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Traffic…

…how bad can it get?

P. Mertikopoulos UoA & CNRS
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Game of roads

Athens at a glance

▸ , ,  people

▸ ,  daily trips

▸ Up to  trips/min

▸  nodes

▸  edges

▸ , ,  O/D pairs

▸ ≈  ∗  paths

A very large game!

P. Mertikopoulos UoA & CNRS
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Online learning

A generic online decision process:

repeat

At each epoch t
Choose action # single- / multi-player

Receive reward # endogenous / exogenous

Get feedback (maybe) # full info / oracle / payoff-based

until end

Defining elements
▸ Time: continuous or discrete?

▸ Players: continuous or finite?

▸ Actions:

▸ Reward mechanism:

▸ Feedback: observe other actions / other rewards / only received?

P. Mertikopoulos UoA & CNRS
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Game-theoretic learning

▸ Multiple agents, individual objectives

[Select a route from home to work]

▸ Payoffs determined by actions of all agents

[Encounter other commuters on the road]

▸ Agents receive payoffs, adjust actions, and the process repeats

[Update road choice tomorrow]

Does learning lead to stable / rational outcomes?

P. Mertikopoulos UoA & CNRS
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Some basics

What's in a game?

A game in normal form is a collection of three basic elements:

1. A set of players N

2. A set of actions (or pure strategies) Ai per player i ∈N

3. An ensemble of payoff functions u i ∶∏ j A j → R per player i ∈N

Important:

▸ Player set: atomic vs. nonatomic

▸ Action sets: finite vs. continuous; shared vs. individual; …

▸ NB: do not mix game classes!

P. Mertikopoulos UoA & CNRS
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Taxonomy

Actions

Players
Finite

Finite

Continuous

Continuous

Population Games

Mean Field Games

Finite Games

Continuous Games
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Taxonomy
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Nonatomic congestion games

▸ Network: multigraph G = (V , E)

▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [nonatomic, splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Routing flow fp : traffic along p ∈ P ≡ ⋃i Pi generated by O/D pair owning p [congestion elements]

▸ Load xe = ∑p∋e fp : total traffic along edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp( f ) = ∑e∈p ce(xe) [aggregate cost]

▸ Nonatomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)

P. Mertikopoulos UoA & CNRS
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Atomic congestion games

O

D

O

D

c(x)

c(x)

c(x)

c(x)

c(x)

▸ Network: multigraph G = (V , E)
▸ O/D pairs i ∈ N : origin O i sends m i units of traffic to destination D i [atomic, non-splittable]

▸ Paths Pi : (sub)set of paths joining O i ↝ D i [not necessarily all paths]

▸ Route choice p i ∈ Pi ; congestion load of m i units along each edge e ∈ p i [congestion elements]

▸ Load xe = ∑p i∋e m i : total congestion load on edge e [congestion mechanism]

▸ Edge cost function ce(xe): cost along edge e when edge load is xe [congestion cost]

▸ Path cost: cp( f ) = ∑e∈p ce(xe) [aggregate cost]

▸ Atomic congestion game: C = (G ,N , {m i}i∈N , {Pi}i∈N , {ce}e∈E)
P. Mertikopoulos UoA & CNRS
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Finite games

Finite games: [sometimes known as (poly)matrix games]

▸ Finite set of players N = {, . . . ,N}

▸ Finite set of actions (or “pure strategies”) Ai = {, . . . ,m i} per player

▸ Action profile a = (a , . . . , aN) ∈ A ∶=∏i Ai

▸ Payoffs given by payoff functions u i ∶A→ R

u i(a) ≡ u i(a , . . . , aN) ≡ u i(a i ; a−i)

▸ Payoff vector of player i :
υ i(a) = (u i(a′i ; a−i))a′i∈Ai

▸ Notation: Γ ≡ Γ(N ,A, u)

P. Mertikopoulos UoA & CNRS
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Mixed extensions

Mixed extension of a finite game:

▸ Given: finite game Γ ≡ Γ(N ,A, u)

▸ Mixed strategy of player i :
x i = (x i a)a∈Ai ∈ ∆(Ai) =∶ Xi

▸ Mixed payoff of player i

u i(x) = Ea∼x u i(a) = ∑
a∈A

. . . ∑
aN∈AN

x,a⋯xN ,aN u i(a , . . . , aN)

▸ Payoff vector of player i :
υ i(a) = (u i(a′i ; a−i))a′i∈Ai

▸ Notation: Γ̄ ≡ ∆(Γ)

P. Mertikopoulos UoA & CNRS
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Toy example: Rock-Paper-Scissors

Playing with mixed strategies:

▸ Players: N = {, }

▸ Actions: Ai = {R, P, S}

▸ Mixed strategy space: Xi = ∆{R, P, S}

▸ Choose mixed strategy x i ∈ Xi

▸ Choose action a i ∼ x i

▸ Mixed strategy payoffs:

u(x , x) = x⊺ Mx
u(x , x) = −u(x , x)

P

R

M =
⎛
⎜
⎝

 − 
  −
−  

⎞
⎟
⎠

R

∆{R, P, S}

ePeR

eS

(xR , xP , xS)

P. Mertikopoulos UoA & CNRS
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Single-population games

▸ Population of players: I = [, ] [endowed with Lebesgue measure µ]

▸ Common set of actions A = {, . . . ,m}

▸ Strategy profile: measurable function χ∶N → A [measurable assignment of players to actions]

▸ Population state x ∶= χ ♯ µ ≡ µ ○ χ− , i.e., [viewed as element of X ∶= ∆(A)]

xa = µ(χ−(a)) = mass of players playing a ∈ A

▸ Payoffs given by payoff functions υa ∶X → R [Players are anonymous]

υa(x) = payoff to a-strategists when the population is at state x ∈ X

▸ Mean population payoff: u(x) = ∑a xaυa(x)

Example (Symmetric / Single-population random matching)
▸ Given: symmetric m ×m payoff matrix M
▸ Players drawn randomly from population at state x to play M
▸ Mean payoff to a-strategists: υa(x) = ∑a′∈A Maa′xa′ = (Mx)a

P. Mertikopoulos UoA & CNRS
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Multi-population games

▸ Multiple populations: I = [, ] ×⋯ × [, ] [endowed with Lebesgue measure µ]

▸ Population-specific action sets Ai , i = , . . . ,N
▸ Population state x ∈ X ∶=∏i ∆(Ai)

x i a i = mass of players of population i playing a i ∈ Ai

▸ Payoffs given by payoff functions υ i a i ∶X → R

υ i a i (x) = payoff to a i -strategists when the population is at state x ∈ X

▸ Mean population payoff: u i(x) = ∑a i∈Ai
x i a i υ i a i (x)

Example (Asymmetric / Multi-population random matching)
▸ Given: finite game Γ ≡ Γ(N ,A, u)
▸ N players drawn randomly from each population to play Γ
▸ Mean payoff to a i -strategists in the i-th population: υ i a i (x) = u i(a i ; x−i)

P. Mertikopoulos UoA & CNRS



16/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Multi-population games

▸ Multiple populations: I = [, ] ×⋯ × [, ] [endowed with Lebesgue measure µ]

▸ Population-specific action sets Ai , i = , . . . ,N
▸ Population state x ∈ X ∶=∏i ∆(Ai)

x i a i = mass of players of population i playing a i ∈ Ai

▸ Payoffs given by payoff functions υ i a i ∶X → R

υ i a i (x) = payoff to a i -strategists when the population is at state x ∈ X

▸ Mean population payoff: u i(x) = ∑a i∈Ai
x i a i υ i a i (x)

Example (Asymmetric / Multi-population random matching)
▸ Given: finite game Γ ≡ Γ(N ,A, u)
▸ N players drawn randomly from each population to play Γ
▸ Mean payoff to a i -strategists in the i-th population: υ i a i (x) = u i(a i ; x−i)

P. Mertikopoulos UoA & CNRS



17/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Mix'n'match

+ Symmetric Random matching ≠ Mixed extension

[Population matched against itself Ô⇒ symmetric interactions ]

+ Asymmetric random matching = Mixed Extension

[Populations matched against each other Ô⇒ asymmetric interactions ]

+ Multi-population games ⊋ Mixed Extensions

[Nonatomic congestion games, …]

P. Mertikopoulos UoA & CNRS
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Nash equilibrium

Equilibrium principle (Nash, 1950, 1951)

“No player has an incentive to deviate from their chosen strategy if other players don’t”

▸ In finite games (mixed extension formulation):

u i(x∗i ; x∗−i) ≥ u i(x i ; x∗−i) for all x i ∈ Xi , i ∈N

▸ In population games:
υ i a i (x

∗) ≥ υ i a′i
(x∗) whenever a i ∈ supp(x∗)

Variational formulation (Stampacchia, 1964)

⟨υ(x∗), x − x∗⟩ ≤  for all x ∈ X

where υ(x) = (υ(x), . . . , υN(x)) is the payoff field of the game

[Geometric interpretation: υ(x∗) is outward-pointing]
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Learning, evolution and dynamics

What is “learning” in games?

The basic process:
▸ Players choose strategies and receive corresponding payoffs

▸ Depending on outcome and information revealed, they choose new strategies and they play again

▸ Rinse, repeat

The basic questions:
▸ How do populations evolve over time? [Population biology]

▸ How do people learn in a game? [Economics]

▸ What algorithms should we use to learn in a game? [Computer science]

▸ Given a dynamical system on X , what is its long-term behavior? [Mathematics]
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Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time
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Age the First (1970's–1990's): Population Biology

▸ Strategies are phenotypes in a given species

za = absolute population mass of type a ∈ A
z =∑a za = absolute population mass

▸ Utilities measure fecundity / reproductive fitness:

υa = per capita growth rate of type a

▸ Population evolution:
ża = zaυa

▸ Evolution of population shares (xa = za/z):

ẋa =
d
dt

za
z
= żaz − za∑a′ ża′

z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)

ẋa = xa[υa(x) − u(x)] (RD)
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z
= za

z
υa −

za
z ∑a′

za′
z
υa′

Replicator dynamics (Taylor & Jonker, 1978)
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Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
ẋa = inflowa(x) − outflowa(x) = ⋯ = xa[υa(x) − u(x)] (RD)

P. Mertikopoulos UoA & CNRS



22/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Age the Second (1990's–2010's): Economics

▸ Agents receive revision opportunities to switch strategies

ρaa′(x) = conditional switch rate from a to a′

[NB: dropping player index for simplicity]

▸ Pairwise proportional imitation:

ρaa′(x) = xa′[υa′(x) − υa(x)]+

[Imitate with probability proportional to excess payoff (Helbing, 1992; Schlag, 1998)]

▸ Inflow/outflow:

Incoming toward a =∑a′ mass(a′ ; a) =∑a′∈A xa′ρa′a(x)
Outgoing from a =∑a′ mass(a ; a′) = xa∑a′∈A ρaa′(x)

▸ Detailed balance:
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Age the Third (2000's–present): Computer Science

Evolution of mixed strategies in a finite game:
▸ Agents record cumulative payoff of each strategy

ya(t) = ∫
t


υa(τ) dτ

Ô⇒ propensity of choosing a strategy [Auer et al., 1995; Freund & Schapire, 1999; Littlestone & Warmuth, 1994]

▸ Choice probabilities ; exponentially proportional to propensity scores

xa(t)

▸ Evolution of mixed strategies [Hofbauer et al., 2009; Rustichini, 1999]

ẋa = ⋅ ⋅ ⋅ = xa[υa(x) − u(x)] (RD)
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Basic properties

Multi-player replicator dynamics

ẋ i a i = xa i [υ i a i (x) − u i(x)] (RD)

[NB: focus on multi-population version from now on]

Structural properties [Hofbauer & Sigmund, 1998; Weibull, 1995]

▸ Well-posed: every initial condition x ∈ X admits unique solution trajectory x(t) that exists for all time
[Assuming u i is Lipschitz]

▸ Consistent: x(t) ∈ X for all t ≥ 
[Assuming x() ∈ X ]

▸ Faces are forward invariant (“strategies breed true”):

x i a i () >  ⇐⇒ x i a i (t) >  for all t ≥ 
x i a i () =  ⇐⇒ x i a i (t) =  for all t ≥ 

P. Mertikopoulos UoA & CNRS
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Phase portraits

What do the dynamics look like?
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Rationality analysis

Are game-theoretic solution concepts consistent with the players’ dynamics?

▸ Are Nash equilibria stationary?

▸ Are they stable? Are they attracting?

▸ Do the replicator dynamics always converge?

▸ What other behaviors can we observe?

▸ ⋯

P. Mertikopoulos UoA & CNRS
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Stationarity of equilibria

Equilibrium: υ i a i (x
∗) ≥ υ i a′i

(x∗) for all a i , a′i ∈ Ai with x∗i a i > 

▸ Supported strategies have equal payoffs:

υ i a i (x
∗) = υ i a′i (x

∗) for all a i , a′i ∈ supp(x
∗
i )

▸ Mean payoff equal to equilibrium payoff:

u i(x∗) = υ i a i (x
∗) for all a i ∈ supp(x∗i )

▸ Replicator field vanishes at Nash equilibria:

x∗i a i [υ i a i (x
∗) − u i(x∗)] =  for all a i ∈ Ai

Proposition (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then:

x() is a Nash equilibrium Ô⇒ x(t) = x() for all t ≥ 

7 The converse does not hold! [See previous portraits]
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Stability

Are all stationary points created equal?

Definition (Lyapunov stability)

x∗ is (Lyapunov) stable if, for every neighborhood U of x∗ in X , there exists a neighborhood U ′ of x∗ such that

x() ∈ U ′ Ô⇒ x(t) ∈ U for all t ≥ 

[Trajectories that start close to x∗ remain close for all time]

Proposition (Folk)

Suppose that x∗ is Lyapunov stable under (RD). Then x∗ is a Nash equilibrium.

P. Mertikopoulos UoA & CNRS
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Asymptotic stability

Are all equilibria created equal?

Definition
▸ x∗ is attracting if limt→∞ x(t) = x∗ whenever x() is close enough to x∗

▸ x∗ is asymptotically stable if it is stable and attracting

Proposition (Folk)

Strict Nash equilibria are asymptotically stable under (RD).
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The "folk theorem" of evolutionary game theory

Theorem ("folk"; Hofbauer & Sigmund, 2003)

Let Γ be a finite game. Then, under (RD), we have:

1. x∗ is a Nash equilibrium Ô⇒ x∗ is stationary

2. x∗ is the limit of an interior trajectory Ô⇒ x∗ is a Nash equilibrium

3. x∗ is stable Ô⇒ x∗ is a Nash equilibrium

4. x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

Notes:

- Concerns multi-population replicator dynamics

7 Converse to (1), (2) and (3) does not hold!

- Symmetric version: all true except Ô⇒ in (4)
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Single-population: different ball game

The replicator dynamics in “good” RPS (win > loss):
R

P S
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Convergence in potential games

Potential games (Sandholm, 2001)

υ i a i = −
∂Φ
∂x i a i

for some potential function Φ∶X → R

NASC (Poincaré’s lemma):

potential ⇐⇒ ∂υ i a i

∂x i a′i
=
∂υ i a′i

∂x i a i

Positive correlation / Lyapunov property:

dΦ
dt
≤  under (RD)

Theorem (Sandholm, 2001)
▸ In potential games, (RD) converges to its set of stationary points

▸ In random matching potential games, interior trajectories of (RD) converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS
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Convergence in potential games

Potential games (Sandholm, 2001)
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∂Φ
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Non-convergence in zero-sum games

The landscape is very different in zero-sum games:

x∗ is full-support equilibrium Ô⇒ (RD) admits a constant of motion

KL divergence: DKL(x∗ , x) =∑i∑a i
x∗i a i log

x∗i a i
x i a i

Theorem (Hofbauer et al., 2009)
Assume a bilinear zero-sum game admits an interior equilibrium. Then:

▸ Interior trajectories of (RD) do not converge (unless stationary)

▸ Time-averages x̄(t) = t− ∫ t
 x(τ) dτ converge to Nash equilibrium

P. Mertikopoulos UoA & CNRS
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Convergence of time-averages

The replicator dynamics in a game of Matching Pennies
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Time-Averaged Replicator Dynamics
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Poincaré recurrence in zero-sum games

Definition (Poincaré)
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

P. Mertikopoulos UoA & CNRS



35/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Definition (Poincaré)
A dynamical system is Poincaré recurrent if almost all solution trajectories return arbitrarily close to their
starting point infinitely many times

P. Mertikopoulos UoA & CNRS



36/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

Poincaré recurrence in zero-sum games

Proposition (Coucheney et al., 2015)

The dynamics (RD) are volume-preserving under the Shahshahani metric aa′(x) = δaa′/xa on riX .

Volume preservation Ô⇒ no concentration Ô⇒ no convergence 3

…but the Shahshahani metric becomes singular at the boundary of X 7

Theorem (M et al., 2018)
(RD) is Poincaré recurrent in all bilinear zero-sum games with a full-support equilibrium

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Any attractor of (RD) contains a pure strategy.

P. Mertikopoulos UoA & CNRS
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Follow the regularized leader

Are the nice propeties of (RD) a “fluke”?

▸ The logit map Λ(y) = (exp(ya))a∈A/∑a exp(ya) approximates the “leader” (best response map)

y ↦ argmaxx∈X
where h(x) = ∑a∈A xa log xa is the (negative) entropy of x ∈ X

▸ Regularized best responses
Q(y) = argmaxx∈X{⟨y, x⟩ − h(x)}

where h∶X → R is a (strictly) convex regularizer function

Follow the regularized leader (FTRL)

ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS
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ẏt = υt
xt = Q(yt)

(FTRL)

P. Mertikopoulos UoA & CNRS



38/62

Background Preliminaries Learning in continuous time Learning in discrete time Overview References

The projection dynamics

Example: Quadratic (Euclidean) regularization

h(x) = 
∑a x


a

Choice map ; closest point projection:

Π(y) = argmax
x∈X

{⟨y, x⟩ − (/)∥x∥} = argmin
x∈X

∥y − x∥

Projection dynamics [M & Sandholm, 2016]

ẏt = υt
xt = Π(yt)

(PL)

P. Mertikopoulos UoA & CNRS
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In and out of the boundary

Payoff space Strategy space

yt xt = Q(yt)
Q

choice map

Key difference with replicator: faces no longer forward invariant

P. Mertikopoulos UoA & CNRS
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Portraits and examples
The Tsallis–Havrda –Charvát kernel: h(x) = [q( − q)]−∑a(xa − x

q
a)
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Projection Dynamics Hq=2L
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Rational behavior under FTRL

Do the rationality properties of (RD) extend to (FTRL)?

Theorem (Coucheney et al., 2015; M & Sandholm, 2016; Flokas et al., 2020)
Let Γ be a finite game. Then, under (FTRL), we have:

1. x∗ is a Nash equilibrium Ô⇒ x∗ is stationary

2. x∗ is the limit of an interior trajectory Ô⇒ x∗ is a Nash equilibrium

3. x∗ is stable Ô⇒ x∗ is a Nash equilibrium

4. x∗ is asymptotically stable ⇐⇒ x∗ is a strict Nash equilibrium

P. Mertikopoulos UoA & CNRS
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Outline

1 Background

2 Preliminaries

3 Learning in continuous time

4 Learning in discrete time
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The model

Require: finite game Γ ≡ Γ(N ,A, u) # atomic setting

repeat

At each epoch n = , , . . . do simultaneously for all players i ∈ N # discrete time

Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection

Observe mixed payoff vector υ i(X i ,n ; X−i ,n) # feedback phase

until end

Defining elements
▸ Time: n = , , . . .
▸ Players: finite

▸ Actions: finite

▸ Mixing: yes

▸ Feedback: mixed payoff vectors
P. Mertikopoulos UoA & CNRS
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Choose mixed strategy X i ,n ∈ Xi ∶= ∆(Ai) # mixed extension

Choose action a i ,n ∼ X i ,n # random action selection
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until end
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▸ Time: n = , , . . .
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The feedback process

Different types of feedback (from best to worst):

▸ Mixed payoff vectors: υ i(X i ,n ; X−i ,n)

▸ Pure payoff vectors: υ i(a i ,n ; a−i ,n)

▸ Bandit / Payoff-based: u i ,n(a i ,n ; a−i ,n)

Features:

▸ Vector (mixed / pure payoff vecs) vs. Scalar (bandit)

▸ Deterministic (mixed payoff vecs) vs. Stochastic (pure payoff vecs, bandit)

NB1: Randomness defined relative to history of play Fn ∶= F(X , . . . , Xn)

NB2: Other feedback models also possible (noisy observations,…)

P. Mertikopoulos UoA & CNRS
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From payoffs to payoff vectors

How to estimate the payoff u i(a i ; a−i ,n) of an unplayed action a i ≠ a i ,n?

Definition (Importance weighted estimation)

The importance weighted estimator of a vector υ ∈ RA given a mixed strategy x ∈ ∆(A) is defined as

υ̂a =
1a

xa
υa =

⎧⎪⎪⎨⎪⎪⎩

υa/xa if a is drawn (a = â)

 otherwise (a ≠ â)
(IWE)

Statistical properties of (IWE)

▸ Unbiased:
E[υ̂a] = υa

▸ Second moment:

E[υ̂a] =
υa
xa

P. Mertikopoulos UoA & CNRS
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The oracle model

Definition (Black-box oracle)

A stochastic first-order oracle of υ(Xn) is a random vector of the form

υ̂n = υ(Xn) +Un + bn

where Un is zero-mean and bn = E[υ̂n ∣Fn] − υ(Xn) is the bias of υ̂n .

Examples
▸ Mixed payoff vectors: υ̂ i ,n = υ i(X i ,n ; X−i ,n) [noise Un = ; bias bn = ]

▸ Pure payoff vectors: υ̂ i ,n = υ i(a i ,n ; a−i ,n) [noise Un =O(); bias bn = ]

▸ Payoff-based: υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n [noise Un =O(/minai x i a i ,n); bias bn = ]

P. Mertikopoulos UoA & CNRS
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Follow the regularized leader in discrete time

The FTRL template

Yi ,n+ = Yi ,n + γn υ̂ i ,n

X i ,n+ = Q i(Yi ,n+) ≡ argmax
x i∈Xi

{⟨Yn+ , x⟩ − h i(x i)} (FTRL)

[Algorithm due to Shalev-Shwartz, 2011; Shalev-Shwartz & Singer, 2006]

▸ γn >  is the method’s step-size [To be specialized later]

▸ υ̂ i ,n is an stochastic first-order oracle (SFO) model for υ i(xn) [To be specialized later]

▸ Every player’s regularizer h i ∶Xi → R is continuous on Xi , differentiable on riXi , and strongly convex on Xi

h i(x′i) ≥ h i(x i) + ⟨∇h i(x i), x′i − x i⟩ + (K i/)∥x′i − x i∥

P. Mertikopoulos UoA & CNRS
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Examples

Example 1: Ridge regularization

▸ Regularizer:
h(x) = 

 ∥x∥


▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = ΠX(Yn+)

Example 2: Entropic regularization

▸ Regularizer:
h(x) = ∑

a∈A
xa log xa

▸ Algorithm:
Yn+ = Yn + γn υ̂n Xn+ = Λ(Yn+)
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Exponential weights redux

Algorithm Exponential weights in discrete time (EXPWEıGHT)

Require: finite game Γ ≡ Γ(N ,A, u); stochastic first-order oracle υ̂

Initialize: Yi ∈ RAi , i = , . . . ,N

for all n = , , . . . all players i ∈ N do simultaneously

set X i ,n ∝ exp(Yi ,n) # mixed strategy

play a i ,n ∼ X i ,n # choose action

get υ̂ i ,n ∈ RAi # receive feedback

set Yi ,n+ ← Yi ,n + γn υ̂ i ,n # update scores

end for

Basic idea:
▸ Score actions by aggregating payoff vector estimates provided by oracle

▸ Choose actions with probability exponentially proportional to their scores

▸ Rinse / repeat
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Model 1: ExpWeight with mixed payoff vector observations

If players observe mixed payoff vectors:
υ̂ i ,n = υ i(X i ,n ; X−i ,n)

Oracle features:

▸ Deterministic: no randomness!

▸ Bias: Bn = 

▸ Variance: σn = 

▸ Second moment: Mn = O()
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Model 2: ExpWeight with pure payoff vector observations

If players observe pure payoff vectors:
υ̂ i ,n = υ i(a i ,n ; a−i ,n)

Oracle features:

▸ Stochastic: random action selection

▸ Bias: Bn = 

▸ Variance: σn = O()

▸ Second moment: Mn = O()

NB: this algorithm is known as as HEDGE [Auer et al., 1995, 2002,]
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Model 3: ExpWeight with bandit feedback

If players observe realized payoffs only:

υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection

▸ Bias: Bn = 

▸ Variance: σn = O(/X i a i ,n)

▸ Second moment: Mn = O(/X i a i ,n)

NB: this algorithm is known as as EXP3 [Auer et al., 1995, 2002,]
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Model 4: ExpWeight with bandit feedback

If players observe realized payoffs only:

υ̂ i ,n =
u i(a i ,n ; a−i ,n)
P(a i ,n = a i)

ea i ,n

Oracle features:

▸ Stochastic: random action selection

▸ Explicit exploration: draw a i ,n ∼ X i ,n with prob.  − δn , otherwise uniformly

▸ Bias: Bn = O(δn)

▸ Variance: σn = O(/δn)

▸ Second moment: Mn = O(/δn)

NB: this algorithm is known as as EXP3 WıTH EXPLıCıT EXPLORATıON [Lattimore & Szepesvári, 2020; Shalev-Shwartz, 2011]
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Visualization

What does the sequence of play look like?

0.0 0.2 0.4 0.6 0.8 1.0
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Congestion Game
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Visualization

What does the sequence of play look like?
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Battle of the Sexes
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Visualization

What does the sequence of play look like?
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Visualization

What does the sequence of play look like?
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Prisoner's Dilemma
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Notions of stability

Definition (Stochastic stability)

x∗ ∈ X is stochastically stable under Xn if, for every confidence level δ >  and every neighborhood U of x∗ ,
there exists a neighborhood U of x∗ such that

P(Xn ∈ U for all n = , , . . . ∣ X ∈ U) ≥  − δ

[Intuition: with high probability, if Xn starts near x∗ , it remains nearby ]

Definition (Stochastic asymptotic stability)
▸ x∗ ∈ X is attracting if, for every confidence level δ > , there exists a neighborhood U of x∗ such that

P(Xn → x∗ as n →∞ ∣ X ∈ U) ≥  − δ

▸ x∗ ∈ X is stochastically asymptotically stable if it is stochastically stable and attracting.

[ Intuition: with high probability, if Xn starts near x∗ then, it remains nearby and eventually converges to x∗ ]
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The behavior of regularized learning in games

Theorem
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) such that:

(A1) γn >  and∑n γn =∞

(A2) bn → 

(A3) E[∥Un∥q] ≤ σ q
n for some q > 

(A4) ∑n
k= γ

+q/
k σ q

k /[∑
n
k= γk]

+αq is summmable for some α ∈ (, )

- Then: the sequence Xn generated by (FTRL) enjoys the following properties

(P1) If Xn converges, its limit is a Nash equilibrium [M & Zhou, 2019]

(P2) If x∗ is stochastically stable, it is a Nash equilibrium [Giannou et al., 2021]

(P3) x∗ is stochastically asymptotically stable if and only if it is a strict Nash equilibrium [Giannou et al., 2021]

(P4) If p > / and G is a congestion game, then Xn converges to a Nash equilibrium (a.s.) [Cohen et al., 2017]
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Rate of convergence

Theorem (Giannou et al., 2021)
å Assume: all players run (FTRL) with step-size γn and oracle parameters bn (bias) and Un (noise) as before

- Then: if x∗ is a strict Nash equilibrium and Xn converges to x∗ , we have

∥Xn − x∗∥ ≤ ∑
a∉supp(x∗)

ϕ(A− B
n

∑
k=

γk)

where
▸ A, B >  are initialization- and game-dependent constants

▸ The rate function ϕ is determined by the method’s regularizer

▸ For exponential weights: ϕ(z) = exp(z) Ô⇒ geometric convergence in Sn = ∑n
k= γk

▸ For projection dynamics: ϕ(z) = [z]+ Ô⇒ convergence in a finite number of iterations!
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Overview

I. Learning in continuous time

3 Nash equilibrium Ô⇒ stationarity

3 Lyapunov stability Ô⇒ equilibrium

3 Asymptotic stability ⇐⇒ strict equilibrium

3 Potential games Ô⇒ convergence to equilibrium

3 Zero-sum games Ô⇒ Poincaré recurrence

II. Learning in discrete time

7 Depends on feedback, step-size, …

7 Nash equilibrium /Ô⇒ stationarity

3 Lyapunov stability Ô⇒ equilibrium

3 Asymptotic stability ⇐⇒ strict equilibrium

3 Potential games Ô⇒ convergence to equilibrium

7 Zero-sum games /Ô⇒ Poincaré recurrence
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Open questions

▸ Robustness to delays / corruptions / …
▸ Non-singleton attractors? Other limit behaviors?
▸ Learning in continuous games?
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Figure: Limit cycles in almost bilinear games of the form minx∈X maxx∈X f (x , x) = xx + ε[ϕ(x) − ϕ(x)]
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