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Most of the talk was on the blackboard. This
is an extended version of the slides

containing the main results appearing on the
blackboard.
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Planar Cayley graphs
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Theorem (Folklore)
A finite group admits a faithful action (by homeomorphisms or
isometries) on S2 if and only if it has a planar Cayley graph.
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Whitney’s unique embedding theorem

Theorem (Whitney ’32)

Any two embeddings of a 3-connected, planar graph G into S2

coincide up to homeomorphism.

More precisely, for every two embeddings φ, ψ : G → S2, there
is a homeomorphism α : S2 → S2 such that ψ = α ◦ φ.

Theorem (G & Kim ’23)
Any two embeddings of a simply-connected, locally
3-connected, 2-complex into S3 coincide up to
homeomorphism.
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Theorem (G & Kontogeorgiou ’23+)

For a finite group Γ the following are equivalent:

1 Γ admits a faithful action by homeomorphisms/smooth
maps/isometries on S3;

2 Γ admits a generalised Cayley complex X with a Γ-invariant
planar rotation system;

3 Γ admits a generalised Cayley complex X with an
embedding φ : X → S3 with Γ-invariant planar rotation
system.

Theorem (Dinkelbach & Leeb ’09, Pardon ’21)
A finite group admits a faithful action by
homeomorphisms/smooth maps/isometries on S3 if and only if
it is isomorphic to a subgroup of the orthogonal group O(4).

Agelos Georgakopoulos Embeddable Cayley Complexes



Theorem (Levinson & Maskit ’75, G ’20, Bowditch ’21)

For a finitely generated group Γ, the following are equivalent:

1 Γ admits a faithful, properly discontinuous action by
homeomorphisms on a planar surface;

2 Γ has a Cayley graph admitting a consistent embedding;

3 Γ has a Cayley multi-graph admitting a consistent embedding
every facial path of which is finite;

4 Γ admits a faithful, properly discontinuous, co-compact action
by homeomorphisms on the sphere, the plane R2, the open
annulus, or the Cantor sphere.

Agelos Georgakopoulos Embeddable Cayley Complexes



Theorem (Levinson & Maskit ’75, G ’20, Bowditch ’21)

For a finitely generated group Γ, the following are equivalent:

1 Γ admits a faithful, properly discontinuous action by
homeomorphisms on a planar surface;

2 Γ has a Cayley graph admitting a consistent embedding;

3 Γ has a Cayley multi-graph admitting a consistent embedding
every facial path of which is finite;

4 Γ admits a faithful, properly discontinuous, co-compact action
by homeomorphisms on the sphere, the plane R2, the open
annulus, or the Cantor sphere.

Theorem (Svarc–Milnor lemma ’68)

Let G be a group acting by isometries on a proper length space X
such that the action is properly discontinuous and cocompact. Then
G is quasi-isometric to X.
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Conjecture (Poincaré 1904)
Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.

Thurston’s Geometrization Conjecture (1982):

Theorem (Perelman ’03)
It is true.

Agelos Georgakopoulos Embeddable Cayley Complexes



Conjecture (Poincaré 1904)
Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.

Thurston’s Geometrization Conjecture (1982):

Theorem (Perelman ’03)
It is true.

Agelos Georgakopoulos Embeddable Cayley Complexes



Conjecture (Poincaré 1904)
Every simply connected, closed 3-manifold is homeomorphic to
the 3-sphere.

Thurston’s Geometrization Conjecture (1982):

Theorem (Perelman ’03)
It is true.

Agelos Georgakopoulos Embeddable Cayley Complexes



Theorem
Let M be a connected, simply connected, topological
3-manifold. Suppose M admits a properly-discontinuous,
co-compact action by homeomorphisms. Then M is
homeomorphic to one of the following four spaces:
(i) S3, (ii) R3, (iii) S2 × R, or (iv) the Cantor 3-sphere.
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Theorem (Kuratowski 1930)
A finite graph is planar if and only if it does not contain a
homeomorphic copy of K5 or K3,3.

Carmesin ’17+ proves an analogue for 2-complex embeddable
into S3.

Lemma (Carmesin ’17+)

A finite, simply-connected 2-complex embeds into S3 if and only
if it admits a planar rotation system.

This is ‘equivalent’ to the Poincaré conjecture!
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