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Group actions preserving a probability

Λ a countable group (examples: Z, Zd , free group on k
generators Fk),

(X , µ) probability space (example: (S1, λ) where λ is
Lebesgue measure, {0, 1}Λ, equipped with the product
measure),

An pmp action Λ y (X , µ): i.e. a free measure-preserving
action.

Exemples

Rotations: Z y (S1, λ) generated by an irrational
rotation,

Bernoulli shift: Λ y {0, 1}Λ.
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Context

Ergodic theory,

Representation theory,

Operator algebras,

Percolation theory (probabilities),

Lattices in Lie groups...

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Isomorphism

Definition

Two pmp actions Λ y (X , µ) and Γ y (Y , ν) are isomorphic,
if there exist an isomorphism of measure spaces
Ψ : (X , µ)→ (Y , ν), and a group isomorphism: θ : Λ→ Γ such
that

for a.e. x ∈ X , and all λ ∈ Λ,

Ψ (λ · x) = θ(λ) ·Ψ(x).

Exemples

Z y (S1, λ) and Z y {0, 1}Z are not isomorphic;

Z y {0, 1}Z and Z y {0, 1, 2}Z are not isomorphic
(Kolmogorov-Sinai);
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Orbit equivalence

Definition

Two pmp actions Λ y (X , µ) and Γ y (Y , ν) are orbit
equivalent (OE), if there exists an isomorphism of measure
spaces Ψ : (X , µ)→ (Y , ν) such that for a.e. x ∈ X ,

Ψ (Λ · x) = Γ ·Ψ(x).

Theorem (Dye)

Any two ergodic pmp actions of Z are OE.
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Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of
“almost-invariant finite subsets” An ⊂ Λ, i.e. such that for all
λ ∈ Λ,

|Anλ M An|
|An|

→ 0.

((An) is called a right Følner sequence)

Exemples

Zd , with An = [−n, n]d ;

stable under extension, subgroup, quotient...

free groups Fk on k ≥ 2 generators are not amenable.
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A famous theorem of Ornstein-Weiss

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then
any pmp ergodic actions Λ y (X , µ) and Γ y (Y , ν) are OE.

Things are very different for non-amenable groups. For
instance

Theorem (Gaboriau 00)

If Fk and Fk ′ have OE pmp actions, then k = k ′.
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Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the
following points:

quantify orbit equivalence: add “constraints” on the
orbit-equivalence relation.

quantify amenability: e.g.: find a ways to say that Z is
“more amenable” than Z2;
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Orbit equivalence cocycles

Problem: find a substitute for the lack of isomorphism
between Λ and Γ.

Definition (Cocycle)

Λ, Γ y X with (a.e.) same orbits. Define α : Λ× X → Γ by:

α(λ, x) · x = λ · x ,

for a.e. x ∈ X , λ ∈ Λ. (Similarly: β : Γ× X → Λ)

Hence for every x , α(·, x) is a bijection between Λ to Γ.

Problem: Quantify how “distorted” are these bijections “in
average”.
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Word metric on a group

Definition (Word distance)

Let Λ be a group generated by a finite subset S . The word
length on Λ associated to S is defined as

|g |S = min{n ∈ N | g = s±1
1 . . . s±1

n ; si ∈ S}.
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Quantifying orbit equivalence

Definition (ϕ orbit equivalence)

Let ϕ : R+ → R+ be an increasing function tending to ∞.
Assume Λ, Γ y (X , µ) with same orbits.

The actions are
ϕ-OE if for all λ ∈ Λ,

x 7→ ϕ(|α(x , λ)|SΓ
)

is integrable (similarly for β).

Remark

Note that for ϕ(t) = tp, this means in Lp.
The faster ϕ tends to infinity, the stronger the condition is.
For instance:

(L2 − OE )⇒ (L1 − OE )⇒ (L1/2 − OE )⇒ (log(t)− OE )...
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No quantitative version of OW’s theorem

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

For all Λ amenable, and all increasing unbounded ϕ, there
exists another (explicit) amenable group Γ such that no pmp
action of Γ is ϕ-OE to a pmp action of Λ.
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Quantify amenability: Følner profile

Definition

Let Λ be a group generated by a finite subset S . Define its Følner function

Føl(n) = min

{
|A| |

|As M A|
|A|

≤ 1/n, ∀s ∈ S

}

Remark

Λ is amenable iff Føl <∞. The general philosophy is:
the faster FølΛ the less amenable is Λ.

Exemples

For Zd , Føl(n) ≈ nd . For the Lamplighter Føl(n) ≈ en.
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Invariance of the Følner function

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

If Λ and Γ are L1-OE, then FølΛ ≈ FølΓ.

More generally, if Λ and Γ are ϕ-OE for some concave increasing function
ϕ, then

FølΛ . FølΓ ◦ ϕ−1.

Corollary

If Z and Z2 are not Lp-OE for p > 1/2.

More generally Zd and Zd+k are not Lp-OE for p > d/(d + k).

If Γ has exponential growth and if Γ and Z are are ϕ-OE, then ϕ(n) . log n.
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ϕ, then

FølΛ . FølΓ ◦ ϕ−1.

Corollary

If Z and Z2 are not Lp-OE for p > 1/2.

More generally Zd and Zd+k are not Lp-OE for p > d/(d + k).

If Γ has exponential growth and if Γ and Z are are ϕ-OE, then ϕ(n) . log n.
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What about a converse?

The previous result is optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Zd and Zd+k are Lp-OE for all p < d/(d + k)

Example: Z and Z2 are Lp-OE for all p < 1/2.

New method of Explicit construction of OE-couplings for a given pair of
amenable groups.

Let us explain it for Z and Z2.
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Constructing an OE between Z and Z2

Preliminaries:

The 2-odometer: consider the action of Z on the {0, 1}N, defined as
follows.

The generator a of Z acts as:
a · (0, 0, 0, 1, . . .) = (1, 0, 0, 1 . . .)
a · (1, 0, 0, . . .) = (0, 1, 0, . . .)
a · (1, 1, 1, 0, . . .) = (0, 0, 0, 1, . . .)

The 4-odometer: : consider the action of Z on the {0, 1, 2, 3}N, defined as
follows. a · (1, 2, 0, 3, . . .) = (2, 2, 0, 3, . . .)
a · (3, 1, 2, 0, . . .) = (0, 2, 2, 0, . . .)
a · (3, 3, 3, 3, 1, 0, . . .) = (0, 0, 0, 0, 2, 0, . . .)

These actions preserve the product measure on {0, 1}N and {0, 1, 2, 3}N.

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.
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Constructing an OE between Z and Z2

The actions of Z and Z2:

We let Z acts on the 4-odometer: {0, 1, 2, 3}N

We let Z2 acts on a product of 2-odometers: {0, 1}N × {0, 1}N.

The orbit equivalence: F : {0, 1}N × {0, 1}N → {0, 1, 2, 3}N is defined

F (x , y) = x + 2y .

Example: if x = (0, 1, 1, . . .), y = (1, 0, 1, . . .), then

F (x , y) = (0 + 2, 1 + 0, 1 + 2, . . .) = (2, 1, 3, . . .).
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