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The problem
Let N ≥ 2, 2 < p < 2N

N−2 with p 6= 2 + 4
N , ρ > 0, and consider the problem

−∆u + λu = |u|p−2u in RN , (1)

where ∆ =
∑N

j=1
∂2

∂x2
j

, paired with the constraint∫
RN

u2 dx = ρ2, (2)

with λ ∈ R to be determined.
If (λ, u) solves (1)–(2), we call it a normalised solution.
The problem (1)–(2) appears when looking for solutions to{

i∂Φ
∂t −∆Φ = |Φ|p−2Φ in RN∫
RN |Φ(x , t)|2 dx = ρ2 (conserved in time)

as standing waves, i.e.,

Φ(x , t) = e−iλtu(x).
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The settings
Let us define

H1(RN) :=

{
u ∈ L2(RN)

∣∣∣∣ ∂u∂xj ∈ L2(RN) ∀j = 1, . . . ,N

}
.

What is ∂u
∂xj

for u ∈ L2(RN)? It is defined via∫
RN

∂u

∂xj
ϕdx = −

∫
RN

u
∂ϕ

∂xj
dx ∀ϕ ∈ C∞c (RN).

One can prove H1(RN) ↪→ Lq(RN) for every 2 ≤ q ≤ 2N
N−2 (2 ≤ q <∞ if

N = 2).
Take v ∈ H1(RN). If we multiply (1) by v and integrate by parts, we get∫

RN

∇u · ∇v + λuv dx =

∫
RN

|u|p−2uv dx . (3)

We say that u ∈ H1(RN) is a weak solution to (1) iff (3) holds for every
v ∈ H1(RN).
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If I : H1(RN)→ R and u, v ∈ H1(RN), we denote

I ′(u)v := lim
t→0

I (u + tv)− I (u)

t
.

Then I ′(u) ∈
(
H1(RN)

)′
.

We write I ∈ C1
(
H1(RN)

)
iff u 7→ I ′(u) is continuous.

We say that u ∈ H1(RN) is a critical point for I ∈ C1
(
H1(RN)

)
iff

I ′(u) = 0, i.e., I ′(u)v = 0 for every v ∈ H1(RN).

Recall: If A ⊂ H1(RN) is open and u ∈ A, then I |′A(u) = 0⇔ I ′(u) = 0.
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Let Q :=
{
u ∈ H1(RN)

∣∣ G (u) = 0
}
6= ∅ for some G ∈ C1

(
H1(RN)

)
such

that G ′(u) 6≡ 0 for every u ∈ Q.

If u ∈ Q, then

I |′Q(u) = 0

if and only if

I ′(u)v = 0 for every v ∈ TuQ
if and only if

I ′(u) = λG ′(u) for some λ ∈ R.

Such λ is called a Lagrange multiplier.

If, moreover, I (u) = min
{
I (v)

∣∣ v ∈ H1(RN) and G (v) ≤ 0
}

, then
λ ≤ 0. Finally, λ = 0 if G (u) < 0.
Equivalently, I ′(u) + λG ′(u) = 0 and λ ≥ 0 (or λ > 0).
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Let J : H1(RN)→ R defined by

J(u) =

∫
RN

1

2
|∇u|2 − 1

p
|u|p dx =

∫
RN

1

2

N∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣2 − 1

p
|u|p dx

and let

S :=

{
u ∈ H1(RN)

∣∣∣∣ ∫
RN

u2 dx = ρ2

}
.

If u is a critical point of J|S , i.e.,

u ∈ S and J ′(u)v = 0 for every v ∈ TuS,

the there exists λ ∈ R such that (λ, u) is a solution to (1)–(2).
H1

rad(RN) ↪→↪→ Lq(RN) for every 2 < q < 2N
N−2 , hence un ∈ S, un ⇀ u in

H1
rad(RN) 6⇒ u ∈ S. For this reason we consider

D :=

{
u ∈ H1(RN)

∣∣∣∣ ∫
RN

u2 dx ≤ ρ2

}
.

Clearly un ∈ D, un ⇀ u in H1(RN)⇒ u ∈ D.
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The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



The proof (2 < p < 2 + 4/N)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and λ > 0.

Gagliardo–Nirenberg inequality: for every 2 < q < 2N
N−2 there exists

Cq,N > 0 such that for every u ∈ H1(RN) there holds

|u|q ≤ Cq,N |∇u|
δq
2 |u|

1−δq
2 ,

with δq = N
(

1
2 −

1
q

)
∈ ]0, 1[. In particular, qδq < 2⇔ q < 2 + 4

N (resp.

‘=’, ‘>’). We work in H1
rad(RN). The norm in H1(RN) is given by

‖u‖2 := |u|22 + |∇u|22.

Note that, if un ∈ D, then ‖un‖ → ∞⇔ |∇un|2 →∞.

Jacopo Schino (NCSU) Normalised solutions for beginners 14 November 2023 7 / 16



Lemma

J|D is coercive (and bounded below).

Proof.

If u ∈ D, then from the Gagliardo–Nirenberg inequality

J(u) =
1

2
|∇u|22 −

1

p
|u|pp ≥

1

2
|∇u|22 −

Cp
N,p

p
|∇u|pδp2 |u|

p(1−δp)
2

≥ 1

2
|∇u|22 −

Cp
N,p

p
ρp(1−δp)|∇u|pδp2

with pδp < 2.
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Lemma

infD J < 0.

For u ∈ H1(RN) and s > 0 define s ? u(x) := sN/2u(sx). Notice that
|s ? u|2 = |u|2, hence u ∈ D ⇒ s ? u ∈ D.

Proof.

Fix u ∈ D \ {0}. If 0 < s � 1, then

J(s ? u) =
s2

2
|∇u|22 −

sN(p/2−1)

p
|u|pp < 0

because N(p/2− 1) = pδp < 2.
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Lemma

infD J is attained (i.e., there exists u ∈ D such that J(u) = infD J).

Proof.

Let un ∈ D such that J(un)→ infD J. Since J|D is coercive, un is
bounded, therefore there exists u ∈ D such that un ⇀ u in H1(RN) and
un → u in Lp(RN) (up to a subsequence). Then

inf
D

J ≤ J(u) =
1

2
|∇u|22 −

1

p
|u|pp ≤ lim

n

1

2
|∇un|22 −

1

p
|un|pp

= lim
n

J(un) = inf
D

J,

i.e., J(u) = infD J.
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Proof of the main Theorem.

Let u ∈ D such that J(u) = minD J < 0. Then u is a critical point of J|D,
i.e., there exists λ ≥ 0 such that∫

RN

∇u · ∇v + λuv dx =

∫
RN

|u|p−2uv dx

for every v ∈ H1(RN). Recall that λ = 0 if u ∈ D \ S. Taking v = u, we
obtain |∇u|22 + λ|u|22 = |u|pp. If λ = 0, then

J(u) =

(
1

2
− 1

p

)
|∇u|22 ≥ 0,

so λ > 0 and, in particular, u ∈ S.
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The proof (2 + 4/N < p < 2N/(N − 2))

Fix u ∈ D \ {0}. Then (recall pδp > 2)

J(s ? u) =
|∇u|22

2
s2 − |u|

p
p

p
spδp → −∞ as s →∞.

If (λ, u) solves (1), then (Nehari)∫
RN

|∇u|2 + λu2 dx =

∫
RN

|u|p dx .

Moreover, one can prove that (Pohožaev)∫
RN

(N − 2)|∇u|2 + λNu2 dx =
2N

p

∫
RN

|u|p dx .
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From Nehari + Pohožaev we obtain∫
RN

|∇u|2 dx = N

(
1

2
− 1

p

)∫
RN

|u|p dx . (4)

Define
M :=

{
u ∈ H1(RN) \ {0}

∣∣∣ (4) holds
}

and note that for every u ∈M

J(u) =
1

p

(
N

4
(p − 2)− 1

)
︸ ︷︷ ︸

C0

∫
RN

|u|p dx > 0.

If u ∈ H1(RN) \ {0}, then ur := u(r ·) ∈M, where

r := r(u) :=

√
N

(
1

2
− 1

p

)
|∇u|22
|u|pp

.
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Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) > 0 and λ > 0.

Lemma

inf
u∈M∩D

|∇u|2 > 0.

Proof.

|∇u|22 = C |u|pp ≤ C ′|∇u|pδp2 |u|
p(1−δp)
2 ≤ C ′ρp(1−δp)|∇u|pδp2 , pδp > 2.

Lemma

J is coercive onM∩D and m := inf
M∩D

J > 0.

Proof.

Since J(u) = C0|u|pp if u ∈M∩D, 1
2 |∇u|

2
2 = 1

p |u|
p
p + J(u) = CJ(u).
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Lemma

m is attained.

Proof.

Let un ∈M∩D such that J(un)→ m. Then it is bounded, hence there
exist u ∈ D such that un ⇀ u in H1(RN) and un → u in Lp(RN) (up to a
subsequence).
Next, 0 < m = limn C0|un|pp = C0|u|pp, therefore u 6= 0 and we can consider
ur ∈M.

Moreover, r2 = r(u)2 = N
(

1
2 −

1
p

)
|u|pp
|∇u|22

≥ limn N
(

1
2 −

1
p

)
|un|pp
|∇un|22

= 1,

thus ur ∈ D.
Finally, m ≤ J(ur ) = C0|ur |pp = C0r

−N |u|pp ≤ C0|u|pp = limn C0|un|pp
= limn J(un) = m, therefore r = 1 and J(u) = m.
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Next, 0 < m = limn C0|un|pp = C0|u|pp, therefore u 6= 0 and we can consider
ur ∈M.

Moreover, r2 = r(u)2 = N
(

1
2 −

1
p

)
|u|pp
|∇u|22

≥ limn N
(

1
2 −

1
p

)
|un|pp
|∇un|22

= 1,

thus ur ∈ D.
Finally, m ≤ J(ur ) = C0|ur |pp = C0r

−N |u|pp ≤ C0|u|pp = limn C0|un|pp
= limn J(un) = m, therefore r = 1 and J(u) = m.
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Proof of the Theorem.

Let u ∈M∩D such that J(u) = m > 0. There exist λ ≥ 0 and σ ∈ R

such that −(1 + 2σ)∆u + λu =

(
1 + σN

p − 2

2

)
|u|p−2u. Then the

Nehari identity (1 + 2σ)|∇u|22 + λ|u|22 =

(
1 + σN

p − 2

2

)
|u|pp and the

Pohožaev identity (1 + 2σ)
N − 2

2N
|∇u|22 +

λ

2
|u|22 =

(
1 + σN

p − 2

2

)
1

p
|u|pp

hold. From the two identities we obtain

(1 + 2σ)|∇u|22 = N

(
1 + σN

p − 2

2

)(
1

2
− 1

p

)
|u|pp, and from u ∈M we

obtain σ

(
1

2
− 1

p

)(
N(p − 2)− 4

)
|u|pp = 0, whence σ = 0 and

−∆u + λu = |u|p−2u. If λ = 0, then the Nehari and Pohožaev identities

read
1

p
|u|pp =

N − 2

2N
|∇u|22 =

N − 2

2N
|u|pp, so λ > 0 and u ∈ S.
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