Normalised solutions for beginners

Jacopo Schino
North Carolina State University

$14^{\text {th }}$ November 2023

National and Kapodistrian University of Athens

The problem

Let $N \geq 2,2<p<\frac{2 N}{N-2}$ with $p \neq 2+\frac{4}{N}, \rho>0$, and consider the problem

$$
\begin{equation*}
-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

where $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$, paired with the constraint

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2} \tag{2}
\end{equation*}
$$

with $\lambda \in \mathbb{R}$ to be determined.

as standing waves, i.e.,

The problem

Let $N \geq 2,2<p<\frac{2 N}{N-2}$ with $p \neq 2+\frac{4}{N}, \rho>0$, and consider the problem

$$
\begin{equation*}
-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

where $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$, paired with the constraint

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2} \tag{2}
\end{equation*}
$$

with $\lambda \in \mathbb{R}$ to be determined.
If (λ, u) solves $(1)-(2)$, we call it a normalised solution.

as standing waves, i.e.,

The problem

Let $N \geq 2,2<p<\frac{2 N}{N-2}$ with $p \neq 2+\frac{4}{N}, \rho>0$, and consider the problem

$$
\begin{equation*}
-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

where $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$, paired with the constraint

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2} \tag{2}
\end{equation*}
$$

with $\lambda \in \mathbb{R}$ to be determined.
If (λ, u) solves $(1)-(2)$, we call it a normalised solution.
The problem (1)-(2) appears when looking for solutions to

$$
\begin{cases}\mathrm{i} \frac{\partial \Phi}{\partial t}-\Delta \Phi=|\Phi|^{p-2} \Phi & \text { in } \mathbb{R}^{N} \\ \int_{\mathbb{R}^{N}}|\Phi(x, t)|^{2} \mathrm{~d} x=\rho^{2} & \text { (conserved in time) }\end{cases}
$$

as standing waves, i.e.,

$$
\Phi(x, t)=e^{-\mathrm{i} \lambda t} u(x) .
$$

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\} .
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N}\right)$. If we multiply (1) by v and integrate by parts, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x . \tag{3}
\end{equation*}
$$

We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a weak solution to (1) iff (3) holds for every

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\} .
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N^{\prime}}\right)$. If we multiply (1) by v and integrate by parts, we get

We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a weak solution to (1) iff (3) holds for every

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\} .
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

$$
\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \mathrm{~d} x=-\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \mathrm{~d} x \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N}\right)$. If we multiply (1) by v and integrate by parts, we get

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\} .
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

$$
\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \mathrm{~d} x=-\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \mathrm{~d} x \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right)
$$

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N}\right)$. If we multiply (1) by v and integrate by parts, we get

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\}
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

$$
\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \mathrm{~d} x=-\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \mathrm{~d} x \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right)
$$

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N}\right)$. If we multiply (1) by v and integrate by parts, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x \tag{3}
\end{equation*}
$$

The settings

Let us define

$$
H^{1}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) \left\lvert\, \frac{\partial u}{\partial x_{j}} \in L^{2}\left(\mathbb{R}^{N}\right) \forall j=1\right., \ldots, N\right\}
$$

What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}\left(\mathbb{R}^{N}\right)$? It is defined via

$$
\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \mathrm{~d} x=-\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \mathrm{~d} x \quad \forall \varphi \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{N}\right)
$$

One can prove $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2 \leq q \leq \frac{2 N}{N-2}(2 \leq q<\infty$ if $N=2$).
Take $v \in H^{1}\left(\mathbb{R}^{N}\right)$. If we multiply (1) by v and integrate by parts, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x . \tag{3}
\end{equation*}
$$

We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a weak solution to (1) iff (3) holds for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

If $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$, we denote

$$
I^{\prime}(u) v:=\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t} .
$$

Then $I^{\prime}(u) \in\left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$.
We write $l \in C^{1}\left(H^{1}\left(\mathbb{R}^{\prime \prime}\right)\right)$ iff $u \mapsto I^{\prime}(u)$ is continuous.
We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point for $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $I^{\prime}(u)=0$, i.e., $I^{\prime}(u) v=0$ for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

Recall: If $A \subset H^{1}\left(\mathbb{R}^{N}\right)$ is open and $u \in A$, then $I_{A}^{\prime}(u)=0 \Leftrightarrow I^{\prime}(u)=0$.

If $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$, we denote

$$
I^{\prime}(u) v:=\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t}
$$

Then $I^{\prime}(u) \in\left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$.
We write $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $u \mapsto I^{\prime}(u)$ is continuous.
We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point for $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $I^{\prime}(u)=0$, i.e., $I^{\prime}(u) v=0$ for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

If $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$, we denote

$$
I^{\prime}(u) v:=\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t} .
$$

Then $I^{\prime}(u) \in\left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$.
We write $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $u \mapsto I^{\prime}(u)$ is continuous.

> We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point for $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $I^{\prime}(u)=0$, i.e., $I^{\prime}(u) v=0$ for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

If $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$, we denote

$$
I^{\prime}(u) v:=\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t} .
$$

Then $I^{\prime}(u) \in\left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$.
We write $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $u \mapsto I^{\prime}(u)$ is continuous.
We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point for $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $I^{\prime}(u)=0$, i.e., $I^{\prime}(u) v=0$ for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

If $I: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$, we denote

$$
I^{\prime}(u) v:=\lim _{t \rightarrow 0} \frac{I(u+t v)-I(u)}{t}
$$

Then $I^{\prime}(u) \in\left(H^{1}\left(\mathbb{R}^{N}\right)\right)^{\prime}$.
We write $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $u \mapsto I^{\prime}(u)$ is continuous.
We say that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ is a critical point for $I \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ iff $I^{\prime}(u)=0$, i.e., $I^{\prime}(u) v=0$ for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$.

Recall: If $A \subset H^{1}\left(\mathbb{R}^{N}\right)$ is open and $u \in A$, then $I_{A}^{\prime}(u)=0 \Leftrightarrow I^{\prime}(u)=0$.

Let $\mathcal{Q}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid G(u)=0\right\} \neq \emptyset$ for some $G \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $G^{\prime}(u) \not \equiv 0$ for every $u \in \mathcal{Q}$.

If $u \in \mathcal{Q}$, then
$\left.I\right|_{\mathcal{Q}} ^{\prime}(u)=0$
if and only if
$I^{\prime}(u) v=0$ for every $v \in \mathcal{T}_{u} \mathcal{Q}$
if and only if
$I^{\prime}(u)=\lambda G^{\prime}(u)$ for some $\lambda \in \mathbb{R}$
Such λ is called a Lagrange multiplier.
If, moreover, $I(u)=\min \left\{I(v) \mid v \in H^{1}\left(\mathbb{R}^{N}\right)\right.$ and $\left.G(v) \leq 0\right\}$, then
$\lambda \leq 0$. Finally, $\lambda=0$ if $G(u)<0$.
Equivalently, $I^{\prime}(u)+\lambda G^{\prime}(u)=0$ and $\lambda \geq 0($ or $\lambda>0)$.

Let $\mathcal{Q}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid G(u)=0\right\} \neq \emptyset$ for some $G \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $G^{\prime}(u) \not \equiv 0$ for every $u \in \mathcal{Q}$.

If $u \in \mathcal{Q}$, then

$$
\left.I\right|_{\mathcal{Q}} ^{\prime}(u)=0
$$

if and only if

$$
I^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{Q}
$$

if and only if

$$
I^{\prime}(u)=\lambda G^{\prime}(u) \text { for some } \lambda \in \mathbb{R}
$$

Such λ is called a Lagrange multiplier.

Let $\mathcal{Q}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid G(u)=0\right\} \neq \emptyset$ for some $G \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $G^{\prime}(u) \not \equiv 0$ for every $u \in \mathcal{Q}$.

If $u \in \mathcal{Q}$, then

$$
\left.I\right|_{\mathcal{Q}} ^{\prime}(u)=0
$$

if and only if

$$
I^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{Q}
$$

if and only if

$$
I^{\prime}(u)=\lambda G^{\prime}(u) \text { for some } \lambda \in \mathbb{R} .
$$

Such λ is called a Lagrange multiplier.
If, moreover, $I(u)=\min \left\{I(v) \mid v \in H^{1}\left(\mathbb{R}^{N}\right)\right.$ and $\left.G(v) \leq 0\right\}$, then $\lambda \leq 0$.

Let $\mathcal{Q}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid G(u)=0\right\} \neq \emptyset$ for some $G \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $G^{\prime}(u) \not \equiv 0$ for every $u \in \mathcal{Q}$.

If $u \in \mathcal{Q}$, then

$$
\left.I\right|_{\mathcal{Q}} ^{\prime}(u)=0
$$

if and only if

$$
I^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{Q}
$$

if and only if

$$
I^{\prime}(u)=\lambda G^{\prime}(u) \text { for some } \lambda \in \mathbb{R}
$$

Such λ is called a Lagrange multiplier.
If, moreover, $I(u)=\min \left\{I(v) \mid v \in H^{1}\left(\mathbb{R}^{N}\right)\right.$ and $\left.G(v) \leq 0\right\}$, then $\lambda \leq 0$. Finally, $\lambda=0$ if $G(u)<0$.

Let $\mathcal{Q}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid G(u)=0\right\} \neq \emptyset$ for some $G \in \mathcal{C}^{1}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $G^{\prime}(u) \not \equiv 0$ for every $u \in \mathcal{Q}$.

If $u \in \mathcal{Q}$, then

$$
\left.I\right|_{\mathcal{Q}} ^{\prime}(u)=0
$$

if and only if

$$
I^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{Q}
$$

if and only if

$$
I^{\prime}(u)=\lambda G^{\prime}(u) \text { for some } \lambda \in \mathbb{R} \text {. }
$$

Such λ is called a Lagrange multiplier.
If, moreover, $I(u)=\min \left\{I(v) \mid v \in H^{1}\left(\mathbb{R}^{N}\right)\right.$ and $\left.G(v) \leq 0\right\}$, then $\lambda \leq 0$. Finally, $\lambda=0$ if $G(u)<0$.
Equivalently, $I^{\prime}(u)+\lambda G^{\prime}(u)=0$ and $\lambda \geq 0$ (or $\lambda>0$).

Let $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
J(u)=\int_{\mathbb{R}^{N}} \frac{1}{2}|\nabla u|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x=\int_{\mathbb{R}^{N}} \frac{1}{2} \sum_{j=1}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x
$$

and let

$$
\mathcal{S}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2}\right\} .
$$

If u is a critical point of $\left.J\right|_{S}$, i.e.,

$$
u \in \mathcal{S} \quad \text { and } \quad J^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{S},
$$

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2).
$H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2<q<\frac{2 N}{N-2}$, hence $u_{n} \in \mathcal{S}$, $u_{n}-u$ in $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \nRightarrow u \in \mathcal{S}$. For this reason we consider

Let $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
J(u)=\int_{\mathbb{R}^{N}} \frac{1}{2}|\nabla u|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x=\int_{\mathbb{R}^{N}} \frac{1}{2} \sum_{j=1}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x
$$

and let

$$
\mathcal{S}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2}\right\} .
$$

If u is a critical point of $\left.J\right|_{\mathcal{S}}$, i.e.,

$$
u \in \mathcal{S} \quad \text { and } \quad J^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{S}
$$

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2).
$H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \nRightarrow u \in \mathcal{S}$. For this reason we consider

Let $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
J(u)=\int_{\mathbb{R}^{N}} \frac{1}{2}|\nabla u|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x=\int_{\mathbb{R}^{N}} \frac{1}{2} \sum_{j=1}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x
$$

and let

$$
\mathcal{S}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2}\right\} .
$$

If u is a critical point of $\left.J\right|_{\mathcal{S}}$, i.e.,

$$
u \in \mathcal{S} \quad \text { and } \quad J^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{S}
$$

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2). $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2<q<\frac{2 N}{N-2}$, hence $u_{n} \in \mathcal{S}$, $u_{n} \rightharpoonup u$ in $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \nRightarrow u \in \mathcal{S}$.

Let $J: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ defined by

$$
J(u)=\int_{\mathbb{R}^{N}} \frac{1}{2}|\nabla u|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x=\int_{\mathbb{R}^{N}} \frac{1}{2} \sum_{j=1}^{N}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}-\frac{1}{p}|u|^{p} \mathrm{~d} x
$$

and let

$$
\mathcal{S}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x=\rho^{2}\right\} .
$$

If u is a critical point of $\left.J\right|_{\mathcal{S}}$, i.e.,

$$
u \in \mathcal{S} \quad \text { and } \quad J^{\prime}(u) v=0 \text { for every } v \in \mathcal{T}_{u} \mathcal{S}
$$

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2). $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow \hookrightarrow L^{q}\left(\mathbb{R}^{N}\right)$ for every $2<q<\frac{2 N}{N-2}$, hence $u_{n} \in \mathcal{S}$, $u_{n} \rightharpoonup u$ in $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right) \nRightarrow u \in \mathcal{S}$. For this reason we consider

$$
\mathcal{D}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \mid \int_{\mathbb{R}^{N}} u^{2} \mathrm{~d} x \leq \rho^{2}\right\} .
$$

Clearly $u_{n} \in \mathcal{D}, u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right) \Rightarrow u \in \mathcal{D}$.

The proof $(2<p<2+4 / N)$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp. ' $=$ ', ' $>$ '). We work in $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)$. The norm in $H^{1}\left(\mathbb{R}^{N}\right)$ is given by

$$
\|u\|^{2}:=|u|_{2}^{2}+|\nabla u|_{2}^{2} .
$$

Note that, if $u_{n} \in \mathcal{D}$, then $\left\|u_{n}\right\| \rightarrow \infty \Leftrightarrow\left|\nabla u_{n}\right|_{2} \rightarrow \infty$.

The proof $(2<p<2+4 / N)$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

$$
|u|_{q} \leq C_{q, N}|\nabla u|_{2}^{\delta_{q}}|u|_{2}^{1-\delta_{q}},
$$

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp.

$$
\|u\|^{2}:=|u|_{2}^{2}+|\nabla u|_{2}^{2} .
$$

The proof $(2<p<2+4 / N)$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

$$
|u|_{q} \leq C_{q, N}|\nabla u|_{2}^{\delta_{q}}|u|_{2}^{1-\delta_{q}},
$$

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp. ' $=$ ', ' $>$ ').

$$
H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right) \text {. The norm in } H^{1}\left(\mathbb{R}^{N}\right) \text { is given by }
$$

The proof $(2<p<2+4 / N)$

Theorem

There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

$$
|u|_{q} \leq C_{q, N}|\nabla u|_{2}^{\delta_{q}}|u|_{2}^{1-\delta_{q}},
$$

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp. ' $=$ ', ' $>$ '). We work in $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)$.

Note that, if $u_{n} \in \mathcal{D}$, then $\left\|u_{n}\right\| \rightarrow \infty \Leftrightarrow\left|\nabla u_{n}\right|_{2} \rightarrow \infty$

The proof $(2<p<2+4 / N)$

Theorem

There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

$$
|u|_{q} \leq C_{q, N}|\nabla u|_{2}^{\delta_{q}}|u|_{2}^{1-\delta_{q}},
$$

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp. $'=$ ', ' $>$ '). We work in $H_{\mathrm{rad}}^{1}\left(\mathbb{R}^{N}\right)$. The norm in $H^{1}\left(\mathbb{R}^{N}\right)$ is given by

$$
\|u\|^{2}:=|u|_{2}^{2}+|\nabla u|_{2}^{2} .
$$

Note that, if $u_{n} \in \mathcal{D}$, then $\left\|u_{n}\right\| \rightarrow \infty \Leftrightarrow\left|\nabla u_{n}\right|_{2} \rightarrow \infty$

The proof $(2<p<2+4 / N)$

Theorem

There exists a solution (λ, u) to (1)-(2) such that $J(u)<0$ and $\lambda>0$.
Gagliardo-Nirenberg inequality: for every $2<q<\frac{2 N}{N-2}$ there exists $C_{q, N}>0$ such that for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ there holds

$$
|u|_{q} \leq C_{q, N}|\nabla u|_{2}^{\delta_{q}}|u|_{2}^{1-\delta_{q}},
$$

with $\left.\delta_{q}=N\left(\frac{1}{2}-\frac{1}{q}\right) \in\right] 0,1\left[\right.$. In particular, $q \delta_{q}<2 \Leftrightarrow q<2+\frac{4}{N}$ (resp. ' $=$ ', ' $>$ '). We work in $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)$. The norm in $H^{1}\left(\mathbb{R}^{N}\right)$ is given by

$$
\|u\|^{2}:=|u|_{2}^{2}+|\nabla u|_{2}^{2} .
$$

Note that, if $u_{n} \in \mathcal{D}$, then $\left\|u_{n}\right\| \rightarrow \infty \Leftrightarrow\left|\nabla u_{n}\right|_{2} \rightarrow \infty$.

Lemma
$J_{\mathcal{D}}$ is coercive (and bounded below).

Lemma

$\left.J\right|_{\mathcal{D}}$ is coercive (and bounded below).

Proof.

If $u \in \mathcal{D}$, then from the Gagliardo-Nirenberg inequality

$$
\begin{aligned}
J(u) & =\frac{1}{2}|\nabla u|_{2}^{2}-\frac{1}{p}|u|_{p}^{p} \geq \frac{1}{2}|\nabla u|_{2}^{2}-\frac{C_{N, p}^{p}}{p}|\nabla u|_{2}^{p \delta_{p}}|u|_{2}^{p\left(1-\delta_{p}\right)} \\
& \geq \frac{1}{2}|\nabla u|_{2}^{2}-\frac{C_{N, p}^{p}}{p} \rho^{p\left(1-\delta_{p}\right)}|\nabla u|_{2}^{p \delta_{p}}
\end{aligned}
$$

with $p \delta_{p}<2$.

Lemma

$\inf _{\mathcal{D}} J<0$.

```
For \(u \in H^{1}\left(\mathbb{R}^{N}\right)\) and \(s>0\) define \(s \star u(x):=s^{N / 2} u(s x)\). Notice that
\(|s \star u|_{2}=|u|_{2}\), hence \(u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}\).
```

Proof.
Fix $u \in \mathcal{D} \backslash\{0\}$. If $0<s \ll 1$, then

$$
J(s \star u)=\frac{s^{2}}{2}|\nabla u|_{2}^{2}-\frac{s^{N(p / 2-1)}}{p}|u|_{p}^{p}<0
$$

$$
\text { because } N(p / 2-1)=p \delta_{p}<2
$$

Lemma

$\inf _{\mathcal{D}} J<0$.
For $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and $s>0$ define $s \star u(x):=s^{N / 2} u(s x)$. Notice that
$\left.s \star u\right|_{2}=|u|_{2}$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.
Proof.
Fix $u \in D \backslash\{0\}$. If $0<s \ll 1$, then

because $N(p / 2-1)=p \delta_{p}<2$.

Lemma

$\inf _{\mathcal{D}} J<0$.
For $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and $s>0$ define $s \star u(x):=s^{N / 2} u(s x)$. Notice that $|s \star u|_{2}=|u|_{2}$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Fix $u \in \mathcal{D} \backslash\{0\}$. If $0<s \ll 1$, then
because $N(p / 2-1)=p \delta_{p}<2$.

Lemma

$\inf _{\mathcal{D}} J<0$.
For $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and $s>0$ define $s \star u(x):=s^{N / 2} u(s x)$. Notice that $|s \star u|_{2}=|u|_{2}$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Proof.

Fix $u \in \mathcal{D} \backslash\{0\}$. If $0<s \ll 1$, then

$$
J(s \star u)=\frac{s^{2}}{2}|\nabla u|_{2}^{2}-\frac{s^{N(p / 2-1)}}{p}|u|_{p}^{p}<0
$$

because $N(p / 2-1)=p \delta_{p}<2$.

Lemma
$\inf _{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u)=\inf _{\mathcal{D}} J$).
Proof
I et $u_{n} \in \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow \inf \mathcal{D} J$. Since $\left.J\right|_{\mathcal{D}}$ is coercive, u_{n} is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence). Then

$$
\begin{aligned}
\inf _{\mathcal{D}} J & \leq J(u)=\frac{1}{2}|\nabla u|_{2}^{2}-\frac{1}{p}|u|_{p}^{p} \leq \lim _{n} \frac{1}{2}\left|\nabla u_{n}\right|_{2}^{2}-\frac{1}{p}\left|u_{n}\right|_{p}^{P} \\
& =\lim _{n} J\left(u_{n}\right)=\inf _{\mathcal{D}} J,
\end{aligned}
$$

i.e., $J(u)=\inf _{\mathcal{D}} J$.

Lemma

$\inf _{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u)=\inf _{\mathcal{D}} J$).

Proof.

Let $u_{n} \in \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow \inf _{\mathcal{D}} J$. Since $J_{\mathcal{D}}$ is coercive, u_{n} is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence). Then

Lemma

$\inf _{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u)=\inf _{\mathcal{D}} J$).

Proof.

Let $u_{n} \in \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow \inf _{\mathcal{D}} J$. Since $\left.J\right|_{\mathcal{D}}$ is coercive, u_{n} is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_{n}-u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence). Then

Lemma

$\inf _{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u)=\inf _{\mathcal{D}} J$).

Proof.

Let $u_{n} \in \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow \inf _{\mathcal{D}} J$. Since $\left.J\right|_{\mathcal{D}}$ is coercive, u_{n} is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).

Lemma

$\inf _{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u)=\inf _{\mathcal{D}} J$).

Proof.

Let $u_{n} \in \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow \inf _{\mathcal{D}} J$. Since $\left.J\right|_{\mathcal{D}}$ is coercive, u_{n} is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$ (up to a subsequence). Then

$$
\begin{aligned}
\inf _{\mathcal{D}} J & \leq J(u)=\frac{1}{2}|\nabla u|_{2}^{2}-\frac{1}{p}|u|_{p}^{p} \leq \lim _{n} \frac{1}{2}\left|\nabla u_{n}\right|_{2}^{2}-\frac{1}{p}\left|u_{n}\right|_{p}^{p} \\
& =\lim _{n} J\left(u_{n}\right)=\inf _{\mathcal{D}} J,
\end{aligned}
$$

i.e., $J(u)=\inf _{\mathcal{D}} J$.

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $\left.J\right|_{D}$, i.e., there exists $\lambda \geq 0$ such that

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in \mathcal{D} \backslash \mathcal{S}$. Taking $v=u$, we obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. If $\lambda=0$, then

$$
J(u)=\left(\frac{1}{2}-\frac{1}{p}\right)|\nabla u|_{2}^{2} \geq 0
$$

so $\lambda>0$ and, in particular, $u \in \mathcal{S}$.

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $\left.J\right|_{\mathcal{D}}$, i.e., there exists $\lambda \geq 0$ such that

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in D \backslash S$. Taking $v=u$, we
obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. If $\lambda=0$, then

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $\left.J\right|_{\mathcal{D}}$, i.e., there exists $\lambda \geq 0$ such that

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in \mathcal{D} \backslash \mathcal{S}$. Taking $v=u$, we obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. If $\lambda=0$, then

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $\left.J\right|_{\mathcal{D}}$, i.e., there exists $\lambda \geq 0$ such that

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in \mathcal{D} \backslash \mathcal{S}$. Taking $v=u$, we obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. \square

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $\left.J\right|_{\mathcal{D}}$, i.e., there exists $\lambda \geq 0$ such that

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in \mathcal{D} \backslash \mathcal{S}$. Taking $v=u$, we obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. If $\lambda=0$, then

$$
J(u)=\left(\frac{1}{2}-\frac{1}{p}\right)|\nabla u|_{2}^{2} \geq 0
$$

Proof of the main Theorem.

Let $u \in \mathcal{D}$ such that $J(u)=\min _{\mathcal{D}} J<0$. Then u is a critical point of $J_{\mathcal{D}}$, i.e., there exists $\lambda \geq 0$ such that

$$
\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v+\lambda u v \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p-2} u v \mathrm{~d} x
$$

for every $v \in H^{1}\left(\mathbb{R}^{N}\right)$. Recall that $\lambda=0$ if $u \in \mathcal{D} \backslash \mathcal{S}$. Taking $v=u$, we obtain $|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}$. If $\lambda=0$, then

$$
J(u)=\left(\frac{1}{2}-\frac{1}{p}\right)|\nabla u|_{2}^{2} \geq 0,
$$

so $\lambda>0$ and, in particular, $u \in \mathcal{S}$.

The proof $(2+4 / N<p<2 N /(N-2))$

Fix $u \in \mathcal{D} \backslash\{0\}$. Then (recall $p \delta_{p}>2$)

$$
J(s \star u)=\frac{|\nabla u|_{2}^{2}}{2} s^{2}-\frac{|u|_{p}^{p}}{p} s^{p \delta_{p}} \rightarrow-\infty \quad \text { as } s \rightarrow \infty .
$$

If (λ, u) solves (1), then (Nehari)

Moreover, one can prove that (Pohožaev)

The proof $(2+4 / N<p<2 N /(N-2))$

Fix $u \in \mathcal{D} \backslash\{0\}$. Then (recall $p \delta_{p}>2$)

$$
J(s \star u)=\frac{|\nabla u|_{2}^{2}}{2} s^{2}-\frac{|u|_{p}^{p}}{p} s^{p \delta_{p}} \rightarrow-\infty \quad \text { as } s \rightarrow \infty .
$$

If (λ, u) solves (1), then (Nehari)

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda u^{2} \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x .
$$

Moreover, one can prove that (Pohožaev)

The proof $(2+4 / N<p<2 N /(N-2))$

Fix $u \in \mathcal{D} \backslash\{0\}$. Then (recall $p \delta_{p}>2$)

$$
J(s \star u)=\frac{|\nabla u|_{2}^{2}}{2} s^{2}-\frac{|u|_{p}^{p}}{p} s^{p \delta_{p}} \rightarrow-\infty \quad \text { as } s \rightarrow \infty .
$$

If (λ, u) solves (1), then (Nehari)

$$
\int_{\mathbb{R}^{N}}|\nabla u|^{2}+\lambda u^{2} \mathrm{~d} x=\int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x .
$$

Moreover, one can prove that (Pohožaev)

$$
\int_{\mathbb{R}^{N}}(N-2)|\nabla u|^{2}+\lambda N u^{2} \mathrm{~d} x=\frac{2 N}{p} \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x
$$

From Nehari + Pohožaev we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x=N\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Define

and note that for every $u \in \mathcal{M}$

If $u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, then $u_{r}:=u(r \cdot) \in \mathcal{M}$, where

From Nehari + Pohožaev we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x=N\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Define

$$
\mathcal{M}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\} \mid(4) \text { holds }\right\}
$$

and note that for every $u \in \mathcal{M}$

$$
J(u)=\underbrace{\frac{1}{p}\left(\frac{N}{4}(p-2)-1\right)}_{C_{0}} \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x>0 .
$$

If $u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, then $u_{r}:=u(r \cdot) \in \mathcal{M}$, where

From Nehari + Pohožaev we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x=N\left(\frac{1}{2}-\frac{1}{p}\right) \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Define

$$
\mathcal{M}:=\left\{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\} \mid(4) \text { holds }\right\}
$$

and note that for every $u \in \mathcal{M}$

$$
J(u)=\underbrace{\frac{1}{p}\left(\frac{N}{4}(p-2)-1\right)}_{C_{0}} \int_{\mathbb{R}^{N}}|u|^{p} \mathrm{~d} x>0
$$

If $u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$, then $u_{r}:=u(r \cdot) \in \mathcal{M}$, where

$$
r:=r(u):=\sqrt{N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|\nabla u|_{2}^{2}}{|u|_{p}^{p}}} .
$$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)>0$ and $\lambda>0$.

Lemma
' is coercive on $M \cap D$ and $m:=\inf J>0$

Proof.
Since $J(u)=C_{0}|u|_{p}^{P}$ if $u \in M \cap D, \frac{1}{2}|\nabla u|_{2}^{2}=\frac{1}{p}|u|_{p}^{p}+J(u)=C J(u)$.

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)>0$ and $\lambda>0$.
Lemma
$\inf _{u \in \mathcal{M} \cap \mathcal{D}}|\nabla u|_{2}>0$.
Proof

Lemma
J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m:=\inf J \geqslant 0$

Proof
Since $\|(u)=C_{0}|u|_{p}^{p}$ if $u \in M \cap D, \frac{1}{2}|\nabla u|_{2}^{2}=\frac{1}{p}|u|_{p}^{p}+J(u)=C J(u)$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)>0$ and $\lambda>0$.

Lemma

$\inf _{u \in \mathcal{M} \cap \mathcal{D}}|\nabla u|_{2}>0$.

Proof.

$|\nabla u|_{2}^{2}=C|u|_{p}^{p} \leq C^{\prime}|\nabla u|_{2}^{p \delta_{p}}|u|_{2}^{p\left(1-\delta_{p}\right)} \leq C^{\prime} \rho^{p\left(1-\delta_{p}\right)}|\nabla u|_{2}^{p \delta_{p}}, p \delta_{p}>2$. \square

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)>0$ and $\lambda>0$.

Lemma
$\inf _{u \in \mathcal{M} \cap \mathcal{D}}|\nabla u|_{2}>0$.

Proof.
$|\nabla u|_{2}^{2}=C|u|_{p}^{p} \leq C^{\prime}|\nabla u|_{2}^{p \delta_{p}}|u|_{2}^{p\left(1-\delta_{p}\right)} \leq C^{\prime} \rho^{p\left(1-\delta_{p}\right)}|\nabla u|_{2}^{p \delta_{p}}, p \delta_{p}>2$.
Lemma
J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m:=\inf _{\mathcal{M} \cap \mathcal{D}} J>0$.

Since $J(u)=C_{0}|u|_{p}^{p}$ if $u \in \mathcal{M} \cap \mathcal{D}, \frac{1}{2}|\nabla u|_{2}^{2}=\frac{1}{p}|u|_{p}^{p}+J(u)=C J(u)$

Theorem
There exists a solution (λ, u) to (1)-(2) such that $J(u)>0$ and $\lambda>0$.

Lemma
$\inf _{u \in \mathcal{M} \cap \mathcal{D}}|\nabla u|_{2}>0$.

Proof.

$|\nabla u|_{2}^{2}=C|u|_{p}^{p} \leq C^{\prime}|\nabla u|_{2}^{p \delta_{p}}|u|_{2}^{p\left(1-\delta_{p}\right)} \leq C^{\prime} \rho^{p\left(1-\delta_{p}\right)}|\nabla u|_{2}^{p \delta_{p}}, p \delta_{p}>2$.
Lemma
J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m:=\inf _{\mathcal{M} \cap \mathcal{D}} J>0$.

Proof.

Since $J(u)=C_{0}|u|_{p}^{p}$ if $u \in \mathcal{M} \cap \mathcal{D}, \frac{1}{2}|\nabla u|_{2}^{2}=\frac{1}{p}|u|_{p}^{p}+J(u)=C J(u)$.

Lemma

m is attained.

Proof.

Let $u_{n} \in M \cap \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).
Next, $0<m=\lim C_{n} C_{0}\left|u_{n}\right|_{p}^{p}=C_{0}|u|_{p}^{p}$, therefore $u \neq 0$ and we can consider $u_{r} \in \mathcal{M}$.
Moreover, $r^{2}=r(u)^{2}=N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|u|_{p}^{p}}{|\nabla u|_{2}^{2}} \geq \lim _{n} N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\left|u_{n}\right|_{p}^{p}}{\left|\nabla u_{n}\right|_{2}^{2}}=1$,
thus $u_{r} \in \mathcal{D}$.
Finally, $m \leq J\left(u_{r}\right)=C_{0}\left|u_{r}\right|_{p}^{p}=C_{0} r^{-N}|u|_{p}^{p} \leq C_{0}|u|_{p}^{p}=\lim n_{n} C_{0}\left|u_{n}\right|_{p}^{p}$
$=\lim _{n} J\left(u_{n}\right)=m$, therefore $r=1$ and $J(u)=m$.

Lemma

m is attained.

Proof.

Let $u_{n} \in \mathcal{M} \cap \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).
Next, $0<m=\lim _{n} C_{0}\left|u_{n}\right|_{p}^{p}=C_{0}|u|_{p}^{p}$, therefore $u \neq 0$ and we can consider Moreover, $r^{2}=r(u)^{2}=N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|u|_{p}^{p}}{|\nabla u|_{2}^{2}} \geq \lim _{n} N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\left|u_{n}\right|_{p}^{p}}{\left|\nabla u_{n}\right|_{2}^{2}}=1$,
 $=\lim _{n} J\left(u_{n}\right)=m$, therefore $r=1$ and $J(u)=m$.

Lemma

m is attained.

Proof.

Let $u_{n} \in \mathcal{M} \cap \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).
Next, $0<m=\lim _{n} C_{0}\left|u_{n}\right|_{p}^{p}=C_{0}|u|_{p}^{p}$, therefore $u \neq 0$ and we can consider $u_{r} \in \mathcal{M}$.
Moreover, $r^{2}=r(u)^{2}=N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|u|_{p}^{p}}{|\nabla u|_{2}^{2}} \geq \lim _{n} N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\left|u_{n}\right|_{p}^{p}}{\left|\nabla u_{n}\right|_{2}^{2}}=1$,

$=\lim _{n} J\left(u_{n}\right)=m$, therefore $r=1$ and $J(u)=m$.

Lemma

m is attained.

Proof.

Let $u_{n} \in \mathcal{M} \cap \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).
Next, $0<m=\lim _{n} C_{0}\left|u_{n}\right|_{p}^{p}=C_{0}|u|_{p}^{p}$, therefore $u \neq 0$ and we can consider $u_{r} \in \mathcal{M}$.
Moreover, $r^{2}=r(u)^{2}=N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|u|_{p}^{p}}{|\nabla u|_{2}^{2}} \geq \lim _{n} N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\left|u_{n}\right|_{p}^{p}}{\left|\nabla u_{n}\right|_{2}^{2}}=1$, thus $u_{r} \in \mathcal{D}$.

Lemma

m is attained.

Proof.

Let $u_{n} \in \mathcal{M} \cap \mathcal{D}$ such that $J\left(u_{n}\right) \rightarrow m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{n} \rightarrow u$ in $L^{P}\left(\mathbb{R}^{N}\right)$ (up to a subsequence).
Next, $0<m=\lim _{n} C_{0}\left|u_{n}\right|_{p}^{p}=C_{0}|u|_{p}^{p}$, therefore $u \neq 0$ and we can consider $u_{r} \in \mathcal{M}$.
Moreover, $r^{2}=r(u)^{2}=N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{|u|_{p}^{p}}{|\nabla u|_{2}^{2}} \geq \lim _{n} N\left(\frac{1}{2}-\frac{1}{p}\right) \frac{\left|u_{n}\right|_{p}^{p}}{\left|\nabla u_{n}\right|_{2}^{2}}=1$,
thus $u_{r} \in \mathcal{D}$.
Finally, $m \leq J\left(u_{r}\right)=C_{0}\left|u_{r}\right|_{p}^{p}=C_{0} r^{-N}|u|_{p}^{p} \leq C_{0}|u|_{p}^{p}=\lim _{n} C_{0}\left|u_{n}\right|_{p}^{p}$
$=\lim _{n} J\left(u_{n}\right)=m$, therefore $r=1$ and $J(u)=m$.

Proof of the Theorem.

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that $J(u)=m>0$. There exist $\lambda \geq 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2 \sigma) \Delta u+\lambda u=\left(1+\sigma N \frac{p-2}{2}\right)|u|^{p-2} u$. Then the Nehari identity $(1+2 \sigma)|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right)|u|_{p}^{p}$ and the Pohožacv : identity $\left.(1+2 \sigma) \frac{N-2}{2 N} \nabla \nabla_{\|}\right|_{2} ^{2}+\frac{\lambda_{1}}{2} \|_{2}^{2}=\left(1+N_{1} p-2\right) \frac{1_{|\ldots|_{p}}^{2}}{p}$ hold. From the two identities we obtain
$(1+2 \sigma)|\nabla u|_{2}^{2}=N\left(1+\sigma N \frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_{p}^{p}$, and from $u \in \mathcal{M}$ we abtain $\sigma\left(\frac{1}{2}-\frac{1}{p}\right)(N(n-2)-4)|u| P-0$, whence $\sigma-0$ and $-\Delta u+\lambda u=|u|^{p-2} u$. If $\lambda=0$, then the Nehari and Pohožaev identities read $\frac{1}{p}|u|_{p}^{p}=\frac{N-2}{2 N}|\nabla u|_{2}^{2}=\frac{N-2}{2 N}|u|_{p}^{p}$, so $\lambda>0$ and $u \in \mathcal{S}$.

Proof of the Theorem.

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that $J(u)=m>0$. There exist $\lambda \geq 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2 \sigma) \Delta u+\lambda u=\left(1+\sigma N \frac{p-2}{2}\right)|u|^{p-2} u$. Then the Nehari identity $(1+2 \sigma)|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right)|u|_{p}^{p}$ and the Pohožaev identity $(1+2 \sigma) \frac{N-2}{2 N}|\nabla u|_{2}^{2}+\frac{\lambda}{2}|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right) \frac{1}{p}|u|_{p}^{p}$ hold. From the two identities we obtain $(1+2 \sigma)|\nabla u|_{2}^{2}=N\left(1+\sigma N \frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_{p}^{p}$, and from $u \in M$ we

Proof of the Theorem.

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that $J(u)=m>0$. There exist $\lambda \geq 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2 \sigma) \Delta u+\lambda u=\left(1+\sigma N \frac{p-2}{2}\right)|u|^{p-2} u$. Then the Nehari identity $(1+2 \sigma)|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right)|u|_{p}^{p}$ and the Pohožaev identity $(1+2 \sigma) \frac{N-2}{2 N}|\nabla u|_{2}^{2}+\frac{\lambda}{2}|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right) \frac{1}{p}|u|_{p}^{p}$ hold. From the two identities we obtain
$(1+2 \sigma)|\nabla u|_{2}^{2}=N\left(1+\sigma N \frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_{p}^{p}$, and from $u \in \mathcal{M}$ we obtain $\sigma\left(\frac{1}{2}-\frac{1}{p}\right)(N(p-2)-4)|u|_{p}^{p}=0$, whence $\sigma=0$ and $-\Delta u+\lambda u=|u|^{p-2} u$.

Proof of the Theorem.

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that $J(u)=m>0$. There exist $\lambda \geq 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2 \sigma) \Delta u+\lambda u=\left(1+\sigma N \frac{p-2}{2}\right)|u|^{p-2} u$. Then the Nehari identity $(1+2 \sigma)|\nabla u|_{2}^{2}+\lambda|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right)|u|_{p}^{p}$ and the Pohožaev identity $(1+2 \sigma) \frac{N-2}{2 N}|\nabla u|_{2}^{2}+\frac{\lambda}{2}|u|_{2}^{2}=\left(1+\sigma N \frac{p-2}{2}\right) \frac{1}{p}|u|_{p}^{p}$ hold. From the two identities we obtain $(1+2 \sigma)|\nabla u|_{2}^{2}=N\left(1+\sigma N \frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_{p}^{p}$, and from $u \in \mathcal{M}$ we obtain $\sigma\left(\frac{1}{2}-\frac{1}{p}\right)(N(p-2)-4)|u|_{p}^{p}=0$, whence $\sigma=0$ and
$-\Delta u+\lambda u=|u|^{p-2} u$. If $\lambda=0$, then the Nehari and Pohožaev identities
read $\frac{1}{p}|u|_{p}^{p}=\frac{N-2}{2 N}|\nabla u|_{2}^{2}=\frac{N-2}{2 N}|u|_{p}^{p}$, so $\lambda>0$ and $u \in \mathcal{S}$.

