N ,A, u); stochastic first-order oracle υ̂

Initialize: Yi ∈ RAi , i = , . . . ,N

for all n = , , . . . all players i ∈ N do simultaneously

set X i ,n ∝ exp(Yi ,n) # mixed strategy

play a i ,n ∼ X i ,n # choose action

get υ̂ i ,n ∈ RAi # receive feedback

set Yi ,n+ ← Yi ,n + γn υ̂ i ,n # update scores

end for

Basic idea:
▸ Score actions by aggregating payoff vector estimates provided by oracle

▸ Choose actions with probability exponentially proportional to their scores

▸ Rinse / repeat

P. Mertikopoulos UoA & CNRS

50/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Model 1: ExpWeight with mixed payoff vector observations

If players observe mixed payoff vectors:
υ̂ i ,n = υ i(X i ,n ; X−i ,n)

Oracle features:

▸ Deterministic: no randomness!

▸ Bias: Bn = 

▸ Variance: σn = 

▸ Second moment: Mn = O()

P. Mertikopoulos UoA & CNRS

51/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Model 2: ExpWeight with pure payoff vector observations

If players observe pure payoff vectors:
υ̂ i ,n = υ i(a i ,n ; a−i ,n)

Oracle features:

▸ Stochastic: random action selection

▸ Bias: Bn = 

▸ Variance: σn = O()

▸ Second moment: Mn = O()

NB: this algorithm is known as as HEDGE [Auer et al., 1995, 2002,]

P. Mertikopoulos UoA & CNRS

52/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Model 3: ExpWeight with bandit feedback

If players observe realized payoffs only:

υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection

▸ Bias: Bn = 

▸ Variance: σn = O(/X i a i ,n)

▸ Second moment: Mn = O(/X i a i ,n)

NB: this algorithm is known as as EXP3 [Auer et al., 1995, 2002,]

P. Mertikopoulos UoA & CNRS

53/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Model 4: ExpWeight with bandit feedback

If players observe realized payoffs only:

υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection

▸ Explicit exploration: draw a i ,n ∼ X i ,n with prob.  − δn , otherwise uniformly

▸ Bias: Bn = O(δn)

▸ Variance: σn = O(/δn)

▸ Second moment: Mn = O(/δn)

NB: this algorithm is known as as EXP3 WıTH EXPLıCıT EXPLORATıON [Lattimore & Szepesvári, 2020; Shalev-Shwartz, 2011]

P. Mertikopoulos UoA & CNRS

54/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Visualization

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Congestion Game

P. Mertikopoulos UoA & CNRS

54/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Visualization

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Battle of the Sexes

P. Mertikopoulos UoA & CNRS

54/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Visualization

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Matching Pennies

P. Mertikopoulos UoA & CNRS

54/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Visualization

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Prisoner's Dilemma

P. Mertikopoulos UoA & CNRS

55/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Notions of stability

Definition (Stochastic stability)

x∗ ∈ X is stochastically stable under Xn if, for every confidence level δ >  and every neighborhood U of x∗ ,
there exists a neighborhood U of x∗ such that

P(Xn ∈ U for all n = , , . . . ∣ X ∈ U) ≥  − δ

[Intuition: with high probability, if Xn starts near x∗ , it remains nearby]

Definition (Stochastic asymptotic stability)
▸ x∗ ∈ X is attracting if, for every confidence level δ > , there exists a neighborhood U of x∗ such that

P(Xn → x∗ as n →∞ ∣ X ∈ U) ≥  − δ

▸ x∗ ∈ X is stochastically asymptotically stable if it is stochastically stable and attracting.

[Intuition: with high probability, if Xn starts near x∗ then, it remains nearby and eventually converges to x∗]

P. Mertikopoulos UoA & CNRS

55/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Notions of stability

Definition (Stochastic stability)

x∗ ∈ X is stochastically stable under Xn if, for every confidence level δ >  and every neighborhood U of x∗ ,
there exists a neighborhood U of x∗ such that

P(Xn ∈ U for all n = , , . . . ∣ X ∈ U) ≥  − δ

[Intuition: with high probability, if Xn starts near x∗ , it remains nearby]

Definition (Stochastic asymptotic stability)
▸ x∗ ∈ X is attracting if, for every confidence level δ > , there exists a neighborhood U of x∗ such that

P(Xn → x∗ as n →∞ ∣ X ∈ U) ≥  − δ

▸ x∗ ∈ X is stochastically asymptotically stable if it is stochastically stable and attracting.

[Intuition: with high probability, if Xn starts near x∗ then, it remains nearby and eventually converges to x∗]

P. Mertikopoulos UoA & CNRS

56/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The behavior of regularized learning in games

Theorem
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) such that:

(A1) γn >  and∑n γn =∞

(A2) bn → 

(A3) E[∥Un∥q] ≤ σ q
n for some q > 

(A4) ∑n
k= γ

+q/
k σ q

k /[∑
n
k= γk]

+αq is summmable for some α ∈ (, )

- Then: the sequence Xn generated by (FTRL) enjoys the following properties

(P1) If Xn converges, its limit is a Nash equilibrium [M & Zhou, 2019]

(P2) If x∗ is stochastically stable, it is a Nash equilibrium [Giannou et al., 2021]

(P3) x∗ is stochastically asymptotically stable if and only if it is a strict Nash equilibrium [Giannou et al., 2021]

(P4) If p > / and G is a congestion game, then Xn converges to a Nash equilibrium (a.s.) [Cohen et al., 2017]

P. Mertikopoulos UoA & CNRS

56/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The behavior of regularized learning in games

Theorem
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) such that:

(A1) γn = γ/np for some p ∈ [, ]

(A2) bn = O(/nb) for some b > 

(A3) E[∥Un∥q] = O(/nr) for some q > , r < /

(A4) ∑n
k= γ

+q/
k σ q

k /[∑
n
k= γk]

+αq is summmable for some α ∈ (, )- Then: the sequence Xn generated by (FTRL) enjoys the following properties

(P1) If Xn converges, its limit is a Nash equilibrium [M & Zhou, 2019]

(P2) If x∗ is stochastically stable, it is a Nash equilibrium [Giannou et al., 2021]

(P3) x∗ is stochastically asymptotically stable if and only if it is a strict Nash equilibrium [Giannou et al., 2021]

(P4) If p > / and G is a congestion game, then Xn converges to a Nash equilibrium (a.s.) [Cohen et al., 2017]

P. Mertikopoulos UoA & CNRS

56/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The behavior of regularized learning in games

Theorem
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) such that:

(A1) γn = γ/np for some p ∈ [, ]

(A2) bn = O(/nb) for some b > 

(A3) E[∥Un∥q] = O(/nr) for some q > , r < /

(A4) ∑n
k= γ

+q/
k σ q

k /[∑
n
k= γk]

+αq is summmable for some α ∈ (, )

- Then: the sequence Xn generated by (FTRL) enjoys the following properties

(P1) If Xn converges, its limit is a Nash equilibrium [M & Zhou, 2019]

(P2) If x∗ is stochastically stable, it is a Nash equilibrium [Giannou et al., 2021]

(P3) x∗ is stochastically asymptotically stable if and only if it is a strict Nash equilibrium [Giannou et al., 2021]

(P4) If p > / and G is a congestion game, then Xn converges to a Nash equilibrium (a.s.) [Cohen et al., 2017]

P. Mertikopoulos UoA & CNRS

57/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Rate of convergence

Theorem (Giannou et al., 2021)
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) as before

- Then: if x∗ is a strict Nash equilibrium and Xn converges to x∗ , we have

∥Xn − x∗∥ ≤ ∑
a∉supp(x∗)

ϕ(A− B
n

∑
k=

γk)

where
▸ A, B >  are initialization- and game-dependent constants

▸ The rate function ϕ is determined by the method’s regularizer

▸ For exponential weights: ϕ(z) = exp(z) Ô⇒ geometric convergence in Sn = ∑n
k= γk

▸ For projection dynamics: ϕ(z) = [z]+ Ô⇒ convergence in a finite number of iterations!

P. Mertikopoulos UoA & CNRS

58/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Overview

I. Learning in continuous time

3 Nash equilibrium Ô⇒ stationarity

3 Lyapunov stability Ô⇒ equilibrium

3 Asymptotic stability ⇐⇒ strict equilibrium

3 Potential games Ô⇒ convergence to equilibrium

3 Zero-sum games Ô⇒ Poincaré recurrence

II. Learning in discrete time

7 Depends on feedback, step-size, …

7 Nash equilibrium /Ô⇒ stationarity

3 Lyapunov stability Ô⇒ equilibrium

3 Asymptotic stability ⇐⇒ strict equilibrium

3 Potential games Ô⇒ convergence to equilibrium

7 Zero-sum games /Ô⇒ Poincaré recurrence

P. Mertikopoulos UoA & CNRS

59/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Open questions

▸ Robustness to delays / corruptions / …
▸ Non-singleton attractors? Other limit behaviors?
▸ Learning in continuous games?

-��� -��� -��� ��� ��� ��� ���

-���

-���

-���

���

���

���

���

-��� -��� -��� ��� ��� ��� ���

-���

-���

-���

���

���

���

���

Figure: Limit cycles in almost bilinear games of the form minx∈X maxx∈X f (x , x) = xx + ε[ϕ(x) − ϕ(x)]

P. Mertikopoulos UoA & CNRS

60/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

References I

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings
of the 36th Annual Symposium on Foundations of Computer Science, 1995.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47:235–256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):
48–77, 2002b.

Cohen, J., Héliou, A., and Mertikopoulos, P. Learning with bandit feedback in potential games. In NIPS ’17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

Coucheney, P., Gaujal, B., and Mertikopoulos, P. Penalty-regulated dynamics and robust learning procedures in games. Mathematics of Operations
Research, 40(3):611–633, August 2015.

Flokas, L., Vlatakis-Gkaragkounis, E. V., Lianeas, T., Mertikopoulos, P., and Piliouras, G. No-regret learning and mixed Nash equilibria: They do not
mix. In NeurIPS ’20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.

Freund, Y. and Schapire, R. E. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79–103, 1999.

Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. Survival of the strictest: Stable and unstable equilibria under regularized learning
with partial information. In COLT ’21: Proceedings of the 34th Annual Conference on Learning Theory, 2021a.

Giannou, A., Vlatakis-Gkaragkounis, E. V., and Mertikopoulos, P. The convergence rate of regularized learning in games: From bandits and
uncertainty to optimism and beyond. In NeurIPS ’21: Proceedings of the 35th International Conference on Neural Information Processing
Systems, 2021b.

P. Mertikopoulos UoA & CNRS

61/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

References II

Helbing, D. A mathematical model for behavioral changes by pair interactions. In Haag, G., Mueller, U., and Troitzsch, K. G. (eds.), Economic
Evolution and Demographic Change: Formal Models in Social Sciences, pp. 330–348. Springer, Berlin, 1992.

Hofbauer, J. and Sigmund, K. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK, 1998.

Hofbauer, J. and Sigmund, K. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(4):479–519, July 2003.

Hofbauer, J., Sorin, S., and Viossat, Y. Time average replicator and best reply dynamics. Mathematics of Operations Research, 34(2):263–269, May
2009.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cambridge University Press, Cambridge, UK, 2020.

Littlestone, N. and Warmuth, M. K. The weighted majority algorithm. Information and Computation, 108(2):212–261, 1994.

Mertikopoulos, P. and Sandholm, W. H. Learning in games via reinforcement and regularization. Mathematics of Operations Research, 41(4):
1297–1324, November 2016.

Mertikopoulos, P. and Zhou, Z. Learning in games with continuous action sets and unknown payoff functions. Mathematical Programming, 173
(1-2):465–507, January 2019.

Mertikopoulos, P., Papadimitriou, C. H., and Piliouras, G. Cycles in adversarial regularized learning. In SODA ’18: Proceedings of the 29th annual
ACM-SIAM Symposium on Discrete Algorithms, 2018.

Nash, J. F. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36:48–49, 1950.

Nash, J. F. Non-cooperative games. The Annals of Mathematics, 54(2):286–295, September 1951.

P. Mertikopoulos UoA & CNRS

62/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

References III

Rustichini, A. Optimal properties of stimulus-response learning models. Games and Economic Behavior, 29(1-2):244–273, 1999.

Sandholm, W. H. Potential games with continuous player sets. Journal of Economic Theory, 97:81–108, 2001.

Schlag, K. H. Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory, 78(1):130–156,
1998.

Shalev-Shwartz, S. Online learning and online convex optimization. Foundations and Trends in Machine Learning, 4(2):107–194, 2011.

Shalev-Shwartz, S. and Singer, Y. Convex repeated games and Fenchel duality. In NIPS’ 06: Proceedings of the 19th Annual Conference on Neural
Information Processing Systems, pp. 1265–1272. MIT Press, 2006.

Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, 1964.

Taylor, P. D. and Jonker, L. B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 40(1-2):145–156, 1978.

Weibull, J. W. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

P. Mertikopoulos UoA & CNRS

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

P. Mertikopoulos UoA & CNRS

	Background
	Preliminaries
	Learning in continuous time
	Learning in discrete time
	Overview
	References

