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                                                    Abstract 
 
Gradient flows are among the simplest and most fundamental dynamical systems in 
continuous time. Their discretization gives rise to gradient descent — the most widely 
studied method in continuous optimization — and when gradients are subject to 
noise and randomness, stochastic gradient descent (SGD) — the workhorse of artifi-
cial neural networks and modern machine learning architectures. 
 
Topologically, the long-run behavior of a gradient flow is very simple to describe un-
der mild conditions, every trajectory converges to a component of critical points. But 
which one? And what happens in the stochastic case? Which critical points are more 
likely to be observed in the long run, and by how much? And how long does it take 
for SGD to reach the vicinity of a given critical point (e.g., the function's global mini-
mum)? 
 
I will describe how little I know about these questions, and I will outline an approach 
yielding some partial answers based on the theory of large deviations and randomly 
perturbed dynamical systems. This talk is otherwise intended as a "work-in-progress" 
call for ideas, input, and lively discussions. 
 
 
 


