Quantitative	
ergodic	
theory	

Romain Tessera

Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

Wednesday 10th May, 2023

Quantitative ergodic theory

> Romain Tessera

∧ a countable group (examples: Z, Z^d, free group on k generators F_k),

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- ∧ a countable group (examples: Z, Z^d, free group on k generators F_k),
- (X, μ) probability space (example: (S¹, λ) where λ is Lebesgue measure, {0,1}^Λ, equipped with the product measure),

イロン 不同 とくほと 不良 とう

Quantitative ergodic theory

> Romain Tessera

- A a countable group (examples: ℤ, ℤ^d, free group on k generators F_k),
- (X, μ) probability space (example: (S¹, λ) where λ is Lebesgue measure, {0,1}^Λ, equipped with the product measure),
- An pmp action ∧ ¬ (X, µ): i.e. a free measure-preserving action.

(日) (四) (三) (三) (三)

Quantitative ergodic theory

> Romain Tessera

- A a countable group (examples: ℤ, ℤ^d, free group on k generators F_k),
- (X, μ) probability space (example: (S¹, λ) where λ is Lebesgue measure, {0,1}^Λ, equipped with the product measure),
- An pmp action ∧ ¬ (X, µ): i.e. a free measure-preserving action.

Exemples

• Rotations: $\mathbb{Z} \curvearrowright (S^1, \lambda)$ generated by an irrational rotation,

・ロト ・回ト ・ヨト ・ヨト

Quantitative ergodic theory

> Romain Tessera

- ∧ a countable group (examples: Z, Z^d, free group on k generators F_k),
- (X, μ) probability space (example: (S¹, λ) where λ is Lebesgue measure, {0,1}^Λ, equipped with the product measure),
- An pmp action ∧ ¬ (X, µ): i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright (S^1, \lambda)$ generated by an irrational rotation,
- Bernoulli shift: $\Lambda \curvearrowright \{0,1\}^{\Lambda}$.

イロン 不同 とくほと 不良 と

Context

Quantitative ergodic theory

Romain Tessera

- Ergodic theory,
- Representation theory,
- Operator algebras,
- Percolation theory (probabilities),
- Lattices in Lie groups...

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$\Psi(\lambda \cdot x) = \theta(\lambda) \cdot \Psi(x).$$

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$\Psi(\lambda \cdot x) = \theta(\lambda) \cdot \Psi(x).$$

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$\Psi(\lambda \cdot x) = \theta(\lambda) \cdot \Psi(x).$$

Exemples

• $\mathbb{Z} \curvearrowright (S^1, \lambda)$ and $\mathbb{Z} \curvearrowright \{0, 1\}^{\mathbb{Z}}$ are *not* isomorphic;

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **isomorphic**, if there exist an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$, and a group isomorphism: $\theta : \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$\Psi(\lambda \cdot x) = \theta(\lambda) \cdot \Psi(x).$$

Exemples

- $\mathbb{Z} \curvearrowright (S^1, \lambda)$ and $\mathbb{Z} \curvearrowright \{0, 1\}^{\mathbb{Z}}$ are *not* isomorphic;
- $\mathbb{Z} \curvearrowright \{0,1\}^{\mathbb{Z}}$ and $\mathbb{Z} \curvearrowright \{0,1,2\}^{\mathbb{Z}}$ are *not* isomorphic (Kolmogorov-Sinai);

Orbit equivalence

Quantitative ergodic theory

Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **orbit** equivalent (OE), if there exists an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$ such that for a.e. $x \in X$,

Orbit equivalence

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **orbit** equivalent (OE), if there exists an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$ such that for a.e. $x \in X$,

$$\Psi(\Lambda \cdot x) = \Gamma \cdot \Psi(x).$$

イロト イボト イヨト イヨト

Orbit equivalence

Quantitative ergodic theory

> Romain Tessera

Definition

Two pmp actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are **orbit** equivalent (OE), if there exists an isomorphism of measure spaces $\Psi : (X, \mu) \rightarrow (Y, \nu)$ such that for a.e. $x \in X$,

$$\Psi(\Lambda \cdot x) = \Gamma \cdot \Psi(x).$$

Theorem (Dye)

Any two ergodic pmp actions of \mathbb{Z} are OE.

イロン 不同 とくほと 不良 とう

크

Quantitative ergodic theory

> Romain Tessera

Definition

A countable group Λ is **amenable** if it admits a sequence of "almost-invariant finite subsets" $A_n \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$, $\frac{|A_n \lambda \bigtriangleup A_n|}{|A_n|} \to 0.$ ((A_n) is called a right Følner sequence)

イロン 不同 とくほと 不良 とう

Quantitative ergodic theory

> Romain Tessera

Definition

A countable group Λ is **amenable** if it admits a sequence of "almost-invariant finite subsets" $A_n \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$, $\frac{|A_n \lambda \bigtriangleup A_n|}{|A_n|} \to 0.$ ((A_n) is called a right Følner sequence)

Exemples

•
$$\mathbb{Z}^d$$
, with $A_n = [-n, n]^d$;

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

> Romain Tessera

Definition

A countable group Λ is **amenable** if it admits a sequence of "almost-invariant finite subsets" $A_n \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$, $\frac{|A_n \lambda \bigtriangleup A_n|}{|A_n|} \to 0.$ ((A_n) is called a right Følner sequence)

Exemples

- \mathbb{Z}^d , with $A_n = [-n, n]^d$;
- stable under extension, subgroup, quotient...

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

> Romain Tessera

Definition

A countable group Λ is **amenable** if it admits a sequence of "almost-invariant finite subsets" $A_n \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$, $\frac{|A_n \lambda \bigtriangleup A_n|}{|A_n|} \to 0.$ ((A_n) is called a right Følner sequence)

Exemples

• \mathbb{Z}^d , with $A_n = [-n, n]^d$;

stable under extension, subgroup, quotient...

• free groups F_k on $k \ge 2$ generators **are not** amenable.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

> Romain Tessera

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are OE.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

> Romain Tessera

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\Lambda \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are OE.

Things are very different for **non-amenable** groups. For instance

Theorem (Gaboriau 00)

If F_k and $F_{k'}$ have OE pmp actions, then k = k'.

Is-this the end of the story for amenable groups?

Quantitative ergodic theory

> Romain Tessera

> > To try to answer (negatively) this question, we address the following points:

 quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.

(A) (E) (A) (E) (A)

Is-this the end of the story for amenable groups?

Quantitative ergodic theory

> Romain Tessera

> > To try to answer (negatively) this question, we address the following points:

- quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.
- quantify amenability: e.g.: find a ways to say that Z is "more amenable" than Z²;

Is-this the end of the story for amenable groups?

Quantitative ergodic theory

> Romain Tessera

> > To try to answer (negatively) this question, we address the following points:

- quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.
- quantify amenability: e.g.: find a ways to say that Z is "more amenable" than Z²;

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ .

イロン 不同 とくほと 不良 とう

Э

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and $\Gamma.$

Definition (Cocycle)

 $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and $\Gamma.$

Definition (Cocycle)

 $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and $\Gamma.$

Definition (Cocycle)

 $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$. (Similarly: $\beta : \Gamma \times X \to \Lambda$)

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and $\Gamma.$

Definition (Cocycle)

 $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$. (Similarly: $\beta : \Gamma \times X \to \Lambda$)

Hence for every x, $\alpha(\cdot, x)$ is a **bijection** between Λ to Γ .

Quantitative ergodic theory

> Romain Tessera

Problem: find a substitute for the lack of isomorphism between Λ and $\Gamma.$

Definition (Cocycle)

 $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$. (Similarly: $\beta : \Gamma \times X \to \Lambda$)

Hence for every x, $\alpha(\cdot, x)$ is a **bijection** between Λ to Γ .

Problem: Quantify how "distorted" are these bijections "in average".

Quantitative ergodic theory
Romain Tessera

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits.

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are φ -**OE** if for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable** (similarly for β).

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are φ -**OE** if for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable** (similarly for β).

Remark

Note that for $\varphi(t) = t^p$, this means in L^p .

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are φ -**OE** if for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable** (similarly for β).

Remark

Note that for $\varphi(t) = t^p$, this means in L^p . The faster φ tends to infinity, the stronger the condition is.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are φ -**OE** if for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable** (similarly for β).

Remark

Note that for $\varphi(t) = t^p$, this means in L^p . The faster φ tends to infinity, the stronger the condition is. For instance:

$$(L^2 - OE) \Rightarrow (L^1 - OE) \Rightarrow (L^{1/2} - OE) \Rightarrow (\log(t) - OE)...$$

No quantitative version of OW's theorem

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

For all Λ amenable, and all increasing unbounded φ , there exists another (explicit) amenable group Γ such that no pmp action of Γ is φ -OE to a pmp action of Λ .

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F
otal I(n) = \min \left\{ |A| \mid rac{|As riangle A|}{|A|} \leq 1/n, \ \forall s \in S
ight\}$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F
ot s I(n) = \min \left\{ |A| \mid rac{|As riangle A|}{|A|} \leq 1/n, \ \forall s \in S
ight\}$$

Remark

 Λ is amenable iff Føl $< \infty$. The general philosophy is: the faster Føl_{Λ} the less amenable is Λ .

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F lat{sl}(n) = \min \left\{ |A| \mid rac{|As riangle A|}{|A|} \leq 1/n, \ orall s \in S
ight\}$$

Remark

 Λ is amenable iff $F \emptyset I < \infty$. The general philosophy is: the faster $F \emptyset I_{\Lambda}$ the less amenable is Λ .

Exemples

For \mathbb{Z}^d , $F \emptyset I(n) \approx n^d$. For the Lamplighter $F \emptyset I(n) \approx e^n$.

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F lat{sl}(n) = \min \left\{ |A| \mid rac{|As riangle A|}{|A|} \leq 1/n, \ orall s \in S
ight\}$$

Remark

 Λ is amenable iff $F \emptyset I < \infty$. The general philosophy is: the faster $F \emptyset I_{\Lambda}$ the less amenable is Λ .

Exemples

For \mathbb{Z}^d , $F \emptyset I(n) \approx n^d$. For the Lamplighter $F \emptyset I(n) \approx e^n$.

Invariance of the Følner function

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.
- More generally, if Λ and Γ are φ -OE for some concave increasing function φ , then

$$F
alpha I_{\Lambda} \lesssim F al_{\Gamma} \circ \varphi^{-1}.$$

イロン イヨン イヨン イヨン

イロン 不同 とうほう 不同 とう

크

イロト イヨト イヨト イヨト

크

Invariance of the Følner function

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.
- More generally, if Λ and Γ are $\varphi\text{-}OE$ for some concave increasing function $\varphi,$ then

$$F \emptyset I_{\Lambda} \lesssim F \emptyset I_{\Gamma} \circ \varphi^{-1}.$$

Corollary

- If \mathbb{Z} and \mathbb{Z}^2 are not L^p -OE for p > 1/2.
- More generally \mathbb{Z}^d and \mathbb{Z}^{d+k} are not L^p -OE for p > d/(d+k).
- If Γ has exponential growth and if Γ and \mathbb{Z} are are φ -OE, then $\varphi(n) \lesssim \log n$.

イロン 不同 とくほど 不同 とう

What about a converse? Quantitative ergodic theory Romain The previous result is optimal in a number of situation. For instance Theorem (Delabie-Koivisto-Le Maître-Tessera 20) \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k)

イロン 不同 とくほど 不同 とう

イロン イヨン イヨン イヨン

What about a converse? **Ouantitative** ergodic theory Romain The previous result is optimal in a number of situation. For instance Theorem (Delabie-Koivisto-Le Maître-Tessera 20) \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k)Example: \mathbb{Z} and \mathbb{Z}^2 are L^p -OE for all p < 1/2. New method of Explicit construction of OE-couplings for a given pair of amenable groups.

イロン 不同 とくほど 不同 とう

What about a converse?

Quantitative ergodic theory

> Romain Tessera

The previous result is optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

 \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k)

Example: \mathbb{Z} and \mathbb{Z}^2 are L^p -OE for all p < 1/2.

New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^2 .

イロン 不同 とくほど 不同 とう

What about a converse?

Quantitative ergodic theory

> Romain Tessera

The previous result is optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

 \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k)

Example: \mathbb{Z} and \mathbb{Z}^2 are L^p -OE for all p < 1/2.

New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^2 .

イロン 不同 とくほど 不同 とう

Quantitative ergodic theory

Romain Tessera Preliminaries:

 \blacksquare The 2-odometer: consider the action of $\mathbb Z$ on the $\{0,1\}^{\mathbb N},$ defined as follows.

イロン 不同 とうほう 不同 とう

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as: *a* · (0,0,0,1,...) = (1,0,0,1...)

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) =$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) =$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, \ldots) = (2, 2, 0, 3, \ldots)$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, \ldots) = (2, 2, 0, 3, \ldots)$ $a \cdot (3, 1, 2, 0, \ldots) =$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$ $a \cdot (3, 1, 2, 0, ...) = (0, 2, 2, 0, ...)$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$ $a \cdot (3, 1, 2, 0, ...) = (0, 2, 2, 0, ...)$ $a \cdot (3, 3, 3, 3, 1, 0, ...) =$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$ $a \cdot (3, 1, 2, 0, ...) = (0, 2, 2, 0, ...)$ $a \cdot (3, 3, 3, 3, 1, 0, ...) = (0, 0, 0, 0, 2, 0, ...)$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$ $a \cdot (3, 1, 2, 0, ...) = (0, 2, 2, 0, ...)$ $a \cdot (3, 3, 3, 3, 1, 0, ...) = (0, 0, 0, 0, 2, 0, ...)$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}.$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of Z on the {0,1}^N, defined as follows. The generator *a* of Z acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0, 1, 2, 3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$ $a \cdot (3, 1, 2, 0, ...) = (0, 2, 2, 0, ...)$ $a \cdot (3, 3, 3, 3, 1, 0, ...) = (0, 0, 0, 0, 2, 0, ...)$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}.$

Two sequences belong to the **same orbit** if and only if they differ by at most finitely many coordinates.

イロン 不同 とうほう 不同 とう

Quantitative ergodic theory

Romain Tessera **The actions** of \mathbb{Z} and \mathbb{Z}^2 :

• We let \mathbb{Z} acts on the 4-odometer: $\{0, 1, 2, 3\}^{\mathbb{N}}$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

Romain Tessera The actions of \mathbb{Z} and \mathbb{Z}^2 :

- We let \mathbb{Z} acts on the 4-odometer: $\{0, 1, 2, 3\}^{\mathbb{N}}$
- We let \mathbb{Z}^2 acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Quantitative ergodic theory

Romain Tessera The actions of \mathbb{Z} and \mathbb{Z}^2 :

- \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$
- We let \mathbb{Z}^2 acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F: \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \to \{0,1,2,3\}^{\mathbb{N}}$ is defined

$$F(x,y)=x+2y.$$

イロン イヨン イヨン イヨン

Quantitative ergodic theory

Romain Tessera The actions of $\mathbb Z$ and $\mathbb Z^2 {:}$

- \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$
- We let \mathbb{Z}^2 acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F: \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \to \{0,1,2,3\}^{\mathbb{N}}$ is defined

$$F(x,y)=x+2y.$$

Example: if x = (0, 1, 1, ...), y = (1, 0, 1, ...), then

$$F(x,y) = (0+2, 1+0, 1+2, \ldots) = (2, 1, 3, \ldots).$$