Discrete group actions on 3-manifolds and embeddable Cayley complexes

Agelos Georgakopoulos

THE UNIVERSITY OF WARWICK

Joint with George Kontogeorgiou

Athens, 1/6/23

ヘロン 人間 とくほ とくほ とう

1

Most of the talk was on the blackboard. This is an extended version of the slides containing the main results appearing on the blackboard.

Agelos Georgakopoulos Embeddable Cayley Complexes

Planar Cayley graphs

Theorem (Folklore)

A finite group admits a faithful action (by homeomorphisms or isometries) on S^2 if and only if it has a planar Cayley graph.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Whitney '32)

Any two embeddings of a 3-connected, planar graph G into \mathbb{S}^2 coincide up to homeomorphism.

More precisely, for every two embeddings $\phi, \psi : G \to \mathbb{S}^2$, there is a homeomorphism $\alpha : \mathbb{S}^2 \to \mathbb{S}^2$ such that $\psi = \alpha \circ \phi$.

ヘロン 人間 とくほ とくほ とう

Theorem (Whitney '32)

Any two embeddings of a 3-connected, planar graph G into \mathbb{S}^2 coincide up to homeomorphism.

More precisely, for every two embeddings $\phi, \psi : G \to \mathbb{S}^2$, there is a homeomorphism $\alpha : \mathbb{S}^2 \to \mathbb{S}^2$ such that $\psi = \alpha \circ \phi$.

Theorem (G & Kim '23)

Any two embeddings of a simply-connected, locally 3-connected, 2-complex into \mathbb{S}^3 coincide up to homeomorphism.

ヘロト ヘアト ヘビト ヘビト

Theorem (G & Kontogeorgiou '23+)

For a finite group Γ the following are equivalent:

- Γ admits a faithful action by homeomorphisms/smooth maps/isometries on S³;
- Γ admits a generalised Cayley complex X with a Γ-invariant planar rotation system;
- S Γ admits a generalised Cayley complex X with an embedding φ : X → S³ with Γ-invariant planar rotation system.

Theorem (Dinkelbach & Leeb '09, Pardon '21)

A finite group admits a faithful action by homeomorphisms/smooth maps/isometries on \mathbb{S}^3 if and only if it is isomorphic to a subgroup of the orthogonal group O(4).

ヘロン 人間 とくほ とくほ とう

ъ

Theorem (Levinson & Maskit '75, G '20, Bowditch '21)

For a finitely generated group Γ , the following are equivalent:

- Γ admits a faithful, properly discontinuous action by homeomorphisms on a planar surface;
- Γ has a Cayley graph admitting a consistent embedding;
- Γ has a Cayley multi-graph admitting a consistent embedding every facial path of which is finite;
- Γ admits a faithful, properly discontinuous, co-compact action by homeomorphisms on the sphere, the plane R², the open annulus, or the Cantor sphere.

イロト イポト イヨト イヨト 三日

Theorem (Levinson & Maskit '75, G '20, Bowditch '21)

For a finitely generated group Γ , the following are equivalent:

- Γ admits a faithful, properly discontinuous action by homeomorphisms on a planar surface;
- I has a Cayley graph admitting a consistent embedding;
- Γ has a Cayley multi-graph admitting a consistent embedding every facial path of which is finite;
- Γ admits a faithful, properly discontinuous, co-compact action by homeomorphisms on the sphere, the plane R², the open annulus, or the Cantor sphere.

Theorem (Svarc–Milnor lemma '68)

Let G be a group acting by isometries on a proper length space X such that the action is properly discontinuous and cocompact. Then G is quasi-isometric to X.

ヘロンス 留とる ほどう

Conjecture (Poincaré 1904)

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Conjecture (Poincaré 1904)

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

Thurston's Geometrization Conjecture (1982):

Three-manifolds are greatly more complicated than surfaces, and I think it is fair to say that until recently there was little reason to expect any analogous theory for manifolds of dimension 3 (or more)—except perhaps for the fact that so many 3-manifolds are beautiful. The situation has changed, so that I feel fairly confident in proposing the

1.1. CONJECTURE. The interior of every compact 3-manifold has a canonical decomposition into pieces which have geometric structures.

In §2, I will describe some theorems which support the conjecture, but first some explanation of its meaning is in order.

ヘロン 人間 とくほ とくほ とう

Conjecture (Poincaré 1904)

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

Thurston's Geometrization Conjecture (1982):

Three-manifolds are greatly more complicated than surfaces, and I think it is fair to say that until recently there was little reason to expect any analogous theory for manifolds of dimension 3 (or more)—except perhaps for the fact that so many 3-manifolds are beautiful. The situation has changed, so that I feel fairly confident in proposing the

1.1. CONJECTURE. The interior of every compact 3-manifold has a canonical decomposition into pieces which have geometric structures.

In §2, I will describe some theorems which support the conjecture, but first some explanation of its meaning is in order.

Theorem (Perelman '03) It is true.

Theorem

Let M be a connected, simply connected, topological 3-manifold. Suppose M admits a properly-discontinuous, co-compact action by homeomorphisms. Then M is homeomorphic to one of the following four spaces: (i) \mathbb{S}^3 , (ii) \mathbb{R}^3 , (iii) $\mathbb{S}^2 \times \mathbb{R}$, or (iv) the Cantor 3-sphere.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A finite graph is planar if and only if it does not contain a homeomorphic copy of K_5 or $K_{3,3}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

A finite graph is planar if and only if it does not contain a homeomorphic copy of K_5 or $K_{3,3}$.

Carmesin '17+ proves an analogue for 2-complex embeddable into \mathbb{S}^3 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A finite graph is planar if and only if it does not contain a homeomorphic copy of K_5 or $K_{3,3}$.

Carmesin '17+ proves an analogue for 2-complex embeddable into \mathbb{S}^3 .

Lemma (Carmesin '17+)

A finite, simply-connected 2-complex embeds into S^3 if and only if it admits a planar rotation system.

くロト (過) (目) (日)

A finite graph is planar if and only if it does not contain a homeomorphic copy of K_5 or $K_{3,3}$.

Carmesin '17+ proves an analogue for 2-complex embeddable into \mathbb{S}^3 .

Lemma (Carmesin '17+)

A finite, simply-connected 2-complex embeds into S^3 if and only if it admits a planar rotation system.

This is 'equivalent' to the Poincaré conjecture!

ヘロト ヘ戸ト ヘヨト ヘヨト

Agelos Georgakopoulos Embeddable Cayley Complexes