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m (X, ) probability space (example: (S, \) where ) is
Lebesgue measure, {0,1}", equipped with the product
measure),

m An pmp action A ~ (X, p): i.e. a free measure-preserving
action.

m Rotations: 7 ~ (S, \) generated by an irrational
rotation,

Bernoulli shift: A ~ {0, 1},
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Ergodic theory,

Representation theory,

|

|

m Operator algebras,
m Percolation theory (probabilities),
]

Lattices in Lie groups...

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative

ot Definition
theory
fomain Two pmp actions A ~ (X, ) and T ~ (Y, v) are isomorphic,
=i if there exist an isomorphism of measure spaces
W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative

ot Definition
theory
fomain Two pmp actions A ~ (X, i) and I ~ (Y, v) are isomorphic,
=i if there exist an isomorphism of measure spaces
W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that for a.e. x € X, and all A € A,

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative .. .
ergodic Definition
theory

fomain Two pmp actions A ~ (X, ) and I ~ (Y, ) are isomorphic,
Tessera if there exist an isomorphism of measure spaces

W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that for a.e. x € X, and all A € A,

WA x) = 0()\) - W(x).

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative .. .
ergodic Definition
theory

fomain Two pmp actions A ~ (X, ) and I ~ (Y, ) are isomorphic,
Tessera if there exist an isomorphism of measure spaces

W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that for a.e. x € X, and all A € A,

WA x) = 0()\) - W(x).

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative .. .
ergodic Definition
theory

fomain Two pmp actions A ~ (X, ) and I ~ (Y, ) are isomorphic,
Tessera if there exist an isomorphism of measure spaces

W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that for a.e. x € X, and all A € A,

WA x) = 0()) - W(x).

Exemples

m Z ~ (S, )\) and Z ~ {0,1}% are not isomorphic;

Romain Tessera Quantitative ergodic theory



Isomorphism

Quantitative o ong
ergodic Definition
theory

Coman Two pmp actions A ~ (X, ) and T ~ (Y, v) are isomorphic,
s if there exist an isomorphism of measure spaces

W (X,u) — (Y,v), and a group isomorphism: 6 : A — T such
that for a.e. x € X, and all A € A,

V(A-x)=0()\)-V(x).

Exemples

m Z ~ (S, )\) and Z ~ {0,1}% are not isomorphic;
m Z ~{0,1}2 and Z ~ {0,1,2}% are not isomorphic
(Kolmogorov-Sinai);
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Two pmp actions A ~ (X, ) and T ~ (Y, ) are orbit
equivalent (OE), if there exists an isomorphism of measure
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Two pmp actions A ~ (X, ) and T ~ (Y, ) are orbit
equivalent (OE), if there exists an isomorphism of measure
spaces W : (X, u) — (Y, v) such that for a.e. x € X,

V(A-x)=T-V¥(x).

Theorem (Dye)
Any two ergodic pmp actions of 7, are OE.
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i A countable group A is amenable if it admits a sequence of
“almost-invariant finite subsets” A, C A, i.e. such that for all

A EN,
A A Agl

|An
((Ap) is called a right Fglner sequence)

— 0.

m Z9 with A, = [—n, n]%;

m stable under extension, subgroup, quotient...

m free groups Fx on k > 2 generators are not amenable.
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A famous theorem of Ornstein-Weiss

Theorem (Ornstein-Weiss 80)

Let A and T be two (infinite) countable amenable groups. Then
any pmp ergodic actions N ~ (X, ) and I ~ (Y, v) are OE.

Things are very different for non-amenable groups. For
instance

Theorem (Gaboriau 00)
If Fi and Fy have OE pmp actions, then k = k'.
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To try to answer (negatively) this question, we address the
following points:
m quantify orbit equivalence: add “constraints” on the
orbit-equivalence relation.
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Romain between A and T.
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Definition (Cocycle)
AT ~ X with (a.e.) same orbits. Define a: A x X — T by:

a(Ax) - x=Xx,

fora.e. x € X, A € A. (Similarly: 5:T x X = A)

Hence for every x, a(-, x) is a bijection between A to I

Problem: Quantify how “distorted” are these bijections “in
average”.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Romain Tessera

Quantitative ergodic theory



Word metric on a group

Quantitative
ergodic
theory

Romain
Tessera

Definition (Word distance)

Let A be a group generated by a finite subset S. The word
length on A associated to S is defined as

lgls =min{neN| g =si'...stl:s € S}.
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— Let ¢ : R — Ry be an increasing function tending to co.
Tessera Assume A, I ~ (X, ) with same orbits. The actions are
©-0E if for all A € A,
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— Let ¢ : R — Ry be an increasing function tending to co.
Tessera Assume A, ~ (X, p) with same orbits. The actions are
p-0OE if for all A € A,

X = g0(|a(X, A)’Sr)

is integrable (similarly for j3).

Remark

Note that for ¢(t) = tP, this means in LP.
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Quantifying orbit equivalence

Definition (¢ orbit equivalence)

Let ¢ : R — Ry be an increasing function tending to co.
Assume A, I ~ (X, ) with same orbits. The actions are
p-0OE if for all A € A,

X = g0(|a(X, A)’Sr)

is integrable (similarly for j3).

Remark

Note that for ¢(t) = tP, this means in LP.
The faster ¢ tends to infinity, the stronger the condition is.
For instance:

(L2 — OE) = (L' — OE) = (1Y% — OE) = (log(t) — OE)...

v
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No quantitative version of OW's theorem

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

For all N amenable, and all increasing unbounded ¢, there
exists another (explicit) amenable group I' such that no pmp
action of I is p-OE to a pmp action of A\.
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Fgl(n) = min {|A| |

<1/n, Vs € S}

Romain Tessera Quantitative ergodic theory



Quantify amenability: Fglner profile

Quantitative
ergodic

theory —

Let A be a group generated by a finite subset S. Define its Fglner function

|As A A|

Fgl(n) = min {|A| | A

<1/n, Vs € S}

N is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

Romain Tessera Quantitative ergodic theory



Quantify amenability: Fglner profile

Quantitative
ergodic

theory —

Let A be a group generated by a finite subset S. Define its Fglner function

|As A A|

Fgl(n) = min {|A| | A

<1/n, Vs € S}

Remark

N is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

For Z9, Fgl(n) ~ n?. For the Lamplighter Fg/(n) ~ e".

Romain Tessera Quantitative ergodic theory



Quantify amenability: Fglner profile

Quantitative
ergodic

theory —

Let A be a group generated by a finite subset S. Define its Fglner function

|As A A|

Fgl(n) = min {|A| | A

<1/n, Vs € S}

Remark

N is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

For Z9, Fgl(n) ~ n?. For the Lamplighter Fg/(n) ~ e".

Romain Tessera Quantitative ergodic theory



Invariance of the Fglner function

Quantitative
ergodic
theory
Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m IfA and T are L1-OE, then Fgly ~ Fglr.

Romain Tessera Quantitative ergodic theory



Invariance of the Fglner function

Quantitative
ergodic
theory

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m IfA and T are L1-OE, then Fgly ~ Fglr.

m More generally, if A and I are p-OE for some concave increasing function

@, then

Foln < Folr o L.

Romain Tessera Quantitative ergodic theory



Invariance of the Fglner function

Quantitative
ergodic
theory

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
m IfA and T are L'-OE, then Fgly ~ Fglr.
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Corollary
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Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
m IfA and T are L'-OE, then Fgly ~ Fglr.

m More generally, if A and I are p-OE for some concave increasing function
@, then

Foln < Folr o L.

v
Corollary

m IfZ and Z? are not LP-OE for p > 1/2.
m More generally Z¢ and 7.9tk are not LP-OE for p > d/(d + k).
m IfT has exponential growth and if T and Z are are o-OE, then o(n) < log n.
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a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...) = (0,1,0,...)
a-(1,1,1,0,...) = (0,0,0,1,...)
m The 4-odometer: : consider the action of Z on the {0,1,2,3}", defined as
follows. a-(1,2,0,3,...) =(2,2,0,3,...)
a-(3,1,2,0,...) = (0,2,2,0,...)
a-(3,3,3,3,1,0,...) = (0,0,0,0,2,0,...)

These actions preserve the product measure on {0, 1} and {0, 1,2, 3}
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Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...) = (0,1,0,...)
a-(1,1,1,0,...) = (0,0,0,1,...)
m The 4-odometer: : consider the action of Z on the {0,1,2,3}", defined as
follows. a-(1,2,0,3,...) =(2,2,0,3,...)
a-(3,1,2,0,...) = (0,2,2,0,...)
a-(3,3,3,3,1,0,...) = (0,0,0,0,2,0,...)

These actions preserve the product measure on {0, 1} and {0, 1,2, 3}

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.
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m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0, 1} x {0, 1}.
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The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0, 1} x {0, 1}.

The orbit equivalence: F : {0,1}N x {0,1} — {0,1,2,3}" is defined

F(x,y) = x+ 2y.
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The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0, 1} x {0, 1}.

The orbit equivalence: F : {0,1}N x {0,1} — {0,1,2,3}" is defined

F(x,y) = x+ 2y.

Example: if x =(0,1,1,...), y = (1,0,1,...), then

Fx,y)=(0+2,140,1+2,...)=(2,1,3,...).
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