Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

Wednesday $10^{\text {th }}$ May, 2023

Group actions preserving a probability

■ Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),

Group actions preserving a probability

Quantitative ergodic theory

Romain
Tessera

■ Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),

Group actions preserving a probability

- Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),
- An pmp action $\wedge \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Group actions preserving a probability

$■ ~ \wedge$ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),

- An pmp action $\wedge \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ generated by an irrational rotation,

Group actions preserving a probability

$■ \Lambda$ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),

- An pmp action $\wedge \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ generated by an irrational rotation,
- Bernoulli shift: $\Lambda \curvearrowright\{0,1\}^{\wedge}$.

Context

Quantitative ergodic theory

Romain
Tessera

- Ergodic theory,
- Representation theory,
- Operator algebras,

■ Percolation theory (probabilities),
■ Lattices in Lie groups...

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Exemples

$■ \mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ and $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ are not isomorphic;

Isomorphism

Quantitative ergodic theory

Romain
Tessera

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist an isomorphism of measure spaces
$\Psi:(X, \mu) \rightarrow(Y, \nu)$, and a group isomorphism: $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Exemples

$■ \mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ and $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ are not isomorphic;
$\square \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ and $\mathbb{Z} \curvearrowright\{0,1,2\}^{\mathbb{Z}}$ are not isomorphic (Kolmogorov-Sinai);

Orbit equivalence

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism of measure spaces $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

Orbit equivalence

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism of measure spaces $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

Orbit equivalence

Definition

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism of measure spaces $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

Theorem (Dye)

Any two ergodic pmp actions of \mathbb{Z} are $O E$.

Amenable groups

Quantitative ergodic theory

Romain
Tessera

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

$\square \mathbb{Z}^{d}$, with $A_{n}=[-n, n]^{d}$;

Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

$\square \mathbb{Z}^{d}$, with $A_{n}=[-n, n]^{d}$;

- stable under extension, subgroup, quotient...

Amenable groups

Romain
Tessera

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

$\square \mathbb{Z}^{d}$, with $A_{n}=[-n, n]^{d}$;

- stable under extension, subgroup, quotient...
- free groups F_{k} on $k \geq 2$ generators are not amenable.

A famous theorem of Ornstein-Weiss

Theorem (Ornstein-Weiss 80)
 Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

A famous theorem of Ornstein-Weiss

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups. For instance

Theorem (Gaboriau 00)

If F_{k} and $F_{k^{\prime}}$ have $O E p m p$ actions, then $k=k^{\prime}$.

Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the following points:

■ quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.

Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the following points:

■ quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.

- quantify amenability: e.g.: find a ways to say that \mathbb{Z} is "more amenable" than \mathbb{Z}^{2};

Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the following points:

■ quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.

- quantify amenability: e.g.: find a ways to say that \mathbb{Z} is "more amenable" than \mathbb{Z}^{2};

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)
Hence for every $x, \alpha(\cdot, x)$ is a bijection between Λ to Γ.

Orbit equivalence cocycles

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)
Hence for every $x, \alpha(\cdot, x)$ is a bijection between Λ to Γ.

Problem: Quantify how "distorted" are these bijections "in average".

Word metric on a group

Definition (Word distance)

Let Λ be a group generated by a finite subset S. The word length on Λ associated to S is defined as

$$
|g|_{S}=\min \left\{n \in \mathbb{N} \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1} ; s_{i} \in S\right\}
$$

Word metric on a group

Definition (Word distance)

Let Λ be a group generated by a finite subset S. The word length on Λ associated to S is defined as

$$
|g|_{S}=\min \left\{n \in \mathbb{N} \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1} ; s_{i} \in S\right\}
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)
Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are φ-OE if for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)| s_{s_{\Gamma}}\right)
$$

is integrable (similarly for β).

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are φ-OE if for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)| s_{s_{\Gamma}}\right)
$$

is integrable (similarly for β).

Remark

Note that for $\varphi(t)=t^{p}$, this means in L^{p}.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are φ-OE if for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)| s_{\Gamma}\right)
$$

is integrable (similarly for β).

Remark

Note that for $\varphi(t)=t^{p}$, this means in L^{p}.
The faster φ tends to infinity, the stronger the condition is.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are φ-OE if for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)| s_{\ulcorner }\right)
$$

is integrable (similarly for β).

Remark

Note that for $\varphi(t)=t^{p}$, this means in L^{p}.
The faster φ tends to infinity, the stronger the condition is.
For instance:

$$
\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right) \Rightarrow\left(L^{1 / 2}-O E\right) \Rightarrow(\log (t)-O E) \ldots
$$

No quantitative version of OW's theorem

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

For all \wedge amenable, and all increasing unbounded φ, there exists another (explicit) amenable group Γ such that no pmp action of Γ is $\varphi-O E$ to a pmp action of Λ.

Quantify amenability: FøIner profile

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing \left\lvert\,(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}\right.
$$

Remark

Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.

Exemples

For $\mathbb{Z}^{d}, F \phi I(n) \approx n^{d}$. For the Lamplighter $F \varnothing I(n) \approx e^{n}$.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.

Exemples

For $\mathbb{Z}^{d}, F \phi I(n) \approx n^{d}$. For the Lamplighter $F \varnothing I(n) \approx e^{n}$.

Invariance of the Følner function

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $\left.F \phi\right|_{\Lambda} \approx F \phi l_{\Gamma}$.

Invariance of the Følner function

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi l_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if Λ and Γ are φ-OE for some concave increasing function φ, then

$$
\left.F \phi I_{\Lambda} \lesssim F \phi\right|_{\Gamma} \circ \varphi^{-1} .
$$

Invariance of the FøIner function

Quantitative ergodic theory

Romain
Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi l_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if \wedge and Γ are φ-OE for some concave increasing function φ, then

$$
\left.F \phi I_{\Lambda} \lesssim F \phi\right|_{\Gamma} \circ \varphi^{-1} .
$$

Corollary

- If \mathbb{Z} and \mathbb{Z}^{2} are not L^{p}-OE for $p>1 / 2$.

Romain Tessera

Invariance of the FøIner function

Quantitative ergodic theory

Romain
Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi l_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if \wedge and Γ are φ-OE for some concave increasing function φ, then

$$
\left.F \phi I_{\Lambda} \lesssim F \phi\right|_{\Gamma} \circ \varphi^{-1} .
$$

Corollary

- If \mathbb{Z} and \mathbb{Z}^{2} are not $L^{p}-O E$ for $p>1 / 2$.
- More generally \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are not $L^{p}-O E$ for $p>d /(d+k)$.

Invariance of the FøIner function

Quantitative ergodic theory

Romain
Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi l_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if \wedge and Γ are φ-OE for some concave increasing function φ, then

$$
\left.F \phi I_{\Lambda} \lesssim F \phi\right|_{\Gamma} \circ \varphi^{-1} .
$$

Corollary

- If \mathbb{Z} and \mathbb{Z}^{2} are not $L^{p}-O E$ for $p>1 / 2$.
- More generally \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are not $L^{p}-O E$ for $p>d /(d+k)$.
- If Γ has exponential growth and if Γ and \mathbb{Z} are are φ - $O E$, then $\varphi(n) \lesssim \log n$.

What about a converse?

The previous result is optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)
\mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$

What about a converse?

Quantitative ergodic theory

Romain
Tessera
The previous result is optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)
\mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$
Example: \mathbb{Z} and \mathbb{Z}^{2} are L^{p}-OE for all $p<1 / 2$.

What about a converse?

The previous result is optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)
\mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$
Example: \mathbb{Z} and \mathbb{Z}^{2} are $L^{p}-O E$ for all $p<1 / 2$.
New method of Explicit construction of OE-couplings for a given pair of amenable groups.

What about a converse?

The previous result is optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)
\mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$
Example: \mathbb{Z} and \mathbb{Z}^{2} are L^{p}-OE for all $p<1 / 2$.
New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^{2}.

What about a converse?

The previous result is optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)
\mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$
Example: \mathbb{Z} and \mathbb{Z}^{2} are L^{p}-OE for all $p<1 / 2$.
New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^{2}.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
a $\cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
a. $(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. a $\cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$

$$
\begin{aligned}
& a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots) \\
& a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)
\end{aligned}
$$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$
\begin{aligned}
& a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots) \\
& a \cdot(1,0,0, \ldots)=(0,1,0, \ldots) \\
& a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)
\end{aligned}
$$

- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$

$$
\begin{aligned}
& a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots) \\
& a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)
\end{aligned}
$$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.
Two sequences belong to the same orbit if and only if they differ by at most finitely many coordinates.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y
$$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y
$$

Example: if $x=(0,1,1, \ldots), y=(1,0,1, \ldots)$, then

$$
F(x, y)=(0+2,1+0,1+2, \ldots)=(2,1,3, \ldots)
$$

