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Stochastic approximation: from the 1950's...

Stochastic approximation

Find a root of a nonlinear system involving unknown functions, accessible only via noisy evaluations

Herbert Robbins & Sutton Monro Jack Kiefer & Jacob Wolfowitz

Figure: The pioneers of the theory of stochastic approximation
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Generative adversarial networks

Gaussian

Zi R seed

Generator Discriminator

G(z;) = \ = / ““"M"‘X,-€Rd
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Generative adversarial networks

Gaussian

Zi R seed

Generator

G(Z,') A ““"M"‘X,-€Rd

Model likelihood: L(G,D) = ﬁD(Xi) x ﬁ(l - D(G(Z)))
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GAN training

How to find good generators (G € G) and discriminators (D € D)?

Discriminator: maximize (log-)likelihood estimation

max logL(G, D
max log L(G, D)
Generator: minimize the resulting divergence

i log L(G,D
2 5 s (GD)

Traininga GAN <= solving a min-max problem
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Loss surfaces

vy oy
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Figure: The loss landscape of a deep neural network [Li et al., 2018].
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Mathematical formulation

Minimization problems

min f(x) (Op)

Saddle-point problems

min max f(x,x2) (SP)

X1€X] x2€X;
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Mathematical formulation

Minimization problems (stochastic)

min f(x) = Bo[F(x;60)] (OpY)

Saddle-point problems (stochastic)

min max f(x1,%2) = Eg[F(x1, %2 60)] (SP)

x1€X] xp€ X,

1 MaBnuatikev
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Problem formulation

Main difficulties:

> No convex structure # technical assumptions later

*> Difficult to manipulate f in closed form # black-box oracle methods
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Problem formulation

Main difficulties:
> No convex structure # technical assumptions later

*> Difficult to manipulate f in closed form # black-box oracle methods

Focus on critical points:
Find x™ such that g(x*) =0 (Crit)

where g(x) is the problem’s defining vector field:

» Gradient field for (Opt):
g(x) = Vf(x)
> Hamiltonian field for (SP):

9(x) = (Va f(x1,%2), =V, f (1, %2))

# Notation: x < (x1,x2), X « X x X,
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Assumptions

Blanket assumptions

»> Unconstrained problems:
X = finite-dimensional Euclidean space

> Existence of solutions:
crit(f) == {x" e X : g(x*) =0} is nonempty

> Lipschitz continuity:
If(x") = f(x)| < G|x - x| forallx,x" eX (LC)

> Lipschitz smoothness:

lg(x) - g(x)| <L|x"—x| forallx,x"eX (LS)
W

MaBnuatiy
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Overview

Stochastic approximation

XYH-I = Xn - Ynén (SA)

where g,, n =1,2,...,is a “stochastic approximation” of g(X,) and y, > 0 is a “step-size” parameter.
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Overview

Stochastic approximation

Xn+1 =X, - Ynén (SA)

where g,, n =1,2,...,is a “stochastic approximation” of g(X,) and y, > 0 is a “step-size” parameter.

Main question: what is the long-run behavior of X,?

In minimization problems:
v First-order (= gradient-based) algorithms converge to critical points
v Are non-minimizers avoided?

In min-max problems / games:
15 Do gradient methods converge to critical points?

= Are non-equilibrium sets avoided?

Dynamical systems: from discrete to continuous time and back
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Stochastic approximation algorithms

Stochastic approximation template

Xni1 = Xy — YngAn (SA)

where:
> X, € R? is the state of the method at epochn=12,...
> y, > 0is a variable step-size parameter

» §, € R% is a stochastic approximation of g(X,,)

Blanket assumptions

© Step-size sequence:  y, is of the form y/n’ #y>0,pef0,1]
@® Random error: Un = gn —E[gn | Ful is bounded as E[|Us|?| Fu] < 0} #q>2
Fa]-9(Xn) isbounded as E[| b, | Fu] < Bu

© Systematic error: by =E[gn
where:

> By, 0, > 0 are deterministic sequences

> Fn=F(Xi,...,Xy) is the history of X,

EKMA, Thiipa MaBnuatuby
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Methods, I: Gradient descent

Gradient descent

[Cauchy, 1847]

X1 = Xy *)/an(Xn)

(GD)
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\pplications to min-max probl

Methods, II: Proximal gradient

Proximal gradient

[Martinet, 1970; Rockafellar, 1976]

Xn+1 = Xn — Yva(Xn+l) (PG)
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Oracle feedback

In many applications, perfect gradient information is unavailable / too costly:

> Machine Learning:
f(x) = XN, fi(x) and only a batch of ¥ f;(x) is computable per iteration
> Reinforcement Learning / Control:

f(x) =E[F(x;60)] and only VF(x;0) can be observed for a random 6

> Game Theory / Bandits:
Only f(x) is observable

Stochastic first-order oracle

A stochastic first-order oracle (SFO) is a random field G(x; 8) with the following properties
© Unbiasedness: Eg[G(x:0)] = g(x)
@ Finite variance: Eo[|G(x;0) — g(x)|*] < 0®

A\ Special case: if g = Vf, then G is called a stochastic gradient of f

BnpatKdy
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Methodes, I1I: Stochastic gradient descent

Stochastic gradient descent [Robbins & Monro, 1951; Ljung, 1978; Bertsekas & Tsitsiklis, 2000]

Xn+1=Xn — ))nvF(Xn; en) (SGD)

> v Potential:

A g=Vvf
/‘ /\ Stochastic:
/ o, = O(1)

7 v No offset:
. B, =0
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Methods, IV: Robbins-Monro

The Robbins-Monro algorithm [Robbins & Monro, 1951]

Xn+1 =X, - YnG(Xn; en) (RM)

/\ Non-potential:

. general g
-yG(x;0) /\ Stochastic:
. o, =0(1)
x*
x* > No offset:

B, =0
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Methods, V: Kiefer-Wolfowitz

The Kiefer-Wolfowitz algorithm [Kiefer & Wolfowitz, 1952]

f(Xu+ 0nen) — f(Xn—Snen)
Yn .

where e, ~ unif{ey, ..., e;} is a random direction and 8, is the width of the finite difference quotient

Xn+1 = Xn e (] (KW)
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From algorithms to flows

Characteristic property of SA schemes

Xn+1 - Xn

=—g(Xn)+Zy~—g(Xs) “onaverage”
Yn

Mean dynamics

x(1) = —g(x(1)) (MD)
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Asymptotic pseudotrajectories

»

Basic idea: If y, is “small”, the errors wash out and “lim;—... (RM) = lim;_, .. (MD)

The ODE method [Ljung, 1977; Benveniste et al., 1990; Kushner & Yin, 1997; Benaim, 1999]

> Virtual time: T, = X}, vk

t —_
> Virtual trajectory: X () = X, + 7”(X,,+1 - Xu)
Tn+l — Tn
> Asymptotic pseudotrajectory:
lim sup |X(¢t+h)—-¢p(X(t))|=0 (APT)

t—o00 0<h<T

where ¢;(x) denotes the position at time ¢ of an orbit of (MD) starting at x

> Long run: X (t) tracks (MD) with arbitrary accuracy over windows of arbitrary length

¢ Benaim & Hirsch, 1995, 1996; Benaim, 1999)

110 MAaBNUaTIKGY
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Internally chain transitive sets

Stationary sets: an assorted zoology
*> Invariant: image of S under (MD) = S #¢:(S) =Sforall t
> Attractor: invariant + attracts uniformly all nearby orbits of (MD)

> Internally chain transitive: invariant + contains no proper attractors

u, -

a)Stable and unstable fixed points bl &limit cycle c) A chaotic Lorenz attractor
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Internally chain transitive sets

Stationary sets: an assorted zoology

*> Invariant: image of S under (MD) = S #¢:(S) =Sforall t
> Attractor: invariant + attracts uniformly all nearby orbits of (MD)

> Internally chain transitive: invariant + contains no proper attractors
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The limit set theorem

How does the long-run behavior of an APT relate to that of (MD)?

Theorem (Benaim & Hirsch, 1996)

Let X(t) be a bounded APT of (MD) and let
L(X)={xeX:X(t,) > x forsome t, — oo}
denote the set of limit points of X. Then:

> L(X)isan ICT set of (MD)
> If S is ICT, there exists some APT of (MD) such that £(X) =S

EKMA, Thiipa MaBnuatuby
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The limit set theorem

How does the long-run behavior of an APT relate to that of (MD)?

Theorem (Benaim & Hirsch, 1996)

Let X(t) be a bounded APT of (MD) and let
L(X)={xeX:X(t,) > x forsome t, — oo}
denote the set of limit points of X. Then:

> L(X)isan ICT set of (MD)
> If S is ICT, there exists some APT of (MD) such that £(X) =S

Two basic questions:
Q1. When is an SA sequence an APT of (MD)?
Q2. What are the ICT sets of (MD)?

EKMA, Thiipa MaBnuatuby
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Stochastic approximation criteria

Is a stochastic approximation sequence an APT of (MD)?

(A) g is subcoercive:
(g(x),x) >0 forsufficiently large x

(B) The noise and offset parameters of (SA) satisfy:
> limy—oo By =0
> Y. ¥YnBn < oo

> 2 2
Zn))ngn < oo

Proposition (Benaim & Hirsch, 1996; Hsieh et al., 2021)

Assume: (A)+(B)
Then: X, is a bounded APT of (MD) with probability 1

1BNHATKY
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Applications to minimization problems
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Convergence in minimization problems

> Problem: minimize f(x) = Eg[F(x;0)]
> Drift: g=Vf
» Key property:  df/dt=—|Vf(x(t))|* < 0w/ equality iff Vf(x) =0

Theorem (Bertsekas & Tsitsiklis, 2000; M, Hallak, Kavis & Cevher, 2020)
Assume: (A)+(B)
Then: X, converges with probability 1 to a component of crit( f) where f is constant.
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Are all critical points desirable?

2




Applications to minimization problems
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Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x7))) <0,

— the flow is linearly unstable near x*

—
== convergence to x~ unlikely

det(Hess(f(x*))) =0
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[e]o]e] Je]e]

Are traps avoided?

Hyperbolic saddle (isolated non-minimizing critical point)

Amin (Hess(f(x*))) <0, det(Hess(f(x*))) #0
— the flow is linearly unstable near x*

—
== convergence to x~ unlikely

Theorem (Pemantle, 1990)
Assume:

> x” is a hyperbolic saddle point

> b,=0

> U, is uniformly bounded (a.s.) and uniformly exciting

E[[(U,z)]+] > ¢ forall unit vectors z € Sl xex
> ynocl/n

Then: P(limy—o X, =x) =0

MaBnuatiy
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Escape from non-hyperbolic traps

Strict saddles

Amin (Hess(f(x7))) <0
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Escape from non-hyperbolic traps

Strict saddles
Amin (Hess(f(x7))) <0

Theorem (Ge et al.,, 2015)

Given:  tolerance level { > 0
Assume:
> f is bounded and satisfies (LS)
> Hess(f(x)) is Lipschitz continuous

» forall x € X: (a) |V f(x)| = & or (b) Amin (Hess(f(x))) < —p;or (c) x is 8-close to a local minimum x* of f
around which f is a-strongly convex

> b, =0

> U, is uniformly bounded (a.s.) and contains a component uniformly sampled from the unit sphere

> y. = ywithy = O(1/log(1/{))
Then:  with probability at least 1 — {, (SGD) produces after O(y~*1log(1/(y{))) iterations a point which is
O(/ylog(1/(y¢)))-close to x*

EKMA, Thiipa MaBnuatuby
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Are non-hyperbolic traps avoided almost surely?

Theorem (M, Hallak, Kavis & Cevher, 2020)

Assume:
> Conditions (B)
> U, is uniformly bounded (as.) and uniformly exciting

E[(U,z)"] > ¢ forallunitvectorsz e S, x € X

> y, o< 1/n? for some p € (0,1]

Then:  P(X, converges to a set of strict saddle points) = 0




Applications to min-max problems
@®0000000000000

Outline

@ Applications to min-max problems




Applications to min-max problems
0000000000000 0

Minimization vs. min-max optimization

In minimization problems:

v/ RM methods converge to the problem’s critical set

v/ RM methods avoid spurious, non-minimizing critical manifolds
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Minimization vs. min-max optimization

In minimization problems:

v/ RM methods converge to the problem’s critical set

v/ RM methods avoid spurious, non-minimizing critical manifolds

Do these properties carry over to min-max optimization problems?

Do min-max algorithms

/\ Converge to unilaterally stable/stationary points?

/\ Avoid spurious, non-equilibrium sets?




Applications to min-max problems

0O0®00000000000

Min-max dynamics

Mean dynamics

(1) = —g(x(1)) (MD)

v Minimization problems: (MD) is a gradient flow #g=Vf

X Min-max problems: (MD) can be arbitrarily complicated # non-potential g
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Min-max dynamics

x(1) = —g(x(1)) (MD)
v/ Minimization problems: (MD) is a gradient flow #g=Vf
X Min-max problems: (MD) can be arbitrarily complicated # non-potential g

Theorem (Hsieh et al., 2021)
Assume:
»> Conditions (B)

> U, is uniformly bounded (a.s.) and uniformly exciting
E[(U,z)*] 2 ¢ forall unitvectors z € S*", x € X
> y, o< 1/n? for some p € (0,1]

Then:  IP(X, converges to an unstable point / periodic orbit) = 0

1 MaBnuatikiv
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Toy example: bilinear problems

Bilinear min-max problems

min max f(xl,xz) = (Xl - bl)TA(Xz - bz)

X1€X] x2€ X,

Mean dynamics:

.9'61 = —A(XZ - bz) .9'62 = A-r (x1 - bl)
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Toy example: bilinear problems

Bilinear min-max problems

min max f(xl,xz) = (Xl - bl)TA(Xz - bz)

X1€X] x2€ X,

Mean dynamics:

.9'61 = —A(XZ - bz) .9'62 = A-r (x1 - bl)

Energy function:

1 2 1 2
E(x) = 30 - b+ Slx - bo]

Lyapunov property:
dE
T <0 w/equalityifA=A"

== distance to solutions (weakly) decreasing along (MD)




Applications to min-max problems

[e]o]e]e] Jeleje]ele]e]ele]e)

Periodic orbits

Roadblock: the energy may be a constant of motion

Figure: Hamiltonian flow of f(x1,x2) = x1x2
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Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often
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Poincaré recurrence

Definition (Poincaré, 1890's)

A system is Poincaré recurrent if almost every orbit returns infinitely close to its starting point infinitely often

Theorem (M, Papadimitriou, Piliouras, 2018; unconstrained version)

(MD) is Poincaré recurrent in all bilinear min-max problems that admit an equilibrium
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The stochastic case

0.0 05 10
x

Figure: Behavior of gradient and extra-gradient methods with stochastic feedback

Under (A) +(B), first-order methods converge to a (random) periodic orbit

y

# But see also Chavdarova et al., 2019; Hsieh et al,, 2020
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The Kupka-Smale theorem

Systems with the structure of bilinear games are rare:

Theorem (Kupka, 1963)

Let V = C*(RY;R?) be the space of C* vector fields on R? endowed with the Whitney topology. Then the set of
vector fields with a non-trivial recurrent set is meager (in the Baire category sense).

Theorem (Smale, 1963)

For any vector field g € V), the following properties are generic (in the Baire category sense):
> All closed orbits are hyperbolic

> Heteroclinic orbits are transversal (j.e,, stable and unstable manifolds intersect transversally)

TLDR: non-attracting periodic orbits are non-generic (they occur negligibly often)




cations to minimization probl Applications to min-max problems

[e]o]e]e]e]ele]e] Jele]ele]e)

Convergence to attractors

Attractors ~ natural solution concepts for non-min problems

Theorem (Hsieh et al., 2021)

Assume: S is an attractor of (MD) + Conditions (B)
Then:  for every tolerance level & > 0, there exists a neighborhood U of S such that

P(X, convergesto S | X1 eU) >1-
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Minimization vs. min-max optimization

Qualitatively similar landscape (?77)

» Avoidance of strict saddles «» avoidance of unstable invariant sets

Is there a fundamental difference between min and min-max problems?
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Minimization vs. min-max optimization

Qualitatively similar landscape (?77)

» Avoidance of strict saddles «» avoidance of unstable invariant sets v

> Components of critical points «» [CT sets

Is there a fundamental difference between min and min-max problems?

Non-gradient problems may have spurious invariant sets!

# “spurious” == contains no critical points
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Almost bilinear games

Consider the “almost bilinear” game

min max  f(x1,X2) = x1%2 + £(x2)
x1€X] x2€ X,

where ¢ > 0 and ¢(x) = (1/2)x* - (1/4)x*

Properties:

> Unique critical point at the origin
» Unstable under (MD)

X All RM algorithms attracted to spurious limit cycle from almost all initial conditions

> Hsiehetal, 2021
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% Spurious attractors in almost bilinear games

RM algorithms converge to a spurious limit cycle with no critical points

1.0

0.5

2 00

-0.5

-10 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X1 X1

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

EKMA, Tufpa MaBnuatike
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Forsaken solutions

Another almost bilinear game

mi)r(l max e x2) = x12 + e[¢(x1) = ¢(x2) ]

where ¢ > 0 and ¢(x) = (1/4)x* - (1/2)x* + (1/6)x°

Properties:
*» Unique critical point near the origin
> Stable under (MD), but not a local min-max

> Two isolated periodic orbits:
> One unstable, shielding critical point, but small

> One stable, attracts all trajectories of (MD) outside small basin

*¢ Hsiehetal, 2021
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% Forsaken solutions in almost bilinear games

With high probability, all Robbins-Monro (RM) algorithms forsake the game’s unique (local) equilibrium

-15 -10 =05 0.0 0.5 10 15 =15 -10 =05 0.0 0.5 1.0 15

Figure: Convergence to a spurious attractor. Left: stochastic gradient descent; right: stochastic extra-gradient

10/43

EKMA, ThAHa MaBnpatikey
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Conclusions

Minimization and min-max optimization problems are fundamentally different:

> Min-max methods may have limit points that are neither stable nor stationary

> Bilinear games are not representative case studies for min-max optimization

> Cannot avoid spurious, non-equilibrium sets with positive probability

*> Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)




Conclusions
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Conclusions

Minimization and min-max optimization problems are fundamentally different:

> Min-max methods may have limit points that are neither stable nor stationary

> Bilinear games are not representative case studies for min-max optimization
> Cannot avoid spurious, non-equilibrium sets with positive probability

*> Different approach needed (mixed-strategy learning, multiple-timescales, adaptive methods...)

Many open questions:
> What about second-order methods?
> Applications to finite games (where bilinear games are no longer fragile)?

> Which equilibria are stable under first-order methods for learning in games?

> ...
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