Normalised solutions for beginners

Jacopo Schino

North Carolina State University

14th November 2023

National and Kapodistrian University of Athens

Jacopo Schino (NCSU)

Normalised solutions for beginners

14 November 2023 1 / 16

The problem Let $N \ge 2$, $2 with <math>p \ne 2 + \frac{4}{N}$, $\rho > 0$, and consider the problem $-\Delta u + \lambda u = |u|^{p-2}u$ in \mathbb{R}^N , (1)

where $\Delta = \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i^2}$, paired with the constraint

$$\int_{\mathbb{R}^N} u^2 \,\mathrm{d}x = \rho^2,\tag{2}$$

with $\lambda \in \mathbb{R}$ to be determined.

If (λ, u) solves (1)–(2), we call it a normalised solution. The problem (1)–(2) appears when looking for solutions to

 $\begin{cases} i\frac{\partial\Phi}{\partial t} - \Delta\Phi = |\Phi|^{p-2}\Phi & \text{in } \mathbb{R}^N\\ \int_{\mathbb{R}^N} |\Phi(x,t)|^2 \, \mathrm{d}x = \rho^2 & \text{(conserved in time)} \end{cases}$

as standing waves, i.e.,

$$\Phi(x,t)=e^{-\mathrm{i}\lambda t}u(x).$$

くぼう くほう くほう しゅ

The problem Let $N \ge 2$, $2 with <math>p \ne 2 + \frac{4}{N}$, $\rho > 0$, and consider the problem $-\Delta u + \lambda u = |u|^{p-2}u$ in \mathbb{R}^N , (1)

where $\Delta = \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i^2}$, paired with the constraint

$$\int_{\mathbb{R}^N} u^2 \,\mathrm{d}x = \rho^2,\tag{2}$$

with $\lambda \in \mathbb{R}$ to be determined. If (λ, u) solves (1)–(2), we call it a normalised solution. The problem (1)–(2) appears when looking for solutions to

 $\begin{cases} i\frac{\partial\Phi}{\partial t} - \Delta\Phi = |\Phi|^{p-2}\Phi & \text{in } \mathbb{R}^N\\ \int_{\mathbb{R}^N} |\Phi(x,t)|^2 \, \mathrm{d}x = \rho^2 & \text{(conserved in time)} \end{cases}$

as standing waves, i.e.,

$$\Phi(x,t)=e^{-\mathrm{i}\lambda t}u(x).$$

(人間) トイヨト イヨト ニヨ

The problem Let $N \ge 2$, $2 with <math>p \ne 2 + \frac{4}{N}$, $\rho > 0$, and consider the problem $-\Delta u + \lambda u = |u|^{p-2}u$ in \mathbb{R}^N , (1)

where $\Delta = \sum_{j=1}^{N} \frac{\partial^2}{\partial x_i^2}$, paired with the constraint

$$\int_{\mathbb{R}^N} u^2 \,\mathrm{d}x = \rho^2,\tag{2}$$

with $\lambda \in \mathbb{R}$ to be determined.

If (λ, u) solves (1)–(2), we call it a normalised solution. The problem (1)–(2) appears when looking for solutions to

$$\begin{cases} i\frac{\partial\Phi}{\partial t} - \Delta\Phi = |\Phi|^{p-2}\Phi & \text{in } \mathbb{R}^N\\ \int_{\mathbb{R}^N} |\Phi(x,t)|^2 \, \mathrm{d}x = \rho^2 & \text{(conserved in time)} \end{cases}$$

as standing waves, i.e.,

$$\Phi(x,t)=e^{-\mathrm{i}\lambda t}u(x).$$

$$H^1(\mathbb{R}^N) := \bigg\{ u \in L^2(\mathbb{R}^N) \ \bigg| \ \frac{\partial u}{\partial x_j} \in L^2(\mathbb{R}^N) \ \forall j = 1, \dots, N \bigg\}.$$

What is $rac{\partial u}{\partial x_i}$ for $u\in L^2(\mathbb{R}^N)$? It is defined via

$$\int_{\mathbb{R}^N} \frac{\partial u}{\partial x_j} \varphi \, \mathrm{d} x = - \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial x_j} \, \mathrm{d} x \quad \forall \varphi \in \mathcal{C}^\infty_c(\mathbb{R}^N).$$

One can prove $H^1(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 \le q \le \frac{2N}{N-2}$ $(2 \le q < \infty$ if N = 2).

Take $v\in H^1(\mathbb{R}^N)$. If we multiply (1) by v and integrate by parts, we get

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x.$$
(3)

$$H^1(\mathbb{R}^N) := \bigg\{ u \in L^2(\mathbb{R}^N) \ \bigg| \ \frac{\partial u}{\partial x_j} \in L^2(\mathbb{R}^N) \ \forall j = 1, \dots, N \bigg\}.$$

What is $\frac{\partial u}{\partial x_i}$ for $u \in L^2(\mathbb{R}^N)$? It is defined via

$$\int_{\mathbb{R}^N} \frac{\partial u}{\partial x_j} \varphi \, \mathrm{d} x = - \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial x_j} \, \mathrm{d} x \quad \forall \varphi \in \mathcal{C}^\infty_c(\mathbb{R}^N).$$

One can prove $H^1(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 \le q \le \frac{2N}{N-2}$ $(2 \le q < \infty$ if N = 2).

Take $v\in H^1(\mathbb{R}^N)$. If we multiply (1) by v and integrate by parts, we get

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x.$$
(3)

$$\begin{aligned} H^{1}(\mathbb{R}^{N}) &:= \left\{ \left. u \in L^{2}(\mathbb{R}^{N}) \right| \frac{\partial u}{\partial x_{j}} \in L^{2}(\mathbb{R}^{N}) \,\forall j = 1, \dots, N \right\}. \end{aligned}$$
What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}(\mathbb{R}^{N})$? It is defined via
$$\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \, \mathrm{d}x = -\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \, \mathrm{d}x \quad \forall \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{N}). \end{aligned}$$
One can prove $H^{1}(\mathbb{R}^{N}) \hookrightarrow L^{q}(\mathbb{R}^{N})$ for every $2 \leq q \leq \frac{2N}{N-2}$ ($2 \leq q < \infty$ if $N = 2$).
Take $v \in H^{1}(\mathbb{R}^{N})$. If we multiply (1) by v and integrate by parts, we get
$$\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v + \lambda uv \, \mathrm{d}x = \int_{\mathbb{R}^{N}} |u|^{p-2} uv \, \mathrm{d}x. \end{aligned}$$

$$H^{1}(\mathbb{R}^{N}) := \left\{ u \in L^{2}(\mathbb{R}^{N}) \mid \frac{\partial u}{\partial x_{j}} \in L^{2}(\mathbb{R}^{N}) \forall j = 1, \dots, N \right\}.$$
What is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}(\mathbb{R}^{N})$? It is defined via
$$\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \, dx = -\int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \, dx \quad \forall \varphi \in C^{\infty}_{c}(\mathbb{R}^{N}).$$
One can prove $H^{1}(\mathbb{R}^{N}) \hookrightarrow L^{q}(\mathbb{R}^{N})$ for every $2 \leq q \leq \frac{2N}{N-2}$ ($2 \leq q < \infty$ if $N = 2$).
Take $v \in H^{1}(\mathbb{R}^{N})$. If we multiply (1) by v and integrate by parts, we get
$$\int_{\mathbb{R}^{N}} \nabla u \cdot \nabla v + \lambda uv \, dx = \int_{\mathbb{R}^{N}} |u|^{p-2} uv \, dx.$$
(3)
We say that $u \in H^{1}(\mathbb{R}^{N})$ is a weak solution to (1) iff (3) holds for every

æ

イロト イヨト イヨト イヨト

Wha

$$H^{1}(\mathbb{R}^{N}) := \left\{ \left. u \in L^{2}(\mathbb{R}^{N}) \right| \frac{\partial u}{\partial x_{j}} \in L^{2}(\mathbb{R}^{N}) \,\forall j = 1, \dots, N \right\}.$$

t is $\frac{\partial u}{\partial x_{j}}$ for $u \in L^{2}(\mathbb{R}^{N})$? It is defined via
 $\int_{\mathbb{R}^{N}} \frac{\partial u}{\partial x_{j}} \varphi \, \mathrm{d}x = - \int_{\mathbb{R}^{N}} u \frac{\partial \varphi}{\partial x_{j}} \,\mathrm{d}x \quad \forall \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{N}).$

One can prove $H^1(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 \le q \le \frac{2N}{N-2}$ $(2 \le q < \infty$ if N = 2).

Take $v \in H^1(\mathbb{R}^N)$. If we multiply (1) by v and integrate by parts, we get

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x.$$
(3)

$$H^1(\mathbb{R}^N) := \bigg\{ u \in L^2(\mathbb{R}^N) \ \bigg| \ \frac{\partial u}{\partial x_j} \in L^2(\mathbb{R}^N) \ \forall j = 1, \dots, N \bigg\}.$$

What is $\frac{\partial u}{\partial x_i}$ for $u \in L^2(\mathbb{R}^N)$? It is defined via

$$\int_{\mathbb{R}^N} \frac{\partial u}{\partial x_j} \varphi \, \mathrm{d} x = - \int_{\mathbb{R}^N} u \frac{\partial \varphi}{\partial x_j} \, \mathrm{d} x \quad \forall \varphi \in \mathcal{C}^\infty_c(\mathbb{R}^N).$$

One can prove $H^1(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 \le q \le \frac{2N}{N-2}$ $(2 \le q < \infty$ if N = 2).

Take $v \in H^1(\mathbb{R}^N)$. If we multiply (1) by v and integrate by parts, we get

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x.$$
(3)

$$I'(u)v := \lim_{t\to 0} \frac{I(u+tv) - I(u)}{t}$$

Then $I'(u) \in (H^1(\mathbb{R}^N))'$.

We write $I \in \mathcal{C}^1\left(H^1(\mathbb{R}^N)\right)$ iff $u \mapsto I'(u)$ is continuous.

We say that $u \in H^1(\mathbb{R}^N)$ is a critical point for $I \in C^1(H^1(\mathbb{R}^N))$ iff I'(u) = 0, i.e., I'(u)v = 0 for every $v \in H^1(\mathbb{R}^N)$.

Recall: If $A \subset H^1(\mathbb{R}^N)$ is open and $u \in A$, then $I|'_A(u) = 0 \Leftrightarrow I'(u) = 0$.

A (10) A (10) A (10)

$$I'(u)v := \lim_{t\to 0} \frac{I(u+tv)-I(u)}{t}$$

Then $I'(u) \in (H^1(\mathbb{R}^N))'$.

We write $I \in \mathcal{C}^1(H^1(\mathbb{R}^N))$ iff $u \mapsto I'(u)$ is continuous.

We say that $u \in H^1(\mathbb{R}^N)$ is a critical point for $I \in C^1(H^1(\mathbb{R}^N))$ iff I'(u) = 0, i.e., I'(u)v = 0 for every $v \in H^1(\mathbb{R}^N)$.

Recall: If $A \subset H^1(\mathbb{R}^N)$ is open and $u \in A$, then $I|'_A(u) = 0 \Leftrightarrow I'(u) = 0$.

(4 何) トイヨト イヨト

$$I'(u)v := \lim_{t\to 0} \frac{I(u+tv) - I(u)}{t}$$

Then $I'(u) \in (H^1(\mathbb{R}^N))'$.

We write $I \in C^1(H^1(\mathbb{R}^N))$ iff $u \mapsto I'(u)$ is continuous.

We say that $u \in H^1(\mathbb{R}^N)$ is a critical point for $I \in C^1(H^1(\mathbb{R}^N))$ iff I'(u) = 0, i.e., I'(u)v = 0 for every $v \in H^1(\mathbb{R}^N)$.

Recall: If $A \subset H^1(\mathbb{R}^N)$ is open and $u \in A$, then $I|'_A(u) = 0 \Leftrightarrow I'(u) = 0$.

$$I'(u)v := \lim_{t\to 0} \frac{I(u+tv) - I(u)}{t}$$

Then $I'(u) \in (H^1(\mathbb{R}^N))'$.

We write $I \in C^1(H^1(\mathbb{R}^N))$ iff $u \mapsto I'(u)$ is continuous.

We say that $u \in H^1(\mathbb{R}^N)$ is a critical point for $I \in C^1(H^1(\mathbb{R}^N))$ iff I'(u) = 0, i.e., I'(u)v = 0 for every $v \in H^1(\mathbb{R}^N)$.

Recall: If $A \subset H^1(\mathbb{R}^N)$ is open and $u \in A$, then $I|'_A(u) = 0 \Leftrightarrow I'(u) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$I'(u)v := \lim_{t\to 0} \frac{I(u+tv) - I(u)}{t}$$

Then $I'(u) \in (H^1(\mathbb{R}^N))'$.

We write $I \in C^1(H^1(\mathbb{R}^N))$ iff $u \mapsto I'(u)$ is continuous.

We say that $u \in H^1(\mathbb{R}^N)$ is a critical point for $I \in C^1(H^1(\mathbb{R}^N))$ iff I'(u) = 0, i.e., I'(u)v = 0 for every $v \in H^1(\mathbb{R}^N)$.

Recall: If $A \subset H^1(\mathbb{R}^N)$ is open and $u \in A$, then $I|'_A(u) = 0 \Leftrightarrow I'(u) = 0$.

(人間) トイヨト イヨト 三日

If $u \in Q$, then $l|_Q(u) = 0$ if and only if l'(u)v = 0 for every $v \in T_uQ$ if and only if $l'(u) = \lambda G'(u)$ for some $\lambda \in \mathbb{R}$. Such λ is called a Lagrange multiplier

If, moreover, $I(u) = \min \{ I(v) \mid v \in H^1(\mathbb{R}^N) \text{ and } G(v) \leq 0 \}$, then $\lambda \leq 0$. Finally, $\lambda = 0$ if G(u) < 0. Equivalently, $I'(u) + \lambda G'(u) = 0$ and $\lambda \geq 0$ (or $\lambda > 0$).

< □ > < 同 > < 三 > < 三 >

If $u \in Q$, then $l|_Q(u) = 0$ if and only if l'(u)v = 0 for every $v \in T_uQ$ if and only if $l'(u) = \lambda G'(u)$ for some $\lambda \in \mathbb{R}$. Such λ is called a Lagrange multiplier.

If, moreover, $I(u) = \min \{ I(v) \mid v \in H^1(\mathbb{R}^N) \text{ and } G(v) \leq 0 \}$, then $\lambda \leq 0$. Finally, $\lambda = 0$ if G(u) < 0. Equivalently, $I'(u) + \lambda G'(u) = 0$ and $\lambda \geq 0$ (or $\lambda > 0$).

・ 何 ト ・ ヨ ト ・ ヨ ト

If $u \in Q$, then $I|'_Q(u) = 0$ if and only if I'(u)v = 0 for every $v \in T_uQ$ if and only if $I'(u) = \lambda G'(u)$ for some $\lambda \in \mathbb{R}$. Such λ is called a Lagrange multiplier.

If, moreover, $I(u) = \min \{ I(v) \mid v \in H^1(\mathbb{R}^N) \text{ and } G(v) \leq 0 \}$, then $\lambda \leq 0$. Finally, $\lambda = 0$ if G(u) < 0. Equivalently, $I'(u) + \lambda G'(u) = 0$ and $\lambda \geq 0$ (or $\lambda > 0$).

(人間) トイヨト イヨト ニヨ

If $u \in Q$, then $I|'_Q(u) = 0$ if and only if I'(u)v = 0 for every $v \in T_uQ$ if and only if $I'(u) = \lambda G'(u)$ for some $\lambda \in \mathbb{R}$. Such λ is called a Lagrange multiplier.

If, moreover, $I(u) = \min \{ I(v) \mid v \in H^1(\mathbb{R}^N) \text{ and } G(v) \leq 0 \}$, then $\lambda \leq 0$. Finally, $\lambda = 0$ if G(u) < 0. Equivalently, $I'(u) + \lambda G'(u) = 0$ and $\lambda \geq 0$ (or $\lambda > 0$).

(人間) トイヨト イヨト ニヨ

If $u \in Q$, then $I|'_Q(u) = 0$ if and only if I'(u)v = 0 for every $v \in T_uQ$ if and only if $I'(u) = \lambda G'(u)$ for some $\lambda \in \mathbb{R}$.

Such λ is called a Lagrange multiplier.

If, moreover, $I(u) = \min \{ I(v) \mid v \in H^1(\mathbb{R}^N) \text{ and } G(v) \leq 0 \}$, then $\lambda \leq 0$. Finally, $\lambda = 0$ if G(u) < 0. Equivalently, $I'(u) + \lambda G'(u) = 0$ and $\lambda \geq 0$ (or $\lambda > 0$).

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

$$J(u) = \int_{\mathbb{R}^N} \frac{1}{2} |\nabla u|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}^N} \frac{1}{2} \sum_{j=1}^N \left| \frac{\partial u}{\partial x_j} \right|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x$$

and let

$$\mathcal{S} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \right| \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x = \rho^2 \right\}.$$

If *u* is a critical point of $J|_{\mathcal{S}}$, i.e.,

 $u \in \mathcal{S}$ and J'(u)v = 0 for every $v \in \mathcal{T}_u \mathcal{S}$,

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2). $H^{1}_{rad}(\mathbb{R}^{N}) \hookrightarrow L^{q}(\mathbb{R}^{N})$ for every $2 < q < \frac{2N}{N-2}$, hence $u_{n} \in S$, $u_{n} \rightharpoonup u$ in $H^{1}_{rad}(\mathbb{R}^{N}) \neq u \in S$. For this reason we consider

$$\mathcal{D} := \bigg\{ \left. u \in H^1(\mathbb{R}^N) \ \bigg| \ \int_{\mathbb{R}^N} u^2 \, \mathrm{d} x \leq \rho^2 \bigg\}.$$

Clearly $u_n \in \mathcal{D}$, $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N) \Rightarrow u \in \mathcal{D}$.

A D K A B K A B K A B K

$$J(u) = \int_{\mathbb{R}^N} \frac{1}{2} |\nabla u|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}^N} \frac{1}{2} \sum_{j=1}^N \left| \frac{\partial u}{\partial x_j} \right|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x$$

and let

$$S := \left\{ u \in H^1(\mathbb{R}^N) \ \bigg| \ \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x = \rho^2
ight\}.$$

If u is a critical point of $J|_{\mathcal{S}}$, i.e.,

$$u \in \mathcal{S}$$
 and $J'(u)v = 0$ for every $v \in \mathcal{T}_u \mathcal{S}$,

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)–(2). $H^1_{rad}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 < q < \frac{2N}{N-2}$, hence $u_n \in S$, $u_n \to u$ in $H^1_{rad}(\mathbb{R}^N) \neq u \in S$. For this reason we consider

$$\mathcal{D} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \; \right| \; \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x \leq \rho^2 \;
ight\}.$$

Clearly $u_n \in \mathcal{D}$, $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N) \Rightarrow u \in \mathcal{D}$.

$$J(u) = \int_{\mathbb{R}^N} \frac{1}{2} |\nabla u|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}^N} \frac{1}{2} \sum_{j=1}^N \left| \frac{\partial u}{\partial x_j} \right|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x$$

and let

$$\mathcal{S} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \; \right| \; \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x = \rho^2 \;
ight\}.$$

If u is a critical point of $J|_{\mathcal{S}}$, i.e.,

$$u \in \mathcal{S}$$
 and $J'(u)v = 0$ for every $v \in \mathcal{T}_u \mathcal{S}$,

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2). $H^1_{rad}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 < q < \frac{2N}{N-2}$, hence $u_n \in S$, $u_n \rightharpoonup u$ in $H^1_{rad}(\mathbb{R}^N) \not\Rightarrow u \in S$. For this reason we consider

$$\mathcal{D} := \left\{ \left| u \in H^1(\mathbb{R}^N) \right| \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x \le \rho^2 \right\}.$$

Clearly $u_n \in \mathcal{D}$, $u_n
ightarrow u$ in $H^1(\mathbb{R}^N) \Rightarrow u \in \mathcal{D}$.

$$J(u) = \int_{\mathbb{R}^N} \frac{1}{2} |\nabla u|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x = \int_{\mathbb{R}^N} \frac{1}{2} \sum_{j=1}^N \left| \frac{\partial u}{\partial x_j} \right|^2 - \frac{1}{p} |u|^p \, \mathrm{d}x$$

and let

$$\mathcal{S} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \right| \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x = \rho^2 \right\}.$$

If u is a critical point of $J|_{\mathcal{S}}$, i.e.,

$$u \in \mathcal{S}$$
 and $J'(u)v = 0$ for every $v \in \mathcal{T}_u \mathcal{S}$,

the there exists $\lambda \in \mathbb{R}$ such that (λ, u) is a solution to (1)-(2). $H^1_{rad}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for every $2 < q < \frac{2N}{N-2}$, hence $u_n \in S$, $u_n \rightharpoonup u$ in $H^1_{rad}(\mathbb{R}^N) \not\Rightarrow u \in S$. For this reason we consider

$$\mathcal{D} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \; \middle| \; \int_{\mathbb{R}^N} u^2 \, \mathrm{d}x \leq \rho^2 \;
ight\}.$$

Clearly $u_n \in \mathcal{D}$, $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N) \Rightarrow u \in \mathcal{D}$.

The proof
$$(2$$

Theorem

There exists a solution (λ, u) to (1)-(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo-Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q}$,

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

$$||u||^2 := |u|_2^2 + |\nabla u|_2^2.$$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

(日)

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo–Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q},$

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

 $||u||^2 := |u|_2^2 + |\nabla u|_2^2.$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo-Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q},$

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

 $||u||^2 := |u|_2^2 + |\nabla u|_2^2.$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

Theorem

There exists a solution (λ, u) to (1)–(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo–Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q},$

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

 $||u||^2 := |u|_2^2 + |\nabla u|_2^2.$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

Theorem

There exists a solution (λ, u) to (1)-(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo–Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q},$

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

$$||u||^2 := |u|_2^2 + |\nabla u|_2^2.$$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

Theorem

There exists a solution (λ, u) to (1)-(2) such that J(u) < 0 and $\lambda > 0$.

Gagliardo–Nirenberg inequality: for every $2 < q < \frac{2N}{N-2}$ there exists $C_{q,N} > 0$ such that for every $u \in H^1(\mathbb{R}^N)$ there holds

 $|u|_q \leq C_{q,N} |\nabla u|_2^{\delta_q} |u|_2^{1-\delta_q},$

with $\delta_q = N(\frac{1}{2} - \frac{1}{q}) \in]0, 1[$. In particular, $q\delta_q < 2 \Leftrightarrow q < 2 + \frac{4}{N}$ (resp. '=', '>'). We work in $H^1_{rad}(\mathbb{R}^N)$. The norm in $H^1(\mathbb{R}^N)$ is given by

$$||u||^2 := |u|_2^2 + |\nabla u|_2^2.$$

Note that, if $u_n \in \mathcal{D}$, then $||u_n|| \to \infty \Leftrightarrow |\nabla u_n|_2 \to \infty$.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

 $J|_{\mathcal{D}}$ is coercive (and bounded below).

Proof.

If $u \in \mathcal{D}$, then from the Gagliardo–Nirenberg inequality

$$J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \ge \frac{1}{2} |\nabla u|_{2}^{2} - \frac{C_{N,p}^{p}}{p} |\nabla u|_{2}^{p\delta_{p}} |u|_{2}^{p(1-\delta_{p})}$$
$$\ge \frac{1}{2} |\nabla u|_{2}^{2} - \frac{C_{N,p}^{p}}{p} \rho^{p(1-\delta_{p})} |\nabla u|_{2}^{p\delta_{p}}$$

with $p\delta_p < 2$.

3

A D N A B N A B N A B N

 $J|_{\mathcal{D}}$ is coercive (and bounded below).

Proof.

If $u \in \mathcal{D}$, then from the Gagliardo–Nirenberg inequality

$$J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \ge \frac{1}{2} |\nabla u|_{2}^{2} - \frac{C_{N,p}^{p}}{p} |\nabla u|_{2}^{p\delta_{p}} |u|_{2}^{p(1-\delta_{p})}$$
$$\ge \frac{1}{2} |\nabla u|_{2}^{2} - \frac{C_{N,p}^{p}}{p} \rho^{p(1-\delta_{p})} |\nabla u|_{2}^{p\delta_{p}}$$

with $p\delta_p < 2$.

 $\inf_{\mathcal{D}} J < 0.$

For $u \in H^1(\mathbb{R}^N)$ and s > 0 define $s \star u(x) := s^{N/2}u(sx)$. Notice that $|s \star u|_2 = |u|_2$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Proof.

Fix $u \in \mathcal{D} \setminus \{0\}$. If $0 < s \ll 1$, then

$$J(s \star u) = \frac{s^2}{2} |\nabla u|_2^2 - \frac{s^{N(p/2-1)}}{p} |u|_p^p < 0$$

because $N(p/2 - 1) = p\delta_p < 2$.

3

A D N A B N A B N A B N

 $\inf_{\mathcal{D}} J < 0.$

For $u \in H^1(\mathbb{R}^N)$ and s > 0 define $s \star u(x) := s^{N/2}u(sx)$. Notice that $|s \star u|_2 = |u|_2$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Proof.

Fix $u \in \mathcal{D} \setminus \{0\}$. If $0 < s \ll 1$, then

$$J(s \star u) = \frac{s^2}{2} |\nabla u|_2^2 - \frac{s^{N(p/2-1)}}{p} |u|_p^p < 0$$

because $N(p/2-1) = p\delta_p < 2$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

 $\inf_{\mathcal{D}} J < 0.$

For $u \in H^1(\mathbb{R}^N)$ and s > 0 define $s \star u(x) := s^{N/2}u(sx)$. Notice that $|s \star u|_2 = |u|_2$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Proof.

Fix $u \in \mathcal{D} \setminus \{0\}$. If $0 < s \ll 1$, then

$$J(s \star u) = \frac{s^2}{2} |\nabla u|_2^2 - \frac{s^{N(p/2-1)}}{p} |u|_p^p < 0$$

because $N(p/2 - 1) = p\delta_p < 2$.

3

イロト イヨト イヨト イヨト

 $\inf_{\mathcal{D}} J < 0.$

For $u \in H^1(\mathbb{R}^N)$ and s > 0 define $s \star u(x) := s^{N/2}u(sx)$. Notice that $|s \star u|_2 = |u|_2$, hence $u \in \mathcal{D} \Rightarrow s \star u \in \mathcal{D}$.

Proof.

Fix $u \in \mathcal{D} \setminus \{0\}$. If $0 < s \ll 1$, then

$$J(s \star u) = \frac{s^2}{2} |\nabla u|_2^2 - \frac{s^{N(p/2-1)}}{p} |u|_p^p < 0$$

because $N(p/2-1) = p\delta_p < 2$.

 $\inf_{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u) = \inf_{\mathcal{D}} J$).

Proof.

Let $u_n \in \mathcal{D}$ such that $J(u_n) \to \inf_{\mathcal{D}} J$. Since $J|_{\mathcal{D}}$ is coercive, u_n is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Then

$$\inf_{\mathcal{D}} J \leq J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \leq \lim_{n} \frac{1}{2} |\nabla u_{n}|_{2}^{2} - \frac{1}{p} |u_{n}|_{p}^{k}$$
$$= \lim_{n} J(u_{n}) = \inf_{\mathcal{D}} J,$$

i.e., $J(u) = \inf_{\mathcal{D}} J$.

< □ > < 同 > < 三 > < 三 >

 $\inf_{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u) = \inf_{\mathcal{D}} J$).

Proof.

Let $u_n \in \mathcal{D}$ such that $J(u_n) \to \inf_{\mathcal{D}} J$. Since $J|_{\mathcal{D}}$ is coercive, u_n is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Then

$$\inf_{\mathcal{D}} J \leq J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \leq \lim_{n} \frac{1}{2} |\nabla u_{n}|_{2}^{2} - \frac{1}{p} |u_{n}|_{p}^{k}$$
$$= \lim_{n} J(u_{n}) = \inf_{\mathcal{D}} J,$$

i.e., $J(u) = \inf_{\mathcal{D}} J$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $\inf_{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u) = \inf_{\mathcal{D}} J$).

Proof.

Let $u_n \in \mathcal{D}$ such that $J(u_n) \to \inf_{\mathcal{D}} J$. Since $J|_{\mathcal{D}}$ is coercive, u_n is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Then

$$\inf_{\mathcal{D}} J \le J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \le \lim_{n} \frac{1}{2} |\nabla u_{n}|_{2}^{2} - \frac{1}{p} |u_{n}|_{p}^{p}$$
$$= \lim_{n} J(u_{n}) = \inf_{\mathcal{D}} J,$$

i.e., $J(u) = \inf_{\mathcal{D}} J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\inf_{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u) = \inf_{\mathcal{D}} J$).

Proof.

Let $u_n \in \mathcal{D}$ such that $J(u_n) \to \inf_{\mathcal{D}} J$. Since $J|_{\mathcal{D}}$ is coercive, u_n is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Then

$$\inf_{\mathcal{D}} J \leq J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \leq \lim_{n} \frac{1}{2} |\nabla u_{n}|_{2}^{2} - \frac{1}{p} |u_{n}|_{p}^{p}$$
$$= \lim_{n} J(u_{n}) = \inf_{\mathcal{D}} J,$$

i.e., $J(u) = \inf_{\mathcal{D}} J$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\inf_{\mathcal{D}} J$ is attained (i.e., there exists $u \in \mathcal{D}$ such that $J(u) = \inf_{\mathcal{D}} J$).

Proof.

Let $u_n \in \mathcal{D}$ such that $J(u_n) \to \inf_{\mathcal{D}} J$. Since $J|_{\mathcal{D}}$ is coercive, u_n is bounded, therefore there exists $u \in \mathcal{D}$ such that $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Then

$$\inf_{\mathcal{D}} J \leq J(u) = \frac{1}{2} |\nabla u|_{2}^{2} - \frac{1}{p} |u|_{p}^{p} \leq \lim_{n} \frac{1}{2} |\nabla u_{n}|_{2}^{2} - \frac{1}{p} |u_{n}|_{p}^{p}$$
$$= \lim_{n} J(u_{n}) = \inf_{\mathcal{D}} J,$$

i.e., $J(u) = \inf_{\mathcal{D}} J$.

- 本間 と く ヨ と く ヨ と 二 ヨ

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d} x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d} x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(\frac{1}{2} - \frac{1}{p}\right) |\nabla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

A D F A B F A B F A B

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(\frac{1}{2} - \frac{1}{p}\right) |\nabla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

< □ > < □ > < □ > < □ > < □ > < □ >

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(\frac{1}{2} - \frac{1}{p}\right) |\nabla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

(4回) (4回) (4回)

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(\frac{1}{2} - \frac{1}{p}\right) |\nabla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(rac{1}{2} - rac{1}{p}
ight) |
abla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $u \in \mathcal{D}$ such that $J(u) = \min_{\mathcal{D}} J < 0$. Then u is a critical point of $J|_{\mathcal{D}}$, i.e., there exists $\lambda \ge 0$ such that

$$\int_{\mathbb{R}^N} \nabla u \cdot \nabla v + \lambda u v \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^{p-2} u v \, \mathrm{d}x$$

for every $v \in H^1(\mathbb{R}^N)$. Recall that $\lambda = 0$ if $u \in \mathcal{D} \setminus S$. Taking v = u, we obtain $|\nabla u|_2^2 + \lambda |u|_2^2 = |u|_p^p$. If $\lambda = 0$, then

$$J(u) = \left(rac{1}{2} - rac{1}{p}
ight) |
abla u|_2^2 \ge 0,$$

so $\lambda > 0$ and, in particular, $u \in S$.

- 本間 と く ヨ と く ヨ と 二 ヨ

The proof (2 + 4/N

Fix $u \in \mathcal{D} \setminus \{0\}$. Then (recall $p\delta_p > 2$)

$$J(s \star u) = \frac{|\nabla u|_2^2}{2} s^2 - \frac{|u|_p^p}{p} s^{p\delta_p} \to -\infty \quad \text{as } s \to \infty.$$

If (λ, u) solves (1), then (Nehari)

$$\int_{\mathbb{R}^N} |\nabla u|^2 + \lambda u^2 \, \mathrm{d}x = \int_{\mathbb{R}^N} |u|^p \, \mathrm{d}x.$$

Moreover, one can prove that (Pohožaev)

$$\int_{\mathbb{R}^N} (N-2) |\nabla u|^2 + \lambda N u^2 \, \mathrm{d} x = \frac{2N}{p} \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

イロト イポト イヨト イヨト

- 2

The proof (2 + 4/N

Fix $u \in \mathcal{D} \setminus \{0\}$. Then (recall $p\delta_p > 2$)

$$J(s \star u) = \frac{|\nabla u|_2^2}{2} s^2 - \frac{|u|_p^p}{p} s^{p\delta_p} \to -\infty \quad \text{as } s \to \infty.$$

If (λ, u) solves (1), then (Nehari)

$$\int_{\mathbb{R}^N} |\nabla u|^2 + \lambda u^2 \, \mathrm{d} x = \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

Moreover, one can prove that (Pohožaev)

$$\int_{\mathbb{R}^N} (N-2) |\nabla u|^2 + \lambda N u^2 \, \mathrm{d} x = \frac{2N}{p} \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

イロト イポト イヨト イヨト

- 2

The proof (2 + 4/N

Fix $u \in \mathcal{D} \setminus \{0\}$. Then (recall $p\delta_p > 2$)

$$J(s \star u) = \frac{|\nabla u|_2^2}{2} s^2 - \frac{|u|_p^p}{p} s^{p\delta_p} \to -\infty \quad \text{as } s \to \infty.$$

If (λ, u) solves (1), then (Nehari)

$$\int_{\mathbb{R}^N} |\nabla u|^2 + \lambda u^2 \, \mathrm{d} x = \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

Moreover, one can prove that (Pohožaev)

$$\int_{\mathbb{R}^N} (N-2) |\nabla u|^2 + \lambda N u^2 \, \mathrm{d} x = \frac{2N}{p} \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

イロト イポト イヨト イヨト 二日

From Nehari + Pohožaev we obtain

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d} x = N\left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

Define

$$\mathcal{M} := \left\{ \left| u \in H^1(\mathbb{R}^N) \setminus \{0\} \right| (4) \text{ holds} \right\}$$

and note that for every $u \in \mathcal{M}$

$$J(u) = \underbrace{\frac{1}{p}\left(\frac{N}{4}(p-2)-1\right)}_{C_0}\int_{\mathbb{R}^N} |u|^p \,\mathrm{d}x > 0.$$

If $u \in H^1(\mathbb{R}^N) \setminus \{0\}$, then $u_r := u(r \cdot) \in \mathcal{M}$, where

$$r := r(u) := \sqrt{N\left(\frac{1}{2} - \frac{1}{p}\right)\frac{|\nabla u|_2^2}{|u|_p^p}}$$

э

(日) (四) (日) (日) (日)

(4)

From Nehari + Pohožaev we obtain

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d} x = N\left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

Define

$$\mathcal{M} := \left\{ \left. u \in \mathcal{H}^1(\mathbb{R}^N) \setminus \{0\} \right|$$
 (4) holds $\right\}$

and note that for every $u \in \mathcal{M}$

$$J(u) = \underbrace{\frac{1}{p}\left(\frac{N}{4}(p-2)-1\right)}_{C_0}\int_{\mathbb{R}^N} |u|^p \,\mathrm{d}x > 0.$$

If $u \in H^1(\mathbb{R}^N) \setminus \{0\}$, then $u_r := u(r \cdot) \in \mathcal{M}$, where

$$r := r(u) := \sqrt{N\left(\frac{1}{2} - \frac{1}{p}\right)\frac{|\nabla u|_2^2}{|u|_p^p}}$$

3

(日) (四) (日) (日) (日)

(4)

From Nehari + Pohožaev we obtain

$$\int_{\mathbb{R}^N} |\nabla u|^2 \, \mathrm{d} x = N\left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} |u|^p \, \mathrm{d} x.$$

Define

$$\mathcal{M} := \left\{ \left| u \in \mathcal{H}^1(\mathbb{R}^N) \setminus \{0\} \right|$$
 (4) holds $\right\}$

and note that for every $u \in \mathcal{M}$

$$J(u) = \underbrace{\frac{1}{p}\left(\frac{N}{4}(p-2)-1\right)}_{C_0}\int_{\mathbb{R}^N} |u|^p \,\mathrm{d}x > 0.$$

If $u \in H^1(\mathbb{R}^N) \setminus \{0\}$, then $u_r := u(r \cdot) \in \mathcal{M}$, where

$$r := r(u) := \sqrt{N\left(\frac{1}{2} - \frac{1}{p}\right)\frac{|\nabla u|_2^2}{|u|_p^p}}$$

3

E 6 4 E 6

< 47 ▶

(4)

There exists a solution (λ, u) to (1)-(2) such that J(u) > 0 and $\lambda > 0$.

Lemma

 $\inf_{u\in\mathcal{M}\cap\mathcal{D}}|\nabla u|_2>0.$

Proof.

 $|\nabla u|_2^2 = C|u|_p^p \le C' |\nabla u|_2^{p\delta_p} |u|_2^{p(1-\delta_p)} \le C' \rho^{p(1-\delta_p)} |\nabla u|_2^{p\delta_p}, \ p\delta_p > 2.$

Lemma

J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m := \inf_{\mathcal{M} \cap \mathcal{D}} J > 0$.

Proof.

Since $J(u) = C_0 |u|_p^p$ if $u \in \mathcal{M} \cap \mathcal{D}$, $\frac{1}{2} |\nabla u|_2^2 = \frac{1}{p} |u|_p^p + J(u) = CJ(u)$.

イロト 不得 トイラト イラト 一日

There exists a solution (λ, u) to (1)–(2) such that J(u) > 0 and $\lambda > 0$.

Lemma

 $\inf_{u\in\mathcal{M}\cap\mathcal{D}}|\nabla u|_2>0.$

Proof.

 $|\nabla u|_2^2 = C|u|_p^p \le C' |\nabla u|_2^{p\delta_p} |u|_2^{p(1-\delta_p)} \le C' \rho^{p(1-\delta_p)} |\nabla u|_2^{p\delta_p}, \ p\delta_p > 2.$

Lemma

J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m := \inf_{\mathcal{M} \cap \mathcal{D}} J > 0$.

Proof.

Since $J(u) = C_0 |u|_p^p$ if $u \in \mathcal{M} \cap \mathcal{D}$, $\frac{1}{2} |\nabla u|_2^2 = \frac{1}{p} |u|_p^p + J(u) = CJ(u)$.

イロト 不得 トイヨト イヨト 二日

There exists a solution (λ, u) to (1)-(2) such that J(u) > 0 and $\lambda > 0$.

Lemma

 $\inf_{u\in\mathcal{M}\cap\mathcal{D}}|\nabla u|_2>0.$

Proof.

 $|\nabla u|_{2}^{2} = C|u|_{p}^{p} \leq C' |\nabla u|_{2}^{p\delta_{p}}|u|_{2}^{p(1-\delta_{p})} \leq C' \rho^{p(1-\delta_{p})} |\nabla u|_{2}^{p\delta_{p}}, \ p\delta_{p} > 2.$

Lemma

J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m := \inf_{\mathcal{M} \cap \mathcal{D}} J > 0$.

Proof.

Since $J(u) = C_0 |u|_p^p$ if $u \in \mathcal{M} \cap \mathcal{D}$, $\frac{1}{2} |\nabla u|_2^2 = \frac{1}{p} |u|_p^p + J(u) = CJ(u)$.

イロト 不得下 イヨト イヨト 二日

There exists a solution (λ, u) to (1)-(2) such that J(u) > 0 and $\lambda > 0$.

Lemma

 $\inf_{u\in\mathcal{M}\cap\mathcal{D}}|\nabla u|_2>0.$

Proof.

 $|\nabla u|_{2}^{2} = C|u|_{\rho}^{p} \leq C' |\nabla u|_{2}^{p\delta_{\rho}}|u|_{2}^{p(1-\delta_{\rho})} \leq C' \rho^{p(1-\delta_{\rho})} |\nabla u|_{2}^{p\delta_{\rho}}, \ p\delta_{\rho} > 2.$

Lemma

J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m := \inf_{\mathcal{M} \cap \mathcal{D}} J > 0$.

Proof.

Since $J(u) = C_0 |u|_p^p$ if $u \in \mathcal{M} \cap \mathcal{D}$, $\frac{1}{2} |\nabla u|_2^2 = \frac{1}{p} |u|_p^p + J(u) = CJ(u)$.

There exists a solution (λ, u) to (1)-(2) such that J(u) > 0 and $\lambda > 0$.

Lemma

 $\inf_{u\in\mathcal{M}\cap\mathcal{D}}|\nabla u|_2>0.$

Proof.

 $|\nabla u|_{2}^{2} = C|u|_{p}^{p} \leq C' |\nabla u|_{2}^{p\delta_{p}}|u|_{2}^{p(1-\delta_{p})} \leq C' \rho^{p(1-\delta_{p})} |\nabla u|_{2}^{p\delta_{p}}, \ p\delta_{p} > 2.$

Lemma

J is coercive on $\mathcal{M} \cap \mathcal{D}$ and $m := \inf_{\mathcal{M} \cap \mathcal{D}} J > 0$.

Proof.

Since $J(u) = C_0 |u|_p^p$ if $u \in \mathcal{M} \cap \mathcal{D}$, $\frac{1}{2} |\nabla u|_2^2 = \frac{1}{p} |u|_p^p + J(u) = CJ(u)$.

イロト 不得下 イヨト イヨト 二日

m is attained.

Proof.

Let $u_n \in \mathcal{M} \cap \mathcal{D}$ such that $J(u_n) \to m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence).

Next, $0 < m = \lim_{n} C_0 |u_n|_p^p = C_0 |u|_p^p$, therefore $u \neq 0$ and we can consider $u_r \in \mathcal{M}$.

Moreover,
$$r^2 = r(u)^2 = N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u|_p^p}{|\nabla u|_2^2} \ge \lim_n N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u_n|_p^p}{|\nabla u_n|_2^2} = 1$$
,
thus $u_r \in \mathcal{D}$.
Finally, $m \le J(u_r) = C_0 |u_r|_p^p = C_0 r^{-N} |u|_p^p \le C_0 |u|_p^p = \lim_n C_0 |u_n|_p^p$

$$= \lim_{n \to \infty} J(u_n) = m$$
, therefore $r = 1$ and $J(u) = m$.

イロト イヨト イヨト イヨト

m is attained.

Proof.

Let $u_n \in \mathcal{M} \cap \mathcal{D}$ such that $J(u_n) \to m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence).

Next, $0 < m = \lim_{n \to \infty} C_0 |u_n|_p^p = C_0 |u|_p^p$, therefore $u \neq 0$ and we can consider $u_r \in \mathcal{M}$.

Moreover,
$$r^{2} = r(u)^{2} = N\left(\frac{\pi}{2} - \frac{\pi}{p}\right) \frac{1}{|\nabla u|_{2}^{2}} \geq \lim_{n \to \infty} N\left(\frac{\pi}{2} - \frac{\pi}{p}\right) \frac{1}{|\nabla u_{n}|_{2}^{2}} = 1$$
,
thus $u_{r} \in \mathcal{D}$.
Finally, $m \leq J(u_{r}) = C_{0}|u_{r}|_{p}^{p} = C_{0}r^{-N}|u|_{p}^{p} \leq C_{0}|u|_{p}^{p} = \lim_{n \to \infty} C_{0}|u_{n}|_{p}^{p}$
 $= \lim_{n \to \infty} J(u_{n}) = m$, therefore $r = 1$ and $J(u) = m$.

m is attained.

Proof.

Let $u_n \in \mathcal{M} \cap \mathcal{D}$ such that $J(u_n) \to m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence). Next, $0 < m = \lim_n C_0 |u_n|_p^p = C_0 |u|_p^p$, therefore $u \neq 0$ and we can consider $u_r \in \mathcal{M}$.

Moreover,
$$r^2 = r(u)^2 = N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u|_p}{|\nabla u|_2^2} \ge \lim_n N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u_n|_p}{|\nabla u_n|_2^2} = 1$$
,
thus $u_r \in \mathcal{D}$.
Finally, $m \le J(u_r) = C_0 |u_r|_p^p = C_0 r^{-N} |u|_p^p \le C_0 |u|_p^p = \lim_n C_0 |u_n|_p^p$
 $= \lim_n J(u_n) = m$, therefore $r = 1$ and $J(u) = m$.

・ 同 ト ・ ヨ ト ・ ヨ ト

m is attained.

Proof.

Let $u_n \in \mathcal{M} \cap \mathcal{D}$ such that $J(u_n) \to m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence).

Next, $0 < m = \lim_{n} C_0 |u_n|_p^p = C_0 |u|_p^p$, therefore $u \neq 0$ and we can consider $u_r \in \mathcal{M}$.

Moreover,
$$r^2 = r(u)^2 = N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u|_p^p}{|\nabla u|_2^2} \ge \lim_n N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u_n|_p^p}{|\nabla u_n|_2^2} = 1$$
,
thus $u_r \in \mathcal{D}$.
Finally, $m \le J(u_r) = C_0 |u_r|_p^p = C_0 r^{-N} |u|_p^p \le C_0 |u|_p^p = \lim_n C_0 |u_n|_p^p$

- 本間下 本臣下 本臣下 三臣

m is attained.

Proof.

Let $u_n \in \mathcal{M} \cap \mathcal{D}$ such that $J(u_n) \to m$. Then it is bounded, hence there exist $u \in \mathcal{D}$ such that $u_n \to u$ in $H^1(\mathbb{R}^N)$ and $u_n \to u$ in $L^p(\mathbb{R}^N)$ (up to a subsequence).

Next, $0 < m = \lim_{n} C_0 |u_n|_p^p = C_0 |u|_p^p$, therefore $u \neq 0$ and we can consider $u_r \in \mathcal{M}$.

Moreover, $r^2 = r(u)^2 = N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u|_p^p}{|\nabla u|_2^2} \ge \lim_n N\left(\frac{1}{2} - \frac{1}{p}\right) \frac{|u_n|_p^p}{|\nabla u_n|_2^2} = 1$, thus $u_r \in \mathcal{D}$. Finally, $m \le J(u_r) = C_0 |u_r|_p^p = C_0 r^{-N} |u|_p^p \le C_0 |u|_p^p = \lim_n C_0 |u_n|_p^p$ $= \lim_n J(u_n) = m$, therefore r = 1 and J(u) = m.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that J(u) = m > 0. There exist $\lambda \ge 0$ and $\sigma \in \mathbb{R}$

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that J(u) = m > 0. There exist $\lambda \ge 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2\sigma)\Delta u + \lambda u = \left(1 + \sigma N \frac{p-2}{2}\right) |u|^{p-2} u$. Then the Nehari identity $(1+2\sigma)|\nabla u|_2^2 + \lambda |u|_2^2 = \left(1 + \sigma N \frac{p-2}{2}\right)|u|_p^p$ and the Pohožaev identity $(1+2\sigma)\frac{N-2}{2N}|\nabla u|_2^2 + \frac{\lambda}{2}|u|_2^2 = \left(1+\sigma N\frac{p-2}{2}\right)\frac{1}{p}|u|_p^p$ hold. From the two identities we obtain

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that J(u) = m > 0. There exist $\lambda \ge 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2\sigma)\Delta u + \lambda u = \left(1 + \sigma N \frac{p-2}{2}\right) |u|^{p-2} u$. Then the Nehari identity $(1+2\sigma)|\nabla u|_2^2 + \lambda |u|_2^2 = \left(1 + \sigma N \frac{p-2}{2}\right)|u|_p^p$ and the Pohožaev identity $(1+2\sigma)\frac{N-2}{2N}|\nabla u|_2^2 + \frac{\lambda}{2}|u|_2^2 = \left(1+\sigma N\frac{p-2}{2}\right)\frac{1}{p}|u|_p^p$ hold. From the two identities we obtain $(1+2\sigma)|\nabla u|_2^2 = N\left(1+\sigma N\frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_p^p$, and from $u \in \mathcal{M}$ we obtain $\sigma\left(\frac{1}{2}-\frac{1}{p}\right)\left(N(p-2)-4\right)|u|_{p}^{p}=0$, whence $\sigma=0$ and $-\Delta u + \lambda u = |u|^{p-2}u$. If $\lambda = 0$, then the Nehari and Pohožaev identities

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $u \in \mathcal{M} \cap \mathcal{D}$ such that J(u) = m > 0. There exist $\lambda \ge 0$ and $\sigma \in \mathbb{R}$ such that $-(1+2\sigma)\Delta u + \lambda u = \left(1 + \sigma N \frac{p-2}{2}\right) |u|^{p-2} u$. Then the Nehari identity $(1+2\sigma)|\nabla u|_2^2 + \lambda |u|_2^2 = \left(1 + \sigma N \frac{p-2}{2}\right)|u|_p^p$ and the Pohožaev identity $(1+2\sigma)\frac{N-2}{2N}|\nabla u|_2^2 + \frac{\lambda}{2}|u|_2^2 = \left(1+\sigma N\frac{p-2}{2}\right)\frac{1}{p}|u|_p^p$ hold. From the two identities we obtain $(1+2\sigma)|\nabla u|_2^2 = N\left(1+\sigma N\frac{p-2}{2}\right)\left(\frac{1}{2}-\frac{1}{p}\right)|u|_p^p$, and from $u \in \mathcal{M}$ we obtain $\sigma\left(\frac{1}{2}-\frac{1}{p}\right)\left(N(p-2)-4\right)|u|_{p}^{p}=0$, whence $\sigma=0$ and $-\Delta u + \lambda u = |u|^{p-2}u$. If $\lambda = 0$, then the Nehari and Pohožaev identities read $\frac{1}{p}|u|_p^p = \frac{N-2}{2M}|\nabla u|_2^2 = \frac{N-2}{2M}|u|_p^p$, so $\lambda > 0$ and $u \in \mathcal{S}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >