

FROM ROBBINS-MONRO TO ARTIFICIAL INTELLIGENCE

70 YEARS OF STOCHASTIC APPROXIMATION & THE ROAD AHEAD

Παναγιώτης Μερτικόπουλος

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών

⟨ Γενικό Σεμινάριο | ΕΚΠΑ, Τμήμα Μαθηματικών | 30 Μαρτίου, 2023 ⟩

Outline

- Background & motivation
- 2 The classical theory
- Applications to minimization problems
- 4 Applications to min-max problems

Background & motivation 00000000

Stochastic approximation: from the 1950's...

Stochastic approximation

Find a root of a nonlinear system involving unknown functions, accessible only via noisy evaluations

Herbert Robbins & Sutton Monro

lack Kiefer & Jacob Wolfowitz

Figure: The pioneers of the theory of stochastic approximation

ΕΚΠΑ, Τμήμα Μαθηματικών

...to the 2020's

Which person is fake?

...to the 2020's

Which person is fake?

https://thispersondoesnotexist.com

Background & motivation

Background & motivation

4/43

Background & motivation

4/43

Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματ

Background & motivation 000000000

Model likelihood:
$$L(G, D) = \prod_{i=1}^{N} D(X_i) \times \prod_{i=1}^{N} (1 - D(G(Z_i)))$$

Background & motivation

How to find good generators $(G \in \mathcal{G})$ and discriminators $(D \in \mathcal{D})$?

Discriminator: maximize (log-)likelihood estimation

$$\max_{D \in \mathcal{D}} \log L(G, D)$$

Generator: minimize the resulting divergence

$$\min_{G \in \mathcal{G}} \max_{D \in \mathcal{D}} \log L(G, D)$$

Training a GAN \iff solving a min-max problem

Loss surfaces

Background & motivation

Figure: The loss landscape of a deep neural network [Li et al., 2018].

Background & motivation

Mathematical formulation

Minimization problems

$$\min_{x \in \mathcal{X}} f(x)$$

(Opt)

Saddle-point problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2)$$

(SP)

7/43

(Opt)

Mathematical formulation

Minimization problems (stochastic)

$$\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{\theta}[F(x; \theta)]$$

Saddle-point problems (stochastic)

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = \mathbb{E}_{\theta} [F(x_1, x_2; \theta)]$$
 (SP)

Problem formulation

Main difficulties:

- No convex structure
- $\qquad \qquad \textbf{ Difficult to manipulate } f \text{ in closed form } \\$

technical assumptions later

black-box oracle methods

ιότια Μαθατιστικέντ

Problem formulation

Main difficulties:

- No convex structure
- Difficult to manipulate f in closed form

technical assumptions later

black-box oracle methods

Focus on *critical points*:

Find
$$x^*$$
 such that $g(x^*) = 0$

(Crit)

where g(x) is the problem's **defining vector field**:

Gradient field for (Opt):

$$g(x) = \nabla f(x)$$

Hamiltonian field for (SP):

$$g(x) = (\nabla_{x_1} f(x_1, x_2), -\nabla_{x_2} f(x_1, x_2))$$

Notation: $x \leftarrow (x_1, x_2), \mathcal{X} \leftarrow \mathcal{X}_1 \times \mathcal{X}_2$

Assumptions

Blanket assumptions

Unconstrained problems:

 \mathcal{X} = finite-dimensional Euclidean space

Existence of solutions:

$$\operatorname{crit}(f) \coloneqq \{x^* \in \mathcal{X} : g(x^*) = 0\}$$
 is nonempty

Lipschitz continuity:

$$|f(x') - f(x)| \le G||x' - x|| \quad \text{for all } x, x' \in \mathcal{X}$$
 (LC)

► Lipschitz smoothness:

$$\|g(x') - g(x)\| \le L\|x' - x\|$$
 for all $x, x' \in \mathcal{X}$ (LS)

9/43

Stochastic approximation

$$X_{n+1} = X_n - \gamma_n \hat{g}_n \tag{SA}$$

where \hat{g}_n , $n=1,2,\ldots$, is a "stochastic approximation" of $g(X_n)$ and $\gamma_n>0$ is a "step-size" parameter.

10/43

Stochastic approximation

$$X_{n+1} = X_n - \gamma_n \hat{g}_n \tag{SA}$$

where \hat{g}_n , n = 1, 2, ..., is a "stochastic approximation" of $g(X_n)$ and $\gamma_n > 0$ is a "step-size" parameter.

Main question: what is the long-run behavior of X_n ?

Stochastic approximation

$$X_{n+1} = X_n - \gamma_n \hat{g}_n \tag{SA}$$

where \hat{q}_n , n = 1, 2, ..., is a "stochastic approximation" of $q(X_n)$ and $\gamma_n > 0$ is a "step-size" parameter.

Main question: what is the long-run behavior of X_n ?

In minimization problems:

- ✓ First-order (= gradient-based) algorithms converge to critical points
- Are non-minimizers avoided?

(SA)

Overview

Stochastic approximation

$$X_{n+1} = X_n - \gamma_n \hat{g}_n$$

where \hat{g}_n , n = 1, 2, ..., is a "stochastic approximation" of $g(X_n)$ and $\gamma_n > 0$ is a "step-size" parameter.

Main question: what is the long-run behavior of X_n ?

In minimization problems:

- First-order (= gradient-based) algorithms converge to critical points
- Are non-minimizers avoided?

In min-max problems / games:

- Do gradient methods converge to critical points?
- Are non-equilibrium sets avoided?

Stochastic approximation

$$X_{n+1} = X_n - \gamma_n \hat{g}_n$$

(SA)

where \hat{g}_n , n = 1, 2, ..., is a "stochastic approximation" of $g(X_n)$ and $\gamma_n > 0$ is a "step-size" parameter.

Main question: what is the long-run behavior of X_n ?

In minimization problems:

- First-order (= gradient-based) algorithms converge to critical points
- Are non-minimizers avoided?

In min-max problems / games:

- Do gradient methods converge to critical points?
- Are non-equilibrium sets avoided?

Dynamical systems: from discrete to continuous time and back

Outline

- Background & motivation
- **2** The classical theory
- Applications to minimization problems

The classical theory

4 Applications to min-max problems

Stochastic approximation algorithms

Stochastic approximation template

$$X_{n+1} = X_n - \gamma_n \hat{g}_n \tag{SA}$$

where:

- $X_n \in \mathbb{R}^d$ is the **state** of the method at epoch $n = 1, 2, \dots$
- $\nu_n > 0$ is a variable **step-size** parameter
- $\hat{q}_n \in \mathbb{R}^d$ is a stochastic approximation of $q(X_n)$

Blanket assumptions

• Step-size sequence: y_n is of the form y/n^p $\# \nu > 0, p \in [0,1]$

2 Random error:

 $U_n = \hat{q}_n - \mathbb{E}[\hat{q}_n \mid \mathcal{F}_n]$

is bounded as

 $\mathbb{E}[\|U_n\|^q \mid \mathcal{F}_n] \leq \sigma_n^q$

 $\# q \ge 2$

Systematic error:

 $b_n = \mathbb{E}[\hat{q}_n \mid \mathcal{F}_n] - q(X_n)$

is bounded as

 $\mathbb{E}[\|b_n\| | \mathcal{F}_n] \leq B_n$

where:

▶ B_n , $\sigma_n \ge 0$ are **deterministic** sequences

 $\triangleright \mathcal{F}_n = \mathcal{F}(X_1, \dots, X_n)$ is the **history** of X_n

Methods, I: Gradient descent

The classical theory

Gradient descent

[Cauchy, 1847]

$$X_{n+1} = X_n - \gamma_n \nabla f(X_n)$$

(GD)

- ✓ Potential:
 - $g = \nabla f$
- **Deterministic:**
 - $\sigma_n = 0$
- ✓ No offset:
 - $B_n = 0$

ΕΚΠΑ, Τμήμα Μαθηματικών

Methods, II: Proximal gradient

Proximal gradient

[Martinet, 1970; Rockafellar, 1976]

$$X_{n+1} = X_n - \gamma_n \nabla f(X_{n+1})$$

(PG)

- / Potential:
 - $g = \nabla f$
- **Deterministic:** $\sigma_n = 0$
 - o n

$$B_n = \mathcal{O}(\gamma_n)$$

13/43

Oracle feedback

In many applications, perfect gradient information is unavailable / too costly:

Machine Learning:

$$f(x) = \sum_{i=1}^{N} f_i(x)$$
 and only a batch of $\nabla f_i(x)$ is computable per iteration

Reinforcement Learning / Control:

The classical theory 0000000000000

$$f(x) = \mathbb{E}[F(x;\theta)]$$
 and only $\nabla F(x;\theta)$ can be observed for a random θ

Game Theory / Bandits:

Only f(x) is observable

Stochastic first-order oracle

A stochastic first-order oracle (SFO) is a random field $G(x;\theta)$ with the following properties

 $\mathbb{E}_{\theta}[G(x;\theta)] = g(x)$ • Unbiasedness:

 $\mathbb{E}_{\theta}[\|G(x;\theta)-g(x)\|^2] \leq \sigma^2$ **②** Finite variance:

 \triangle **Special case:** if $q = \nabla f$, then G is called a **stochastic gradient** of f

Π. Μερτικόπουλος

Methods, III: Stochastic gradient descent

Stochastic gradient descent

[Robbins & Monro, 1951; Ljung, 1978; Bertsekas & Tsitsiklis, 2000]

$$X_{n+1} = X_n - \gamma_n \nabla F(X_n; \theta_n)$$

(SGD)

Methods, IV: Robbins-Monro

The Robbins-Monro algorithm

[Robbins & Monro, 1951]

$$X_{n+1} = X_n - \gamma_n G(X_n; \theta_n)$$

(RM)

Non-potential: general g

Stochastic:

$$\sigma_n = \mathcal{O}(1)$$

▶ No offset:

$$B_n=0$$

ΕΚΠΑ, Τμήμα Μαθηματικών

Methods, V: Kiefer-Wolfowitz

The Kiefer-Wolfowitz algorithm

[Kiefer & Wolfowitz, 1952]

$$X_{n+1} = X_n - \gamma_n \frac{f(X_n + \delta_n e_n) - f(X_n - \delta_n e_n)}{2\delta_n} e_n$$
 (KW)

where $e_n \sim \text{unif}\{e_1, \dots, e_d\}$ is a **random direction** and δ_n is the **width** of the finite difference quotient

From algorithms to flows

Characteristic property of SA schemes

$$\frac{X_{n+1} - X_n}{\gamma_n} = -g(X_n) + Z_n \approx -g(X_n)$$
 "on average"

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

Asymptotic pseudotrajectories

Basic idea: If γ_n is "small", the errors wash out and " $\lim_{t\to\infty} (RM) = \lim_{t\to\infty} (MD)$ "

The ODE method

[Ljung, 1977; Benveniste et al., 1990; Kushner & Yin, 1997; Benaïm, 1999]

- **Virtual time:** $\tau_n = \sum_{k=1}^n \gamma_k$
- ► Virtual trajectory: $X(t) = X_n + \frac{t \tau_n}{\tau_{n+1} \tau_n} (X_{n+1} X_n)$
- Asymptotic pseudotrajectory:

$$\lim_{t \to \infty} \sup_{0 \le h \le T} \|X(t+h) - \phi_h(X(t))\| = 0 \tag{APT}$$

where $\phi_t(x)$ denotes the position at time t of an orbit of (MD) starting at x

- **Long run:** X(t) tracks (MD) with arbitrary accuracy over windows of arbitrary length
 - Benaïm & Hirsch, 1995, 1996; Benaïm, 1999

Internally chain transitive sets

Stationary sets: an assorted zoology

▶ **Invariant:** image of S under (MD) = S

 $\# \phi_t(\mathcal{S}) = \mathcal{S} \text{ for all } t$

- ► Attractor: invariant + attracts uniformly all nearby orbits of (MD)
- ► Internally chain transitive: invariant + contains no proper attractors

00/42

Internally chain transitive sets

Stationary sets: an assorted zoology

▶ **Invariant:** image of S under (MD) = S

The classical theory 0000000000000

 $\# \phi_t(S) = S$ for all t

- **Attractor:** invariant + attracts uniformly all nearby orbits of (MD)
- ▶ Internally chain transitive: invariant + contains no proper attractors

Internally chain transitive sets

Stationary sets: an assorted zoology

▶ **Invariant:** image of S under (MD) = S

 $\# \phi_t(S) = S$ for all t

- **Attractor:** invariant + attracts uniformly all nearby orbits of (MD)
- ▶ Internally chain transitive: invariant + contains no proper attractors

The limit set theorem

How does the long-run behavior of an APT relate to that of (MD)?

Theorem (Benaïm & Hirsch, 1996)

Let X(t) be a bounded APT of (MD) and let

$$\mathcal{L}(X) = \{x \in \mathcal{X} : X(t_n) \to x \text{ for some } t_n \to \infty\}$$

denote the set of limit points of *X*. Then:

- $\mathcal{L}(X)$ is an ICT set of (MD)
- If S is ICT, there exists some APT of (MD) such that $\mathcal{L}(X) = S$

21/43

Μερτικόπουλος

The limit set theorem

How does the long-run behavior of an APT relate to that of (MD)?

Theorem (Benaïm & Hirsch, 1996)

Let X(t) be a bounded APT of (MD) and let

$$\mathcal{L}(X) = \{x \in \mathcal{X} : X(t_n) \to x \text{ for some } t_n \to \infty\}$$

denote the set of limit points of *X*. Then:

- \blacktriangleright $\mathcal{L}(X)$ is an ICT set of (MD)
- If S is ICT, there exists some APT of (MD) such that $\mathcal{L}(X) = S$

Two basic questions:

- **Q1**. When is an SA sequence an APT of (MD)?
- **Q2**. What are the ICT sets of (MD)?

Stochastic approximation criteria

Is a stochastic approximation sequence an APT of (MD)?

(A) *q* is subcoercive:

$$\langle g(x), x \rangle \ge 0$$
 for sufficiently large x

The noise and offset parameters of (SA) satisfy:

$${\color{red} \blacktriangleright} \ \, \textstyle \sum_n \, \gamma_n^2 \, \sigma_n^2 < \infty$$

Proposition (Benaïm & Hirsch, 1996; Hsieh et al., 2021)

Assume: (A) + (B)

 X_n is a bounded APT of (MD) with probability 1 Then:

Outline

- Background & motivation
- 2 The classical theory
- **3** Applications to minimization problems
- 4 Applications to min-max problems

Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματι

Convergence in minimization problems

Problem: minimize $f(x) = \mathbb{E}_{\theta}[F(x;\theta)]$

Drift: $g = \nabla f$

Key property: $df/dt = -\|\nabla f(x(t))\|^2 \le 0$ w/ equality iff $\nabla f(x) = 0$

Theorem (Bertsekas & Tsitsiklis, 2000; M, Hallak, Kavis & Cevher, 2020)

Assume: (A)+(B)

 X_n converges with probability 1 to a component of crit(f) where f is constant. Then:

Figure: A hyperbolic ridge manifold, typical of ResNet loss landscapes [Li et al., 2018]

Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0, \quad \det(\operatorname{Hess}(f(x^*))) \neq 0$$

- \implies the flow is **linearly unstable** near x^*
- \implies convergence to x^* unlikely

Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0, \quad \det(\operatorname{Hess}(f(x^*))) \neq 0$$

- \implies the flow is **linearly unstable** near x^*
- \implies convergence to x^* unlikely

Theorem (Pemantle, 1990)

Assume:

- $ightharpoonup x^*$ is a hyperbolic saddle point
- $b_n = 0$
- $ightharpoonup U_n$ is uniformly bounded (a.s.) and uniformly exciting

$$\mathbb{E}[[\langle U, z \rangle]_+] \ge c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

 $\nu \gamma_n \propto 1/n$

Then: $\mathbb{P}(\lim_{n\to\infty} X_n = x^*) = 0$

25/4

Escape from non-hyperbolic traps

Strict saddles

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0$$

Escape from non-hyperbolic traps

Strict saddles

$$\lambda_{\min}(\operatorname{Hess}(f(x^*))) < 0$$

Theorem (Ge et al., 2015)

Given: tolerance level $\zeta > 0$

Assume:

- f is bounded and satisfies (LS)
- Hess(f(x)) is Lipschitz continuous
- for all $x \in \mathcal{X}$: (a) $\|\nabla f(x)\| \ge \varepsilon$; or (b) $\lambda_{\min}(\operatorname{Hess}(f(x))) \le -\beta$; or (c) x is δ -close to a local minimum x^* of faround which f is α -strongly convex
- $b_n = 0$
- \triangleright U_n is uniformly bounded (a.s.) and contains a component uniformly sampled from the unit sphere
- $y_n \equiv y$ with $y = \mathcal{O}(1/\log(1/\zeta))$

with probability at least $1 - \zeta$, (SGD) produces after $\mathcal{O}(\gamma^{-2} \log(1/(\gamma \zeta)))$ iterations a point which is Then: $\mathcal{O}(\sqrt{\gamma}\log(1/(\gamma\zeta)))$ -close to x^*

Are non-hyperbolic traps avoided almost surely?

Theorem (M, Hallak, Kavis & Cevher, 2020)

Assume:

- ► Conditions (B)
- $ightharpoonup U_n$ is uniformly bounded (a.s.) and uniformly exciting

$$\mathbb{E}[\langle U, z \rangle^+] \ge c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

• $\gamma_n \propto 1/n^p$ for some $p \in (0,1]$

Then: $\mathbb{P}(X_n \text{ converges to a set of strict saddle points}) = 0$

Outline

- Background & motivation
- 2 The classical theory
- Applications to minimization problems
- 4 Applications to min-max problems

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- $\checkmark\,$ RM methods avoid spurious, non-minimizing critical manifolds

28/43

. Μερτικόπουλος

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- ✓ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

28/43

In minimization problems:

- ✓ RM methods converge to the problem's critical set
- ✓ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

Do min-max algorithms

- ⚠ Converge to unilaterally stable/stationary points?
- ⚠ Avoid spurious, non-equilibrium sets?

28/43

1. Μερτικόπουλος <u>ΕΚΠΑ, Τμήμα Μαθηματικών</u>

Min-max dynamics

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

Minimization problems: (MD) is a gradient flow

 $\# q = \nabla f$

X Min-max problems: (MD) can be arbitrarily complicated # non-potential *g*

Min-max dynamics

Mean dynamics

$$\dot{x}(t) = -g(x(t)) \tag{MD}$$

Minimization problems: (MD) is a gradient flow

 $\# q = \nabla f$

X Min-max problems: (MD) can be arbitrarily complicated # non-potential q

Theorem (Hsieh et al., 2021)

Assume:

- Conditions (B)
- U_n is uniformly bounded (a.s.) and uniformly exciting

$$\mathbb{E}[\langle U, z \rangle^+] \ge c$$
 for all unit vectors $z \in \mathbb{S}^{d-1}$, $x \in \mathcal{X}$

 $\gamma_n \propto 1/n^p$ for some $p \in (0,1]$

Then: $\mathbb{P}(X_n \text{ converges to an unstable point / periodic orbit}) = 0$

Applications to min-max problems 0000000000000

Toy example: bilinear problems

Bilinear min-max problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2)$$

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{T}(x_1 - b_1)$

Bilinear min-max problems

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = (x_1 - b_1)^{\mathsf{T}} A(x_2 - b_2)$$

Mean dynamics:

$$\dot{x}_1 = -A(x_2 - b_2)$$
 $\dot{x}_2 = A^{\mathsf{T}}(x_1 - b_1)$

Energy function:

$$E(x) = \frac{1}{2} ||x_1 - b_1||^2 + \frac{1}{2} ||x_2 - b_2||^2$$

Lyapunov property:

$$\frac{dE}{dt} \le 0$$
 w/ equality if $A = A^{T}$

⇒ distance to solutions (weakly) decreasing along (MD)

Periodic orbits

Roadblock: the energy may be a constant of motion

Figure: Hamiltonian flow of $f(x_1, x_2) = x_1x_2$

31/43

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματ

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)

(MD) is Poincaré recurrent in all bilinear min-max problems that admit an equilibrium

. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

The stochastic case

Figure: Behavior of gradient and extra-gradient methods with stochastic feedback

Under (A) + (B), first-order methods converge to a (random) periodic orbit

But see also Chavdarova et al., 2019: Hsieh et al., 2020

The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let $\mathcal{V} = C^2(\mathbb{R}^d; \mathbb{R}^d)$ be the space of C^2 vector fields on \mathbb{R}^d endowed with the Whitney topology. Then the set of vector fields with a non-trivial recurrent set is **meager** (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field $g \in \mathcal{V}$, the following properties are generic (in the Baire category sense):

- All closed orbits are hyperbolic
- Heteroclinic orbits are **transversal** (i.e., stable and unstable manifolds intersect transversally)

TLDR: non-attracting periodic orbits are **non-generic** (they occur negligibly often)

Π. Μερτικόπουλος ΕΚΠΑ, Τμήμα Μαθηματικών

Applications to min-max problems 0000000000000

Convergence to attractors

Attractors → natural solution concepts for non-min problems

Theorem (Hsieh et al., 2021)

Assume: S is an attractor of (MD) + Conditions (B)

Then: for every tolerance level $\alpha > 0$, there exists a neighborhood \mathcal{U} of \mathcal{S} such that

 $\mathbb{P}(X_n \text{ converges to } S \mid X_1 \in \mathcal{U}) \geq 1 - \alpha$

Qualitatively similar landscape (??)

▶ Avoidance of strict saddles ↔ avoidance of unstable invariant sets

Is there a fundamental difference between min and min-max problems?

Qualitatively similar landscape (??)

- Avoidance of strict saddles \Leftrightarrow avoidance of unstable invariant sets
- Components of critical points ↔ ICT sets

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious invariant sets!

#"spurious" \Rightarrow contains no critical points

Almost bilinear games

Consider the "almost bilinear" game

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} \quad f(x_1, x_2) = x_1 x_2 + \varepsilon \phi(x_2)$$

where
$$\varepsilon > 0$$
 and $\phi(x) = (1/2)x^2 - (1/4)x^4$

Properties:

- Unique critical point at the origin
- Unstable under (MD)

X All RM algorithms attracted to spurious limit cycle from almost all initial conditions

→ Hsieh et al., 2021

Spurious attractors in almost bilinear games

RM algorithms converge to a spurious limit cycle with **no critical points**

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

Ιερτικόπουλος

Forsaken solutions

Another almost bilinear game

$$\min_{x_1 \in \mathcal{X}_1} \max_{x_2 \in \mathcal{X}_2} f(x_1, x_2) = x_1 x_2 + \varepsilon [\phi(x_1) - \phi(x_2)]$$

where
$$\varepsilon > 0$$
 and $\phi(x) = (1/4)x^2 - (1/2)x^4 + (1/6)x^6$

Properties:

- Unique critical point near the origin
- Stable under (MD), but not a local min-max
- Two isolated periodic orbits:
 - One unstable, shielding critical point, but small
 - One stable, attracts all trajectories of (MD) outside small basin

● Hsieh et al., 2021

ΕΚΠΑ, Τμήμα Μαθηματικών

Π. Μερτικόπουλος

Forsaken solutions in almost bilinear games

With high probability, all Robbins-Monro (RM) algorithms forsake the game's unique (local) equilibrium

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

40/43

Conclusions

Minimization and min-max optimization problems are fundamentally different:

- Min-max methods may have limit points that are neither stable nor stationary
- Bilinear games are **not** representative case studies for min-max optimization
- Cannot avoid spurious, non-equilibrium sets with positive probability
- Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)

Conclusions

Minimization and min-max optimization problems are fundamentally different:

- Min-max methods may have limit points that are neither stable nor stationary
- Bilinear games are **not** representative case studies for min-max optimization
- Cannot avoid spurious, non-equilibrium sets with positive probability
- Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)

Many open questions:

- What about second-order methods?
- Applications to finite games (where bilinear games are no longer fragile)?
- Which equilibria are stable under first-order methods for learning in games?
- **...**

References I

- Benaïm, M. Dynamics of stochastic approximation algorithms. In Azéma, J., Émery, M., Ledoux, M., and Yor, M. (eds.), Séminaire de Probabilités XXXIII, volume 1709 of Lecture Notes in Mathematics, pp. 1-68. Springer Berlin Heidelberg, 1999.
- Benaïm, M. and Hirsch, M. W. Dynamics of Morse-Smale urn processes. Ergodic Theory and Dynamical Systems, 15(6):1005-1030, December 1995.
- Benaïm, M. and Hirsch, M. W. Asymptotic pseudotrajectories and chain recurrent flows, with applications. Journal of Dynamics and Differential Equations, 8(1):141-176, 1996.
- Benveniste, A., Métivier, M., and Priouret, P. Adaptive Algorithms and Stochastic Approximations. Springer, 1990.
- Bertsekas, D. P. and Tsitsiklis, J. N. Gradient convergence in gradient methods with errors. SIAM Journal on Optimization, 10(3):627-642, 2000.
- Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien, S. Reducing noise in GAN training with variance reduced extragradient. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.
- Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from saddle points Online stochastic gradient for tensor decomposition. In COLT '15: Proceedings of the 28th Annual Conference on Learning Theory, 2015.
- Hsieh, Y.-G., lutzeler, F., Malick, I., and Mertikopoulos, P. Explore aggressively, update conservatively: Stochastic extragradient methods with variable stepsize scaling. In NeurIPS '20: Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
- Hsieh, Y.-P., Mertikopoulos, P., and Cevher, V. The limits of min-max optimization algorithms: Convergence to spurious non-critical sets. In ICML '21: Proceedings of the 38th International Conference on Machine Learning, 2021.
- Kiefer, J. and Wolfowitz, J. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3):462-466, 1952
- Kupka, I. Contribution à la théorie des champs génériques. Contributions to Differential Equations, 2:457-484, 1963.

References II

Kushner, H. J. and Yin, G. G. Stochastic approximation algorithms and applications. Springer-Verlag, New York, NY, 1997.

Li, H., Xu, Z., Taylor, G., Suder, C., and Goldstein, T. Visualizing the loss landscape of neural nets. In NeurIPS '18: Proceedings of the 32nd International Conference of Neural Information Processing Systems, 2018.

Ljung, L. Analysis of recursive stochastic algorithms. IEEE Trans. Autom. Control, 22(4):551-575, August 1977.

Ljung, L. Strong convergence of a stochastic approximation algorithm. Annals of Statistics, 6(3):680-696, 1978.

Martinet, B. Régularisation d'inéquations variationnelles par approximations successives. ESAIM: Mathematical Modelling and Numerical Analysis, 4(R3):154-158, 1970.

Pemantle, R. Nonconvergence to unstable points in urn models and stochastic aproximations. Annals of Probability, 18(2):698-712, April 1990.

Robbins, H. and Monro, S. A stochastic approximation method. Annals of Mathematical Statistics, 22:400-407, 1951.

Rockafellar, R. T. Monotone operators and the proximal point algorithm. SIAM Journal on Optimization, 14(5):877-898, 1976.

Smale, S. Stable manifolds for differential equations and diffeomorphisms. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17 (1-2):97-116, 1963.

