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Most of the talk was on the blackboard. This
is an extended version of the slides
containing the main results appearing on the
blackboard.
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Planar Cayley graphs
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Theorem (Folklore)

A finite group admits a faithful action (by homeomorphisms or
isometries) on S? if and only if it has a planar Cayley graph.
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Whitney’s unique embedding theorem

Theorem (Whitney '32)
Any two embeddings of a 3-connected, planar graph G into S?
coincide up to homeomorphism.

More precisely, for every two embeddings ¢,y : G — S?, there
is @ homeomorphism a : S?> — S? such thaty = « o ¢.
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Whitney’s unique embedding theorem

Theorem (Whitney '32)
Any two embeddings of a 3-connected, planar graph G into S?
coincide up to homeomorphism.

More precisely, for every two embeddings ¢,y : G — S?, there
is @ homeomorphism a : S?> — S? such thaty = « o ¢.

Theorem (G & Kim ’23)

Any two embeddings of a simply-connected, locally
3-connected, 2-complex into S® coincide up to
homeomorphism.
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Theorem (G & Kontogeorgiou '23+)

For a finite group T the following are equivalent:

@ T admits a faithful action by homeomorphisms/smooth
maps/isometries on S3;

@ [ admits a generalised Cayley complex X with a I -invariant
planar rotation system;

© T admits a generalised Cayley complex X with an
embedding ¢ : X — S3 with T -invariant planar rotation
system.

Theorem (Dinkelbach & Leeb '09, Pardon '21)

A finite group admits a faithful action by
homeomorphisms/smooth maps/isometries on S° if and only if
it is isomorphic to a subgroup of the orthogonal group O(4).
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Theorem (Levinson & Maskit '75, G '20, Bowditch '21)
For a finitely generated group I, the following are equivalent:

@ T admits a faithful, properly discontinuous action by
homeomorphisms on a planar surface;

@ T has a Cayley graph admitting a consistent embedding;

@ T has a Cayley multi-graph admitting a consistent embedding
every facial path of which is finite;

© T admits a faithful, properly discontinuous, co-compact action
by homeomorphisms on the sphere, the plane R?, the open
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Theorem (Levinson & Maskit '75, G '20, Bowditch '21)
For a finitely generated group I, the following are equivalent:

@ T admits a faithful, properly discontinuous action by
homeomorphisms on a planar surface;

@ T has a Cayley graph admitting a consistent embedding;

@ T has a Cayley multi-graph admitting a consistent embedding
every facial path of which is finite;

© T admits a faithful, properly discontinuous, co-compact action
by homeomorphisms on the sphere, the plane R?, the open
annulus, or the Cantor sphere.

Theorem (Svarc—Milnor lemma '68)

Let G be a group acting by isometries on a proper length space X
such that the action is properly discontinuous and cocompact. Then
G is quasi-isometric to X.
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Conjecture (Poincaré 1904)

Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.
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Conjecture (Poincaré 1904)

Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.

Thurston’s Geometrization Conjecture (1982):

Three-manifolds are greatly more complicated than surfaces, and I think it is
fair to say that until recently there was little reason to expect any analogous
theory for manifolds of dimension 3 (or more)—except perhaps for the fact
that so many 3-manifolds are beautiful. The situation has changed, so that I
feel fairly confident in proposing the

1.1. CONJECTURE. The interior of every compact 3-manifold has a canonical
decomposition into pieces which have geometric structures.

In §2, I will describe some theorems which support the conjecture, but first
some explanation of its meaning is in order.
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Thurston’s Geometrization Conjecture (1982):

Three-manifolds are greatly more complicated than surfaces, and I think it is
fair to say that until recently there was little reason to expect any analogous
theory for manifolds of dimension 3 (or more)—except perhaps for the fact
that so many 3-manifolds are beautiful. The situation has changed, so that I
feel fairly confident in proposing the

1.1. CONJECTURE. The interior of every compact 3-manifold has a canonical
decomposition into pieces which have geometric structures.

In §2, I will describe some theorems which support the conjecture, but first
some explanation of its meaning is in order.

Theorem (Perelman ’03)

It is true.

Agelos Georgakopoulos Embeddable Cayley Complexes



Let M be a connected, simply connected, topological
3-manifold. Suppose M admits a properly-discontinuous,
co-compact action by homeomorphisms. Then M is
homeomorphic to one of the following four spaces:

(i) S3, (if) R3, (iii) S x R, or (iv) the Cantor 3-sphere.
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Theorem (Kuratowski 1930)

A finite graph is planar if and only if it does not contain a
homeomorphic copy of Ks or K3 3.
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Theorem (Kuratowski 1930)

A finite graph is planar if and only if it does not contain a
homeomorphic copy of Ks or K3 3.

Carmesin '17+ proves an analogue for 2-complex embeddable
into 3.
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Theorem (Kuratowski 1930)

A finite graph is planar if and only if it does not contain a
homeomorphic copy of Ks or K3 3.

Carmesin '17+ proves an analogue for 2-complex embeddable
into 3.

Lemma (Carmesin ’17+)

A finite, simply-connected 2-complex embeds into S® if and only
if it admits a planar rotation system.
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Theorem (Kuratowski 1930)

A finite graph is planar if and only if it does not contain a
homeomorphic copy of Ks or K3 3.

Carmesin '17+ proves an analogue for 2-complex embeddable
into 3.

Lemma (Carmesin ’17+)

A finite, simply-connected 2-complex embeds into S® if and only
if it admits a planar rotation system.

This is ‘equivalent’ to the Poincaré conjecture!
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