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Preface 

Augustin-Louis Cauchy gave the first reasonably success
ful rigorous foundation for the calculus. Beginning with a 
precise definition of limit, he initiated the nineteenth
century theories of convergence, continuity, derivative, 
and integral. The clear superiority of Cauchy's work over 
what had come before, and the apparent break with the 
past that such superiority implies, combine to raise an 
urgent historical question: Since no great work arises in a 
vacuum, what, in the thought of his predecessors, made 
Cauchy'S achievement possible? In this book I attempt 
to answer this question by giving the intellectual back
ground of Cauchy's accomplishment. 

Understanding the way mathematical ideas develop 
has, besides its intrinsic interest, immediate application to 
our understanding of mathematics and to the teaching of 
mathematics. The history of the foundations of the calculus 
provides the real motivation for the basic ideas, and also 
helps us to see which ideas were-and thus are-really 
hard. For the convenience of teachers and students of 
mathematics, I have, whenever possible, cited the mathe
matics of the past in readily accessible editions. In the 
appendix I provide English translations of some of 
Cauchy's major contributions to the foundations of the 
calculus. 

It is a pleasure to acknowledge the many sources of 
encouragement and support I received while preparing 
this study. The nucleus of the research was funded by 
a Fellowship from the American Council of Learned 
Societies. My PhD research on Joseph-Louis Lagrange, on 
which part of this study is based, was supported by a 
doctoral fellowship from the National Science Foundation, 
and some of the research for the final revision of this 
manuscript was supported by the National Science 
Foundation under Grant No. SOC 7907844. 

I would like to thank the Harvard College Library for 
the excellence orits collection and the assistance ofits staff. 
Dirk J. Struik has often given me the benefit of his vast 
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knowledge of eighteenth-century mathematics and has 
reminded me that the mathematician is a social being as 
well as a creator of mathematical ideas. Uta Merzbach 
systematically introduced me to many aspects of the 
history of mathematics, and first suggested to me that 
eighteenth-century approximation techniques were worth 
investigating. Joseph W. Dauben, my colleague at Historia 
Mathematica, gave me the benefit of his criticism of an 
early version of this book and was generally informative 
and encouraging. Also, several anonymous referees have 
provided useful comments at various stages of the prepa
ration of the manuscript. I am grateful to the students 
in my classes on the history of mathematics at Harvard 
University, California State University at Los Angeles, 
Pomona College, and California State University, 
Dominguez Hills; they have provided both incisive ques
tions and reflective comments. lowe significant intellec
tual debts to the late Carl Boyer for his History of the Calculus, 
and to Thomas S. Kuhn for his The Structure of Scientific 
Revolutions. Above all I would like to record my gratitude to 
I. Bernard Cohen of Harvard University. He has been an 
unfailing source of inspiration as well as of material assis
tance, and, most important, he taught me what it means to 
think like a historian. Finally, I would like to thank my 
husband Sandy Grabiner, who interrupted his own work 
to spend many hours reading various drafts of this book; his 
encouragement and mathematical insight have provided 
the necessary and sufficient conditions for its completion; 
and my son David, who helped proofread. 



Abbreviations of Titles 

B. Bolzano, Rein analytischer Beweis = Rein analytischer Beweis 
des Lehrsatzes dass zwischen je zwry Werthen, die ein entgegen
gesetztes Resultat gewaehren, wenigstens eine reele Wurzel del' 
Gleichung liege, Prague, lS17. 

A.-L. Cauchy, Calcul infinitesimal = Resume des lefons donnees a 
l' ecole royale poly technique sur le caLcul irifinitesimal, vol. 1 [all 
published], Paris, IS23. In the edition of Cauchy's Oeuvres, 
series 2, vol. 4, pp. 5 - 261; all references will be to this 
edition. 

A.-L. Cauchy, Cours d'analyse = Cours d'analyse de l'ecole 
royale poly technique. Ire partie: analyse algebrique [all published], 
Paris, IS21. In the edi tion of Cauchy's Oeuvres, series 2, vol. 
3; all page references will be to this edition. 

J .-L. Lagrange, Calcul des Jonctions = Lefons sur le calcul des 
fonctions, new ed., Paris, lS06. In the edition of Lagrange's 
Oeuvres, vol. 10. 

J.-L. Lagrange, Equations numeriques = Traite de la resolution 
des equations numeriques de tous les degres, 2nd ed., Paris, lS08. 
In the edition of Lagrange's Oeuvres, vol. 8. 

J.-L. Lagrange, Fonctions analytiques = Theorie des fonctions 
analytiques, contenant les principes du calcul differentiel, degages de 
loute consideration d'infiniment petits, d'evanouissans, de limites et 
dejiuxions, et reduits a l'analyse algebrique des quantitesfinies, new 
ed., Paris, lS13. In the edition of Lagrange's Oeuvres, vol. 9. 
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Introduction 

What is the calculus? When we ask modern mathe
maticians, we get two different answers. One answer is, of 
course, that the calculus is the branch of mathematics 
which studies the relationships between functions, their 
derivatives, and their integrals. Its most important subject 
matter is its applications: to tangents, areas, volumes, arc 
lengths, speeds, and distances. The calculus can be fruit
fully viewed and effectively taught as a set of intuitively 
understood problem-solving techniques, widely applicable 
to geometry and to physical systems. Through the gener
ality of its basic concepts and through the heuristic qua
lities of its notation, the calculus demonstrates the power of 
mathematics to state and solve problems pertaining to 
every aspect of science. 

The calculus is something else as well, however: a set 
of theorems, based on precise definitions, about limits, 
continuity, series, derivatives, and integrals. The calculus 
may seem to be about speeds and distances, but its logical 
basis lies in an entirely different subject-the algebra of 
inequalities. The relationship between the uses of the 
calculus and the justification of the calculus is anything but 
obvious. A student who asked what speed meant and was 
answered in delta-epsilon terms might be forgiven for re
sponding with shock, "How did anybody ever think of 
such an answer?" 

These two different aspects-use and justification
of the calculus, simultaneously coexisting in the modern 
subject, are in fact the legacies of two different historical 
periods: the eighteenth and the nineteenth centuries. In 
the eighteenth century, analysts were engaged in exciting 
and fruitful discoveries about curves, infinite processes, 
and physical systems. The names we attach to important 
results in the calculus-Bernoulli's numbers, L'Hopital's 
rule, Taylor's series, Euler's gamma function, the 
Lagrange remainder, the Laplace transform-attest to the 
mathematical discoveries of eighteenth-century analysts. 
Though not indifferent to rigor, these researchers spent 
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most of their effort developing and applying powerful 
methods, some of which they could not justify, to solve 
problems; they did not emphasize the mathematical im
portance of the foundations of the calculus and did not 
really see foundations as an important area of mathe
matical endeavor. 

By contrast, a major task for nineteenth-century ana
lysts like Cauchy, Abel, Bolzano, and Weierstrass was to 
give rigorous definitions of the basic concepts and, even 
more important, rigorous proofs of the results of the calcu
lus. Their proofs made precise the conditions under which 
the relations between the concepts of the calculus held. 
Indeed, nineteenth-century precision made possible the 
discovery and application of concepts like those of uni
form convergence, uniform continuity, summability, and 
asymptotic expansions, which could neither be studied nor 
even expressed in the conceptual fi'amework of eighteenth
century mathematics. The very names we use for some 
basic ideas in analysis reflect the achievements of nine
teenth-century mathematicians in the foundations of ana
lysis: Abel's convergence theorem, the Cauchy criterion, 
the Riemann integral, the Bolzano-Weierstrass theorem, 
the Dedekind cut. And the symbols of nineteenth-century 
rigor-the ubiquitous delta and epsilon-first appear in 
their accustomed logical roles in Cauchy's lectures on the 
calculus in 1823. 

Of course nineteenth-century analysis owed much to 
eighteenth-century analysis. But the nineteenth-century 
foundations of the calculus cannot be said to have grown 
naturally or automatically out of earlier views. Mathe
matics may often grow smoothly by the addition of 
methods, but it did not do so in this case. The conceptual 
difference between the eighteenth-century way of looking 
at and doing the calculus and nineteenth-century views 
was simply too great. It is this difference which justifies our 
claim that the change was a true scientific revolution and 
which motivates the present inquiry into the causes of that 
change. 

The most important figure in the ini tiation of rigorous 
analysis was Augustin-Louis Cauchy. It was, above all, 
Cauchy's lectures at the Ecole Poly technique in Paris in 
the 1820s that established a new attitude toward rigor and 
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developed many characteristic nineteenth-century con
cepts and methods of proof. Other mathematicians, of 
course, participated in the development of the foundations 
of the calculus. For instance, Karl Friedrich Gauss had an 
understanding of convergence which, had he treated the 
subject comprehensively, might have led him to equal 
Cauchy's accomplishment. Bernhard Bolzano had many 
ideas, especially about convergence and continuity, which, 
if more widely disseminated, would have hastened the 
rigorization of analysis. And, after Cauchy had initiated 
the new rigorous calculus, many mathematicians
including Cauchy himself-made further contributions in 
the same spirit. Niels Henrik Abel, schooled in Cauchy'S 
methods, used them to extend the theory of convergence. 
Bernhard Riemann clarified and extended the concept of 
the integral. Karl Weierstrass in many ways finished the 
task Cauchy had begun by systematizing delta-epsilon 
methods, by emphasizing the distinctions between con
vergence and uniform convergence and between con
tinuity and uniform continuity, and by eliminating most 
of the gaps in earlier reasoning. Weierstrass, Eduard 
Heine, Richard Dedekind, Charles Meray, and Georg 
Cantor developed the modern theory of real numbers. But 
all these accomplishments are based on the revolution 
begun earlier, and in important ways on the work of 
Cauchy, who created the mathematical climate which 
made them possible. Thus I shall focus primarily on ex
plaining the origins of Cauchy's achievements. 

In looking for the eighteenth-century origins of 
Cauchy'S foundations of the calculus, I shall demonstrate 
that they grew, not principally out of that period's discus
sions of foundations but from other, quite different parts 
of its work. The men who created the major results of 
eighteenth-century analysis-Newton, Maclaurin, Euler, 
d'Alembert, Lagrange-unwittingly also developed many 
of the ideas and methods which later were used to make it 
rigorous. The work of two of these men is especially note
worthy. Leonhard Euler, whose work historians sometimes 
take to illustrate the lack of rigor in eighteenth-century 
calculus, nevertheless developed many techniques that 
Cauchy would later adapt. Even more importan-t was 
Joseph-Louis Lagrange. Lagrange was the crucial transi-
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tional figure between the eighteenth- and nineteenth
century points of view, in terms of both technique and 
attitude. He envisioned, though he did not successfully 
complete, a program to make the calculus rigorous by 
reducing it to algebra. Furthermore, a number of the 
techniques Lagrange used in his unsuccessful attempt were 
saved and effectively employed by Cauchy himself. 

Chapter I will describe more fully the nature of the 
nineteenth-century revolution in calculus and Cauchy's 
role in bringing it about. The first historical problem will be 
to explain the new nineteenth-century recognition of the 
mathematical importance of the foundations of analysis. 
Chapter 2 will document the general lack of interest in 
rigor in the calculus on the part of eighteenth-century 
mathematicians and try to account for that lack of interest. 
It will examine the types of definitions these mathe
maticians gave for the concepts of the calculus and, finally, 
will trace the gradual reawakening of interest in foun
dations at the end of the eighteenth century. 

In the heart of this book, chapters 3 to 6, I shall 
examine a number of specific achievements of eighteenth
century mathematics and show how Cauchy transformed 
them into the basis of his rigorous calculus. I shall be 
especially interested in the development of the algebra of 
inequalities; the history of the concept of limit; the work 
done on the notions of continuity and convergence; and 
some eighteenth-century treatments of the derivative and 
the integral. I shall conclude the book with an assessment 
of the magnitude of Cauchy's achievement when viewed in 
its full historical setting. 

Though I shall be looking constantly for the anteced
ents of Cauchy's work, I shall insist throughout on the 
creativity and originality of his accomplishments. Like 
another major innovator, Copernicus, Cauchy owed much 
to his predecessors. But, also like Copernicus, Cauchy con
tributed a change in point of view so fundamental that his 
science was transformed when he was done. 
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The Nineteenth
Century Ideal 

Cauchy and the Nineteenth.Century 
Revolution in Calculus 

When a nineteenth-century mathematician spoke about 
rigor in analysis, or in any other subject, he had several 
general things in mind. First, every concept of the su bject 
had to be explicitly defined in terms of concepts whose 
nature was held to be already known. (This criterion 
would be modified by a twentieth-century mathematician 
to allow undefined terms-that is, terms defined solely 
by the postulates they satisfy; this change is related to the 
late nineteenth-century tendency toward abstraction in 
mathematics, an important development but beyond the 
scope of this book.) Following Weierstrass, in analysis this 
meant that every statement about equality between limits 
was translatable, by well-defined rules, into an algebraic 
statement involving inequalities. Second, theorems had to 
be proved, with every step in the proof justified by a 
previously proved theorem, by a definition, or by an ex
plicitly stated axiom. 1 This meant in particular that the 
derivation of a result by manipulating symbols was not a 
proof of the result; nor did drawing a diagram prove state
ments about continuous curves. Third, the definitions 
chosen, and the theorems proved, had to be sufficiently 
broad to support the entire structure of valid results be
longing to the subject. The calculus was a well-developed 
subject, with a known body of results. To make the calculus 
rigorous, then, all previous valid results would have to be 
derived from the rigorous foundation. 

Many nineteenth-century mathematicians believed 
themselves superior to their eighteenth-century counter
parts because they would no longer accept intuition as part 
of a mathematical proof or allow the power of notation 
to substitute for the rigor of a proof. 2 To be sure, even 
nineteenth-century mathematicians often pursued fruitful 
methods without the maximal possible rigor, especially in 
developing new subjects, and individual mathematicians 
differed in the importance they gave to foundations. 
Cauchy himself was not consistently rigorous in his re
search papers. Nevertheless, criteria like those listed above 
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A First Look at 
Cauchy's 
Calculus 

Chapter 1 

were constantly in Cauchy's mind when he developed his 
Cours d'analyse. When Cauchy referred in that work to the 
rigor of geometry as the ideal to which he aspired, he had in 
mind, not diagrams, but logical structure: the way the 
works of Euclid and Archimedes were constructed.3 

Cauchy explicitly distinguished between heuristics 
and justification. He separated the task of discovering 
results by means of "the general ness of algebra" -that is, 
discovering results by extrapolating from finite symbolic 
expressions to infinite ones, or from real to complex ones
from the quite different task of proving theorems. He 
described his own methodological ideal in these words: 

As for methods, I have sought to give them all the rigor 
which exists in geometry, so as never to refer to reasons 
drawn from the generalness of algebra. Reasons of this 
type, though often enough admitted, especially in passing 
from convergent series to divergent series, and from real 
quantities to imaginary expressions, can be considered 
only ... as inductions, sometimes appropriate to suggest 
truth, but as having little accord with the much-praised 
exactness of the mathematical sciences .... Most [alge
braic] formulas hold true only under certain conditions, 
and for certain values of the quantities they contain. By 
determining these conditions and these values, and by 
fixing precisely the sense of all the notations I use, I make all 
uncertainty disappear. 4 

These are high standards. Let us turn to Cauchy's work 
and see how he met them. 

It is a commonplace among mathematicians that Cauchy 
gave the first rigorous definitions of limit, convergence, 
continuity, and derivative, and that he used these defini
tions to give the first essentially rigorous treatment of 
the calculus and the first systematic treatment of conver
gence tests for infinite series. Many people have heard also 
that Cauchy's rigorous proofs introduced delta-epsilon 
methods into analysis.s When the mathematician opens 
Cauchy's major works, he expects these beliefs to be con
firmed. But on first looking into the Cours d' analyse (1821), 
he may be somewhat shocked to find no deltas or epsilons 
anywhere near the definition oflimit; moreover, the words 
in the definition sound more like appeals to intuition than 
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to the algebra of inequalities. Then, when he opens the 
Calcul infinitesimal (1823) to find the definition of a deriva
tive, he may be even more surprised to find that Cauchy 
defined the derivative as the ratio of the quotient of dif
ferences when the differences are infinitesimal. (He may 
be surprised also at the word infinitesimal in the title.) 
Returning to the Caul's d'analyse, the mathematician is apt 
to be disappointed with the treatment of convergence of 
series, for although Cauchy used the Cauchy criterion, he 
did not even try to prove that it is a sufficient condition for 
convergence. The mathematician may well conclude that 
Cauchy'S rigor has been highly overrated.6 

But the discrepancy between what the mathematician 
expects and what Cauchy actually did is more apparent 
than real. In fact Cauchy's definitions and procedures are 
rigorous not only in the sense of "better than what came 
before" but in terms of nearly all that the mathematician 
expects. One major difficulty the modern reader finds in 
appreciating Cauchy comes from his old-fashioned ter
minology, the use of which-as will be seen-was delib
erate. Another source of difficulty is the fact that the two 
books of 1821-1823 were originally lectures given to 
students who planned to apply the calculus. 7 Finally, the 
modern reader is likely to be unfamiliar with the more 
discursive style of mathematical exposition used in the 
early nineteeth century. Once the Caul's d'analyse or the 
Calcul infinitesimal has been examined more closely, it will be 
seen that Cauchy's achievement is as impressive as 
expected.s 

To illustrate what we have just said, let us look at the 
central concept in Cauchy's analysis, that of limit, on 
which his definitions of continuity, convergence, deriva
tive, and integral all rest: "When the successively attri
buted values of one variable approach indefinitely a fixed 
value, finishing by differing from that fixed value by as 
little as desired, that fixed value is called the limit of all the 
others." 9 This definition seems at first to resemble the 
imprecise eighteenth-century definitions of limit more 
than it does the modern delta-epsilon definition. For in
stance, a classic eighteenth-century formulation is that 
given by d' Alembert and de la Chapelle in the Encyclopedie: 
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One magnitude is said to be the limit of another magnitude, 
when the second can approach nearer to the first than a 
given magnitude, as small as that [given] magnitude may 
be supposed; nevertheless, without the magnitude which is 
approaching ever being able to surpass the magnitude which it 
approaches, so that the difference between a quantity and 
its limit is absolutely inassignable .... Properly speaking, 
the limit never coincides, or never becomes equal, to the quan
tity of which it is a limit, but the latter can always approach 
closer and closer, and can differ from it by as little as 
desired. 1o [Italics mine] 

But the important difference between Cauchy's defi
nition and those of his predecessors is that when Cauchy 
used his definition of limit in a proof, he often translated 
it into the language of inequalities. Sometimes, instead 
of so translating it, he left the job for the reader. But 
Cauchy knew exactly what the relevant inequalities were, 
and this was a significant new achievement. For example, 
he interpreted the statement "the limit, as x goes to in
finity, of j(x + 1) - j(x) is some finite number k" as 
follows: "Designate by e a number as small as desired. 
Since the increasing values of x will make the difference 
j(x + 1) - j(x) converge to the limit k, we can give to h a 
value sufficiently large so that, x being equal to or greater 
than h, the difference in question is included between k - e 
and k + e." 11 This is hard to im prove 011. (We will find a 
delta to go with the epsilon when we describe Cauchy's 
theory of the derivative in chapter 5.) 

Moreover, Cauchy's defining inequalities about 
limits were not ends in themselves; their purpose was to 
support a logical structure of results about the concepts 
of the calculus. For instance, he used the inequality we 
have just mentioned in a proof of the theorem that if 
limx-+coj(x + 1) - j(x) = k, then limx-+coj(xl/x = k 
also,12 and then used an analogue of this theorem as the 
basis for a proof of the root test lor convergence of series. 13 
By contrast, definitions like the one in the Encycloj)Mie were 
not translated into inequalities and, more important, were 
almost never used to prove anything of substance. 

In addition, the Em:vclojJMie definition has certain 
conceptual limitations which Cauchy's definition elimi
nated. For instance, the eighteenth-century term magnitude 
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Cauchy and 
Bolzano 

Cauchy and the Nineteenth-Century Revolution in Calculus 

is less precise than Cauchy's term variable; rather than have 
one magnitude approach another, Cauchy clearly distin
guished between the variable and the fixed value which is 
the limit of the variable. Moreover, the sense of the word 
approach is unclear in the Encyclopedie definition. Though 
it could have been understood in terms of inequalities, 
d'Alembert and de la Chapelle, unlike Cauchy, did not 
explicitly make the translation. Probably instead they 
were appealing to the idea of motion, as Newton had done 
in explaining his calculus. 

More important, d'Alembert's and de la Chapelle's 
two restrictions on the variable's approach to the limit, 
italicized in my citation of their definition, are too strong 
for mathematical usefulness. If a magnitude never sUipasses 
its limit, then a variable cannot oscillate around the limit. 
How then could we use this definition to define the limit of 
the partial sums of the series I - 1/2 + 1/3 - 1/4 + ... , or 
to evaluate the limit, as x goes to zero, of x2 sin I/x? And if a 
magnitude can never equal its limit, how can the derivative 
of the linear functionf(x) = ax + b be defined as the limit 
of the quotient of differences? Abandoning these restric
tions was necessary to make the definition or limit suffi
ciently broad to support the definitions of the other basic 
concepts of the calculus. 

Cauchy's definition of limit, of course, has a history. 
But my main point here has been to exhibit the contrast 
between the usual understanding of the limit concept in 
the eighteenth century and that brought about by Cauchy. 
This contrast exemplifies both the nature and quality of 
Cauchy's innovations. It will be seen later how Cauchy 
applied his concept oflimit to establish a rigorous theory 
of convergence of series, to define continuity and prove 
the intermediate-value theorem for continuous functions, 
and to develop delta-epsilon proofs about derivatives and 
integrals-in short, to provide an algebraic foundation for 
the calculus. (For a sample of Cauchy's work, the reader 
may consult the selected texts translated in the appendix.) 

Cauchy's achievements, though outstanding, were not 
unique. His contemporary Bernhard Bolzano made many 
similar discoveries. Though Bolzano's impact on the 
mathematics of his time appears to have been negligible,14 
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his work was nonetheless excellent. Regardless of his rela
tive lack of influence, it will be worthwhile to be aware of 
some of his achievements. For if a key to understanding 
Cauchy is an understanding of the influence his predeces
sors had on him, the importance of these predecessors will 
be even clearer if they can be shown to have influenced 
Bolzano in the same ways. In fact, the simultaneous dis
covery involved in Bolzano's achievement provides us with 
a controlled experiment, enabling us to see both what 
could be accomplished in the 1820s and what currents in 
eighteenth-century mathematical work made Bolzano's 
and Cauchy's accomplishments possible. For the present I 
will compare Bolzano's achievements with Cauchy's; a 
detailed analysis of their common historical background 
will be given in later chapters. 

Bolzano, like Cauchy, wanted to introduce higher 
standards of rigor into analysis. Bolzano's idea of what 
makes a proof rigorous is expressed by the very titles of 
some of his works: one was the "purely analytic proof" 
of the intermediate-value theorem for continuous func
tions,IS while another dealt with length, area, and volume 
"without consideration of the infinitely small ... and with
out any suppositions not rigorously proved." 16 Everything 
was to be reduced to algebra, without appeals to infinitesi
mals, geometry, the ideas of space and time, or any other 
intuitive ideasY For Bolzano as for Cauchy, the algebra 
of inequalities played an important role in proofs. But 
Bolzano emphasized, much more than Cauchy, that he 
was breaking with the past. For instance, in contrast to 
Cauchy's conservative terminology, Bolzano deliberately 
avoided the language of motion and the term infinitesimal. 

In 1817, Bolzano gave a definition of continuous func
tion even more elegant in its statement than Cauchy's 
1821 definition was to be. Bolzano then used this definition 
to prove the intermediate-value theorem for continuous 
functions. The proof, which was differently conceived 
from Cauchy's, used what we today call the Bolzano
Weierstrass property of the real numbers. IS In addition, 
Bolzano's 1817 paper makes use of what we now call the 
Cauchy criterion for convergence of a sequence,I9 which 
Cauchy himself-independently, as I hope to show
stated as a criterion for the convergence of series in 1821. 
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Bolzano's accomplishments do not end here. In later 
papers, in which he acknowledged having read Cauchy's 
books, Bolzano did additional important work. He had an 
elegant, inequality-based treatment of many properties of 
the derivative, of extrema, and of the Taylor series.20 A 
striking and original discovery of Bolzano's about deriva
tives was his example of a continuous function which was 
nowhere differentiable, a decisive blow to the intuitive 
picture of the behavior of continuous functions. 21 

It has been suggested that the coincidence between 
Cauchy's 1821-1823 works and Bolzano's 1817 paper are 
too great to have come about by chance. Ivor Grattan
Guinness has argued that Cauchy's entire program
reducing the calculus to ana?Jse algebrique, giving inequality 
treatments of the basic concepts, establishing rigor
cannot be explained in terms of Cauchy's previous work. 
He explains the coincidence by assuming that Cauchy had 
seen Bolzano's paper, and used the material in it without 
giving Bolzano credit. He states also that Cauchy bor
rowed Bolzano's definition of continuous function, the 
Cauchy criterion, and the proof of the intermediate-value 
theorem for continuous functions. 22 

I do not find this accusation convincing, * bu t for my 
immediate purpose, it would not make much difference ifit 
were true; my intention is to call attention to the impor
tance of the eighteenth-century predecessors of both 
Cauchy and Bolzano. I t is only because so Ii ttle is known 
about the basis on which Cauchy built that his work could 
appear to be without prior influences. It is because, lacking 
a historical setting, we view the Cours d' anaLyse as founded 
on one man's genius alone that it is possible to claim that 
the genius was Bolzano. 

But common influences suffice to explain the specific 
similarities between the work of Cauchy and Bolzano. The 
familiari ty of Cauchy and Bolzano with the work of their 

* The principal reason for my 
conclusion is the wealth of 
common prior influenccs; the 
rest of this book will docu
mcnt those influences in 
detailY Also, simultaneous 
discoveries abound in the 

history of mathematics. In 
addition, as H. Freudenthal 
and H. Sinaceur have 
shown,2J there are real con
ceptual differences between 
the work of Cauchy and the 
work of Bolzano. 
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Unfinished 
Business 

Chapter 1 

common predecessors can be documented. Once this is 
done, the similarities between the work of Cauchy and 
Bolzano will point out strongly how important these pre
decessors were; in the period 1815-1825, any genius of 
sufficient magnitude, seeking rigor in analysis, could have 
done these things. There were two such geniuses. 

No mathematical subject is ever perfected overnight. 
Neither Cauchy nor Bolzano had solved by 1825 all the 
outstanding problems of analysis. There were two major 
lacunae in Cauchy's work at this time. First, he-and also 
Bolzano-did not yet appreciate the distinction between 
convergence and uniform convergence or that between 
continuity and uniform continuity. Also, though Cauchy 
implicitly assumed several forms of the completeness 
axiom for the real numbers, he did not fully understand the 
nature of completeness or the related topological pro
perties of sets of real numbers or of points in space. 

In addition to these mathematical "errors," Cauchy 
sometimes made errors through haste or inadvertence, 
which he could have corrected himself according to his 
own principles. For instance, he gave an erroneous proof of 
the convergence of alternating series,25 which can easily be 
corrected using the Cauchy criterion. More generally, his 
willingness to leave the working ou t of the explici t in
equali ties in many theorems as an exercise to the reader left 
ambiguities throughout his works. 

The confusion between pointwise and uniform pro
perties led to Cauchy's famous "proof," in 1821, of the false 
theorem that an infinite series of continuous functions is 
continuous;26 in 1816, Bolzano too seems to have believed 
that an infinite series of continuous functions was continu
OUS. 27 In 1826, Abel, in his study of the continuity of 
the sum of a power series, published a counterexample to 
Cauchy's false theorem, but Abel did not identify the error 
in the proof. 28 The elucidation of the difference between 
convergence and uniform convergence by men like Stokes, 
Weierstrass, and Cauchy himself was still more than a 
decade away. 

The verbal formulations oflimits and continuity used 
by Cauchy and Bolzano obscured the distinction between 
"for any epsilon, there is a delta that works for all x" 
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and "for any epsilon and for all x, there is a delta." The 
only tools for handling such distinctions were words, and 
the usual formulation with the word "always" suggested 
"for all x" as well as "for any epsilon." 29 None of 
the eighteenth-century inequality arguments on which 
Bolzano and Cauchy drew elucidated this distinction, so 
that it was not immediately clear how much depended on 
it. In chapter 5, it will be seen how Lagrange failed to 
distinguish between convergence and uniform conver
gence in a proof about derivatives and how Cauchy fol
lowed Lagrange throughou t. 

Again like his predecessors, Cauchy did not have 
explicit formulations for the completeness of the real num
bers. Among the forms of the completeness property he 
implici tly assumed are that a bounded monotone sequence 
converges to a limit and that the Cauchy criterion is a 
sufficient condition for the convergence of a series.30 

Though Cauchy understood that a real number could be 
obtained as the limit of rationals, he did not develop this 
insight into a definition of real numbers or a detailed 
description of the properties of the real numbers.3! For 
Cauchy, results like the monotone-sequence property ap
peared relatively obv~ous, and defining the real numbers 
or even elucidating the consequences of the monotone
sequence property did not seem an urgent task. After the 
properties of continuity, convergence, and uniform con
vergence were understood considerably better, the job of 
defining the real numbers and describing their properties 
and the related properties of point sets was done by men 
like Weierstrass, Heine, Meray, Cantor, and Dedekind.32 

In spite of the problems he did not solve, Cauchy set into 
motion a complete reformulation of the basis of analysis. 
The impact of his work can be illustrated by examining the 
career of Niels Henrik Abel. Abel's reaction to the CoUts 
d'analyse was almost like a religious conversion. Abel had 
begun his career in the standard eighteenth-century way, 
reading Euler and Lagrange and solving problems in their 
style. When Abel read the Cow's d'analyse, he was im
mediately convinced that his previous work lacked rigor; 
indeed, he was amazed that eighteenth-century mathe
maticians had been able to do so much without having that 
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rigor.33 Such a change, almost seeing with new eyes, is 
characteristic of one who has experienced a revolution in 
thought. When Abel left his native Norway to travel to the 
mathematical centers of Europe, Paris was one of the 
important stops on his list. (Unfortunately, Cauchy's cold
ness to beginners somewhat discouraged Abel once he got 
there. )34 Abel's admiration for the COUTS d'analyse led him to 
use its methods and spirit in his own rigorous investigations 
of infini te series. 

Cauchy's work was read and acted upon also by 
Bolzano, Dirichlet, and Riemann; in part directly, in part 
through men like Abel, it influenced Weierstrass. 35 Thus it 
influenced the leading analysts of the mid-nineteenth cen
tury. Cauchy's books were translated into other languages, 
as well as being widely read in French,36 and textbooks 
were written based on Cauchy's approach; the best known 
was Moigno's.57 As further evidence of Cauchy's influence, 
we may note the widespread use of his methods of proof
identifiably Cauchy's because of the use of the delta
epsilon notation he introduced. Finally, we may cite 
the historical comments of nineteenth-century mathe
maticians, whose testimony is valuable because they knew 
the men who had learned from Cauchy.3s 

Bolzano's work also could have served as a starting 
point for the rigorization of analysis. Cauchy was the man 
who taught rigorous analysis to all of Europe, however, 
while Bolzano's works went almost unread until the 1860s 
(see note 14). This is not only because of the magnificent 
clarity of exposition in Cauchy'S books; the reasons are 
partly social and institutional. The Ecole Poly technique in 
Paris, where Cauchy delivered his lectures, was the first 
and foremost scientific school in Europe. Most of the lead
ing French mathematicians and mathematical physicists 
of the age went there; many leading mathematicians read 
the courses of lectures written there as soon as they were 
published as books. Paris was the center of the mathe
matical world, and many mathematicians not lucky 
enough to be French came there to study.39 In comparison, 
Bolzano worked in relative isolation in Prague, did not 
hold an important teaching position, published many 
of his papers as separate pamphlets because he had no 
ready access to a prestigious journal, and, finally, was 
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known as a philosopher and theologian, rather than as a 
mathematician.40 

Cauchy's enormous influence gives us another reason 
to want to know where his ideas came from. He synthesized 
previous work and built a firm foundation so well as to 
obscure the attempts that preceded him. Just as Euclid's 
Elements were so successful that they drove much earlier 
work into obscurity; just as the Newton-Leibniz calculus 
made it unnecessary to read much earlier work on areas 
and tangents; so Cauchy's COUTS d'analyse and Calcul in
finitesimal made obsolete many of the earlier treatments of 
limits, convergence, continuity, derivatives, and integrals. 

After Cauchy, foundations had become an essential 
part of analysis, and Cauchy's books and teaching were 
largely responsible. Thus, explaining the transformation 
from the eighteenth-century calculus oriented toward 
results to nineteenth-century rigorous analysis means 
understanding the basis of Cauchy's work. I have argued 
that this transformation was revolutionary and have 
claimed that it requires an explanation. I shall now try to 
provide that explanation. 
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Introduction 

The Status of Foundations in 
Eighteenth-Century Calculus 

Mathematicians of the eighteenth century saw before them 
vast new worlds to explore and to conquer. In inventing 
the calculus, Newton and Leibniz had forged an algorithm 
of incredible power. Leibniz, in particular, chose his no
tations d and S for the basic, mutually inverse operations of 
his calculus precisely so that they could be applied in an 
almost automatic fashion.! Exploiting the new methods 
was the most exciting task in mathematics-and the most 
fruitful. One might think that an age so interested in the 
calculus would have given a high priority to setting the 
calculus on a rigorous basis. Yet a century and a half 
elapsed between the time the calculus was invented and 
the time Cauchy successfully gave it a logically acceptable 
form. 

In attempting to understand why it took so long to 
make the calculus rigorous, one should not forget the 
difficulty of the task. To make a subject rigorous requires 
more than just choosing the appropriate definitions for the 
basic concepts; it is necessary also to be able to prove 
theorems about these concepts. Developing the methods 
needed for these proofs is seldom merely a trivial con
sequence of choosing the right definitions; in fact, the prior 
existence of the methods of proofis often necessary in order 
to recognize suitable definitions. A great deal oflabor was 
required to devise the techniques and concepts needed to 
establish a firm foundation for the diverse results and 
applications of the calculus. It must also be noted, how
ever, that progress in understanding the foundations of the 
calculus was relatively slow in the eighteenth century in 
large part because the interests of mathematicians lay 
elsewhere. 

In the eighteenth century the problems considered to 
be most important were those which could be treated 
without paying attention to the foundations of the calcu
lus. No strict line was drawn between the calculus and 
its applications, between mathematics and mathematical 
physics. Many of the results obtained in the calculus had 
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immediate physical applications; this circumstance made 
attention to rigor less vital, since a test for the truth of the 
conclusions already existed-an empirical test. Moreover, 
the concentration on results made the frui tfulness of a well
chosen notation seem preferable to the more certain, but 
slower, theorem-and-proof procedure characteristic of 
Greek geometry. The century was dominated by a few 
enormously productive mathematicians-the Bernoullis, 
d'Alembert, Euler, Lagrange, and Laplace-whose work, 
with the exception of Lagrange, largely exemplified 
these tendencies. It was not until the end of the eighteenth 
century that the foundations of the calculus came to be 
recognized by leading mathematicians as a respectable 
mathematical problem.2 

This chapter will describe and document the prevail
ing attitudes toward rigor in eighteenth-century analysis. 
In particular, it will ask and answer four questions. (I) 
What was the usual estimate in that period of the impor
tance of the foundations of the calculus? I t will be shown 
that the pursuit of rigorous foundations was essentially ir
relevant to the major goals of the analysts of that time. 
Nevertheless, since rigor was sometimes discussed, we must 
ask, (2) What motivated that period's mathematicians 
when they did consider the foundations of the calculus? 
There was one major motivating factor from within math
ematics: the desire to emulate the rigor of Greek geometry. 
But there were other motivations, some from outside 
mathematics. The history of eighteenth-century calculus 
cannot be understood in isolation from the general history 
of thought and of society. 

In order to generalize meaningfully about the discus
sions of foundations that did occur, it is essential to have 
some idea of their content. Thus the following points must 
be considered: (3) When eighteenth-century mathema
ticians did treat the foundations of the calculus, what did 
they actually say? This question will be treated here only 
insofar as a general idea of the answer is needed3 and also to 
indicate how the period's treatments offoundations fared 
at the hands of contemporary critics. It will be shown that 
although there were many explicit discussions of the basic 
concepts, these were seldom applied to nonelementary 
parts of analysis. This latter circumstance will be addi-
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tional evidence that eighteenth-century analysts did not 
view making the calculus rigorous as their central concern. 
Finally, to find the background of Cauchy's rigorization, 
one must ask, (4) How and why did rigor come to be con
sidered an important problem once again? It will be 
seen that Joseph-Louis Lagrange had the greatest role in 
restoring foundational questions to their central place in 
mathematics; Cauchy accepted Lagrange's estimate of the 
importance offoundations, though he gave a very different 
foundation. By understanding the prevailing eighteenth
century attitudes and how they changed only at the end of 
the century, it will be possible to understand what mathe
maticians of that time were actually doing when they 
created the techniques which Cauchy and Bolzano used to 
give the calculus a rigorous basis. 

To determine the importance of rigor to eighteenth
century analysts, it will be necessary to look beyond the 
general statements made in the introductions to their 
books and examine their mathematics. To this end it wiil 
be useful to begin with a brief topical survey of the major 
types of research activity in eighteenth-century mathe
matics.4 

Algebra was the theory of equations-especially the 
study of root-coefficient relations-and the study ofmeth
ods of solving equations: solving them exactly, when possi
ble; otherwise, by approximation processes, preferably 
ones that converged quickly. Only in 1770-1771 was the 
general question of solvability first attacked, by Lagrange. 
"The analysis of the infinite," a branch of mathematics 
named by Euler, involved finding the sums of infinite series 
and transforming them from one form into another, as well 
as finding the limits of infinite products and continued 
fractions; there were no attempts to formulate a general 
theory of convergence, though the speed of convergence of 
particular series was discussed and some convergence cri
teria were evolved. The differential calculus studied the 
finding of differentials of all orders, their mutual relations, 
and their applications to problems of geometry and phy
sics. The integral calculus solved classes of differential 
equations and evaluated definite integrals, but did not 
prove the existence of solutions to either type of problem. 
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Differential equations were more often studied in the 
context of particular physical problems than in general 
mathematical theories. 

Of course the relationships between these different 
areas of mathematics were noted, and methods developed 
for one type of problem often were applied to many others. 
But the single-minded search for general concepts and the 
establishment of rigorous foundations were not the major 
goals of eighteenth-century mathematics. These tenden
cies, it must be noted, were stronger on the Continent than 
in Great Britain, but it was on the Continent that the 
greatest amount of mathematics was done. Thus, it would 
be fair to describe much of the activity of mathematicians 
of this period as the exploitation of the power of symbols for 
the purpose of solving problems; their accomplishments 
here were outstanding.5 

To get a sense of the content of these generalizations, 
we may sample the contents of a leading journal, the 
Memoires de I' Academie Royale des Sciences et Belles-Lettres de 
Berlin, for the years 1750, 1775, and 1800, in the section 
Classe de Mathematiques. Under this heading for the year 
1750, we find four articles by Leonhard Euler: one deals 
with deriving the equations of motion for a rotating body; 
another concerns the varying degree of light given off by 
the sun and other celestial bodies; the third is on the 
precession of the equinoxes; the fourth is on the effect of a 
hydraulic machine proposed by Johann Andreas Segner. 
There are two papers by Jean Le Rond d'Alembert, each 
the continuation of an earlier paper. The first treats the 
general form of the solution to the differential equation of 
the vibrating string. The second is about the integration of 
certain rational functions. In addition, there is a paper by 
Johann Kies on the brightness of Venus, and two papers 
determining the parallax of the moon and the curvature of 
the earth based on observations by ].-J. Lalande and a M. 
Chret. The topics of these papers show that the Classe de 
Mathematiques included not just mathematics, but mathe
matical physics and celestial mechanics. In the purely 
mathematical articles, the standards of proof are what 
might be termed formalistic, in the sense that algebraic 
derivations serve to establish the validi ty as well as the form 
of most of the results.6 Worthy of note also are the domi-
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nation of the journal by Euler and d' Alembert, and the 
fundamental nature of some of the questions treated in 
their papers: angular momentum, the vibrating string and 
the wave equation, the fundamental theorem of algebra. 
This volume is very much in the mainstream of eighteenth
century mathematics. 

Returning to the same journal in 1775, there has been 
a change in personn.el, but the situation is otherwise 
similar. There are three papers by Joseph-Louis Lagrange. 
The first deals with techniques for studying recurrent series 
and with integrating linear equations of finite partial dif
ferences, and applies these techniques to probability 
theory. The second treats the attraction of elliptical 
spheroids. The last paper is a contribution to number 
theory, asking when the quadratic form Pf + 2qyz + rz2 

can be written in the form 4na + b.7 There are two papers 
by Johann (II) Bernoulli: one, devoted largely to trigo
nometric methods, discusses the position of the pole star; 
the other reports some observations of eclipses. There is, 
finally, one memoir by Nicolas Beguelin, investigating how 
many prime numbers there are greater or less than a given 
number. We note again the close relationship between 
mathematics and mathematical physics and the large 
number of significant articles in the journal by one major 
mathematician. The proofs in the mathematical articles 
are, again, usually either algebraic derivations or appeals 
to what is already known in analysis. 

For the Berlin M emoires of 1800 the picture is sligh tly 
different. Among seven mathematical articles published, 
there is one article on the foundations of the calculus. 
This is the second part of an essay by J.-P. Gruson, "Le 
calcul d' exposition." 8 The other six papers, one by Abel 
Burja, one by Johann Elert Bode, and four by Jean 
Trembley, resemble in their subjects the material we have 
already considered: the length of a pendulum with given 
period at Berlin; astonomical observations; integrating 
equations involving finite differences; the attraction and 
equilibrium of spheroids; statistics about the duration of 
marriages; the precession of the equinoxes. Note in passing 
that the Berlin Memoires is no longer the leading scientific 
journal it had been; with the death of Frederick -the Great, 
who had patronized the Berlin Academy, the center of 
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mathematics definitely shifted to Paris. Nevertheless, the 
topics covered in the Berlin Memoires in its 1799-1800 
volume are not atypical of the mathematics of that time. 
The one contribution to the foundations of the calculus 
does illustrate a slight shift in mathematical interest; 
Gruson's work is closely akin to that of Lagrange, a fact 
which is consistent with the influence I shall show for 
Lagrange later in this chapter. 9 

Examining other scientific journals of the eighteenth 
century for contributions to the foundations of the calculus 
provides analogous results. 1o Similar generalizations can 
be supported by reading through the collected papers of 
Euler, d'Alembert,Johann Bernoulli, or Laplace; though 
the standards of rigor used vary, by and large rigor 
is not a central concern. There is nothing reprehensible 
about the period's attitude toward foundations, even 
though it is not ours. For instance, treating infinite series 
as if they were polynomials had led to important new 
results without a general theory of convergence; why then 
should mathematicians not go on treating infinite series in 
that way? Such a procedure is not, at least in principle, 
inadmissibleY Similarly, since differential equations usu
ally arose out of physical problems, there was no need to 
consider the problem of existence of solutions; the physical 
reality guaranteed that a solution existed. Complex num
bers were obviously useful in algebra and trigonometry 
even though J=T had only a formal definition; why not 
use the fruitful formulas containing J=T, since they led to 
valid conclusions? 

Nor was this indifference to foundational questions a 
matter of hostility. Eighteenth-century mathematicians 
were willing to discuss basic questions when settling them 
was necessary to solve a problem. In trying to decide what 
sort offunctions solved the differen tial equation for the vib
rating string, vigorous opinions were expressed over which 
functions were admissible in analysis. This debate, which 
involved d'Alembert, Euler, Lagrange, and Daniel Ber
noulli among others, had some influence on the Cauchy
Bolzano definition of continuous function, and probably 
also on Cauchy's concept of the integraJ.12 Although this 
debate was not undertaken in order to provide a founda
tion for the calculus, it can be viewed as a partial exception 
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to the generalizations above; but in their defense I should 
add that the participants themselves did not push the 
discussion very far beyond the particular circumstances 
that gave rise to it. la 

But what of the strongest modern argument for rigor
ous foundations-that they help avoid mistakes? One 
might think that the desire to correct errors or to resolve 
contradictions would have led eighteenth-century mathe
maticians to discuss the foundations of the calculus. But 
this was not the case. There was no 'scandal' demanding 
immediate attention: there were no contradictions serious 
enough to halt the progress of mathematics. Even in the 
light of modern knowledge, these mathematicians made 
surprisingly few errors. In part this was because the infinite 
series they treated were usually power series with bounded 
coefficients, which behave very much as the analogy with 
polynomials would lead one to expect, even in the absence 
of a general theory of convergence. Also, the functions that 
these mathematicians studied often arose from physical 
models and thus were relatively well behaved. Experience 
must have quickly shown that certain types of arguments 
led one astray and therefore simply should not be used. a 
Finally, we must acknowledge the great genius of these 
men, particularly Euler, whose incredible ability to choose 
fruitful methods of derivation led them past many poten
tial pitfalls. In the absence of obvious errors in mathe
matical work, eighteenth-century mathematicians appar
ently did not feel one of the traditional attractions of 
greater rigor: the need to separate the true from the false. 

Too often, histories of the calculus inadvertently have 
given the impression that eighteenth-century mathemati
cians spent a great deal of their time and effort discussing 
the foundations of the calculus. Of course there was a 
debate about foundations in that period, and this ob
viously is important in understanding the origin of later 
foundations. But keep in mind where most eighteenth
century mathematicians' interests lay when evaluating 
their work on foundations. Solving problems was impor
tant, not proofs about the concepts used in solving them. 
The attitude of most of these mathematicians, implicit 
in their usual choice of problems and methods, may be 
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summed up in a remark attributed to d'Alembert: "Go on, 
go on; the faith will come to you." 15 

It is in this context that we must understand the 
history of the foundations of the calculus. It is not the story 
of the successive steps that ultimately and naturally led 
to the establishment of Cauchy's rigorous formulation. 
Instead, it should be viewed as the record of a debate that 
was seldom of vital concern to its participants. In fact, we 
need to explain why an eighteenth-century mathematician 
like Lagrange would return so many times in his long 
mathematical career to a problem-finding the founda
tions of the calculus and deriving the major results from 
those foundations-in which nobody else seemed greatly 
interested. The mere existence of an unsolved problem 
does not ensure that people will even try to find a solution, 
let alone succeed in solving it. 

If eighteenth-century mathematicians were not very inter
ested in foundations, when and why did they discuss the 
subject at all?16 Explanations by leading mathematicians 
of the nature of the calculus were found principally in 
introductions to expositions of the calculus, especially in 
courses of lectures and in books based on such courses, in 
popular expositions of mathematics for the lay public, and 
in responses to attacks on the logical soundness of the 
calculus. They are not usually found in papers printed in 
scientific journals. Until the 1 780s, there are almost no 
exceptions to this statementY Indeed, these generaliza
tions continue to hold well into the following century. 

The need to begin an exposition of a subject by de
fining its basic terms is both psychological and logical, 
especially in mathematics, which traditionally has had a 
Euclidean form. But there were additional reasons for 
introducing expositions of calculus with explanations of 
the fundamental concepts. First, calculus was a new sub
ject; thus, even nonelementary expositions like Newton's 
Method if Fluxions contained introductory material ex
plaining the basic concepts of the calculus. Second, these 
expositions were intended as textbooks for a growing reader
ship. There was an increasing interest in the eighteenth 
century in mathematics and the sciences. On the one hand, 
the potential audience among scientific professionals for 
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such expositions was greater in size than ever before. The 
founding of scientific societies and journals, which dates 
from the mid·seventeenth century, made science-includ
ing mathematics-an organized, ongoing enterprise. IS 

Textbooks, both elementary and advanced, were needed 
by the new and growing scientif1c community; in papers 
written as contributions to the community of working 
mathematicians, we do not generally find men like Laplace 
or Euler laying the foundations for the calculus. On the 
other hand, there was a large nonprofessional audience for 
scientific works. Public interest in science and mathematics 
had been greatly increased by the success of Newtonian 
physics in understanding the laws of the universe, prompt
ing both mathematicians and philosophers to explain the 
calculus to laymen. For instance, d' Alembert's contri
butions to the Encyclopedie, undertaken by the French 
philosophes to systematize the knowledge of the age, in
cluded explanations of the calculus completely divorced 
from any expositions of major results. These are part of the 
tradition of eighteenth-century popularized science that 
ranged from Maclaurin's Account of Sir Isaac Newton's 
Philosophical Discoveries to Algarotti's Newtonianism for the 
Ladies. 19 

The Newton-Leibniz controversy also contributed to 
discussion of the foundations of the calculus.20 Newton and 
his followers stressed certain points about his calculus in an 
attempt to show that it was different from-and superior 
in rigor to-that of Leibniz. In trying to defend Newton's 
calculus, British mathematicians emphasized the superior 
rigor of geometry over the unrigorous-and algebraic, not 
geometric-infinitesimals of Continental mathemati
cians.2I This goal led the British to extensive discussions of 
foundations. 

Explanations growing out of actual teaching experi
ence became more common at the end of the eighteenth 
century, by which time most of the mathematicians were 
teachers. In the eighteenth century, many mathematicians 
and scientists had depended upon royal patronage or on 
personal wealth for their support. There were few univer
sity positions. But as the scientific community grew, more 
men of the middle class became scientists; these men needed 
support. In addition, there was a growing conviction that 
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scientists could be useful to a nation, both for its expanding 
industries and its military capabilities.22 In response to 
these changes, new schools, and scientific departments in 
old schools, were opened. These increased the number of 
jobs available for scientists. The most important example 
of a new school fflunded in response to these changes was 
the Ecole Poly technique in Paris, founded by the Revolu
tionary government in 1795. The school was not estab
lished out of an altruistic desire to give jobs to would-be 
scientists, although its policy of "open enrollment," which 
recognized talent over class origins, fit nicely with the 
ideals of the Revolution. The founders of the Ecole Poly
technique recognized that science and mathematics were 
valuable to the state and proposed to use the school in its 
service to recruit and train scientists and engineers. Other 
nations followed this example. Teaching, perhaps even 
more than writing textbooks, stimulated mathematicians 
to consider the foundations of their subject. In presenting 
a subject like analysis to beginners, no appeal could be 
made to the way a concept is uuderstood in use, since the 
beginner did not have the experience needed for that 
understanding. Having students tends to force a teacher to 
expound the first principles of a subject clearly and to think 
those principles through anew. This helps to explain why 
the contributions to the foundations of the calculus of 
Lagrange, Cauchy, Weierstrass, and Dedekind were all 
stimulated by their teaching.23 

The foundations of the calculus thus seem to have 
been viewed as a matter more philosophical or pedagogical 
than mathematical. Indeed, the phrase "true metaphysics 
of the calculus," not "basic axioms and definitions" as 
might be found in geometry, recurs in the titles of 
eighteenth-century discussions offoundations.24 Yet there 
was also a desire among some mathematicians near the 
end of the century to call attention to foundations. 
Lagrange, for example, believed that his foundations were 
establishing the basis of a completed structure, since the 
calculus had fairly well succeeded in solving the major pro
blems set for it. In fact, he once termed higher mathematics 
"decadent." 25 This attitude, which has been called '''fin 
du siecle' pessimism," 26 has, when viewed from a modern 
perspective, some basis in fact. Without careful attention 
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to convergence of series, without knowing under what 
conditions one may change the order of taking limits or 
integration, certain classes of results cannot be obtained. 
Denis Diderot, who was hostile to the mathematical 
method in science, nevertheless made an illuminating 
observation abou t the mathematics of his con tern poraries
shared by at least some of them-when he said that men 
like the Bernoullis, Euler, and d' Alembert had "erected 
the pillars of Hercules" beyond which later ages would not 
be able to pass.27 

A last reason for discussing the basic concepts of the 
calculus was that the rigor of the calculus had been at
tacked and mathematicians wanted to defend it. Though 
some early attacks had come from mathematicians who 
objected to infinitesimals, it is surely a measure of the lack 
of interest in foundations on the part of mathematicians 
that until the 1 780s, the most prominent attacks on what 
was in fact logically inadequate came from philosophers 
and theologians.28 The most telling and influential criti
cism of the calculus came in 1734 from George Berkeley, 
Bishop of Cloyne, and was undertaken partly to defend 
religion against attacks by scientists.29 The cause for 
Berkeley's attack was not some personal pique against 
mathematicians; it was part of his opposi tion to the prevail
ing views of the Enlightenment. 

Eighteenth-century philosophy drew on the prestige 
of Newtonian science and on the materialistic philosophies 
of Francis Bacon, Robert Boyle, Newton, and John Locke. 
Newton had argued that the perfect order of what was 
later called "the Newtonian world-machine" proved that 
there was a God who had created it. But it was a long step 
from Newton's lawful nature and the corresponding 
"Nature's God" to the God of orthodox Christianity. So 
along with the widespread public interest in scientific 
matters and public respect for the achievemen ts of mathe
matics and science, there was a growing iconoclasm direc
ted against old philosophies, feudal governments, and the 
Christian religion.30 Bishop Berkeley wanted to defend 
Christianity against attacks by scientists who, he said, 
falsely believed that their superior ability to reason made 
them better judges of religious matters than were Christian 
clergymen. Berkeley counterattacked, pointing out weak-
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nesses in what Enlightenment thinkers thought was the 
most secure achievement of Reason: mathematics. His 
attack, The AnalYst, or a Discourse Addressed to an Infidel 
Mathematician, ended with sixty-seven rhetorical queries, of 
which three will serve to summarize his motives-and his 
style: 

Query 56: 
Whether the corpuscularian, experimental, and mathe
matical philosophy, so much cultivated in the last age, 
hath not too much engrossed men's attention: some part 
whereof it might have usefully employed? .. 

Query 62: 
Whether mysteries may not with better right be allowed of 
in Divine faith than in human sciences? 

Query 63: 
Whether such mathematicians as cry out against mysteries 
have ever examined their own principles? 31 

Berkeley's attack on the calculus pointed out real 
deficiencies, as we shall see. As the above quotations illus
trate, his attack was also incisive, witty, and infuriating. 
Many mathematicians were moved to try to answer it. In 
fact, several important eighteenth-century discussions of 
the foundations of the calculus can be traced back to 
Berkeley's attack. For instance, Maclaurin's monumental 
two-volume A Treatise rif Fluxions began as a reply to 
Berkeley. Berkeley's attack had a more lasting effect than 
simply stimulating an immediate set of replies; it served to 
keep the question of foundations alive and under discus
sion, and it pointed to the questions which had to be 
answered if a successful foundation were to be given. 
D'Alembert and Lazare Carnot both used some of 
Berkeley's arguments in their own discussions of foun
dations, and Lagrange took Berkeley's criticisms with the 
utmost seriousness.32 

Mathematics often appears to be an autonomous, self
directing activity. It has an inner life and logic of its own 
to a greater degree than any of the natural sciences. 
Nevertheless, the outside world impinges upon it in many 
ways, not in determining answers but in influencing which 
questions are asked. And this tendency was especially 
marked in the history of the foundations of the calculus in 
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the eighteenth century. External causes were not the only 
ones producing discussions offoundations; but had public 
interest in mathematics and science been less, and had 
mathematicians not been obliged to teach, there would 
have been even fewer such discussions. Though this situ
ation is surprising in the light of modern views of mathe
matics, it is understandable in terms of the major interests 
of mathematicians in the eighteenth century. Inasmuch as 
no major errors had been found, there was little reason for 
them to act any differently. The traditional view of 
mathematics-self-evident assumptions, clear definitions, 
logically sound proofs-may apply to the geometry of 
the Greeks, but it does not describe eighteenth-century 
analysis. 

Algebra, not geometry, was the model for eighteenth
century mathematical practice.33 For research mathe
maticians, 'anabsis'-problem solving-was prized over 
'.rynthesis'-proof. 34 But tnough the subject matter of 
Euclid's geometry was only a secondary area of mathe
matical concern, the logical structure of the works of 
Euclid and Archimedes was universally admired. Their 
example was the strongest force from within mathematics 
directing attention toward rigor. The persistence of the 
Greek tradition kept the old standards alive and in every
body's consciousness. 

In this respect, mathematics, like the other sciences, 
was a part of the scientific revolution; a Greek tradition 
was present in all the new sciences of Renaissance and 
seventeenth-century Europe.35 However, in no subject was 
the respect for the Greek tradition as great as in mathe
matics, and nowhere else was it as long lasting. Though 
Copernicus used Greek astronomical methods in his work, 
he made an earth-shaking change. Though Galileo said 
that Aristotle, had he been alive in the seventeenth cen
tury, would have immediately adopted the principles of 
Galileo's physics, a major part ofGalileo's work is devoted 
to refuting the writings of Aristotle and his followers. But 
there is no figure in the mathematical part of the scientific 
revolution who played the role of Copernicus to Ptolemy or 
Galileo to Aristotle: nobody overthrew the old system in 
mathematics.36 To be sure, algebra, analytic geometry, 
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and calculus added immensely to mathematical methods 
and knowledge. Still, mathematicians had little fault to 
find with the proofs and conclusions of Greek geometry. 
The usual criticism of the Greeks was that they had not 
gone far enough; nobody attacked their achievements. 
(Not even the nineteenth-century originators of non
Euclidean geometry, Bolyai and Lobachevsky, overthrew 
Euclid; it was Voltaire, not Euclid, who claimed that there 
was only one geometry.) Respect for the lasting accomplish
ment of the Greeks kept the standards of rigorous mathe
matics more alive in the eighteenth century than the 
nature of mathematical practice required. 

Thus one contribution of the Greeks to establishing 
rigor in the calculus was in having provided a model of 
rigorous reasoning, a model that influenced philosophers 
as well as mathematicians in their expectations about 
mathematics. But in addition, specific Greek theorems 
were important parts of eighteenth-century mathematics. 
Euclid's Elements contained a theory of irrational ratios37 

that was viewed as the ultimate foundation of arithmetic, 
and whose basic assumptions include what is now called 
the Archimedean axiom: "Quantities have a ratio when 
they are capable, on being multiplied, of exceeding one 
another"-in modern terms, for any a, b in an Archi
medean ordered field, there is an integer n such that 
na > b.3s Eudoxus, the originator of Euclid's theory of 
irrationals, and Archimedes had used a type of argument 
now known as 'the method of exhaustion' to prove theorems 
about the values of curvilinear areas and volumes. The 
method of proof, perhaps more correctly designated by 
Dijksterhuis as "indirect passage to the limit," 39 proves 
that some curvilinear area A has some value K by indirect 
proof. For instance, consider the proof by Archimedes that 
the area of a circle is equal to half the circumference times 
the radius.40 Let the area of the circle be A; half the 
circumference times the radius, K. First assume A > K. 
Let A - K = D. Then, by inscribing regular polygons of 
four, eight, ... , 2n sides in the circle, the geometry of the 
situation and the Archimedean axiom allow one to show 
that the area of some inscribed 2n-sided polygon P differs 
from the area of the circle A by less than any given 
quantity41-in particular, by less than D. So P> K. But 
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the area of the polygon is equal to half the perimeter times 
the altitude to its side; the perimeter is less than the circum
ference of the circle, the altitude less than the radius, so 
P < K. This is a contradiction; therefore the area of the 
circle A cannot exceed K. Archimedes then assumed A < K 
and showed that this, too, leads to a contradiction. Hence 
we must conclude that A = K, QED.lfthe area A exists, this 
method of proof is valid. 

These Greek theories greatly influenced eighteenth
century discussions of foundations. Infinitesimals were 
attacked because they did not obey the Archimedean 
axiom;42 occasionally, proofs of the correctness of specific 
results of the calculus were given by the method of exhaus
tion as a way of satisfying absolutely everyone about the 
correctness of the conclusions obtained by analytical 
means.43 

The method of exhaustion, however, though rigorous, 
did not solve the problem of giving a rigorous basis for the 
calculus. The method of exhaustion is extremely difficult to 
apply in complicated cases, and proving each result of the 
calculus by its means would be a superhuman task. Also, 
the method was out of tune with the prevailing algebraic 
spirit of eighteenth-century calculus, because it is e~sen
tially geometric. Moreover, the method of exhaustion is 
not always applicable to calculating the values of areas. 
To be sure, the Greeks had methods for computing areas, 
but these methods were not rigorously based, and most of 
them in any case were not well known in the seventeenth 
and eighteenth centuries.H The power of the calculus to 
discover such results was so great and its success in solving 
complicated problems so striking that the Greek methods 
of discovery, even if they had been known, migh t well have 
been viewed as historical curiosities. 

Cauchy himself said that the Greek methods were his 
model of rigor, and we must take this statement seriously. 
Cauchy, like Euclid and Archimedes, gave his work a 
logical structure, basing chains of theorems on his de
finitions. In addition, Cauchy used techniques that have 
some kinship with Greek techniques. But Cauchy's tech
niques owed more to eighteenth-century algebra than to 

the method of exhaustion. The method of exhaustion was 
indeed one source of the simple limit arguments used in 
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eighteenth-century analysis. These limit arguments-as in 
the work of L'Huilier, for instance-were often nothing 
but algebraic translations of Greek arguments, a fact 
which helped give the inequality-based limit arguments 
some degree ofrespectablity. But much more sophisticated 
inequality techniques and many results in analysis un
known to the Greeks were needed before the calculus could 
be founded on the algebra of inequalities. Furthermore, 
the methods of proof would have to be applied to all 
examples, not just elementary ones; only then would the 
techniques be a part of mathematics proper, rather than 
part of the explanation designed for beginners or critics. 

In order to understand the climate of opinion before 
Lagrange was able to propose, and Cauchy to solve, the 
problem of providing adequate foundations for the calcu
lus, there must be an understanding of eighteenth-century 
attempts to explain its concepts.45 These explanations had 
deficiencies. They will not be criticized from the modern 
viewpoint; criticisms raised by contemporaries against 
these explanations, however, will be reviewed. 

The calculus in the eighteenth century had two basic 
concepts: differential quotient and integral. The integral 
was not only known to be the inverse of the differential 
quotient; it was usually also defined as that inverse. Thus all 
the applications of the calculus-areas, volumes, solution 
of differential equations, tangents, maxima and minima, 
variational problems-rested on translating the given 
problem into an analytical or algebraic expression that 
could either be differentiated or shown to be the differential 
quotient of some other expression. Therefore any foun
dation for the calculus had to begin by justifying the rules 
for differentiating algebraic quantities.46 The types of ex
planation may be surveyed by treating a very simple case: 
calculating the differential quotient of the function y = x2 • 

Taking such a simple case does not do violence to the spirit 
of eighteenth-century calculus; since its discussions offoun
dations were usually meant to illustrate the nature of the 
concepts of the calculus, not to justify them in full technical 
detail, it too usually considered simple cases. 

All eighteenth-century mathematicians would begin 
this calculation in essentially the same way. Ify = x2 and if 
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x takes the value x + h for some small h, y becomes 
x2 + 2xh + h2 • If the change in x is h, the change in y is 
2xh + h2 and the ratio of the changes is (2xh + h2 ) /h = 
2x + h. The differential quotient of x2 (or in equivalent 
terminology, the fluxion or derivative of x2 ) is not 2x + h, 
however, but 2x. What happened to the h? To be sure, h 
can be taken as small as desired. Still, how can completely 
neglecting it in the final expression be justified? Even the 
relatively uninterested analyst could not avoid fundamen
tal questions of this sort. The problem was solved for dif
ferential quotients of arbitrary functions only by Cauchy, 
though it had been discussed throughout the eighteenth 
century. Here are the principal answers given then. 

Infinitesimals Considering h to be an infinitesimally small 
quantity, we can neglect it with respect to the finite quan
tity 2x. Thus 2x + hand 2x are essentially equal-or 
simply, are equal. This procedure was used by Leibniz in 
his early papers, and pursued by the Marquis de I'H6pital 
and Johann Bernoulli. But this explanation was aban
doned soon, because two major objections were raised 
against it. First, as Newton pointed out, infinitesimals did 
not obey the Archimedean axiom and therefore had no 
legitimate mathematical status. Second, unless h = 0, dis
carding it is an error, and as both Newton and Berkeley 
observed, "errours, tho' never so small, are not to be 
neglected in Mathematicks."47 

Fluxions Newton and his British followers, of whom the 
most eminent was Maclaurin, took the velocities, or rates 
of change, of x and y to be their basic concepts. These 
velocities were finite quantities, and therefore apparently 
not subject to the objections raised against infinitesimals. 
Quantities like x andy, which are subject to change, were 
calledflowing quantities or fluents; their veloci ties, wri tten as i 
andy, were calledfluxions. For sufficiently small time inter
vals, the increments of x and) were assumed proportional 
to the velocities or fluxions with which they change; the 
increments in small time intervals could thus be defined in 
terms of those velocities. Thus if the change in x is ih for 
some "indefinitely small" h, the change iny isYh. The ratio 
of the increments,y/i, is then computed to be 2x + h. But 
since (in Newton's words) h is conceived to be "indefinitely 
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little," it will be "nothing in rtlspect of the rest"; it will 
vanish, and the ratio jji will be equal to 2X.48 But should 
the basic concepts of the calculus really be understood 
in terms of velocity? Bishop Berkeley, and after him 
d'Alembert and Lagrange, all pointed out that we had no 
independent idea of velocity clear enough to serve as a 
foundation for the calculus. Besides, velocity is an idea 
from physics; d' Alembert and Lagrange both insisted that 
the calculus should not depend on an idea outside mathe
matics.49 As for the "indefinitely little," Newton himself 
later preferred to speak oflimits or, as he also called them, 
"last" or "ultimate" ratios. 

Early Limit Concept Since we are considering the ratio 
2xh + h2jh as h gets smaller and smaller, we may define 2x 
to be the limit of the ratio 2xh + h2jh as h goes to zero; a limit 
is defined as a quantity which the ratio can never surpass, 
but can approach to within any given difference. This type 
of explanation was given by Newton. Newton spoke of the 
limit in another way also: as a "last ratio" or an "ultimate 
ratio." That is, the limit or ultimate ratio was the value of 
the ratio at the last instant of time before h-an "eva
nescent quantity"-has vanished.50 In this instant, the 
ratio became equal to 2x. Similarly, at the last instant, the 
secant coincided with the tangent. The limit concept, as 
defined above, was also used in explaining the calculus by 
d'Alembert and by Silvestre-Franc;ois Lacroix, and by 
Colin Maclaurin in discussing the sum of an infinite 
series.51 

The criticisms raised against this version of the limit 
concept by Bishop Berkeley were almost impossible to 
answer in eighteenth-century terms. Berkeley's principal 
objection to the methods of limits and of ultimate ratios 
was that 2x + h can never actually become equal to 2x. 
Similarly, a secant can never become a tangent, no matter 
how close together the points of intersection are. Further
more, the whole procedure used to find limits was illegiti
mate. Either h is equal to zero or it is not. If h = 0, then it is 
impossible to compute the ratio 2xh + h2jh, since if h = 0, 
then (x + h)2 =X2, not x2 + 2xh + h2. Also, if h = 0, we 
cannot divide both terms of the ratio 2xh + h2jh by it to 
obtain the form 2x + h. Nor can we evade these difficulties 
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by saying that h is not equal to zero. If h is not zero, then 
2x + h is never equal to 2x. There is apparently no way out 
of this dilemma: if 2x + h does not actually equal 2x, our 
result is inexact; if 2x + h does become equal to 2x, our 
original ratio was 0(0 and the whole argument is absurd. 
Berkeley emphasized that the quantity h "cannot be got rid 
of." With devastating effect, he borrowed Newton's stric
ture against infinitesimals to attack the method of limits: 
"errours, tho' never so small, are not to be neglected in 
Mathematicks." 52 Berkeley's strictures against these argu
ments were elaborated upon by Lagrange, who made even 
more convincing the proposition that the limit concept as it 
had existed in the eighteenth century could not provide a 
foundation for the calculus. 

Compensation of Errors Although 2x + h is not equal to 2x, 
the calculus nevertheless got correct results. For instance, 
the slope of the tangent to the parabolay = x2 is indeed 2x. 
But this correct result is obtained, according to Bishop 
Berkeley, because in applying the rule for finding the 
differential quotient of x2 to the geometrical problem of 
tangents, an error exactly canceling the neglect of h was 
made: the slope of the tangent was determined by treating 
the curve at the given point as though it coincided with the 
tangent at two separate points, which it does not. Berkeley 
proved that these "errors" exactly canceled each other in 
the case of the tangen t to y = pX2, 53 using facts known 
about the parabola and its tangent from Apollonius's 
Conics and relying only on finite arguments. Lazare Carnot 
later claimed that he could show that the errors made in 
procedures like these always canceled each other out.S4 But 
Berkeley's purpose had been to show that the calculus had 
no unexceptionable foundation; two errors are, after all, 
worse than one. He might have been amused to see Carnot 
try to convert that criticism into a valid basis for the 
calculus. Unfortunately, as Lagrange pointed out, it did 
not seem possible to prove that the errors made always 
canceled each other out.ss 

Greek Sryle The calculus can be viewed solely as a method 
of discovery whose results may be proved by other 
methods-by methods equivalent to the method of ex
haustion of Greek geometry. In our example, let the value 
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2x be given. Suppose now that the rate of change ofy, which 
will be denoted R, is not equal to 2x. Suppose first that 
R > 2x. Then, by assuming that for small h the rate of 
change is proportional to the increment in x, we can choose 
h sufficiently small to show that R > 2x leads to a contra
diction. Again assuming that for h small enough, the rate of 
change is proportional to the increment in x, it can be 
shown that R < 2x leads to a contradiction. Hence R = 2x. 
This type of argument, 'modeled on Greek proofs about 
the equality of areas, was used extensively by Colin 
Maclaurin.56 Maclaurin believed that one could go even 
further and prove the validity of all the applications of the 
calculus by appeals to the method of exhaustion. Given an 
acceptable definition of R, the rigor of Maclaurin's method 
would be beyond question. However, the rate of change R 
must somehow be defined, and the only concepts at Mac
laurin's disposal were those oflimit and fluxion, concepts 
whose drawbacks have already been discussed. Also, the 
technical demands of the proofs by the method of exhaus
tion are formidable in complicated cases. 

Zeros The quantity h can be made less than any given 
quantity; hence, when added to a finite quantity like 2x, it 
is actually zero. But although h is zero when added to finite 
quantities, it is not zero when considered in ratios; thus 
(2xh + h2)/h is not the meaningless 0/0, but the well
defined 2x. This explanation was given by Leonhard Euler 
and is similar to that later used by Laplace. Lagrange said 
that this method is equivalent to that of limits,57 and 
therefore both his (and Berkeley's) criticisms apply to it. 

Algebraic Method The equation (x + h)2 = x2 + 2xh + h2 
is a special case of the general equation 

y(x + h) = y(x) + hp(x) + h2q(X) + h3r(x) + ... 
for the casey = x2 • We define the coefficient P(x) of h in the 
general expansion to be the derivative ofy with respect to x. 
Since for our example P(x) = 2x, 2x is the derivative. This 
method was used by John Landen, L. F. A. Arbogast,j.-P. 
Gruson, and most influentially, by Lagrange.58 Its advan
tage is that the derivative is exactly 2x; we do not need to 
explain what happened to h. What must be explained, 
however, is how this definition corresponds to the usual 
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one, especially in applications to finding tangents and rates 
of change, and how it is known that there is such a series 
expansion when the function y is not a rational function. 
Another problem is the uniqueness of the series expansion 
corresponding to the function; Cauchy effectively destroy
ed Lagrange's method by finding a class of counter
examples to its basic, if implicit, assumption that no two 
functions have the same Taylor series; Cauchy pointed out 
that, for example, the two distinct functions e-x' and 
e- x' + e- Ilx' have the same Taylor series about the point 
x = 0.59 

Limits: Improved Version In the nineteenth century, 
Cauchy established a new meaning for the statement "2x 
is the limit, as h goes to zero, of 2x + h": it means exactly 
that we can make 2x + hand 2x differ, in absolute value, 
by less than any given quantity if we take h sufficiently 
small. It does not matter whether the variable actually 
reaches or surpasses its limit. (Cauchy's limit concept has 
predecessors-for instance, Simon L'Huilier's explicit ac
ceptance that the partial sums of a convergent alternating 
series could "surpass" their limit; see chapter 4.) 

These, then, were the principal ways of explaining the 
concepts of the calculus from its invention in the seven
teenth century to its rigorization by Cauchy in 1823. But 
there were more important differences between the eigh
teenth and nineteenth-century mathematicians than their 
explanations of the derivative ofy = x2 • The former did not 
strive to apply such explanations to many nonelementary 
examples. For instance, the restriction on "never surpas
sing the limit" continued throughout the eighteenth cen
tury, even though many counterexamples-as well known 
as the series for log 2 or Leibniz's series for n/4-were 
known. Most mathematicians of the period seem to have 
believed that the details in nonelementary contexts could 
be supplied if the need arose; but they did not expect the 
need to arise often. They were in fact able to avoid major 
errors, though they could not treat some problems that 
became important later. Finally, these mathematicians 
did not base new results on foundations, nor did they 
expect to. Their foundations were not really able to system
atize even the existing level of knowledge. Mathematical 
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progress in the century was great, but it was made in areas 
other than the foundations of analysis. 

The first major mathematician to treat the foundations of 
the calculus as a serious mathematical problem was 
Joseph-Louis Lagrange. Not only was he concerned with 
the problem offoundations, but unlike his contemporaries, 
he returned to it again and again. This repeated inquiry 
came in part because of the requirements of his teaching, 
in part because he became so convinced of the validity of 
Berkeley's criticisms that he could not remain content with 
the existing foundations. He was impressed, as were many 
others, by the Euclidean tradition. In addition, he thought 
that the body of results of the calculus was more or less 
complete and in need of systematization. In 1797, La
grange published a book, the Fonctions ana!Jtiques, which 
claimed to have solved the problem of pu tting the calculus 
on a rigorous basis. Lagrange's book differed markedly 
from earlier expositions of the calculus. To be sure, his 
work, like those of others, gave definitions of the basic 
concepts. But, what was infinitely more important, he 
derived the existing major results from his foundation. The 
contribution of the Fonctions analytiques to the rigorization of 
analysis lies not in Lagrange's specific definition of the 
derivative as the coefficient of the linear term in the Taylor 
series, but in other things: in taking rigor seriously; in 
demolishing most older views; in the example he set of 
thoroughly working out the received results of the calculus 
from his definitions; and in developing the techniques 
necessary to carry this out.60 

Though Lagrange's interest in the question offounda
tions was unusually long lasting,61 he began his work on it 
for the usual eighteenth-century reasons. His first mention 
of the foundations of the calculus arose out of the need to 
teach. In a letter to Euler in 1754, Lagrange stated that he 
had worked out the elements of the differential and integral 
calculus for the use of his pupils at the military school in 
Turin.62 He even claimed "to have developed the true 
metaphysic of their principles, in so far as this is possible." 
But at this time Lagrange shared the general view of the 
lack of importance of foundations and did not even bother 
to relate the details to Euler. 
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In 1760, Lagrange took up the subject again, this time 
to clarify a philosopher's description of the calculus. The 
philosopher was the Barnabite friar Hyacinth Sigismund 
Gerdil, and his view, held in opposition to that of 
Fontenelle, was that there was no actual infinite in 
mathematics-a conclusion which Gerdil believed to have 
important implications for philosophy.63 One place where 
mathematicians apparently needed the actual infinite was 
L'H6pital's determination of the asymptotes to a hyper
bola by considering the asymptotes as tangents at infinity. 
Gerdil denied that the infinite was really involved in this 
argument, even though L'H6pital had obtained correct 
results by assuming that it was. 64 Lagrange thought a 
further explanation necessary and gave it in a footnote to 
Gerdil's paper; for, while Gerdil principally had wished to 
show that the calculus did not need infinity, Lagrange 
(who agreed) wanted also to give his own reasons for 
believing that the calculus was nevertheless rigorous. 
Lagrange said that L'H6pital had obtained the right 
answer only because the error made in assuming the hyper
bola and its asymptotes met was compensated for by an 
equal and opposite error in treating differentials as though 
they were zero.65 This circumstance in fact applied to all 
other uses of infinite sima Is in the calculus; true results, said 
Lagrange, were obtained only by a mutual cancellation of 
errors, but nobody could prove that the errors always can
celed out. Nevertheless, Lagrange added, the calculus 
could still be justified: the Newtonian calculus was entirely 
rigorous. To illustrate this, Lagrange briefly sketched the 
principles of the method of first and last ratios.66 

Between 1760 and 1772, Lagrange changed his views 
about the sufficiency of the Newton-d' Alembert founda
tion for the calculus. In a paper published in 1772, he 
declared instead that the concepts of the calculus could be 
made rigorous only if they were defined in terms of alge
braic concepts-that is, the calculus had to be reduced to 
algebra.67 This view of Lagrange's ultimately prevailed 
with Bolzano and Cauchy. The important question for 
now is, Why did Lagrange reject the earlier views? He did 
not give explicit reasons until much later, but he may 
have become dissatisfied with the standard foundations-
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infinitesimals, fluxions, and limits-through Berkeley's 
criticisms.68 He clearly did not believe that the older 
foundations measured up to the standards of reasoning 
expected in mathematics. He believed that a suitable 
standard was met with only in algebra. 

On reading Lagrange's work, one is struck by his 
feeling for the general: his idea that any particular result of 
any interest, whether it is the unsolvability of the quintic 
equation, the accuracy of an approximation, or the equa
tions of motion for a physical system, is-and must be 
shown to be-a special case of some more general prin
ciple.69 His extreme love of generality was unusual for his 
time and contrasts with the emphasis of many of his con
temporaries on solving specific problems. His algebraic 
foundation for the calculus was consistent with his genera
lizing tendency. 

Lagrange firs t explained his new idea for the algebraic 
foundations of the calculus in a paper of 1772, "Sur une 
nouvelle espece du calcul reIatif a la differentiation et a 
l'integration des quantites variables." 70 He believed that 
there was a wholly algebraic "theory of series" which gave 
any function a power-series expansion;7! it was on this idea 
that his new foundation rested. "The differential calculus, 
considered in all its generality," he said, "consists in find
ing directly, and by easy and simple procedures," the 
functions p, p', p", ... in the general expansion 

u(x + h) = u(x) + ph + p'h2 + p"h3 + ... 

for a given function u (x). * Lagrange said that this view of 
the calculus was "the clearest and simplest yet given." He 
was thus consciously and explicitly breaking with the ear
lier tradition. His new foundation was intended to be 
purely algebraic, untainted either by philosophy or by 

* Lagrange termed p the 
"derived function" of u (X'); 
this term is the origin of our 
derivative. The second de
rivative of u (x) he defined as 
the derivative of p, that is, as 
the coefficien t of h in the 
expansion of p (x + Iz), and so 

on recursively. He also intro
duced the familiar notation 
u'(x),u"(x), ... for the suc
cessive derived functions of 
u(x), writing the Taylor series 
u(x + h) = u(x) + hu'(x) + 
(h2 fl'2)u"(x) + .... 
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fuzzy ideas, "independen t of all metaph ysics and all theory 
of infinitely small and evanescent quantities." 72 

Lagrange thereby became the first major mathemati
cian to grant the validity of the criticisms of the old foun
dations of the calculus. Nevertheless, in 1772 Lagrange still 
had not broken completely with the prevailing attitude 
toward foundations; it was not until 1797 that he gave 
in print explicit reasons for rejecting the earlier views. 
Foundations were not the primary subject of his 1772 
paper, and his remarks concerning them were brief and 
incidental. He did not at this time even deduce the basic 
algorithmic rules of the differential calculus from his new 
foundation, let alone give such deductions for more com
plicated results. 

Lagrange did think it important to find an exact and 
algebraic foundation for the calculus, however, and he 
continued to think this for the rest of his life. But in 1772 
it was still an embryonic idea, not a realized goal. He was 
not yet satisfied with his own foundation; we know this 
because, through the medium of the Berlin Academy of 
Sciences' prize competition in 1784, he and his colleagues 
appealed to the entire learned world to solve the problem 
of the foundations of the calculus. 

In the eighteenth century, learned academies often offered 
prizes for the solution of outstanding scientific problems. 
One purpose of these prize competitions was to attract the 
attention of mathematicians to a major question and get it 
solved. Solving such a problem could make a mathemati
cian's reputation.73 We can get some idea of what the prize 
questions were like by returning to the Berlin Academy's 
journal for the years 1750 and 1775. In 1750, the question 
concerned the resistance offluids to motion; in 1774-1775, 
perfecting the methods used in computing the orbits of 
comets. In 1784, at the suggestion of Lagrange, the Berlin 
Academy proposed the question of the foundations of the 
calculus as the mathematical prize problem.74 The date 
1784 can be taken to mark Lagrange's public recognition 
of two propositions: first, the foundations of the calculus 
were unsatisfactory; and second, this situation posed a 
major unsolved mathematical problem. The traditional 
attitudes would no longer do; Lagrange wanted mathe-
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maticians to consider this problem, with which he had 
been concerned for so long, with greater seriousness. 
Though it is hard to document the effect of Lagrange's 
public admission, it certainly had some effect. 

Two full-scale books by mathematicians devoted to 
expounding the foundations of the calculus and deriving 
the existing structure of results from these foundations were 
based on essays submitted in this contest: L'Huilier's 
Exposition elimentaire (1787) and Lazare Carnot's Rijiexions 
sur la metaphysique du calcul infinitesimal (1797); since these 
and Lagrange's own Fonctions analytiques (1797) were the 
only such books published on the Continent in the eigh
teenth century, Lagrange was directly responsible for all 
the major manifestations of the new interest in foundations 
as a respectable mathematical problem. 

The tone of the Berlin prize proposal was concern, not 
complacency. The academicians recognized that they 
were asking for something that did not yet exist. It was not 
just a matter of finding plausible definitions of the basic 
concepts but of explaining the success of the calculus as it 
then existed- the weal th of received resul ts and powerful 
methods. Nineteenth-century mathematicians often won
dered how the vast structure of analysis could have been 
erected on the inadequate foundations of the previous 
century. It was a good question, and the Berlin prize 
proposal marks the first real recogni tion of it. 

The prize was to be awarded for "a clear and precise 
theory of what is called Infinity in mathematics." The pro
posal began by saying that such a theory was needed so 
that mathematics could continue to be respected for its 
rigor and its precision. The proposal then became more 
specific: 

It is well known that higher mathematics continually uses 
infinitely large and infinitely small quantities. Neverthe
less, geometers, and even the ancient analysts, have care
fully avoided everything which approaches the infinite; 
and some great modern analysts hold that the terms of the 
expression "infinite magnitude" contradict one another.75 

The Academy hopes, therefore, that it can be ex
plained how so many true theorems have been deduced 
from a contradictory supposition, and that a principle can 
be delineated which is sure, clear-in a word, truly 
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mathematicaF6-which can appropriately be substituted 
for "the infinite"." This is to be done without making the 
researches which had been expedited by using the concept 
of "the infinite" too difficult or tedious.78 We require that 
this matter be treated with all possible rigor, clarity, and 
simplicity.79 

Lagrange did not get what he wanted. Although the 
prize was awarded to Simon L'Huilier, the Berlin 
Academy was not satisfied with any of the many contri
butions received. The criticisms expressed of the contri
butions show that Lagrange and his fellow judges were 
employing higher standards than were then customary in 
discussions of foundations, and that they were in agree
ment with the criteria for rigor discussed in chapter 1. The 
contributions had all lacked "clarity, simplicity, and espe
cially rigor," the committee report said.so Most of them 
had not even seen that the principle desired had to be "not 
limited to the infinitesimal calculus, but extended to 
Algebra, and to Geometry treated in the manner of the 
Ancients." From this it appears that most of the contribu
tors had tried to find some ad hoc principle such as the 
compensation of errors, thereby avoiding the reduction of 
the calculus to more general mathematical concepts. 

Furthermore, the contributors had not justified the 
wealth of received results of the calculus-which is, I have 
argued, absolutely essential for a real foundation: "They 
have all forgotten to explain how so many true theorems 
have been deduced from a contradictory supposition." 
The tone of the committee report, especially its statement 
that the prize question "had received no complete 
answer," shows that L'Huilier's essay was regarded as the 
best of a bad lot.81 Lagrange must have been even more 
dissatisfied with the state of the foundations of the calculus 
after having read these essays. 

But dissatisfaction with an old theory is not in itself 
enough to make a man create a new one. Lagrange did not 
convert his dissatisfaction into a new treatment of the 
problem.82 At this time, he was completing his Mecanique 
ana!Jtique, not working on the foundations of analysis. But 
the Mecanique ana!Jtique may have provided Lagrange with 
one more reason to want to make calculus rigorous; now 
that, as he believed, he had reduced all of mechanics to 
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calculus, the. calculus itself needed to be made rigorous in 
order to make mechanics rigorous.83 Nevertheless, when he 
moved from Berlin to Paris in 1786, he fell into a long 
period of depression during which he did no work at al1.84 

Had it not been for the French Revolution, after which 
Lagrange was pressed into service to teach analysis at the 
newly founded Ecole Poly technique, he might never have 
written his Fonctions ana!Jtiques. The mathematical world 
would have had to wait for somebody else to be the first to 
publish a full-scale work principally devoted to establish
ing the calculus and all its results on an algebraic founda
tion. Lagrange may well have had many of the ideas of his 
Fonctions ana!Jtiques before he began to teach at the Ecole 
Poly technique, but it was the need to teach there which led 
him to put the ideas together and make them public; as he 
himself put it, he had been "engaged by particular circum
stances to develop the general principles of analysis." 85 For 
the task of teaching the calculus, Lagrange felt that it was 
no longer enough simply to recognize that infinitesimals, 
limits, and prime and ultimate ratios were inadequate 
foundations; a positive doctrine was needed. Accordingly, 
he recalled his "old ideas" on the principles of the differ
ential calculus and worked them out further. The "old 
ideas," first expressed in 1772, appear clearly in the full 
title of Lagrange's book of 1797: "Theory of analytic 
functions, detached from any consideration of infinitely 
small or evanescent quantities, oflimits or of fluxions, and 
reduced to the algebraic ana!Jsis [analyse algebrique] of finite quan
tities" [italics mine]. The last phrase suggests the origin of 
Cauchy's program of reducing the calculus to "analyse 
algebrique. " 

We may distinguish several reasons for Lagrange's 
innovation of 1797. First, there was the immediate cause: 
the need to teach a course in analysis. Second, there were 
the demands Lagrange saw arising from the recent history 
of mathematics. His lifetime of reflection on the inad
equacies of previous foundations of the calculus convinced 
him that a new basis was needed, and he felt a real need to 
synthesize the results of the past century. Finally, he had a 
method-the algebra of infinite series-which was part of 
the algebraic tradition he so prized and which he had 
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already sketched as a foundation for the calculus as long 
ago as 1772. 

Lagrange began his Fonctions analytiques with a defini
tive critique of all previous foundations of calculus, and 
wrote a brief article adding to those criticisms in 1799.86 

Lagrange's critique was not original in its particulars; its 
originality lay, rather, in the use he made of it-as a 
preface to a new approach to the foundations of the calcu
lus, in which both advanced and elementary results would 
be exhibited as consequences of the definitions. Thus his 
critique, unlike earlier ones, became part of the standard 
literature of analysis, and Cauchy, Bolzano, and their 
contemporaries could not ignore it. 

Infinitesimals were not rigorous at all, in Lagrange's 
view. Leibniz, L'Hopital, and Bernoulli, "content with 
reaching exact results ... in a prompt and sure way ... did 
not occupy themselves with demonstrating the principles" 
of the calculus.87 The infinitesimal calculus got exact re
sults only by the compensation of errors; and unfortunately 
this fact could not be used as a foundation for the calculus, 
because "it would be difficult to give a demonstration" 
that the errors are always compensated.88 

Newton's fluxions were unacceptable because they 
consider mathematical quantities as if "engendered by 
motion." To be sure, the view has a certain deceptive 
plausibility, since "everyone has or believes to have an idea 
of velocity." But we do not have a clear enough idea of an 
instantaneous variable velocity.89 A more fundamental 
objection, in Lagrange's view, is that the calculus is mathe
matics, not physics; it should have "only algebraic quan
tities as its object." Velocity is thus a "foreign idea"; 
Newton's fluxionary explanation is therefore untenable.90 

As for the limit concept as it then existed, Lagrange 
held that it was vague, too narrow, and geometric rather 
than algebraic. Lagrange's argument for the vagueness of 
the concept of the limit of a ratio whose terms go to zero is 
like Berkeley'S, though he cited no source: the limit concept 
considers quantities "in the state in which they cease, so to 
speak, to be quantities." The ratio of two finite quantities 
"no longer offers a clear and precise idea to the mind, when 
the terms of the ratio become zero simultaneously." 91 To 
show that the limit concept was not broad enough to serve 
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as a foundation for the calculus, Lagrange observed that if 
a quantity could never surpass its limit, then the sub
tangent could not always be defined as the limit of a 
subsecant, since "nothing prevents the subsecant from 
increasing still when it has become the subtangent." 92 
Finally, the idea oflimi t is based on the example of a curve 
as a limit of a sequence of polygons;93 thus it is essentially a 
geometric idea and foreign to the spirit of analysis.94 For 
Lagrange, the calculus was essentially algebraic and there
fore need not-and should not-be founded on principles 
borrowed from other subjects. 

Lagrange had one more criticism of the existing foun
dations. Although he did not state this criticism explicitly 
in 1797, the entire structure of Fonctions analytiques implies 
it: the older foundations were used merely as introductory 
matter; they could not support all the received results. 
Accordingly, Fonctions analytiques differed from its prede
cessors in a crucial respect: It was intended primarily to 
establish the rigor of the calculus rather than to derive new 
results; its definitions were not relegated to an introduc
tion, never to be seen again. The book certainly was not 
indifferent to new results, as the example of the Lagrange 
remainder for the Taylor series should remind us. But its 
outstanding feature is that it does full justice to the already 
existing wealth of results in the calculus. Lagrange de
duced known results of great complexity from his new 
foundation, not only in the calculus but in geometry and 
mechanics as well. 

It was the force of Lagrange's example that did most 
to change the prevailing attitudes toward foundations, 
through his teaching at the Ecole Poly technique and 
through his widely read and highly influential textbooks. 95 

Both Bolzano and Cauchy were influenced by Lagrange's 
views. Bolzano cited Lagrange's work in the paper in 
which he echoed Lagrange's call for abandoning appeals 
to geometry and motion in favor of algebra-as the very 
title of his "purely analytical proof of the theorem that 
between any two values which give results of opposite sign 
there is at least one real wot of the equation" [italics mine] 
shows.96 When Cauchy went on his first major engineering 
job in 1810, his biographer reports, the Fonctions analytiques 
was one of the four books he took with him.97 
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Lagrange had no idea of the extreme fruitfulness that 
was to result from the new foundations of the calculus; 
he did not anticipate the general theory of convergence, 
limits, and the definite integral. Nevertheless, in recogniz
ing the vital importance of the question of rigor; he took a 
major step in the revolution which we associate with the 
name of Cauchy: changing the way mathematics was done 
so that the foundations of the calculus became essential, 
not peripheral. From Lagrange's work, Cauchy and 
Bolzano learned not just techniques, but an attitude 
toward foundations different from the one prevailing. This 
new attitude was essential if the calculus were to be given a 
firm foundation. 

However, it is fortunate that eighteenth-century 
mathematicians did not concentrate on foundations to the 
exclusion of other questions. Through their successful con
cern with particular problems, these analysts developed 
the mathematical substance for which Cauchy could 
provide the rigorous basis; and while they were solving 
problems, they also evolved many of the concepts and 
techniques which Cauchy needed. This combination of 
techniques and results with Lagrange's program for 
reducing the calculus to algebra provided the necessary 
conditions for Cauchy's achievement. 
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By the end of the eighteenth century, many mathema
ticians realized the need to make the calculus rigorous. But 
merely wanting to solve a problem does not in itself provide 
the solution. Nor were contemporary discussions of the 
foundations of the calculus of much help in providing the 
necessary rigor. The contrast in sophistication between 
Cauchy's successful rigorous proofs and earlier arguments 
about limits and fluxions is overwhelming. Yet, however 
superior Cauchy'S proofs may have been, it is my thesis 
that he owed much to the past. On what, then, did Cauchy 
build? 

Cauchy used, transformed, and extended a number of 
ideas from various branches of eighteenth-century mathe
matics. As an example, Cauchy took a number of par
ticular results in analysis-for instance, that certain in
finite series had finite sums-and rendered them at once 
both rigorous and general. Some of his theory of deriva
tives arose from proofs about derivatives given by La
grange and Ampere. Cauchy was led to some important 
theorems about integration by earlier approximations to 
the values of definite integrals and to the solutions of differ
ential equations. But the source of many of the general 
ideas and techniques of Cauchy'S rigorous calculus is 
algebra, especially the algebra of approximation. 

Cauchy used Lagrange's phrase "analyse algebrique" 
in describing the content of the Cours d' analyse; it is thus 
taking Cauchy at his own word to look for the origins of 
his ideas and techniques in algebra. The dependence of 
nineteenth-century calculus on eighteenth-century alge
bra has been given little attention by historians, however. 
This neglect may be due partly to the modern habit of 
dividing mathematics into specialties, and to the corres
ponding assumption that if the calculus is one subject, 
it must have one history. But although specialization in 
mathematics has seemed necessary in the complex mathe
matical world of the nineteenth and twentieth centuries, it 
was foreign to the spirit of eighteenth-century mathe-
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rna tics. One cannot call Newton, Euler, or Lagrange al
gebraists or analysts; they were proficient in all areas of 
mathematics. Cauchy did not learn calculus and algebra as 
two entirely disconnected subjects. He was not restricted to 
works explicitly given over to discussions of limits and 
fluxions in looking for techniques to make the calculus 
rigorous. Cauchy's "analyse algebrique" is a grand syn
thesis of algebraic methods with the basic concepts of 
analysis. 

Both the theory and the practice of algebra con
tributed to the rigorization of analysis. Views on the theory 
of algebra led some eighteenth-century mathematicians, 
most notably Lagrange, to think that algebra was rigorous 
and, therefore, that the calculus could be made rigorous by 
being reduced to algebra. Also, many mathematicians of 
the period viewed infini te processes as a part of algebra, a 
belief which makes infinite processes belong equally to 
algebra and to analysis. Infinite processes were the basis of 
the first attempt to reduce the calculus to algebra, an 
attempt which, though unsuccessful, was important in a 
number of ways. 

Nevertheless, from a modern point of view, the alge
braic basis of rigorous calculus is not the so-called algebra 
of infinite processes; the basic techniques come instead 
from the algebra of inequalities. By what may seem a 
fortunate coincidence, in Cauchy'S time the algebra of 
inequalities had matured into a set of useful, applicable, 
well-developed techniques, and was thus ready and at 
hand for his use in founding the calculus. These inequality 
techniques came primarily from eighteenth-century work 
on approximating the solution of algebraic equations. 

Obviously the study of approximations requires some 
use of inequalities. Besides providing some technical fa
cility in manipulating inequalities, approximations were 
valuable to Cauchy in two main ways. First, the study of 
error bounds in approximations led to work on specific 
types of inequalities much like those needed in the study 
of convergence. Second, the study of approximating pro
cesses provided ways of constructing quantities
constructions that could be converted into existence 
proofs. An illustrative example will be given to show the 
way in which an algebraic approximation provided 
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Cauchy with the inequality techniques he needed to prove 
a major theorem in analysis. This example-Cauchy's 
proof of the intermediate-value theorem for continuous 
functions-provides not only a striking piece of evidence 
for the algebraic origins of rigor in analysis and a specific 
instance of the conversion of an approximation into a proof 
of the existence of the intermediate value, but also a de
tailed illustration of the relation of Cauchy's innovations to 
the work of his predecessors. 

The calculus was to be made rigorous. How could this be 
done? Its first principles had to have the certainty, gen
erality, and self-sufficiency expected of a rigorous su bject. 
Since Greek geometry was viewed as too cumbersome and 
too foreign to the spirit of the calculus to serve as its 
foundation, there was only one subject available with the 
desired characteristics: algebra. 

Eighteenth-century mathematicians based their faith 
in the generality and certainty of algebra on the view that 
algebra was a "universal arithmetic." 1 In universal 
arithmetic, the operations of ordinary arithmetic were 
applied to letters; the letters were understood to represent 
any numbers whatsoever. Thus mathematicians could 
obtain complicated symbolic relations, which yielded 
valid arithmetical results when numbers were substituted 
for the letters. 

Although the statements of "universal arithmetic" 
were only as valid as the laws of ordinary arithmetic, this 
was saying a good deal. Usually in the eighteenth century 
(and even in the nineteen th), ari thmetic was considered 
well founded and since algebra was just a generalized 
arithmetic, the truth of its conclusions was believed as well 
founded, as the truth of arithmetic. 2 The idea of universal 
arithmetic thus accounts for the widespread eighteenth
century belief in the certainty of algebra, a belief which 
was necessary in order to convince people that the calculus 
could be made rigorous by being reduced to algebra. 

Besides stressing generality and certainty, the descrip
tion of algebra as universal arithmetic called attention to 
algebraic symbolism, and therefore to the heuristic power 
of symbolic notation. Powerful notation was, of course, hot 
unique to algebra. Leibniz had provided a highly useful 
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notation for the calculus, and his notation gave much of 
eighteenth-century calculus a sort of algebraic style. Prac
titioners of the calculus thus naturally saw algebra as a 
kindred subject, a view which made it seem plausible that 
the already established certainty of algebra could some
how be carried over into the calculus. 

Another factor making algebra seem an appropriate 
foundation for the calculus, especially to Lagrange, was 
that seventeenth- and eighteenth-century mathematicians 
considered infinite series and other infinite expressions part 
of algebra. The study of infini te series was a major area of 
algebraic activity in the seventeenth century and was 
among the major concerns of Newton and Leibniz. It was 
thought obvious that algebraic methods could routinely be 
extended beyond the finite operations of ordinary arith
metic to infinite processes. For instance, repeated ad
ditions produced infinite series, and so did dividing one 
polynomial by another of higher degree. Repeated multi
plications and divisions produced infinite products and 
continued fractions. The philosophy of algebra included, 
therefore, infinite as well as finite processes. 

The extensions of algebraic methods from the fini te to 
the infinite domain could bejustified in terms of the idea of 
universal arithmetic. The desire for the greatest possible 
generality led to the hope that almost any operation which 
could be carried out meaningfully in the finite domain 
could also be carried out in the infinite one.3 The universal 
acceptance of infinite decimal expansions along with finite 
arithmetic provided a ready analogy for the jump from 
finite to infinite algebraic operations. 4 In addition, beliefin 
the certainty of universal arithmetic led in practice to an 
excessive reliance on symbolism and to the assumption that 
formal validity carried a built-in guarantee of truth. Faith 
in the power of notation helped encourage mathematicians 
to apply the same sorts of techniques to infinite processes 
that they had applied to finite processes. Throughout the 
eighteenth century, infinite power series were added, mul
tiplied, and converted into infinite products, just as if they 
had been very long polynomials. These procedures may 
not have been rigorously established, but they were con
sidered justified by the wealth of results they yielded in 
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applications to equation solving, geometry, and the calcu
lus. From these attitudes toward infinite processes, the 
conception of the algebra or analysis of the infinite was a 
natural development. 

The study of infinite processes may be said to have 
come of age in 1748, when Euler pu blished his Introductio in 
ana lysin infinitorum, a work which studied infinite series, 
infinite products, and infinite continued fractions. The 
Introductio sought to give an account of infinite "analytic 
expressions," just as theories of equations had given an 
account of finite ones.5 Among many other achievements 
in this book, Euler gave infinite-series developments for all 
the standard functions of the time, such as quotients of 
polynomials, exponentials, logarithms, sines, and cosines.6 

Many contemporary mathematicians believed that Euler 
had shown that the functions commonly studied in the 
calculus, even those usually defined geometrically, could 
be represented by infinite series-apparently with no 
appeal having been made to the concepts of the differential 
or the integral.' Deriving these series was viewed as part of 
algebra: the algebra or analysis of the infinite. 

It was the idea that there was an algebra of infinite power 
series which led Lagrange to originate and promulgate the 
program of reducing the calculus to algebra-the pro
gram adopted and successfully carried out by Cauchy, 
Bolzano, and Weierstrass. What Euler had managed to do 
for particular functions in the Introductio convinced 
Lagrange that any function could be given an infinite 
power-series expansion. Since Lagrange shared the view 
that infinite processes were part of algebra, Euler's work 
probably sufficed to convince him that the calculus could 
be reduced to algebra. 

In defining the task of the Intl'oductio, Euler had said 
that he was studying functions, and defined a function of a 
variable quantity as "an analytic expression composed, in 
any manner, of that same quantity and of numbers or of 
constant quantities." 8 Lagrange, following Euler, took a 
function to be any "expression de calcul" into which the 
variable entered in any way.9 Lagrange believed that the 
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"algebra of series" provided any such function J with a 
power-series expansion 

J(x + h) = J(x) + hp(x) + h2q(x) + .... 
He even gave a proof-of course, fallacious-that such a 
power series expansion always exists except for particular 
isolated values of x. (Lagrange recognized that there might 
be a few functions without such developments;10 but he did 
not think such functions could be studied by the methods of 
his calculus.) Lagrange then defined P(x), the coefficient of 
h in the power series expansion ofJ(x + h), to be the deri
vativej'(x). Lagrange identified hisj'(x) with 4f(x)/dx, 
and used his definition ofj'(x) to derive the received results 
of the calculus. ll For Lagrange, all the applications of the 
calculus, whether to algebra, geometry, or mechanics, 
rested on those properties of functions which could be 
learned by studying their Taylor-series developments. 12 

Foreshadowings of his conclusion that the calculus 
should be reduced to algebra, with no appeal either to 
geometry or to the idea of motion, may be found through
out the eighteenth century, making Lagrange's views 
appear to be the culmination of a long and successful 
tradition. D' Alembert had attacked Newton's doctrine of 
fluxions for using the idea of motion, since the calculus 
had "only algebraic quantities as its object." 13 Euler 
had claimed that his treatise on the differential calculus 
"remains throughout within the bounds of pure analysis," 
since it required no diagrams for its explanations.I4 

Lagrange repeated many remarks of this sort; besides the 
ones we have already cited, there is his well-known boast 
that no diagrams could be found in his Mecanique analytique. 
But Lagrange was more insistent upon his goal than were 
d' Alembert and Euler and much more single-minded and 
self-consciously algebraic about working out all the impli
cations of his algebraic foundation for the calculus. And 
Lagrange's work helped convince many mathematicians, 
especially Bolzano and Cauchy, that the calculus should be 
made rigorous by being reduced to algebra. 

Bolzano spoke of the need to free analysis from 
geometry and to seek out "purely analytic proofs" for 
theorems of analysis. He wrote that it would be "an un
endurable offense against good method to derive truths of 
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pure (or general) mathematics (arithmetic, algebra, or 
analysis) from considerations which belong to purely 
applied (or special) parts of mathematics, such as geo
metry." 15 He added that "the concept of Time and even 
more that of Motion are just as foreign to general mathe
matics as that of space is." 16 

Cauchy adopted Lagrange's phrase "analyse algeb
rique" for the subtitle qf his Cours d' analyse of 1821. And 
Cauchy actually carried out the reduction of the calculus 
to the "algebraic analysis offinite quantities" referred to in 
the full title of Lagrange's Fonctions analytiques. 

Though Lagrange's Taylor-series method ofreducing 
the calculus to algebra was not the method ultimately 
adopted by Cauchy, it led Lagrange directly to several 
insights which were important to nineteenth-century an
alysts. Lagrange's stress on the functional nature of the 
derivative helped establish that the calculus studies func
tions, not infinitesimal differences or geometric objects. 
Because of his reliance on series, the function concept he 
adopted was that of Euler's lntroductio; Lagrange even 
called the calculus the "theory of analytic functions"
analytic functions for him being finite or infinite algebraic 
expressions containing real variables. Cauchy accepted 
Lagrange's view of the primacy of the function concept in 
the calculus, while returning to the conception first ad
vanced by Euler that a function is any general dependence 
relation. I7 

Since Lagrange believed that the Taylor-series de
velopment of a functionj(x) was essentially an algebraic 
process, he came to treat derivatives of all orders as func
tions, not ratios of infinitesimals. He defined the first de
rived functionj'(x) as the coefficient of h in the Taylor
series expansion ofj(x + h) and, recursively,j"(x) as the 
first derived function ofj'(x)-that is, as [j'(x)]'-and so 
on. Thusj(k) (x) was, for Lagrange, the same sort offunc
tion asj(k-I)(x). The value of this insight is that it is only 
when we stop thinking ofj'(x) as some sort of quotient, and 
only when we stop thinking of d2yjdx2 as a different sort of 
object (since it is a quotient of second-order, rather than 
first-order, infinitesimals) from dyjdx, that we can be sure of 
getting away from what Lagrange called "the false idea of 
the infinitely small."18 Lagrange's notationj'(x), his re-
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cursive definition of the successive derived functions, and 
his term "fonction derivee" soon caught on and aided a 
clearer understanding of the concepts of the calculus. 

Cauchy was strongly influenced by Lagrange's view 
that the calculus should be reduced to algebra. In addition, 
he adopted several of Lagrange's algebraically induced 
innovations. Nevertheless, Cauchy did not accept the par
ticular algebraic foundation used by Lagrange. He found 
it lacking in both rigor and generality. Lagrange had 
allowed almost all the methods used in the algebra of the 
infinite to be brought into the calculus. 19 Cauchy, how
ever, had well-founded doubts about the automatic gen
eral interpretation of symbolic expressions. He had warned 
that "most [algebraic] formulas hold true only under 
certain conditions, and for certain values of the quantities 
they contain." 20 In particular, relations abou t infinite 
series hold only when the series are convergent.21 This was, 
I believe, Cauchy's principal reason for concluding that 
the calculus cannot be founded on the algebra of power 
series. In addition, Cauchy observed that different func
tions can sometimes have the same Taylor series.22 Politely 
bu t firmly, and "in spite of all the respect that such a great 
authority must command," Cauchy rejected Lagrange's 
foundation for the calculus. 

Cauchy, unlike Lagrange, came to see that it was the 
algebra of inequalities, not of equalities, which could pro
vide a basis for the calculus. The search for the origins of 
Cauchy's innovations must turn, therefore, to the origin 
and development of inequality techniques in eighteenth
century algebraic practice-in particular, in the treat
ment of approximations. 

To use the algebra of finite quantities as a basis for the 
calculus, it was not enough for algebra to be rigorous and 
to use powerful notation. Algebra also had to provide 
techniques appropriate for proofs in analysis. These would 
have to come, not from the philosophy of algebra but from 
the practice of algebraists. Fortunately for this purpose, the 
practice of algebraists in the eighteenth century was dif
ferent from what the idea of universal arithmetic would 
suggest. No algebraist of the period regarded the purpose 
of algebra as the mere proclaiming of general rules for 
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finite (or infinite) arithmetical operations, even in sym
bolic language.23 If algebra was in theory a universal 
arithmetic, it was in practice an "analytic art": the art of 
solving equations.24 

To be sure, there was a "theory of equations," which 
could be included under the description universal arith
metic. But the theory of equations, which gave the rela
tions between the roots of a polynomial equation and the 
coefficients of the powers of the unknown, was treated 
chiefly as a means to the end of equation solving.25 Almost 
any method suitable to that end was considered an accept
able part of algebra. Equations were to be solved exactly 
when possible, but an approximate result would be better 
than none. 

Accordingly, many methods of approximating the 
solutions of algebraic equations were devised. The need for 
these methods was obvious. Methods of solving algebraic 
equations exactly were available only for equations of the 
first, second, third, and fourth degrees; for a method of 
solution to be applicable to any polynomial equation, the 
method would have to be one of approximation. As an 
added advantage, approximation methods could often be 
applied to transcendental as well as polynomial equations. 
Approximation techniques were "general" in a sense in 
which exact methods of solution were not. 

These techniques led naturally to the study of the 
algebra of inequalities. Thus the major motivation for that 
study was not theoretical, but practical: solving equations. 
Nevertheless, the algebra of inequalities raised no philo
sophical problem for theorists. Since the algebra of in
equalities originated as a shorthand way of expressing 
simple relations of order between magnitudes, it could 
easily be considered part of universal arithmetic. Thus 
inequalities, like infinite series, were comfortably at home 
in both the theory and practice of eighteenth-century 
algebra. 

The algebra of approximations was a source of rigor
ous calculus in several ways. First, the use of inequalities in 
approximation techniques, especially in error estimates, 
helped develop skill in manipulating algebraic inequalities 
and made such manipulations available for use in conver
gence and delta-epsilon proofs by Cauchy and his suc-
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cessors. Second, an approximation technique supplied 
with a precisely computable error bound can be converted 
by someone like Cauchy, in possession of the modern de
finition of convergence, into a proof that the approxi
mation converges. Third, a sequence of approximations to 
a quantity sometimes can be converted into a proof of that 
quantity's existence by providing a way to construct it as a 
limit of the sequence. Mention should be made here that 
the interest in approximations in the eighteenth century 
went far beyond algebra. Approximations to the values of 
Taylor series and of definite integrals played important 
roles in problem solving and were used by Cauchy in his 
rigorous theories of the derivative and the integral. Finally, 
the relation in approximations between infinite processes 
and error estimates brought together the algebra of the 
infinite and the algebra of inequalities; these are precisely 
the two subjects whose fusion lies at the heart of the 
nineteenth-century rigorization of analysis. 

A wide variety of methods of approximation may be found 
in eighteenth-century algebra.26 Some generalizations 
apply to almost all the methods, however. First, the goal of 
most approximation procedures was to derive infinite an
alytic expressions for the roots of any polynomial equation. 
If such an infinite form could not be found, the approxi
mator would give a recursive process for approximating 
the root, which could then be applied as many times as 
desired. But the full infinite form was always preferred 
when such a form could be obtained. Most mathemati
cians preferred to write down infinite expressions, which, 
since they appear in equations, seemed to give the solutions 
exactly, rather than to write down inequalities.27 Even in 
those rare instances when methods of approximation were 
evolved by inequality considerations rather than by alge
braic substitutions, mathematicians preferred to convert 
the final result to an infinite analytic expression. * This 
example of the popularity of the algebra of the infinite 

* Johann Heinrich Lambert, 
for instance, solved the equa
tion xm + px = q by deriving 
a sequence of inequalities 

bounding x above and below 
that became closer and closer 
to x. But his final result was 
stated as an infinite series 
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serves to remind us that a developed algebra ofinequalities 
does not arise automatically and necessarily out of work on 
approximations. More than the simple interest in approxi
mations will be necessary to explain the genesis of sophis
ticated inequality techniques. 

A second common methodological feature was the 
stress on particular numerical examples. Although gener
ality was often said to b~ a goal, in fact particular numer
ical examples abounded. And although the purpose of the 
examples was only illustrative, their effect was to block off 
the consideration of highly unusual or pathological 
counterexamples and therefore the systematic conside
ration of error estimates. This orientation toward par
ticular results parallels the period's approach to the 
calculus. 

A third point is that until the late 1 760s there were 
almost no explicit general error estimates, except for a few 
simple results like the error term for the sum of a geometric 
progression. Although enough information existed in some 
approximating' formulas to provide error estimates, most 
mathematicians felt that they had more important things 
to do. Here as in the calculus, the desire for explicit results 
governed which questions were asked. When, for instance, 
Newton and Euler appealed to inequalities to justify ap
proximations, it was usually to ensure that the terms of the 
specific infinite series under consideration rapidly became 
smaller and smaller.29 The diminu tion of the first few terms 
of an infinite series was generally treated as sufficient to 
ensure that the values of the successive approximations 
became closer and closer to the root. Only in the latter part 
of the century was any serious attention paid to computing 
general bounds on the errors made in approximations, and 
not until Cauchy are there explicit proofs for the conver
gence of approximations. 

To appreciate the relatively elementary way inequali
ties were used in the early 1700s, let us look at Newton's 

whose terms alternate in sign: 

x = alP + qmlpm+1 
+ mq2m-1Ip2m-1 
- [m(3m - 2)/2]q3m-2Ip3m+1 
+ .... 

He made no further mention 
of his generating inequa
lities. 2M 
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approximation, which was widely discussed throughout 
the century. Newton's exposition was not general, but was 
presented for a simple cubic equation from which the 
generalization was obvious: 

y3 _ ~ _ 5 = 0.30 

As a first approximation to the solution of this equation, 
Newton chose 2 "as differing from the true root less than 
by a tenth part ofitself."31 Settingy = 2 + p, and substi
tuting in the original equation, Newton obtained an 
auxiliary equation for p: 

But since p is small, the higher-order terms can be neglec
ted, yielding 

lOp - I = 0, p = 0.1. 

[Though Newton did not point it out, this procedure is 
equivalent to solving a polynomial equation P(y) = 0, 
given a first approximation y = a, by letting the second 
approximation be y = a + p = a - P(a)/P'(a).]32 The 
procedure can then be repeated as often as desired.33 

Newton was sufficiently concerned about the accu
racy of the approximation to give an inequality condition 
not only for the first approximation but for the neglect of 
the higher-order terms in the cubic equation for p. Let us 
write that equation in general as 

p3 + ep2 + bp + e = 0. 

Newton said that the p2 term could be neglected in solving 
for p only when lOee < b2• Newton gave no error estimate, 
nor any other explicit justification for this requirement.34 

Nevertheless Newton's inequality is instructive in showing 
that even in the seventeenth century, discussing the accu
racy of an approximation technique involved inequalities. 

As an illustration of the state of these questions in the 
mid-eighteenth century, consider Euler's application of 
Newton's method to the equation y = xn - an - b = O. 
By Newton's method, Euler's first approximation was 
j= a + b/na n- I •35 Euler then asked the question Newton 
had asked: How small must b be to justify neglecting the 
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higher-order terms in the Taylor-series expansion for y? 
Euler's answer was 

an+h < (a + J)n, 

where a and b presumably are positive. He did not explain 
from where he derived this condition,36 and it is not validY 
The particular numerical examples used by Euler always 
satisfy this inequali ty, however, because in illustrating the 
use of the method, he tried it out on equations for which n is 
relatively small, and he usually made! - a much smaller 
than his criterion required.38 This type of inequality con
sideration is not sufficiently sophisticated to be useful in 
general discussions of the speed of convergence39 or the 
error of an approximation, to say nothing of the question 
whether the approximation converges at all. For more 
sophisticated discussions we must turn to the work of 
d'Alembert and Lagrange. 

In the last third of the eighteenth century, there was a shift 
in interest among algebraists from merely deriving ap
proximation procedures to deriving precise error estimates 
and measures of speed of convergence. This shift parallels 
the change in attitude toward the calculus. In both sub
jects, a preoccupation with results gradually led to a 
greater concern with precision and a desire to prove what 
was known. The inequalities derived for estimating speed 
of convergence were themselves complicated and provided 
facility in inequality computation; in addition, in some 
cases they assisted in the computation of error bounds. 

The interest in error bounds arises naturally; an ap
proximation provides the solution to an equation either as 
an infinite expression or as a recursive sequence of succes
sive approximations. In either case, however, ordinary 
mortals can apply the process only some finite number of 
times. The full infinite expression is the solution to the 
equation, its "true value." But though the true value is 
known in principle, in practice the only obtainable exact 
result is the computation of the maximal possible error 
after some finite number of steps. 

Algebraic error estimates may not seem to have any 
connection with the foundations of the calculus. Yet in fact 
they have a direct connection, for an expression bounding 
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the error in an infinite-series approximation can be used 
in two directions. An eighteenth-century algebraist like 
d'Alembert or Lagrange often wanted to find the maximal 
error after the nth approximation for some given n. 
Cauchy, on the other hand, used these expressions in re
verse to compute, given a maximal error, the value of n 
necessary for that accuracy; his definition of limit could 
then be used to show that the approximating process 
converged.40 

Another link between error bounds and the calculus 
came from the particular turn Lagrange's mind took in 
applying the technique of error estimates to the Taylor 
series. The desire to show that the errors in a Taylor series 
are bounded,just like the errors in any other good approxi
mation, led Lagrange to the Lagrange remainder of the 
Taylor series. He let the functionf(n) (x) have its maximum 
on the interval (x, x + h) at x = q, its minimum at x = p, 
and derived the formula 

f(x) + /if'(x) + ... + (hn/n!)f(n)(p) 
~f(x+h) 
~ f(x) + hj'(x) + ... + (hn/n!)f(n)(q).41 

Although Lagrange's result (3.2) may not appear alge
braic to us, it was for him a typical algebraic result, in both 
conception and proof. Lagrange's derivation of (3.2), 
which rested heavily on the algebra of inequalities, pro
vided Cauchy with essential techniques for proving theo
rems about derivatives. 

In 1768, d' Alembert published the fifth volume of his 
mathematical papers, in which appeared a long paper on 
diverse topics that included the question of the conver
gence of the binomial series.42 The binomial series for 
(I + /1) m when m is rational, discovered by Newton, was 
often used as a way of approximating the solution of equa
tions like xP/q = 1 + /1. D'Alembert's paper contained a 
careful, purposeful computation of the bound on the error 
made in this approximation. He used no techniques that 
had not been available to Euler in the latter's discussion of 
the series (an + b)l/n, but the questions he asked about the 
binomial series could be extended to more general investi
gations; they were to influence both Lagrange and Cauchy 
and thus figure in the process by which the inequality 
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proofs used in computing bounds on error in approxi
mations eventually were converted into rigorous proofs in 
analysis. 

D' Alembert treated two important questions about 
the binomial series for (I + fl) m. First, under what circum
stances do the successive terms decrease? Second, what are 
the bounds on the error made in approximating the sum of 
the infinite series by the sum of a finite number of its terms? 
D' Alembert's work exemplified the power of the algebra of 
inequalities to solve such problems. This, and a paper by 
Lagrange,43 is the earliest example of the simultaneous 
treatment of these two questions and the first sophisticated 
use of inequality techniques to find the answers. First, 
d' Alembert computed the n for which the absolute value of 
the ratio of successive terms of the series is less than unity 
(though he did not have a notation for absolute value, he 
did have the idea, consistently using the expression "ab
straction being made of the sign"), thereby calling atten
tion to one important property of convergent infinite 
series-thus the name d' Alembert's ratio test. * Second and 
more important, d'Alembert computed the bounds on the 
error made in taking a finite number of terms in the series 
for (I + fl)m instead of the sum of the infinite series. 

Consider d' Alembert's search for the n such that a 
particular "convergence" inequality holds. It is easy to 
compute the ratio of the successive terms in the binomial 
series expansion for (I + fl) m; the ratio between the 
(n + l)st and nth terms is given by d'Alembert as 
fl(m - n + I) In. Now consider with d' Alembert the bi
nomial expansion for (I + 200/199)1/2.44 The first few 
terms-even the first 100 terms-certainly seem to get 
successively smaller; it appears to be a perfectly good 
approximating series. But by applying his ratio test, 
d'Alembert found that this was not so. The general ratio of 
the (n + I )st term to the nth term in this example has as its 

* His use of the term (onvl'Igl', 
together with the explicit 
computation ol'thr ratio, has 
earned d' Alembert a bit of 
undeserved credit for showing 
in general that a series that 
satisfies the ratio test con
verges. But, as I document 

at length in chapter-1-, 
d'Alembert-and several of 
his contemporaries-meant 
by converge nothing more 
than the successive deCl·eas
ing, in absolute value, of the 
terms. 
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absolute value (I + 199)(1 - 3/2n). Can this ratio ever 
exceed unity? Yes, said d'Alembert, and he computed that 
the ratio is greater than I for all n greater than 300. 
"Thus," he concluded, "it is wrong to believe that a series 
is truly convergent [i.e., in d' Alembert's usage of the term, 
the terms continually diminish] because it converges, even 
very strongly, in its first terms." His discussion is really a 
warning against the widely, though implicitly, used as
sumption that it was enough to look at the first terms of 
an infinite approximating series-as Euler, for instance, 
sometimes had done-to predict the behavior of the in
fini te series. Furthermore, d' Alembert had given one of the 
first examples of a vitally important technique: computing 
for which n a particular "convergence" inequality holds.45 

D' Alembert then stated that the best situation in 
working in infinite series was that in which all the terms 
decrease after the first and all the terms have the same 
sign.46 When these conditions hold for the binomial series, 
d'Alembert was able to compute the bounds on the "error" 
-that is, the difference between the nth partial sum and 
the sum of the infinite series.47 Since the ratio between the 
(n + I)st and nth terms of (I + J..l)m is J..l[1 - (m + 1)/n], 
d'Alembert explained his result as follows: 

If the terms of the series have the same sign beginning with 
some n, so that n > I + m, it is easy to see that the sum of 
the series, beginning with the nth term which I designate 
by A, is 

< A + AJ..l + AJ..l2 + AJ..l3 &c., 

and, on the other hand, 

> A + AJ..l(1 - m + lin) + AJ..l2(1 - m + I/n)2 
+ AJ..l3(1 - m + I/n)3 + &c. 

Thus the sum of the terms from A on will be < AJl - J..l 
and> AI(1 - J..l(l - m + lin)) ... which gives a practic
able enough way of finding the sum of the series by ap
proximation. The error will be less than 

Afl - J..l- AI[1 - J..l(l - m + I/n)].48 

D'Alembert did not explain why the sum of the series from 
the nth term on was included between those two geometric 
progressions, and careful attention to absolute values is 
needed to make his result correct. If we take absolute 
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values throughout, and let S be the sum of the series, Sn the 
(n - I )st partial sum, d' Alembert's result becomes 

IAI + IAJl(l - m + l/n)1 + IAJl2(1 - m + l/n)21 

+ IAJl3(1 - m + l/n)31 + ... 
< Is - Snl < IAI + IAJlI + IAJl2 1 + IAJlal + .... 
Now indeed "it is easy to see' (3.3) by comparing the terms 
of the binomial series with the two bounding geometric 
progressions* and recalling that all terms beyond the nth 
have the same sign. And d'Alembert showed that he 
knew in practice how to deal with the absolute values
for instance, that Is - Sn I < I A/I -I ull-in working out 
examples.49 

Though d' Alembert gave this error-bound compu
tation for the binomial series only, it is clear that the points 
he raised have broad implications. D' Alembert had given 
a completely worked-out example of how the partial sums 
of a series could be proved to differ as closely as desired 
from some fixed value. To be sure, it had never occurred to 
him to question the existence of the sum of the series. 
Nevertheless, in Cauchy's terms, d'Alembert's result can 
easily be converted into a proof of the convergence of the 
series. D' Alembert's argument rests on a term-by-term 
comparison with a geometric progression. And the idea of 
proving that an arbitrary series converges by comparing 
the series with a convergent geometric progression was 
essential to Cauchy's derivation of the root test for con
vergence. Cauchy may have known d' Alembert's paper 
directly and surely knew it through its summary in S. F. 
Lacroix's Traite du calcul.50 

Computations analogous to d'Alembert's were later 
undertaken for other approximations. Even before having 
read d' Alembert's paper, Lagrange gave an error estimate 

* First ohsl"rve that since he (I - m + lin + I) p~ I < 
assumed 1/ > m + I, Ap2, and so on. For the left-
(l - In + lin) < I. Now for hand part of(3.3), note first 
the right-hand part of (33), that (I - In + 1/11) < 
for the (n + I)st tenn (I - m + III/ + I). Then 
IA(l- m + I 11l).ll I < 1.1/11. IAp2(1 - m + I/n)ZI < 
Similarly, for the next terlll IA.ll2(1 - m + lin)' 
of the binomial series, (I - m + 1/11 + 1 )1, and so on 
I A (I - m + II n) . for higher-order terms. 
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for an approximation of his own that used continued frac
tions to solve algebraic equations.51 Together with 
d'Alembert's 1768 paper, Lagrange's approximation and 
its error bound constitu te the best of the theory of algebraic 
error estimates until nearly the end of the century. 

In 1798 Lagrange published a work almost entirely de
voted to approximation. techniques in algebra, the first 
such organized treatment of the subject: Traite de fa reso
lution des equations numeriques de tous les degres. 52 Some of the 
approximations he discussed were his own, others not, but 
he approached all the methods in the same spirit. Of course 
he, like his predecessors, wanted the approximations to 
converge, preferably rapidly. But Lagrange did not follow 
Euler in letting the acceptability of an approximation rest 
on nothing more than the accident of convergence for some 
particular set of numbers. When he could, Lagrange com
puted the bounds on the error explicitly. 53 When he could 
not compute the bounds, he tried at least to show the 
conditions under which a second approximation was closer 
than the first. 54 If neither of these tasks could be accom
plished, Lagrange at least described the conditions under 
which an approximation method did not work at all. 55 

The Equations numeriques for the first time presented 
the study of algebraic approximations and the correspond
ing inequality techniques as a coherent subject. After 
Lagrange's work, there existed a systematic treatment of 
algebraic approximations, based on intricate manipula
tions of algebraic inequalities. This synthesis made avail
able a body of inequality techniques that could be used not 
only to treat the convergence of approximations, but also 
to provide techniques for rigorous proofs in analysis. 

For example, Lagrange gave the first extensive in
vestigation of the convergence of Newton's method. 
Lagrange used his facility in manipulating inequalities to 
treat a fundamental question that he raised about many 
approximation methods: Under precisely what conditions 
do the successive approximations get closer to the root? 
Using the questions (and terminology) employed by 
d'Alembert in 1768 in discussing the binomial series, 
Lagrange observed that the Newton approximation might 
"converge" very slowly, or might even "diverge after 
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having been convergent." And, in the spirit of the ratio test 
pioneered by d' Alembert, Lagrange computed the ab
solute value of the ratios of the successive errors in the 
approximation (saying, as had d' Alembert, "abstraction 
being made of the sign") to see under what circumstances 
they decreased.56 

Lagrange, like Euler but unlike Newton, presented a 
general discussion of Newton's method in the notation of 
the calculus. In Lagrange's notation, by Newton's method, 
if the equation to be solved is written F(x) = 0, and if a is 
the first approximation to the root, set x = a + p and then 
substitute this into F(x) = 0 to obtain 

F(a) + pF'(a) + (p2/2)F"(a) + ... = o. 
Neglecting the higher-order terms leads to Newton's 
result,p = -F(a)/F'(a).5' 

Lagrange pointed out that Newton's method pro
ceeds by applying this technique again and again. The 
validity of the method, then, requires that the second 
approximation a + p be closer to the root than the first 
approximation a. Lagrange found a necessary and suffi
cient condition for the second approximation to be closer 
than the first, the inequality (3.5). He began his derivation 
of that condi tion by letting the polynomial to be solved be 

xm - Axm- 1 + Bxm-2 - ... = o. 
He supposed ex to be the desired root, a the first approxi
mation, and a + p the second approximation; the other 
roots of the equation are {3, y, etc. For the second approxi
mation to be closer than the first, 

lex - (a + p) I < III - ai, 

or, equivalently, 

(He did not use absolute value notation, saying "abstrac
tion being made of the sign" instead.) Writing the original 
polynomial as a product oflinear factors (x - ex) (x - {3) . 
(x - y) ... = 0, and defining R by R = 1/({3 - a) + 
l/(y - a) + ... , Lagrange showed (3.4) to be equivalent 
to 
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2(a - a)R + I > O. 

Here is Lagrange's derivation of (3.5). Since 
p = -F(a)/F'(a), and since F(x) = (x - a)(x - p). 
(x - y)"', 

F'(x) = (x - P)(x - y) ... + (x - a)(x - y) ... 
+ (x - a)(x - P) + ... 

and 

p= -F(a)/F'(a) = I/[I/(a-a) + I/(p-a) 
+ I/(y - a) + . "J. 

It now follows from the definition of R that 

I 
p= . 

l/(a - a) + R 

Then 

a-a-p=a-a- [l/(a-a)] +R 

R (a - a) 
[l/(a-a)] +R' 

Therefore 

___ = [l/(a-a)] + R =_1_ + __ _ 
a - a - p R - a a - a (a - a)2R 

From this it follows that if R has the same sign as (a - a), 
(a - a - p) will have the same sign and "the condition in 
question necessarily holds." But if a - a and R have op
posite sign, then for the condition to hold, "abstraction 
made of signs," it is necessary that 

---->---
(a-a-p)2 (a-a)2 

From equation (3.6) Lagrange obtained 

I 1 2 
----= +----
(a-a-p)2 (a-a)2 (a-a)3R 

I + . (a - a)4R2 
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Thus 

2 + 1 
(Ct - a)3R (Ct - a)4R2 

must be positive and condition (3.5) follows. 58 

Condition (3.5) is not generally useful in practice, as 
Lagrange pointed out, since applying it requires knowing 
not only Ct, but also R. B1,lt if the quantity a is either smaller 
or greater than a'ny of the roots-a condition which can be 
checked without knowing all the roots-then R will have 
the same sign as (Ct - a).59 Thus the method is useful for 
those cases.60 

Lagrange illustrated his condition by applying it to 
N ewton's own example, x3 - 2x - 5 = O. When a = 2 and 
the next approximation is computed, Lagrange substi
tuted the relevant numbers into (3.5) and found that the 
left-hand side was - 0.1244 + 1. Since this is positive, the 
second approximation must be closer than the first. But 
Lagrange emphasized not so much that the process con
verges in this particular numerical case, but why it does so: 
"In this [numerical] case, the series is, as is obvious, very 
convergent. We can in fact assure a priori, by what we have 
just proved, that this must be SO."61 Lagrange thus went 
beyond showing the goodness of approximations in par
ticular numerical examples. He saw the convergence
that is, in his and d'Alembert's use of the term, the succes
sive closeness-of the approximations as something that 
could be studied in general. The inequality computations 
needed in Lagrange's discussion were more intricate than 
those needed by d' Alembert in 1768, and Lagrange's mas
tery of the problems of absolute value is far superior. 

We should not claim too much for Lagrange's discus
sion. He only gave conditions for the second approxima
tion to be closer than the first. Though the method he used 
could be extended to apply to specific later approximations, 
he did not give conditions under which all the successive 
approximations decrease. And Lagrange did not show the 
conditions under which the error in Newton's approxi
mation could be made less than any given quantity. Still, 
Lagrange's work on Newton's method was one of the first 
examples in which the precision of an approximation was 
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studied by means ofa careful, complicated, and purposeful 
argument involving inequalities. 

Cauchy took up where Lagrange left off.62 In a long 
note to the Cours d'analyse on the solution of algebraic 
equations by approximation, Cauchy showed himself a 
master of the algebra of inequalities and the use of in
equalities in studying the precision of approximations. In 
particular, Cauchy attacked the problem of Newton's ap
proximation, answering both Lagrange's questions and 
some of his own. Taking ~ to be the first approximation 
to the root of F(x) = 0, and writing ex = -F(~)/F'(~), 
Cauchy worked out a set of inequalities, different from 
Lagrange's and much too intricate to reproduce here, too 
ensure that the second approximation (~ + ex) is closer to 
the root a than was the first approximation ~. He also 
worked out conditions so that if I a - ~ I < (l/lO)n, then 
la - (~ + ex) 1< (1/1O)2n .63 It is clear from this condition 
that not only can the error be made less than any given 
quantity but the error decreases quite rapidly. Newton 
would have appreciated this condition, since it gave the 
precision of his approximation by comparison with deci
mal fractions, a type of comparison he like to make. The 
desirability of such a result, Cauchy noted, had been 
pointed out by Joseph Fourier.64 

In illustrating the use of his error bound, Cauchy 
followed Lagrange in applying it to Newton's example 
x3 - 2x - 5 = 0.65 Cauchy's discussion is clearly in the 
spirit of Lagrange's work and provides a link between 
Lagrange's algebra and Cauchy'S analysis, thereby sup
plying direct evidence that eighteenth-century algebraic 
practice helped Cauchy to feel at home with highly com
plicated manipulations of inequalities. Cauchy needed 
such complicated inequalities in his theory of convergence 
of series. 

Of course Lagrange and d' Alembert did not compute 
error bounds or give an algorithm for approximating the 
value of a quantity in order to invent techniques that 
somebody like Cauchy could use to rigorize analysis. Even 
today, error bounds are considered worthy of study in their 
own right. Nevertheless, eighteenth-century approxi
mation techniques are important because of their by
products. In particular, their study produced a developed 
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algebra of inequalities. And the study of approximations 
with error bounds made clear that inequalities could be 
used not only to compute speed of convergence, but
given Cauchy's new definition of convergence-to prove 
the very fact of convergence. 

A method of approximation can provide a way of con
structing a quantity and thus of proving its existence. 
Cauchy transformed previously known approximations to 
prove the existence of the defini te in tegral and the solu tion 
of a differential equation. The revolution Cauchy brought 
about in the calculus proceeded in part by means of a 
transformation of techniques: he took something devised 
for one purpose and enlarged it so that it could be used for 
an entirely different purpose. Before Cauchy, approxima
tion was viewed as a method of getting closer and closer to 
a real number whose existence was taken for granted. After 
Cauchy, real numbers were defined as limits of conver
gent approximating processes and their existence proved 
by the convergence of the approximations (given the 
completeness of the real numbers). One of the earliest 
examples of the change from the old to the new views is 
found in the history of Cauchy's proof of the intermediate
value theorem; an eighteenth-century approximation 
method led Cauchy directly to his rigorous proof of this 
theorem. 

Cauchy shares with Bolzano the honor of having been 
the first to prove the intermediate-value theorem for con
tinuous functions. Cauchy's proof owes its mechanics to a 
particular approximation procedure very simple in con
ception. Nevertheless, though the mechanics of the proof 
are simple, the basic conception of the proof is revolu
tionary. Cauchy transformed the approximation tech
nique into something entirely different: a proof of the 
existence of a limit. 

In the eighteenth century, mathematicians assumed 
that all polynomials possessed the intermediate-value pro
perty. This property could then be used to find the zeros of 
the polynomial. In particular, if P(x) is the given poly
nomial and there exist a and b such that P(a) < 0 and 
P(b) > 0, then it was assumed that there was some X 
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betweenaand bsuch thatP (X) = O. The quantities a andb 
were called limits of the root X. 

Once given a and b, X may be approximated to 
any degree. Here, for instance, is a method expounded in 
several eighteenth-century algebras.66 Given P(a) < ° and 
P(b) > 0, consider P[(a + b) /2]. If this is zero; we are done. 
If not, it must be either positive or negative; assume for 
definiteness that it is negative. Replace a by (a + b) /2 and 
retain b. This gives a new pair of numbers, which are only 
half as far apart as the original pair, such that P (a) < ° and 
P(b) > O. By repeating the process of halving the interval 
between a and b, the root will be approached to any degree 
of closeness. The difference b - a provides an upper bound 
on the error made in taking either a or b to be the true root. 
Maclaurin, in his exposi tion of this method, said that when 
the difference b - a was less than I, a or b could be used as 
the first approximation for Newton's method. 61 

A slightly different version of this method was given 
by Lagrange. Suppose that P(A) and P(B) have opposite 
signs. Then an n of any smallness may be chosen; let x be 
successively A, A + n, A + 2n, ... , B - 3n, B - 2n, B - n, 
B. Eventually, by simply inspecting the successive values of 
P, there will be found two successive values in this sequence 
that give opposite sign. Furthermore, as Lagrange pointed 
out, the process itself gives bounds on the "error"-that is, 
the difference between the real root and either of the 
approximations: the error is less than or equal to n.6S 

Lagrange presented his method together with a method 
of finding a number n that is less than the difference 
between any two of the real roots of P.69 When n is so 
chosen, Lagrange's method finds all the real roots between 
the given limits A and B. It is this feature that made 
Lagrange's method attractive to mathematicians con
cerned with finding the roots of equations. But it is the 
possibility of repeating the division of the interval into 
parts, not specifically mentioned by Lagrange, that made 
the method appeal to Cauchy. 

Cauchy took this approximation procedure and re
peated it-as Maclaurin had repeated the halvings-so as 
to convert it into a proof of the existence of the inter
mediate value. (For the exact text of Cauchy's proof, 
consult the appendix.) In Cauchy'S notation, let j be 
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a continuous function on some interval including the 
values Xo and X. Ifj(xo) andj(X) have opposite sign, if 
X - Xo = h, and if we divide the interval X - Xo into m 
parts each oflength him, proceed, just as Lagrange had, to 
consider the signs ofj(xo),j(xo + hlm),j(xo + 2hlm), ... , 
j(X - hlm),j(X). Two values ofj(x) may be found whose 
signs are opposite and whose arguments differ by him. 

But Cauchy was not using this procedure just to find 
the roots ofj(x) = 0 between Xo and X within an error of 
him. Instead, Cauchy repeated Lagrange's approximation 
procedure, applying it now to the new interval of length 
hlm.70 By this repetition, he produced two sequences of 
values of x, one increasing and one decreasing, such that 
the terms of one sequence get arbitrarily close to the terms 
of the other. In Cauchy'S notation, the sequence ofincreas
ing x values is Xo, Xl, X2, ... ; the sequence of decreasing x 
values is X, X', X", ... ; and the sequence of differences 
is X - Xo, (11m) (X - xo), (1/m2)(X - xo)2, etc. The two 
sequences Xo, Xl, ... and X, X', ... must converge to a 
common limit, which Cauchy designated by a. Butj(x) is 
continuous between Xo and X; that is, for Cauchy, "For 
each value of X between those limits, the numerical [i.e., 
absolute] value of the differencej(x + ex) - j(x) decreases 
indefinitely with ex." 71 

Thus, Cauchy argued, the corresponding sequences 
f(xo), j(xtl, j(X2)' .. · and j(X), j(X'), f(X"), ... must 
converge to the common limitj(a). Finally, since the two 
sequences are of opposite sign (i.e., one is nonnegative and 
one is nonpositive), their common limitj(a) must be zero. 
Thus Cauchy had proved the existence of a solution a to 
the equationj(x) = 0 for X between Xo and X. 

Unlike his predecessors, Cauchy was not trying to 
approximate a root, but to prove its existence. The proof 
took Lagrange's approximation technique and stood it on 
its head. The approximation technique supplied the basic 
first step in the proof: finding two quantities Xl and X' that 
give values ofj with opposite sign, and showing that these 
two quantities differ by some precisely specified given 
quantity that can be made as small as desired by taking m 
sufficiently large. 

Cauchy's proof has three characteristics found in 
many of his rigorous proofs in analysis. First, it assumes 
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implicitly a form of the completeness axiom for the real 
numbers: the existence of the limit ofa bounded monotone 
sequence. Such unexamined assumptions are a major, if 
unavoidable, logical weakness of the COUTS d' ana!yse. 
Second, it leaves some details as an exercise to the reader: 
for instance, Cauchy did not explicitly calculate the ep
silon and k values needed in the argument that if the limit 
ofa sequence {Xk} is a, then ifjis a continuous function, the 
limit of the sequence {j(Xk)} isj(a). Cauchy often did not 
bother to make such computations in their full detail; after 
all, they were familiar to anyone who had studied algebra. 
Last, but certainly not least, the proofis outstanding in its 
notation and clarity. For example, the systematic use of 
index notation-not invented by Cauchy, but often ex
ploited by him-is a great help in ma~ing things clear. 
And the assumptions of the proof are made clearly, not 
hidden behind a smokescreen of words. 

Did Cauchy learn this technique of proof from 
eighteenth-century algebra, presumably from Lagrange? 
The answer probably is yes. First, Cauchy proved the 
theorem in a note to the Cours d' ana!yse entitled "On the 
resolution of numerical equations." This was almost ex
actly the title of each of Lagrange's three works on this 
approximation method: the paper of 1767; the book of 
1798; and the fifth chapter of the "Lec;ons elementaires," 
given at the Ecole Poly technique. Presumably Cauchy was 
familiar with the "Lec;ons elementaires," because that 
work is the source of the Lagrange interpolation formula, 
the subject of note V of the COUTS d'ana!yse entitled "Sur la 
formule de Lagrange relative a l'interpolation." Cauchy 
certainly had read Lagrange's Equations numeriques in ei ther 
the 1798 or 1808 edition, because he referred to it explicitly 
in his note on numerical equations, a note that, not so 
incidentally, makes numerous calculations of the bounds 
on errors in algebraic approximations. 

It even may have been a suggestion by Lagrange that 
motivated Cauchy to give a prooffor this theorem. In the 
text of the Cours d'ana!yse, Cauchy had been satisfied to give 
a geometric argument for the intermediate-value property 
of continuous functions,72 but referred the reader to note 
III for a "purely analytic and direct" proof. This also had 
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been Lagrange's procedure in the Equations numeriques; in 
the text, Lagrange had noted that this theorem was usually 
proved "by the theory of curved lines," but added
typically-that an algebraic proof would be preferable. 
He then gave an argument for the theorem based on 
breaking the equation into linear factors, each of which 
obviously has the intermediate-value property, but he ex
plicitly recognized that this did not apply to equations with 
complex roots. Accordingly, he tried to give a better proof 
in note I to the book.13 But Lagrange's second proof is not 
very convincing. It is based on a theorem about continuous 
functions that is even stronger than the intermediate-va~ue 
property: ifJ(a) < ¢ (a) andJ(b) > ¢ (b), there is an inter
mediate point at which the two functions are equal,74 
Lagrange's proof of this stronger theorem rests on a mental 
picture of two quantities approaching and passing each 
other and refers to the physical picture of two bodies 
moving along the same line while one overtakes the other. * 
Bolzano was certainly correct when in 1817 he criticized 
proofs like this as being based on the idea of motion. 76 

It is not hard to imagine Cauchy's interest in an 
algebraic proof of the intermediate-value theorem being 
aroused by Lagrange's call for one; his disappointment 
upon actually reading Lagrange's proof; and the effect of 
reading immediately thereafter an approximation tech
nique so well suited to the construction of the intermediate 

* Lagrange began by 
representing the proposed 
equation in general by 
P - 0. = 0, P being the sum 
of terms with plus sign and 
- 0. the sum of those with 
minus sign. Then, he said, 
"From the form of the quan
ti ties P and 0. ... it is clear 
that these quantities increase 
necessarily as x increases, and 
that, making x increase by all 
insensible degrees from jJ to g, 
they increase also by in
sensible degrees; but in such a 
way that P increases more 
than 0., since the smaller it 

was the larger it becomes. 
Thus there will necessarily 
be a term between the two 
values p and q where P will 
equal 0., just as two moving 
bodies which are supposed to 

traverse the same line in the 
same direction and which, 
beginning simultaneously 
from two different points, 
arrive in the same time at two 
other points in such a way 
that the one which was for
merly behind is later found 
ahead of the other, must meet 
on their paths." 75 
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value. We have, then, in Lagrange's Equations numeriques a 
plausible algebraic source, both as to motivation and as to 
technique, of Cauchy's proof. 

Ivor Grattan-Guinness's suggestion that Cauchy 
"borrowed" Bolzano's proof of the intermediate-value 
theorem cannot, on the other hand, be maintained. 77 First, 
Cauchy had read Lagrange's book, which explicitly calls 
for such a proof by algebraic methods; thus Cauchy need 
not have read Bolzano, as Grattan-Guinness contends, to 
have got the idea of proving the theorem. (Bolzano's moti
vation was different; he said that a proof was needed to fill 
a gap in Gauss's otherwise rigorous 1816 proof of the 
fundamental theorem of algebra.) Second, the proof tech
nique used by Cauchy does not resemble Bolzano's at 
all. Bolzano began his proof by trying to show that any 
sequence possessing what we call the Cauchy criterion has 
a limit. He used this result to prove that a bounded set of 
real numbers has a least upper bound. He then used the 
result concerning least upper bounds to prove the stronger 
theorem about pairs of continuous functions stated in 1798 
by Lagrange; and finally, like Lagrange, he derived the 
intermediate-value theorem as a corollary of that stronger 
result. I cannot see any way that Bolzano's proof could be 
converted into Cauchy's. Nor is the hypothesis ofBolzano's 
influence even necessary, since Lagrange's work on ap
proximation provides a far more plausible context for 
Cauchy'S proof. Indeed, Cauchy immediately followed 
his proof with a discussion of how the same technique 
could be used to estimate the error in the corresponding 
approximation. 

What, then, has been shown about the origin of 
Cauchy's work? Earlier arguments very similar to those 
used by Cauchy are encountered again and again. Beyond 
a doubt, these arguments were known to Cauchy, as were 
their authors. Since Cauchy'S references are usually not 
very specific, however, often nothing further may be in
ferred. In the present case, I would not wish to make 
any further inferences; I do not believe that Cauchy looked 
at Lagrange's work on approximations, said "Aha!," 
and proceeded to construct his proof of the intermediate
value theorem. This does not seem to be the way Cauchy 
worked. He tended to be stimulated by some problem, or 
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by hearing or reading something about a subject, to work 
out vast numbers of results on his own.7S He sometimes 
even rediscovered and republished theorems that he him
self had previously proved, which justifies calling him a 
reinventor rather than a copyist. Even an explicit reference 
by Cauchy to another mathematician cannot prove direct 
influence, since he could have derived a result and then 
have had someone else's work called to his attention; cour
tesy then would require a reference. Even in the case of 
explicit references to a closely analogous piece of work, 
as in the case of Lagrange's Equations numeriques, Cauchy 
could have been relying simply on recollection. I believe 
that all that can be documented from the available sources 
is the climate of mathematical opinion, which shaped 
Cauchy's questions, and the techniques available. The use 
he made of them seems to have been supremely his own. 
He is no less a great mathematician for having been in
fluenced by his time. His achievements were not obvious 
consequences of eighteenth-century developments. For 
instance, Lagrange already had available to him all 
the materials needed to prove the intermediate-value 
theorem: the desire for a proof, the technique of finding the 
intermediate value; the interest in rigor; and the technical 
facility with inequalities. But he did not bring them all 
together-nor did any other mathematician of the period. 
Nobody but Bolzano was able to come close to the rigor of 
Cauchy's work, and Bolzano did not equal Cauchy in the 
scope of his mathematical achievements until after be
coming familiar with Cauchy's work. 

Besides believing that the calculus could be made rigorous 
if reduced to algebra, Cauchy appreciated how the algebra 
of inequalities used in approximations could provide a rig
orous foundation for real analysis. Ever since Cauchy, 
results in the algebra of inequalities have been presented 
explicitly as prepc.ration for the rigorous exposition of the 
calculus. Cauchy himself began this practice in note II to 
the Cours d'ana{yse, where he systematized and provided a 
number of specific inequalities needed for his proofs. This 
note includes what is now called the Cauchy-Schwarz 
inequality, stated for sums of squares of real numbers.7s 
Some of the specific inequalities already can be found in 
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previous work in algebra;80 it is their status as a basis for the 
foundations of analysis that is new. 

In particular, in the first rigorous proof about deriva
tives, Cauchy used one of the inequalities from note II in 
his Cours d'analyse. The technique of the proof had been 
developed by Lagrange to derive the Lagrange remainder, 
a result that Lagrange viewed as an error bound in an 
approximation. Cauchy took Lagrange's technique of 
proof and justified it by his own definitions; he then was 
able to use it and the associated inequality to give the first 
rigorous proofs of theorems about derivatives based on the 
algebra of inequalitites. 

In considering the epsilon-based concepts of limits, 
continuity, and convergence, it should be remarked that 
the Greek letter e used by modern mathematicians-a 
notation that Cauchy originated and applied in several of 
his proofs-probably comes from the correspondence be
tween 'epsilon' and the initial letter of the French word 
erreur. In later work on probability theory, Cauchy in fact 
used the letter epsilon to stand for error.8l The epsilon in a 
modern proof may be regarded as an inheritance from the 
days when inequalities belonged in approximations. The 
epsilon notation is a reminder that, paradoxically, the 
development of approximations and estimates of error 
brought forth many of the techniques necessary for the first 
exact and rigorous proofs about the concepts of the calcu
lus. Eighteenth-century mathematicians were never more 
exact than when they were being approximate. And it was 
algebra that paved the way for the recognition of the link 
between approximation and rigor. 
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Central to Cauchy's successful rigorization of the calculus 
was his simultaneous realization of two facts. First, that the 
eighteenth-century limit concept could be understood in 
terms of inequalities ("given an epsilon, to find an n or a 
delta"). Second, and more important, that once this had 
been done, all of the calculus could be based on limits, 
thereby transforming previous results on continuous func
tions, infinite series, derivatives, and integrals into 
theorems in his new rigorous analysis. Though there were 
occasional gaps in his reasoning, he nevertheless far out
distanced his predecessors. And his work provided the 
necessary groundwork for the eventual complete rigori
zation of analysis by the school of Weierstrass. 

I do not know exactly how or when Cauchy came 
upon his crucial insight that, by means of the limit concept, 
the calculus could be reduced to the algebra of inequalities. 
It seems likely that his appreciation of these facts de
veloped gradually, as he worked with specific integrals, 
approximations, infinite series, and differential equations. 
Cauchy began his work in analysis with particular prob
lems. Apparently only when he gave his systematic courses 
at the Ecole Poly technique did he first deal with questions 
of rigor in their full generality. 1 If Cauchy had discovered 
what I have called the crucial insight all at once, we might 
have expectrd some expression of this experience in his 
writings. After all, Abel, who only received the insight at 
second hand, expressed its impact upon him in no un
certain terms.2 We can only speculate on this point; 
Cauchy has left little evidence behind him. The ever im
portant question of how a mathematician comes to his 
greatest ideas is often hard to answer on the basis of his 
published work. All that we can do in the present case is 
to see how the details and the overall plan of Cauchy's 
work relate to the work of his predecessors. This will serve 
to illuminate the necessary mathematical conditions of 
Cauchy'S discoveries; the psychological conditions of his 
discoveries seem hidden. 
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There is, however, no mystery about where Cauchy 
got the idea that the calculus could be based on limits. 
Many mathematicians, including Newton, d'Alembert, 
and Silvestre-Fran<;ois Lacroix, had already stated that 
the limit concept was the basic concept of the calculus. 
They also had applied their verbally expressed limit con
cepts to defining derivatives and infinitesimals and to find
ing the sum of an infinite series. But although the tech
niques of differentiating, computing ratios of infinite sima Is, 
summing series, and evaluating integrals had already been 
developed, the validity of these techniques had not been 
proved by means of the limit concept. Indeed, the out
standing attempt to build a rigorous differential calculus 
before Cauchy, Lagrange's Fonctions anarytiques,3 had not 
explicitly used the limit concept at all; in fact, Lagrange 
claimed to have eliminated it from his foundation. And 
there had been no attempt since Leibniz to define the 
integral as something other than an anti derivative. A 
number of eighteenth-century mathematicians had stated 
the goal of basing the calculus on limits; indeed, they 
believed they had achieved it. But rigorously founding the 
calculus on limits is easier said than done. There is a 
difference between stating definitions that sound right and 
really understanding the concepts. Even more important, 
there is a difference between understanding the concepts 
and actually doing the hard work of proving important 
theorems using those concepts. 

Cauchy was both the first to understand the limit 
concept and the first to apply it successfully to the calculus. 
He treated limit, continuity, and convergence first, in his 
Cours d'anaryse of 1821; he did not give his theory of the 
derivative and integral until publishing his Calcul infinite
simal in 1823. In examining these works, I shall be seeking 
answers to the following questions: Could a particular 
eighteenth-century development have helped to show 
Cauchy the suitability of the limit concept as a foundation 
for some part of the calculus? Did this development contain 
a hint of the appropriate definition of convergence, con
tinuity, derivative, integral? Could this development be 
transformed by Cauchy into a correct proof of a basic 
theorem? 
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Cauchy's program of rigorization required him to bring 
together a large number of diverse elements: the theory 
of algebraic inequalities; a set of widely scattered and 
apparently unrelated properties of derivatives, integrals, 
series, infinitesimals, and continuous functions; and dis
cussions of the foundations of analysis. The techniques of 
the algebra of inequalities came in large part from the 
works on approximations, especially Lagrange's systematic 
Equations numeriques. Most of the other information Cauchy 
needed, and used, came from four other works: Lagrange's 
Fonetions ana!Jtiques and Caleul des fonctions,4 and the two 
editions ofS. F. Lacroix's Traite du calcul differentiel et du ea/cul 
integral. This is not to say that all the ideas in these works 
originated with their authors; in particular, Lacroix owed 
much to Euler and d' Alembert. Furthermore, Cauchy also 
knew the work of Euler and d' Alembert and, equally 
important, of Joseph Fourier and Andre-Marie Ampere. 
Nevertheless, the resemblances between Cauchy's work 
and the books of Lagrange and Lacroix in matters not 
only of concepts but of notation, language, and other 
details suggest these works to have been Cauchy's prin
cipal sources.5 

Silvestre-Fran<;ois Lacroix (1765-1843) succeeded 
Lagrange as professor of analysis at the Ecole Poly tech
nique in 1799. His three-volume treatise was intended to 
be a compendium of all of the calculus.6 In part, it was 
intended to help those students who, not living in Paris, 
could not learn mathematics by consulting the original 
papers in the journals.7 Lacroix's procedure in treating a 
topic was to summarize all the major work on it by the 
leading mathematicians. His table of contents contains an 
extensive, item-by-item bibliography, enabling the reader 
to evaluate Lacroix's fidelity to his sources. 

There were many views about the nature of the con
cepts of the calculus in the eighteenth century. Lacroix's 
book reflects this fact; he did not present his materials 
under any wholly consistent point of view. For instance, at 
different parts of the work he treated dyldx as a limit, a ratio 
of infinitesimals, and the coefficient of the first-order term 
in a Taylor series, claiming that they could all be shown to 
be equivalent. Lacroix was proud of his eclectic view; he 
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said his exposition proceeded by means of a rapprochement of 
all the existing methods.s 

A modern reader might term Lacroix's procedure a 
confusion of methods rather than a rapprochement. Such an 
exposition seems to involve an uncritical acceptance of the 
mutually contradictory. But this criticism, whatever its 
logical validity, is historically entirely wrong. Lacroix, like 
most mathematicians of the time, wanted to show how to 
solve problems; therefore his Trait! included whatever 
techniques were applicable to this end. Precisely because 
Lacroix's book is a mathematical museum of diverse 
methods and resulrs, presented in full complexity, it could 
be of service to Cauchy. Lagrange preferred to give 
no theory of the definite integral rather than give one of 
whose validity he was unsure; Lacroix, instead, told all he 
knew about eighteenth-century work on definite integrals. 
Because of Lacroix's attitude, his books were a gold mine 
for one who, like Cauchy, could identify the gold-the 
essential defining properties, the techniques that could be 
generalized and used in proofs-amidst the chaos. 

As we have seen, Cauchy defined the limit concept in these 
words: "When the successively attributed values of the 
same variable indefinitely approach a fixed value, so that 
finally they differ from it by as little as desired, the last is 
called the limit of all the others." 9 This concept, translated 
into the algebra of inequalities, was exactly what Cauchy 
needed for his calculus. The very language of this verbal 
definition is sometimes taken to show the superiority of 
Cauchy's limit concept over all previous work. Cauchy's 
definition is free from the idea of motion; it does not depend 
on geometry; it does not retain the unnecessary restriction, 
often included in the earlier definitions, that a variable 
could never surpass its limit.1O All these features already 
belonged to the treatment of limit given by Lacroix in 
1810, however. Although Lacroix did not explicitly define 
limits in general, his discussion of specific examples makes 
clear that his understanding was general. For instance, he 
defined a to be the limit of the function ax/(x + a) as x 
increases indefinitely, since the difference between a and 
the value of that function "becomes smaller as x becomes 
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larger, and can be made less than arry given quantity, however 
small, so that the proposed fraction can approach a as closely 
as desired." 11 And in considering the sums of alternating 
series, he explicitly pointed out, following Simon I'Huilier, 
that a quantity could surpass its limit.12 

Upon reflection, we should not be surprised that a 
reasonable-sounding definition oflimit predated Cauchy's 
work. Had the limit concept not already been fairly clearly 
defined and freed of unnecessary restrictions, Cauchy 
might have rejected it, just as Lagrange had done in 1797. 
Perhaps Cauchy would have recognized the suitability of 
the algebra of inequalities as a foundation for the calculus 
even without the suggestion provided by the limit concept; 
it is of course impossible to know. But the limit concept as 
understood in 1810, together with a century of statements 
that the concepts of the calculus could be understood 
as limits, helped turn Cauchy's attention in the right 
direction. 

Newton's Principia is the ongm of the most important 
eighteenth-century discussions of the limit concept. 13 The 
first section of Newton's great book is devoted to deriving 
lemmas about the relationship between small arcs and 
straight lines, which then are applied to the mathematical 
treatment of physical problems. For example, he needed 
results like this one: If the arc ofa curve ACB is given, and if 
the points AB approach each other, "the ultimate ratio of the 
are, chord, and tangent, anyone to any other, is the ratio of 
equality." 14 

The "ultimate ratio," also translated "last ratio," of 
two quantities approaching zero-or as he later called it, 
the "limit"-designated a relatively new concept. And 
although Newton did not formally define the concept, he 
did explain at length what he meant by these terms. 
"There is a limit which the velocity at the end of ... [a] 
motion may attain, but not exceed. This is the ultimate 
velocity. And there is the like limit in all quantities and 
proportions that begin and cease to be. And since such limits 
are certain and definite, to determine the same is a problem 
strictly geometrical." 15 For Newton, then, the concept of 
limit was clear; the problem was to find them. In Cauchy's 
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time, everybody could calculate simple limits; the problem 
was to define the concept and determine whether various 
limits existed. 

Newton wanted to avoid infinitesimals, which he did 
not consider rigorous. So he took pains to explain that 
"ultimate ratios" were neither ratios of infinitesimals nor 
010. In so doing, he made his most influential statements 
about the limit concept, in words that were to recur 
throughout the eighteenth century: "For those ultimate 
ratios with which quantities vanish are not truly the ratios 
of ultimate quantities, but limits toward which the ratios of 
quantities decreasing without limit do always converge." 
From this we see that Newton saw the limit as a definite 
fixed number. He added that the ultimate ratios were 
limits to which the ratios of quantities decreasing without 
limit "approach nearer than by a1!Y given difference, but never go 
bryond, nor in effect attain to, till the quantities are dimin
ished in infinitum." 16 For Newton, the limit is a bound, to 
which the variable can approach arbitrarily closely but 
never exceed and only "ultimately" reach. 

The weaknesses in Newton's definition were pointed 
out by Berkeley in 1734, and discussed later by d' Alem
bert, Maclaurin, and Lagrange among others. Indeed the 
history of the limit concept until 1810 is the gradual solu
tion of the verbal problems implicit in Newton's explana
tion: the eventual substitution of algebraic language for 
Newton's kinematic expressions; the broadening of the 
limit concept to include variables that oscillate about their 
limits; and-crucially-the abandonment of concern over 
whether a variable reaches its limit. But keep in mind that 
none of these developments, however often they have been 
discussed in histories of the calculus, are as important to 
nineteenth-century analysis as the algebra of inequali
ties-whose history does not really belong to that of the 
limit concept at all. 

Newton's explanation of the calculus had included terms 
like velocity and approach. Bishop Berkeley, however, 
strongly objected to the idea of motion being used in the 
calculus. His view was not immediately adopted. Colin 
Maclaurin, in his refutation of Berkeley's criticism, was 
content to state that there was no problem in conceiving 
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fluxions as motion. But Jean d'Alembert strongly advo
cated freeing the limit concept from physics and making it 
algebraic; motion, said d' Alem bert, is "a foreign idea, and 
one which is not necessary in the demonstration," 17 be
cause the calculus is essentially algebraic. Remarks like 
these were made also by Euler and Lagrange.1s However 
attractive motion may have been as an explanatory 
analogy, there was wide agreement by the mid-eighteenth 
century that motion no longer occupied a central place in 
the foundations of the calculus. Thus the first major prob
lem with the Newtonian limit concept had been dealt 
with-at least in theory. 

Moreover, d'Alembert practiced what he preached. 
He gave one of the first algebraic arguments about the 
differential quotient as the limit of the ratio of finite dif
ferences. In computing the slope of the tangent to the 
parabola y2 = ax, d' Alembert found that the slope of the 
secant was equal to a/(2y + Z).19 D'Alembert said, "As we 
can take z as small as desired, we can make the ratio 
a/ (~ + z) approach the ratio a/~ as closely as desired." 20 

Thus, he concluded, a/~ is the limit of the ratio a/ (~ + z) 
and therefore is equal to the slope of the tangent. 

Arguments analogous to this one appear occasionally 
in the latter part of the eighteenth century, though without 
the application to geometry. Mathematicians often found 
it useful to write expressions like a + h for quantities whose 
limit was a. This mode of expression makes it possible to 
prove simple results about limits; but without the explicit 
use of inequalities nothing very hard can be proved. 

Simple arguments of this sort were well established by 
the time of Cauchy. For instance, Lacroix proved that the 
limit of a product is the product of the limits. Let p be the 
limi t of P; q, of Q In general, P = P + a, Q. = q + fl, where 
a and fl vanish together after passing through "every stage 
of successive diminution." Since PQ.= (p + a)(q + fl), 
PQ. = pq + pfl + qa + afJ. Thus wesee that "the difference 
PQ. - pq may be made as small as we please by assigning 
appropriate values to a and fl." 21 

Lacroix did not apply this technique to constructing 
arguments about derivatives, even in cases as simple as 
d' Alembert's trea tmen t of the tangen t to the parabola. Nor 
did he make explicit computations of how small a and fl 
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must be to ensure that po., - pq be less than any given 
quantity. Nevertheless, the limit arguments he gave are 
important because they exemplify translations of a verbal 
limit concept into algebraic language, however simple. 
Moreover, the algebraic expressions show-as mere words 
could not show-that the difference between a variable 
and its limit could indeed be made less than any given 
quantity. Cauchy, familiar from algebraic approximations 
with methods of actually computing the corresponding 
inequalities, was able to envision rigorous proofs about 
limits and convergence-and therefore about all the con
cepts of the calculus. 

The statement that a variable could not go beyond its limit 
recurred throughout the eighteenth century. It was firmly 
enshrined in the definition of limit in the Encyclopedic: 
"Without the magnitude which is approaching ever being 
able to surpass the magnitude which it approaches." 
D' Alembert added the example of the circle as the limit of 
inscribed polygons to emphasize this point. It is sometimes 
suggested that Cauchy was the first to remove this restric
tion, allowing the variable to oscillate about its limit.22 In 
1795, however, Simon I'Huilier had made a special defini
tion for limits that are approached alternately from above 
and below in order to discuss alternating series, even 
though for all other cases he still required limits to be one 
sided.23 Here is strong evidence for the general lack of 
serious concern in the eighteenth century about the details 
of the foundations of the calculus: it took until 1795 to 
abandon the "never surpassing" restriction of the limit 
concept even for this specific case. 

Lacroix, his attention drawn to the example of alter
nating series by L'Huilier's work,24 abandoned the "never 
surpassing" restriction in general in 1810. He justified 
abandoning the restriction on two grounds: it ruled out 
many mathematically important limits, and it was never 
really used in practice. Lacroix was aware that he was 
making a major break with the past usage of the term limit, 
but he felt his action was legitimate. Elsewhere he had 
cited Pascal to show that defining a term is really arbitrary, 
being "nothing but imposing a name on things which are 
clearly designated, in terms which are perfectly known." 25 
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Remarking that some variables, indeed, never surpassed 
their limits, Lacroix said that nevertheless it was wrong to 
include this restriction in the general definition of limit: 
"One would thereby exclude the ratios of vanishing quan
tities whose existence is incontestable, and which we find 
often in analysis." 26 Lacroix added yet another justifi
cation, which pertains much more closely to the eventual 
use Cauchy made of the concept oflimit: "The application 
of limits is made by means of principles whose truth rests 
only on the possibility of proving that a variable quantity 
can approach its limit as closely as desired." 27 This state
ment was truer than Lacroix imagined. 

Bishop Berkeley's most important objection to the old limit 
concept was this: a quantity could never be said to reach its 
limit, not even "ultimately." He asked, "Where there are 
no increments, whether there can be any ratio of incre
ments? Whether nothings [sic] can be considered as pro
portional to real quantities? Or whether to talk of their 
proportions be not to talk nonsense?" 28 

In what would have been a reasonable answer to 
Berkeley's query had they had a clearer understanding of 
the inequality nature of the limit concept, Maclaurin, 
d' Alembert, and Lacroix all tried to explain the distinction 
between the ratio and its limit much as Newton had done. 
For instance, Lacroix said, "We do not consider the ratio of 
quantities when they are vanishing, nor do we conceive 
quantities to have a ratio when they cease to exist. The 
limit of the ratio is not the ratio itself, but a quantity to 
which it [the ratio] can approach as closely as desired." 29 

Lacroix's statement is not original. It is derived ulti
mately from Newton's statement, which was the basis for 
somewhat clearer statements later on. Maclaurin, for in
stance, wrote, "There is nothing to hinder us from knowing 
what was the ratio of those increments at any term of the 
time while they had a real existence, how this ratio varied, 
and to what limit it approached, while the increments were 
continually diminished." 30 

D'Alembert, who knew the work of both Newton and 
Maclaurin, said, "The ratio is not exactly equal to the 
limit; and when the terms are zero, there is no longer a 
ratio properly so called, for there is no ratio between two 
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things which do not exist; but the limit of the ratio that 
these differences had to each other when they still existed is 
something else; this limit is not less real." 31 

It is in this context that Cauchy's discussion, not 
greatly different, on the same point should be read: "While 
the two terms [of the ratio] indefinitely and simultaneously 
approach the limit zero, the ratio itself can converge to 
another limit, either positive or negative." 32 But Cauchy 
did not, like Newton, raise the question whether the ratio 
and its limit were "ultimately" equal, or, like d' Alembert, 
whether a secant ever "became" a tangent. Cauchy knew 
when to stop. His definition of limit stated onlY that the 
variable and its limit differed by less than any desired 
quantity-as Lacroix had said. 

All the other mathematicians quoted assumed that 
the ratio of vanishing quantities converged to a limit, and 
asked how it could do so. Cauchy said only that it could 
converge to a limit, not that it necessarily did. For instance, 
when he defined the derivative as the limit of the ratio of 
L1y/L1x as both L1y and Ax "indefinitely and simultaneously 
approach the limit zero," he said, "This limit, when it exists, 
has a determined value for each particular value of x." 33 

Examples had long been known in which the limits of 
ratios did not exist.34 Apparently Cauchy was the first to 
appreciate that recognizing such cases did not invalidate 
the general definition of the derivative. Cauchy's treat
ment was intended to support valid proofs, not-as had so 
often been the case-merely to make beginners feel com
fortable with a difficult concept. His definition required no 
more than was necessary for his purpose. 

The words Lacroix used to define and describe limits do 
not sound very different from those used by Cauchy. But 
Cauchy's understanding of the limit concept was quite 
different; on several occasions when a proof required a 
limit, Cauchy translated his definition into the language of 
algebraic inequalities. And he proved harder propositions 
than those about the limit of a product. When the limit 
of a complicated expression was to be discussed, Cauchy 
occasionally-often enough to show us his clear under
standing-actually worked out the delta or n correspond
ing to a given epsilon;3& the superiority of Cauchy's limit 
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concept over that of his predecessors does not lie only in the 
explicit definition, but in the use he made of the concept in 
proofs. 

Cauchy-and independently, his contemporary Bolzano 
-gave the first rigorous definition of continuous function. 
Cauchy and Bolzano recognized the power of the inequa
lity characterization of continuity for proving theorems 
and, equally important, the vital role that the property 
of continuity could play in analysis. With his definition 
of continuity, Cauchy proved the intermediate-value 
theorem for continuous functions; then he used both this 
definition and this theorem in proofs of the mean-value 
theorems for derivatives and integrals and of the existence 
of the definite integral of a continuous function. 

Cauchy gave two forms dfhis definition of continuous 
function: the first is algebraic; the second uses the more 
intuitive language of infinitesimals. Since Cauchy had de
fined an infinitely small quantity as a variable whose limit 
is zero, the two definitions are in fact equivalent: 

The function f (x) will be a continuous function of the 
variable x between two assigned limits ["limit" here means 
"bound"] if, for each value of x between those limits, the 
numerical [absolute] value of the difference f(x + a) -
f(x) decreases indefinitely with a. In other words, the 
functionf(x) is continuous with respect to x between the 
given limits if, between these limits, an infinitely small 
increment in the variable always produces an infinitely 
small incremen t in the function itself. 36 

He immediately followed this definition with a proof of the 
continuity of sin x, which serves as both an example of the 
definition and evidence of how clearly Cau'chy understood 
the concept.37 

Bolzano's definition was given in slightly different and 
more precise language, but its meaning is the same: 

A functionf(x) for all values of x inside of, or outside of, 
certain bounds, varies according to the law of continuity 
only insofar as, if x is any such value, the difference 
f(x + w) - f(x) can be made less than any given magni-
tude, when w is taken as small as desired.3s 

The nearly simultaneous discovery of the definition of 
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continuous function by Cauchy and Bolzano suggests to 
the historian a possible common debt to the views of con
tinuity put forward by the analysts of the eighteenth cen
tury. A large number of properties related to the modern 
concept of continuity were discussed in that period and, at 
various times, called by the name continuity. A function 
could be called continuous ifit had the intermediate-value 
property; ifit was differentiable; ifit was representable by a 
unique formula; if it made "no jumps"; or if, given an 
"insensible" change in the independent variable, it under
went only an "insensible" change itself. Sometimes these 
properties-which we now regard as distinct-were 
viewed as equivalent; sometimes, though sharing a name, 
they were seen as different. 

The achievement of Cauchy and Bolzano was three
fold. First, they were able to pick out the essential 
property-essential in the sense of capable of support
ing proofs about other properties-of continuous function 
from earlier characterizations. Second, once this property 
had been chosen, they went beyond earlier language to 
give continuity a precise, inequality-based definition. 
Finally, they used this defining property as the basis for 
proofs of theorems about continuous functions. 

The earliest eighteenth-century discussions of properties 
of continuous functions were confined to well-behaved 
functions. The concept of continuity was appealed to not 
to distinguish between continuous and discontinuous func
tions but only when some "obvious" fact about continuous 
functions was needed. For instance, the property of being 
continuous was used in geometry to show that a curve that 
had a point on each side of some line must intersect with 
that line.39 In algebra, polynomials were taken to be con
tinuous functions, so that finding bounds on the root of a 
polynomial could be taken to imply the existence of that 
root. It was the recognition that this was an assump
tion that eventually led Lagrange to try to prove the 
intermediate-value property.40 In the course of his proof, 
Lagrange needed to give a description of continuity for a 
polynomial with positive terms, and he did it as follows. If 
P and Q are polynomials with positive terms, defined 
between x = p and x = q, he said, "It is evident that these 
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quantities increase necessarily according to the way x in
creases, and, when x is increased by all insensible degrees 
from p up to q, the former [P and Qj increase also by 
insensible degrees." 41 This, though limited to polynomials, 
was a first approximation to the property that Bolzano and 
Cauchy eventually were to use to define continuity. 

The terms continuity and law of continuity were also used 
in an entirely different sense in discussions of limits and 
derivatives. Continuity was sometimes taken to mean that 
if every element of a given sequence had some property, so 
did the limit of the sequence.42 One argument of this type 
provided a sort of ontological proof of the existence of 
derivatives. It is by virtue of the "law of continuity," 
wrote Lacroix, "that the increments, though evanescent, 
still preserve the ratio to which they have gradually 
approached before they vanish." 43 Thus continuity 
seemed to be related in some way to differentiability. 

Until the mid-eighteenth century, there did not seem 
to be any real problem in defining continuity; it retained a 
geometric character. But neither geometric intuition nor 
the example of polynomials was enough to disentangle 
what we now see as the essential property of continuous 
function from the rest of the existing descriptions, since 
smooth curves and polynomials enjoy all the properties we 
have listed. And eventually, defining continuity became 
an urgent problem. 

The need to define continuity became pressing because the 
function concept had changed. When the study of func
tions began, in the eighteenth century, functions were 
identified with their representing formulas-usually in
finite series. The examples of functions most commonly 
treated-polynomials and their quotients, exponential 
functions, trigonometric functions, logarithms-led 
mathematicians to expect functions to be relatively well 
behaved: that is, to have the intermediate-value property 
and to possess as many derivatives as needed. These ex
pectations were violated near the middle of the century, 
however, when the need arose to consider functions that 
presented themselves not as analytic expressions but as 
solutions to partial differential equations from physics. 
These functions might not be given by explicit formulas at 
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all. Once the concept of function had been so extended, 
mathematicians had to make clear which functions, with 
which properties, were allowable as solutions to differential 
equations. This could only be done by finding new ways of 
classifying functions. 

The debate over what kinds of functions were allow
able in solving differential equations began when 
d' Alembert stated and solved the differential equation 
for the vibrating string. 'The debate eventually involved 
d'Alembert, Euler, Daniel Bernoulli, and Lagrange-the 
leading mathematicians of the century.44 In 1747 d'Alem
bert gave the differential equation for the motion of the 
vibrating string, which is now called the wave equation 
and usually written as 

02y18x2 = l/c282ylot2. 

D' Alembert was able to show that the solution y must have 
the general form 

F (x + cl) - F (x - cl) .45 

But this form of the solution immediately posed a 
problem. What, other than the boundary conditions, were 
to be the restrictions on the functions F that represent the 
shape of the string? Must they all be, as d' Alembert be
lieved, definable by one and the same formula throughout? 
Or, as Euler insisted, could the initial shape of the string 
be any arbitrary shape-since, for instance, the initial 
position of a plucked string is an inverted V, whose func
tional representation would lack a derivative at one point 
at least? D' Alembert said that the vibrating-string prob
lem could never be mathematically treated unless "the 
different shapes of the vibrating string be included in one 
and the same equation." 46 Euler, however, cared more 
about the generality ofthe solution to the physical problem 
than about its mathematical amenability. In fact, when 
Daniel Bernoulli suggested a trigonometric series as the 
solution to the differential equation of the vibrating string, 
Euler objected. Euler believed that functions represented 
by trigonometric series would act too much like trigo
nometric functions: they would be always differentiable, 
periodic, and, in the case of sines, odd; thus they would 
not be general enough to give all the physically possible 
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solutions. Euler did not fully understand the relevant 
properties of trigonometric series, but the reason for his 
stricture is nevertheless both defensible and important; he 
wanted the definition of function to be as general as pos
sible.47 An idea of the way the debate over the vibrating 
string generated a need for methods of characterizing the 
different types offunctions can be gained by looking at one 
attempt to resolve it-the St. Petersburg Academy prize 
competition of 1787. 

In 1787, the St. Petersburg Academy proposed as its prize 
problem the question of which functions could be used in 
solving partial differential equations. The language of the 
prize proposal reflects the language of the debate then 
raging: "Whether the arbitrary functions which are 
achieved by the integration of equations with three or 
several variables represent any curves or surfaces what
soever, be they algebraic, transcendental, mechanical, dis
continuous, or produced by a voluntary movement of the 
hand; or whether these functions include only curves rep
resented by an algebraic or transcendental equation."48 

The prize was won by 1. F. A. Arbogast. He helped 
clarify the situation-at least temporarily-by introduc
ing a consistent terminology, by means of which he con
cluded that any function which we would now call piece
wise continuous was acceptable as the solution to a dif
ferential equation. Arbogast introduced a new term
discontiguous-for a function which had "the parts de
tached from each other." He used discontinuous in a way 
borrowed from Euler49 to denote a function that, though 
not (for Euler) necessarily discontiguous, could not be 
written as the same algebraic formula on all intervals. 

What Cauchy and Bolzano later called continuous was 
essentially what Arbogast called contiguous; the way 
Arbogast explained the term is more important than the 
term he used. He began by citing a remark in the 
vibrating-string debate made by the Marquis de Con
dorcet50 , that the functional solution of a differential 
equation, even if made up of portions of curves expressed 
by different formulas, had to have pieces that held on to 
each other. But what did "hold on to each other" really 
mean? Arbogast gave three characterizations of this prop-
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erty, which he called contiquity. First, he said that "the last 
ordinate of the old form, and the first of the new, are equal 
to each other, or differ only by an infinitely small quan
tity." 51 Also, he said, "Assuming that the variable in
creases continually, the function receives corresponding 
variations." 52 Furthermore, he said, the ordinate y, where 
y is a function of x, "cannot pass brusquely from one value 
to another; there cannot be a jump from one ordinate to 
another which differs from it by an assignable quantity." 53 

All these characterizations were intended to rule out a 
function with what we would call a jump discontinuity at 
some point. But in giving these properties, he was calling 
attention to the essential property of continuous functions 
at a point. Furthermore, he linked these three versions 
of the "no-jumps" property with the intermediate-value 
property, saying that such functions had to obey what he 
called the "law of continuity"-"A quantity cannot pass 
from one state to another without passing through all the 
intermediate states subject to the same law." 54 

Grattan-Guinness has pointed out, in arguing for 
Cauchy's dependence on Bolzano, that both Cauchy and 
Bolzano spoke of continuity over intervals, not just at 
points. But this manner of speaking was common in the 
eighteenth century. Euler had already established that in 
his usage, continuity-that is, being representable by one 
formula-was a property of the function itself, and not of 
the particular formula chosen for this or that interval. 
Lagninge's description of the continuity of a polynomial 
focused on the interval between two numbers that gave it 
opposite signs. And Arbogast, to make clearer the dis
tinction between continuity and contiguity, gave as an 
example the function defined as 

JmX from x = 0 to x = a 

1/k.Jn2 - (x - p)2 + q from x = a to x = b 

.J k2 - (x - r) 2 + h from x = b to x = c. 

Appropriate choice of the constants can make this function 
contiguous on [0, cl; it is already continuous on each of the 
three separate intervals.55 

Arbogast's paperofl787 can be taken to represent the 
usual level of understanding at that time of the properties 
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of what we now call continuous functions. The paper and 
the debate which stimulated it certainly would have pro
vided food for thought for mathematicians like Bolzano 
and Cauchy. Unfortunately, Bolzano and Cauchy cite 
neither Arbogast nor any of the other contributors to the 
debate in connection with their definitions of continuous 
function. So even though Arbogast's memoir won a major 
academy prize and therefore may be assumed to have been 
widely known, there is no evidence that it had a direct 
influence on Bolzano or Cauchy. Still, one result of the 
vibrating-string debate was that there were many descrip
tions of continuous functions in the period around 1800 
and thus available to Bolzano and Cauchy. S. F. Lacroix, 
for instance, wrote in 1806 about such functions, "The 
smaller the increments of the independent variable, the 
closer the successive values of the function are to each 
other." 56 Bolzano in 1830 actually cited another statement 
from the very page on which this passage appeared.57 

Jourdain is thus certainly correct in stating that the 
vibrating-string debate called attention to the various 
properties of continuous functions, even though he did not 
demonstrate the debate's direct influence on Cauchy. 

In the introduction to his 1814 paper on definite integrals, 
Cauchy observed that the theorem J!f(x) dx = F(b) -
F(a), where f(x) = F'(x), is true "only in the case of a 
function found increasing or decreasing in a continuous 
manner between the limits in question. If, when the va
riable increases by insensible degrees, the function found 
passes suddenly from one value to another, the variable 
remaining included between the limits of integration, the 
differences between each of the brusque jumps that the 
function makes necessitates a correction." 58 (This passage 
sometimes is cited to show why Cauchy's thinking shifted 
away from the integral as the inverse of the derivative to 
the integral as a sum.59 ) The language of his description of 
discontinuities-"pass brusquely," "jumps"-is very 
much like Arbogast's and is doubtless written with aware
ness of the eighteenth-century debate. His use of the phrase 
"insensible degrees" is reminiscent of Lagrange's Equations 
numeriques, whose characterization of the continuity of a 
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polynomial may well have helped suggest the crucial 
property of continuity. 

Cauchy did not employ, at least explicitly, any of the 
"competing" characterizations; he made no use of the 
equation, if any, representing a function in his discussion of 
the function's continuity, nor did he refer here to the 
function's differentiability. Nevertheless, Cauchy did not 
actually define a continuous function in this 1814 paper; 
the property he needed for his proofs was "no jumps," 
whereas his proof of the intermediate-value theorem in 
1821 required his delta-epsilon understanding of con
tinuity. 

Cauchy did give in 1814 an algebraic characteriza
tion of discontinuity at a point. He considered the case of a 
function that "passes suddenly from one fixed value to a 
value sensibly different from the first." If <P (z) is the func
tion, Z the point, and ~ "a very small quantity," Cauchy 
described the situation by writing 

Cauchy's characterization of discontinuity is an algebraic 
translation of the property of having a jump. Though he 
did not use the language oflimits here, it is possible to infer 
from this equation that Cauchy knew that a function has a 
jump at the point Z if the limit, as ~ goes to zero, of 
<P (Z + ~) - <P (Z - ~) is not zero. This algebraic under
standing in 1814 of a discontinuity at a point is obviously 
consistent with Cauchy's definition of continuity in 1821; 
presumably without reading Bolzano he could have con
cluded quite easily that the function <p is continuous when 
L1 does go to zero with ~. Since the two characterizations are 
not identical, however, and since neither inequalities nor 
limits are mentioned, it is not certain whether Cauchy 
already had formulated his definition of continuity by 
1814. 

The closest an eighteenth-century mathematician came to 
the Cauchy-Bolzano definition of continuity was not in 
the debates about continuity at all, but rather in an alge
braic discussion-Lagrange's work in approximating 
functions by Taylor series. In 1797 Lagrange tried to prove 
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a result useful in approximating functions by means of 
their Taylor series: IfJ(x + h) = J(x) + hp(x) + h2q(x) + 
... , there is an h sufficiently small so that 

IJ(x) I >1 hp + h2q + .. -\.61 
Lagrange's proof was not valid. Nevertheless, in the course 
of his proof Lagrange gave a description of a continuous 
function that is closer to the modern Cauchy-Bolzano 
definition than anything theretofore. Suppose given a 
function hP, where P is a function of x and h.62 If x is fixed, 
said Lagrange, then as long as P exists and remains finite, 
hP vanishes with h. If the curve corresponding to this 
function is considered, with h as abscissa and hP as 
ordinate, the curve will cut the axis at the origin. And, 
Lagrange said, "The course of the curve will necessarily 
be continuous from this point; thus it will, little by little, 
approach the axis before cutting it, and approach it, con
sequently, within a quantity less than any given quan
tity."63 This characterization of continuity appears geo
metric. But Lagrange rendered it algebraic: "So we can 
always find an abscissa h corresponding to an ordinate less 
than any given quantity; and then all smaller values of h 
correspond also to ordinates less than the given quan
tity." 64 This is a far cry from "insensible degrees" or 
"infinitely small changes." But it is not far from this char
acterization of continuity at h = 0 to the Bolzano-Cauchy 
definitions of continuity in general. Even though Lagrange 
himself did not take his characterization to be the defining 
property of continuous function, he had for the first time 
stated, in terms of inequalities, what Cauchy and Bolzano 
later recognized as such. 

Lagrange, then, twice had highlighted the essential 
property of continuous functions. Moreover, his charac
terization of the continuity of polynomials in 1798-
"When x is increased by all insensible degrees from p to q, 
[the corresponding functions] increase also by insensible 
degrees"-appears in the context of his proof of the inter
mediate-value theorem, which was, for both Cauchy and 
Bolzano, a major application of their definitions. I have 
already documented Cauchy and Bolzano's familiarity 
with Equations numhiques. Further, both Cauchy and Bol
zano frequently cite Lagrange's Fonctions analytiques,65 in 
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which the inequality characterization of continuity is 
found. 

In fact, the correspondence between Lagrange's view 
of continuity and the Cauchy-Bolzano view was pointed 
out in 1830 by Bolzano himself. Bolzano noted that the 
term continuous function had been used in several different 
senses: for instance, by Lacroix to mean that the ratio 
AF (x) I Ax was bounded; by Kastner and Fries to mean that 
the function has the intermediate-value property; by 
Eytelwein to mean that the function is real and finite. 66 

These properties are all important, said Bolzano, and they 
need to be distinguished from each other. But he added 
that the term continuous function should be reserved for 
the defining property. In his own words, "Thus it would be 
best, holding to the terminology introduced by Lagrange, 
Cauchy, and others, to understand by the continuity of a 
function only the property described in the previous sec
tion":67 that is, the property that the absolute value of the 
difference F (x + Ax) - F (x) "becomes and remains small
er than any given fraction liN if Ax is taken sufficiently 
small." 68 

Cauchy and Bolzano cut through the details of earlier 
discussions of solutions to the wave equation, intersecting 
curves, polynomials, and power series near zero; they re
cognized and isolated the essential defining property 
common to all continuous functions. It was precisely the 
property each needed in their completely different proofs 
of the intermediate-value theorem for continuous func
tions. Equally important, it was precisely the property 
needed by Cauchy in his later works on the differential and 
integral calculus. This episode again illustrates Cauchy's 
twin abilities to pick the crucial property of a concept out 
of a mass of results and to formulate that property cor
rectly. 

But Cauchy and Bolzano did much more than their 
predecessors. In particular, having chosen the crucial de
fining property of continuous functions, they initiated the 
rigorous theory of continuity by proving theorems. Once 
Cauchy had proved the intermediate-value theorem for 
continuous [unctions, he used his definition and the 
intermediate-value theorem in his work on calculus: for 
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instance, to prove the mean-value theorems for derivatives 
and integrals; and to prove the existence of the definite 
integral for what he called a continuous function, but 
which actually was a uniformly continuous function. 69 

Later, mathematicians extended Cauchy's theory of con
tinuous functions. Abel correctly treated the continuity of 
functions defined by power series. Weierstrass and his 
school distinguished-as Cauchy had not-between 
pointwise and uniform continuity. All this became possible 
because Cauchy had isolated the crucial defining property 
of continuous function, associated with it a valid and fruit
ful method of proof, and taught both to a generation of 
rna thema ticians through his COUTS d' analyse. 70 

The concept oflimit is the basis for all of Cauchy's calculus. 
It is used in the definitions of continuity and convergence 
in the COUTS d'analyse, and in the definitions of derivative 
and integral in the Calcul infinitesimal. The concept of con
tinuity is an immediate application of the limit concept, 
and the basic properties of continuous functions were 
needed by Cauchy in his study of derivatives and integrals. 
Though the concept of convergence of series is less funda
mental to the calculus than the concept of limit, it is 
important for two reasons. First, it is Cauchy's most de
tailed application of his inequality-based limit concept; 
Cauchy's treatment of convergence is the first practical 
demonstration of his sophisticated understanding of how 
the limit concept could be translated into complicated 
inequalities so as to prove theorems. Second, while Cauchy 
did not base his calculus on power series as Lagrange had, 
series, and in particular power series, retain an importance 
exceeded only by derivative and integral in the theory and 
applications of calculus from at least the time of Euler until 
the twentieth century. In fact, Cauchy was the first person 
fully to appreciate that the theory of infinite series was not 
merely a minor extension of the algebra of polynomials, 
but could be given a basis in the theory oflimits just like the 
other concepts of analysis. 

In the COUTS d'analyse, Cauchy did much more than 
define the sum of a convergent series. He stated the Cauchy 
criterion, proved that it was a necessary condition for 
convergence, and stated and illustrated with examples-
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though he did not prove-that it was also sufficient. For 
series with positive terms, implicitly taking for granted 
what is now called the comparison test, he rigorously 
proved the validity of a number of general convergence 
tests, including the root test and the ratio test. He proved 
formulas for the sum and product of series with positive 
terms. And he showed which of his convergence results 
remain valid for series with both positive and negative 
terms. Finally, he used his theory of convergence tests to 
compute radii of convergence for series that were functions 
of real or complex variables. Thus his work laid the foun
dation for the rigorous study of functions, both real and 
complex, defined by power series. 

All this was both original and influential. Never
theless, some important features of Cauchy's theory of con
vergence were gleaned from the work of his predecessors. 
For example, though Cauchy's basic results are stated for 
general numerical series, his choice of material seems to 
have been motivated by the example of power series and 
reflects the traditional preoccupation with this kind of 
series. This is evident especially from his statements about 
the importance of the root tese l and the space he gives to 
finding radii of convergence. 

Eighteenth-century mathematicians had given for
mal derivations of many results-sums, product, inverses
for power series,72 and they used power series in solv
ing problems of many types: finding roots of algebraic 
equations; solving differential equations; and evaluating 
definite integrals. Most important, Euler and Lagrange 
had established the fruitfulness of studying functions by 
means of their power-series expansions. Lagrange even 
had tried to use power series to provide a foundation for the 
calculus. The Fonctions analytiques, in both its formal mani
pulations of power series and its unprecedently careful 
attention to remainders, shows what could be done with 
power series using existing methods. But, though Lagrange 
derived the first explicit forms for the remainder term of 
the Taylor series, he provided no general theory of 
convergence. 

The eighteenth century influenced Cauchy's conclu
sions on general series in ways other than just providing the 
motivating example of power series. There was the work 
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on error bounds in algebraic approximations, the anomal
ous results that sometimes appeared in work with diver
gent series, and the wealth of results concerning infinite 
series in all areas of mathematics derived by Newton, 
Euler, Laplace, and Lagrange. Also, there was the work 
of Lacroix; there are some direct resemblances between 
Cauchy's discussion of convergence and the discussion of 
earlier work on infinite series in Lacroix's three-volume 
Traite du ealeul. 

Cauchy's debt to his predecessors should not be over
estimated, however. The rigorous parts of their work on 
series had been restricted largely to particular cases. The 
error bounds and ratio test given by d' Alembert, for in
stance, applied chiefly to the binomial series. Lagrange's 
work on remainders was developed for the Taylor series. 
Even Gauss's memoir of1813, correctly described by many 
historians as the first entirely rigorous investigation of 
convergence,73 considered only one class of series: the 
hypergeometric. Cauchy's theory was entirely general. 

In 1821 Cauchy gave these now classic definitions of con
vergence and the sum of a series with terms Uo, ul , U2, .•• : 

"Letsn = Uo + u1 + U2 + ... 1- Un-l be the sum of the first n 
terms, n being any integer. If, for increasing values ofn, the 
sum Sn approaches a certain limit s, the series will be called 
convergent, and the limi t in question will be called the sum 
of the series." 74 In giving this definition, Cauchy departed 
somewha t from the common usage of the term convergen t. 
Since this older usage has been a source of confusion to 
modern readers, I shall discuss it in detail. 

It is often noted with alarm that eighteenth-century 
mathematicians state that a series is convergent when the 
nth term goes to zero and divergent only when the nth term 
does not go to zero. This of course is "obviously" refuted by 
the example of the harmonic series I + 1/2 + 1/3 + 
1/4 + ... , whose nth term goes to zero and yet has no finite 
sum. But it is in fact true if one realizes that it reflects one 
way of defining the term converge. In eighteenth-century 
work on series, sometimes a series is said to converge in the 
way that the hyperbola "converges" to its asymptote, that 
is, when its nth term goes to zero;7i> at other times the series 
is said to converge in our sense, that is, when its partial 
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sums approach a limit, which is then called the sum of the 
series.76 Thus a series may converge in the first sense with
out converging in the second sense-Cauchy's (and our) 
sense. 

That the harmonic series diverges had long been 
known. It was first shown in the fourteenth century by 
Nicole Oresme and was rediscovered by Jakob Bernoulli in 
1689. By the mid-eighteenth century, it was well known; 
both Euler and Condorcet, for instance, are thoroughly 
aware that a series whose nth term goes to zero need not 
have a finite sum. 77 Cauchy had to fix the sense of the word, 
and he chose well. The crucial fact about an infinite series 
is not whether the terms converge (that is, to zero) but 
whether the series itself-that is, the sums of terms
converges to a limit. For Cauchy the important thing 
about an infinite series was whether it yielded a well
defined finite number for its sum. In reaction against 
uncritical manipulations with divergent series, Cauchy 
insisted that "a divergent series does not have a sum." 78 

(Of course, divergent series can be very useful, and may be 
dealt wi th by extending the idea of summability or through 
the theory of asymptotic expansions. Cauchy's stricture 
thus may be seen as an overreaction, which temporarily 
called into question the value of work like Euler's. It should 
be noted, however, that a rigorous theory of divergent 
series presupposes a clear understanding of convergent 
series.) 

Cauchy's definition of convergence ofa series has had 
a curious effect on the modern reader's attitude toward 
eighteenth-century work. On the one hand, the modern 
reader is shocked to see in this work the apparent identifi
cation of series convergence with the nth term of the series 
going to zero. "Don't these people know about the har
monic series?" On the other hand, seeing, for example, 
d' Alem bert use the ra tio of the nth to the (n + I )st term of a 
series to test for convergence-that is, whether the terms 
get smaller-a modern reader may conclude that the ratio 
test is being used in the modern way. Because Cauchy was 
consistently conservative in his terminology and did not 
explicitly criticize older usage, his kindness to his pre
decessors may have led later historians astray. Moreover, 



101 The Origins of the Basic Concepts of Cauchy's Analysis 

Cauchy's choice of terminology does not destroy the value 
of earlier investigations of convergence, for the series most 
often treated in them are power series. Except at the end 
points of the interval of convergence, a power series is 
convergent in Cauchy's sense if and only ifit is convergent 
in the sense of Kliigel and d'Alembert: the nth term goes 
to zero. Cauchy's theory of convergence in fact preserves 
the value of many earlier proofs that particular series 
converge-as of course it was intended to do. 

Yet it was not in the definition of convergence that 
Cauchy's originality lay, nor even in his insistence that cal
culations with divergent series are not to be relied upon, for 
the discussion of infinite series in Lacroix's TraiU expresses 
essentially the same views. Lacroix began his discussion of 
series by noting that the series for the function a/(a - x), 
developed in powers of x, is I + x/a + x2/a2 + ... , which 
does not give the correct value unless x is ("abstraction 
made of the sign") less than a. This example moved him 
to the reflection, based on a similar remark made by 
d'Alembert, that to be safe in using such a series develop
ment "we must discuss with care the convergence79 of 
numerical series ... and we ought to count on these deter
minations only when we can assign the bounds [limites] of 
the difference that can be found between these [series] and 
the true value." 80 Cauchy agreed and put it even more 
strongly when he said that a divergent series did not have a 
sum.81 

Lacroix added that for a series development to be of 
any use, the difference between the series and its true value 
should "be made less than any given quantity, no matter 
how small," as more and more terms are taken. This 
immediately suggests that the sum of an infinite series 
should be understood as the limit of the partial sums. This 
definition of sum of a series is implicit in most eighteenth
century work in series and indeed had been stated ex
plicitly by Colin Maclaurin.82 Thus, the merit of Cauchy's 
definition of convergence is not apparent from the defi
nition itself or the repetition of Lacroix's warning against 
divergent series. Here as in the case of the limit concept, 
getting the right definition is only the beginning. 
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Cauchy's name is associated with the study of the com
pleteness of the real number system through the Cauchy 
criterion, which states that every Cauchy sequence con
verges.S3 Cauchy himself stated the Cauchy criterion for 
the infinite series Uo + UI + U2 + ... + Un + .... Let Sn = 
Uo + UI + U2 + ... + Un-I. To say that such a series con
verges according to Cauchy's-and our-definition is to 
say that "if, for increasing values of n, the sum Sn in
definitely approaches a certain limit S, the series is called 
convergent, and the limit in question is called the sum of the 
series." S4 Cauchy then called attention to the differences 
between the first and the successive partial sums, defined 
by 

S ni-l - Sn = Un, 

S n+2- Sn = Un + Un+l> 

S n+3- Sn = Un + Un+1 + Un+2, 

For the series to converge, it was known to be necessary 
that the first of these, Un, go to zero. But it was also known, 
as Cauchy pointed out next, that this was not sufficient: 

It is necessary also, for increasing values of n, that the 
different sums Un + Un+1> Un + U n+1+ Un+2···, that is, the 
sums of the quantities Un, Un+ 1> unH ' .•. , taken, from the 
first, in whatever number we wish, finish by constantly 
having numerical [that is, absolute) values less than any 
aSisignable limit. Conversely, when these diverse conditions are 
fulfilled, the convergence of the series is assured.s5 

Four years before Cauchy published his Cours 
d'analyse, Bernhard Bolzano explicitly stated the "Cauchy 
cri terion," and tried to prove i t:86 

Ifa sequence [Reihe) of magnitudes FI(x), F2 (x), F3(x)··· 
Fn(x) ... Fn+"(x) ... is subject to the condition that the 
difference between its nth member [Gliede) Fn(x) and every 
later member Fn+,. (x), no matter how far beyond the nth 
term the latter may be, is less than any given magnitude if n 
is taken large enough; then, there is one and only one 
determined magnitude to which the members of the 
sequence approach closer, and to which they can get as 
close as desired, if the sequence is continued far enough. 



103 The Origins of the Basic Concepts of Cauchy's Analysis 

The antIcIpation of the Cauchy criterion of 1821 by 
Bolzano in 1817 is one of the most striking examples of the 
coincidence between the work ofBolzano and Cauchy and 
one of the strongest points made by Grattan-Guinness in 
his argument for Cauchy's dependence on Bolzano. Can 
Cauchy's discovery of the Cauchy criterion be reconstruc
ted without having to assume that he had read Bolzano's 
work? 

There are two parts to the Cauchy criterion: it is 
necessary for convergence; and it is sufficient. Although 
nobody but Bolzano seemed to have noticed the sufficiency 
of the Cauchy criterion before Cauchy, earlier mathe
matics had already provided several hints about its neces
sity. Cauchy himselfmade the necessity look almost trivial. 
For a series of positive terms, Cauchy said that it was 
necessary that Un go to zero, but not sufficient. And, he 
added, it is also necessary that each of the finite expressions 
Un, Un + Un+1, Un + Un+l + UnH,··· go to zero. Obviously, 
though Cauchy did not explicitly say so, if these finite 
expressions do not go to zero, then the infinite expression 
Un + Un+ 1 + UnH + ... certainly cannot; the necessity of 
the Cauchy criterion may be proved in this way. 

What is much more important is the sufficiency of the 
Cauchy criterion. What may have led Cauchy to state this? 
Cauchy had now given two necessary conditions for con
vergence of series with positive terms: the nth term goes to 
zero; and the Cauchy criterion. Everyone knew that the 
first condition is not sufficient; it would be natural to ask 
whether the second is sufficient. Examining some examples 
certainly suggests that it is sufficient. It also fits with one's 
intuition of convergence. 

Unlike the infinite series of terms Un + U n+1 + 
U nH + ... , the finite expressions Un + ... + unHare com
putable. In a sense, these finite expressions are approxi
mations to the actual value of the remainder of the infinite 
series. One source of Cauchy's interest in these expressions 
therefore may have been approximations to the value of 
the remainder of an infinite series. Following d' Alembert, 
Lacroix had computed the bounds on such remainders for 
the particular case of the sum of terms from the (n + 1 )st 
on in the binomial series.87 Lacroix was concerned with 
finite, not infinite, remainders: "Such are the limits above 
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and below of the diverse approximations which the series 
gives." 88 That something like this may have been in 
Cauchy's mind when he devised the Cauchy criterion is 
suggested by his first illustration of that criterion. In an 
argument closely analogous to Lacroix's derivation of the 
bounding inequalities for the binomial-series remainder, 
Cauchy showed by actual computation that the conver
gent geometric progression I + x + X2 + .. , satisfied the 
Cauchy criterion because the finite expressions xn, xn + 
xn+l,xn + x n+1 + xn+l,'" were always included between 
the bounds xn and xnfl - X. 89 

Besides the work of Lacroix, there is another possible 
source: Euler's proof of the divergence of the harmonic 
series. Cauchy never mentioned Euler's paper, but a plau
sible case can be made that Cauchy read it nevertheless. 
As an example of the necessity of the Cauchy criterion, 
Cauchy proved the divergence of the harmonic series by 
showing that the sum of the terms 

--+--+ ... + +-( 1 1 1 1) 
n + 1 n + 2 2n - 1 2n' 

that is, what we would write as S2n - Sn+l, is greater than 
1/2 for all n.90 Cauchy said this was a "new proof" of the 
divergence of the harmonic series. ButJakob Bernoulli had 
given essentially this proof more than a hundred years 
before. Since Cauchy nevertheless treated the divergence 
of the harmonic series as a known result, he must have been 
familiar with a proof other than Bernoulli's. In a paper of 
1734,91 Euler had proved the divergence of the harmonic 
series by showing that what we would write as Snk - Sn is 
bounded below by a precisely computable finite positive 
number. Euler's criterion was not stated in general, but 
merely used for this specific purpose. It is possible that the 
first proof Cauchy saw of the divergence of the harmonic 
series was Euler's. Even if this is not the case,92 he well may 
have sought out Euler's paper on harmonic progressions 
for its treatment of a series that converged in the old 
sense-having diminishing terms-but not in the new. In 
either case, Cauchy could have formulated the Cauchy 
criterion by generalizing Euler's test. 

However Cauchy was led to the Cauchy criterion, the 
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fact is that he not only stated it, but used it. He applied the 
sufficiency of the Cauchy criterion to prove the conver
gence of the series 1 - 1/2 + 1/3 - 1/4 + .... Here we are 
no longer dealing with illustrations: the Cauchy criterion is 
essential to this proof.93 Cauchy added-correctly-that 
his proof could be generalized to show that any alternating 
series whose terms go to zero is convergent. 

In his independent discovery of the Cauchy criterion, 
Bolzano also may have been influenced by Euler or 
Lacroix. Since he stated the criterion for sequences, not 
sums of series, he may have been guided instead by the 
mental image of points about a cluster point. We cannot 
know for sure. In any case, Bolzano's attitude toward the 
Cauchy criterion differed from Cauchy's. Bolzano was 
interested in properties of the real numbers, like the least
upper-bound property; Cauchy was interested in deriving 
convergence tests for series. Balzano needed the Cauchy 
criterion for his proof of the intermediate-value theorem 
for continuous functions. Cauchy's own applications-as 
opposed to illustrations-of the Cauchy criterion are 
few. 94 

The importance of the Cauchy criterion in the theory 
of real numbers was not widely appreciated by Cauchy or 
any of his immediate successors. In the Cours d'anaryse, 
Cauchy never explicitly stated any form of the complete
ness property of the real numbers save the convergence of 
Cauchy sequences. Implicitly, however, he assumed sev
eral theorems about sequences that are equivalent to, or 
consequences of, the completeness of the real numbers. 
Cauchy used these in proofs in his Cours d'anaryse without 
justifying them and without ever stating them in general: 

1. monotone-sequence property-every bounded mono
tone sequence converges to a limit; 
2. comparison test-if a given series with positive terms is, 
term-by-term, bounded by a second, convergent series, 
then the given series is also convergent; 
3. lim sup-a bounded sequence has a limit superior 
(called by Cauchy "the greatest of the limits"). 

Item (1) is used in the proof of the intermediate-value 
theorem for continuous functions. Item (2) plays an im-
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portant role in proofs of convergence. Item (3) is used in 
the statement and proof of the validity of the root test for 
convergence of series. 

Presumably the reason Cauchy did not recognize 
these properties explicitly and state them in general is that 
they appear to be "obvious." In addition, (2) was sanc
tioned by long usage.95 Cauchy did state the Cauchy crite
rion explicitly, doubtless because he needed to use the 
details of that criterion in his proof of the convergence of 
the alternating harmonic series, and because it did not 
seem as self-evident in application as the other criteria. But 
he did not try to prove the Cauchy criterion in general. He 
may have viewed its proof as "obvious" -or as impossibly 
difficult. "Obviousness" is of course partly a function of 
time; the completeness of the real numbers would no 
longer be obvious to Dedekind or Weierstrass. 

Cauchy followed his definition of convergence with a proof 
of the well-known result that a geometric series whose ratio 
has absolute value less than one is convergent according to 
his definition. 96 This theorem was more than just an illus
tration; the convergence of the geometric progression was 
needed to prove the validity of other convergence tests by 
means of the comparison test. D' Alembert had proved the 
convergence of the binomial series by comparison with a 
convergent geometric progression. Cauchy knew d' Alem
bert's work, if not his paper, since Lacroix followed it 
closely in his Traiti du calcul. 97 Cauchy's exploitation of the 
comparison test left d'Alembert and Lacroix and their 
particular examples far behind, however, for Cauchy gave 
tests for the convergence of arbitrary series. Because he had 
proved their validity by means of the comparison test, they 
now were free from the particular geometric series used for 
comparIson. 

The first theorem Cauchy proved, the root test, was 
especially important to him since it enabled him later to 
compute radii of convergence of power series. His theorem 
states, "Find the limit or limits to which, while n increases 
indefinitely, the expression (un)l/n converges. Let k be the 
greatest of these limits, or, in other words, the limit of the 
greatest values of the expression under consideration. The 
series [uo + Ul + ... + Un + ... J will be convergent if k < I, 
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and divergent if k > 1." 98 Cauchy's proof, though based 
on the existing technique of comparison with the geometric 
series, is vastly superior to anything theretofore. 99 Consider 
Cauchy's treatment of the case k < 1. Cauchy chose U 
such that k < U < 1. Then, for all n sufficiently large, 
unl/n < U. (The possibility of so choosing U comes from 
Cauchy's understanding of the concept that k is the 
"greatest of the limits.") This inequality implies that for n 
sufficiently large, Un < Un. But since U < I, the series 
1 + U + U2 + ... is known to converge; thus "we may 
conclude a fortiori" the convergence of Uo + Ul + 
U2 + .... 100 

Cauchy's proof of the root test was followed by his 
statement and proof of the ratio test, again for series with 
positive terms: "If, for increasing values of n, the ratio 
un+ l/un converges t<? a fixed limit k, the series will be 
convergent when k < I, and divergent when k > I." 101 

This test, unlike the root test, had already been used by 
others in special cases. 

Cauchy proved the ratio test in his Calcul infinitesimal 
by appealing, as d' Alembert had done for the case of the 
binomial series, to the comparison test with the geometric 
series. lo2 Cauchy gave a more elegant and novel proof of 
the ratio test, however in his Cours d'anabse, deducing it 
from the root test by means of this theorem: "If the series 
All A2 , Aa ... is such that the ratio of two consecu tive terms, 
An+ llAn, converges constantly, for increasing values of n, to 
a fixed limit A, the expression (An)1/n converges at the same 
time to the same limit." 103 

Cauchy concluded his treatment of series with posi
tive terms by proving several other useful theorems. Most 
important, for series with positive terms he defined what is 
now called the Cauchy product of two series and proved, 
with a careful use of bounding inequalities, that it con
verges to the product of the separate sums. That is, if 

S = Uo + U1 + ... 

and 

Sf = Vo + VI + ... , 
then 
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(UOVo) + (UOVI + UIVO) + '" 
+ (UoVn + ... + Un-IVI + UnVo) + ... 
is a new convergent series whose sum is SS'. 

This result is clearly motivated by Cauchy's concern 
with power series. In the eighteenth century, the Cauchy 
product had often been used in multiplying power series;104 
Cauchy was the first not only to prove it but to specify the 
conditions for which it holds. And the proof is important 
for a reason more profound than its novelty. Products of 
infinite series were used, and the theorem assumed, even 
for power series that may have negative terms. Cauchy's 
proof requires that the terms be positive; presumably he 
noticed this fact when he tried to prove the theorem for 
series of mixed signs. Eventually he proved the theorem 
only under the condition that the series of the absolute 
values of the terms converges-that is, in modern terms, is 
absolutely convergent. And he gave an example in which 
the Cauchy product of two series that are convergent, but 
not absolutely convergent, produce a divergent series
the first such example to be presented. I05 

Eighteenth-century mathematicians usually had dealt 
with the problem of convergence of series with mixed signs 
by using the phrase "abstraction being made of the sign." 
Cauchy tried instead to distinguish the cases in which his 
general results continued to hold from those in which they 
might not. The generality of Cauchy's approach is novel; 
astonishingly enough, though facts like the divergence of 
L Ilk and the convergence of the corresponding series 
L (-l)k+llk had long been known, apparently nobody 
before Cauchy had seen that the problem of convergence 
for series with both positive and negative terms needed any 
type of general discussion. 

Cauchy began by stating the theorem that a series 
converges when the series of its absolute values con
verges. 106 Then he explained the way in which his conver
gence tests applied-or did not apply-to series with 
terms of mixed signs. For instance, iflunl = Pn, the root test 
becomes "Let k be the limit to which, while n increases 
indefinitely, the greatest values of the expression (Pn)lln 
converge. The series [uo + UI + ... + Un + ... J converges if 
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k < 1, diverges if k > I." 107 This theorem makes possible 
the computation of radii of convergence of power series. In 
addition, the root test provides the best way of determining 
what we now call the absolute convergence of a series. 

Cauchy concluded his chapter on the convergence of 
real-valued series by discussing how to find the radii of 
convergence, his choice of results about numerical series 
appearing to have been strongly motivated by a concern 
with power series, the type of series most intimately related 
to eighteenth-century calculus. Using the root and ratio 
tests systematically, he compu ted radii of convergence for a 
number of well-known series. D' Alembert and Lacroix 
had done this for the binomial series; Cauchy also gave this 
example, but now it wasjust one ofmany.108 

In the theory of convergence even more than in the theory 
of continuity, Cauchy broke new ground and set old results 
on a new, rigorous foundation. Given his clear, inequality
based understanding of the prevailing concepts of limit 
and sum of series, Cauchy was able create from a few 
earlier techniques a new, general theory of series. We may 
thank Lacroix for having made available methods for com
puting partial sums, using the ratio test, and comparing 
series with convergent geometric progressions. We may 
thank all the eighteenth-century practitioners of the ana
lysis of the infinite, especially Euler, d'Alembert, and 
Lagrange, for having created a wealth of results and tech
niques for infinite series, especially power series. We may 
thank Lagrange not only for his work on power series but 
for his aid in developing the algebra of inequalities in 
approximation theory. But recognizing the usefulness of 
the techniques, making the correct generalizations, and 
above all exploiting the methods to prove general theorems 
about series-these were Cauchy'S own achievements. His 
convergence tests, in particular, gave rise to an entirely 
new subject. lOg He helped found the rigorous theory of 
power series, essential to nineteenth-century analysis. It 
was above all Cauchy's work on infinite series in the Cours 
d'analyse that so inspired the young Abel and provided the 
first great contrast between Cauchy's new rigor and the 
older analysis. 
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Cauchy's major goal in his theory of convergence was to 
develop the general theory of series, both real and com
plex, in a rigorous way. As he said in the introduction to 
the COUTS d'anafyse, "As for methods, I have sought to give 
them all the rigor required in geometry." 110 This meant, 
he said, rejecting arguments about divergent series, or 
automatic extensions of results from the real to the complex 
case. Once this had been done, "Propositions ... requiring 
the happy necessity of putting more precision into theories, 
and involving useful restrictions of assertions stated too 
broadly [trop etendues], will profit analysis, and furnish 
many subjects for investigation which are not without 
importance." III Among the ways Cauchy showed the im
portance of having a rigorous general theory was by citing 
occasional counterexamples to assertions stated without 
"useful restrictions": for instance, showing that the for
mula now known as the Cauchy product held only for 
absolutely convergent series, or later on, that there can be 
more than one function with a specific Taylor series.J12 

The importance of a general theory of infinite series 
was certainly clear to Cauchy from the work of Euler and 
Lagrange, who had shown the way in which a great deal of 
analysis could be derived from series. Had the demonstra
tion of particular results been Cauchy's central concern, he 
surely would have given them more prominence in his 
exposition. Nevertheless, the derivation of results, both old 
and new, was certainly one motivating circumstance for 
Cauchy's theory. Given the large amount of emphasis on 
complex series in the Cours d'anafyse, it appears that results 
in complex analysis were among his major concerns. 

Once Cauchy had established the theory of conver
gence for real-valued series, he introduced complex num
bers and complex-valued functions. It was easy for him to 
extend his methods to discuss the convergence of series of 
complex numbers and power series in a complex variable. 
In an extensive treatment covering a hundred and twenty 
pages, he defined and characterized the elementary com
plex functions and obtained their series developments 
using his theories of continuity and convergence; some of 
his results are relevant to finding the sums of significant 
power series.113 



III 

(4.1 ) 

The Origins of the Basic Concepts of Cauchy's Analysis 

Cauchy characterized the common continuous com
plex-valued functions ofa real variable by their functional 
equations. For instance, he solved the functional equation 
ro(x + y) = ro(x)ro(y) for a continuous complex-valued 
function ro, deriving the solution AX( cos bx + ..j=T. 
sin bx) .114 He defined convergence and proved conver
gence tests for complex-valued series by applying his 
results in the real case.ll5 He then used the functional
equation characterization of complex functions to find the 
sums of various complex-valued power series. For instance, 
he showed that (I + x)Jl is the sum of the binomial series 
1 + f1X + [J1( J1 - 1) /2!]x2 + ... in the com plex case, where 
x is the complex number z( cos 0 + i sin 0), by showing that 
it satisfies the functional equation ro (t.1)ro (J1') = ro (J1J1') .116 

This argument requires that ro be a continuous function of 
J1. Both in the complex case and in the simpler real case he 
had treated earlier by the same method,117 Cauchy'S deri
vation of the binomial series rests on the continuity of 
ro(J1) = 1 + J1X + [J1(J1- 1)/2!]x2 + ... as a function of J1, 
and therefore on Cauchy's erroneous theorem that an 
infinite series of continuous functions is continuous. us 
(Incidentally, Cauchy's derivation of the binomial series 
for both the real and the complex case and, based on this, 
the series for eX, provide a much more plausible motivation 
for Cauchy's erroneous theorem about the continuity of 
infinite series than that given by Imre Lakatos and 
Grattan-Guinness, U9 who saw it as a veiled attack on 
Fourier series. Indeed, Cauchy explicitly referred to that 
false theorem in his derivation of the real binomial 
series. 120 ) Given that continuity, Cauchy was able to find 
the sum of the series 

1 + x + x2 /2! + x3 /3! + ... , 

where x is the complex number z( cos 0 + i sin 0), from the 
binomial series. He later defined eX for complex x as the sum 
of this series.121 

In fact, Cauchy derived the sum of the series (4.1) 
in the complex case in two ways. His first proof starts with 
the binomial series, replaces z by az (he required that 
laz\< 1), J1 by l/a, and lets a_O. 122 (In the real case, 
this technically resembles the way Lagrange derived the 
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series for y = aX by evaluating y = (1 + a - I)X = [( I + 
a-I) nlxfn according to the binomial theorem, and then de
termining the coefficients of the resulting power series.)123 
As an easy consequence of his formula for the sum of (4.1), 
Cauchy gave power series for sin z and cos z for real Z.124 

Cauchy then gave a second derivation of the sum of 
the series (4.1), based on the fact that 

1 + x J=1/l! - x2 /2! - x3 FT 13! + x4 /4!··· 
= cosx + J=1 sinx 

for x real, which he proved by showing that the series in 
(4.2) satisfies the functional equation ro (x)ro (y) = 
ro(x + y).125 From this, Cauchy once more drew as an 
obvious consequence the power-series developments for 
sin x and cos x for x real126 and the series for the exponential 
function. 127 Incidentally, it is interesting to note that these 
derivations of the sum of the exponential series in the 
complex case appear to be the only place in the Cours 
d'analyse at which Cauchy derived the series for the real
valued functions sin x and cos x. Throughout his discussion 
of complex analysis, Cauchy showed the power of his 
complex methods by deriving important formulas in real 
analysis by looking at the real and imaginary parts of 
complex formulas. In fact, the specific real series and the 
characterization of real functions by the functional equa
tions they satisfy occurring earlier in the Cours d'analyse 
seem to be chosen because either they are needed later on 
in the complex case or they are simple examples of argu
ments that Cauchy later extended to the much more diffi
cult complex case. 

Cauchy's interest in these complex results was, of 
course, prophetic. It is of great historical importance to 
note that the Weierstrassian theory offunctions of a com
plex variable depends upon the rigorous theory of conver
gent power series. 

In the Cours d' analyse of 1821 Cauchy had put limit, conver
gence, and continuity on a rigorous basis for the first 
time. 128 He isolated the crucial epsilon properties of each 
concept and, using inequality techniques developed in 
both algebra and calculus, proved theorems about them. 
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These concepts were now available as a foundation for his 
theory of the derivative and the integral, first published in 
his Calcul infinitesimal in 1823. In this work, both derivative 
and integral would be defined as limits, and their prop
erties rigorously proved. 



5 

Introduction 

The Origins of Cauchy's Theory 
of the Derivative 

The derivative is the most important of the concepts of the 
calculus that are defined as limits. Cauchy's Calcul in
finitesimal of 1823 first gave his unprecedentedly clear and 
powerful treatment of derivatives. Yet his treatment owes 
much to the past. The origin of Cauchy's theory of the 
derivative resembles in some ways that of the concepts of 
limit, continuity, and convergence. Just as he had done 
with the concepts oflimit and sum of a series, Cauchy took 
the old concept of differential quotient, or derivative, and 
gave it a new, precise meaning. He defined the derivative, 
in the style of the eighteenth century, as the limit of the 
ratio of the quotient of differences, but his definition was 
based on his new, clear understanding of the limit concept. 
Recall that Cauchy had defined limit as follows: "When the 
successively attributed values of the same variable indefi
nitely approach a fixed value, finishing by differing from it 
by as Ii tde as desired, the latter is called the limit of all the 
others." 1 

To define the derivative in terms of this definition of 
limit, Cauchy considered the limit of the ratio of the dif
ferences [j(x + i) - f(x) l/i on an interval of continuity of 
f(x). [The continuity was needed so thatf(x + i) - f(x) 
and i could both "indefinitely and simultaneously ap
proach the limit zero," or equivalently both be "infinitely 
small quantities." Cauchy defined "infinitely small quan
tity" as a variable whose limit was zero. Thus, though 
Cauchy never explicitly stated this as a theorem, every 
differentiable function must be continuous.] Cauchy ob
served, as had many of his predecessors, that although the 
numerator and denominator of the ratiof(x + i) - f(x)/i 
went to zero, "the ratio itself can converge to another limit, 
either positive or negative." But Cauchy added to the work 
of his predecessors: "This limit, when it exists, has a de
fini te value for each particular val ue of x; bu tit varies wi th 
x . ... [It will bel a new function of the variable x . ... In 
order to indicate this dependence, we give the new func
tion the name of derived function [fonction derivee, our de-
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rivative), and we designate it with the aid of an accent by 
the notationy' orj'(x)."2 The phrase "this limit, when it 
exists" exemplifies Cauchy's rigorous attitude. Perhaps the 
qualification "when the limit exists" was motivated only 
by the behavior ofknown functions at isolated points, but 
his language was sufficiently general to open up the whole 
question of the existence-or nonexistence-of deriva
tives. And though the definition is verbal, Cauchy trans
lated it into the algebra of inequalities for use in proofs. 

Unlike most of his predecessors, Cauchy did much 
more than simply define the derivative; he used his de
finition to prove theorems about derivatives, and thus 
created the first rigorous theory of derivatives. The crucial 
theorem of that theory concerns bounds on the difference 
quotient: IfJ(x) is continuous between x - Xo, x = X, and 
if A is the minimum of j'(x) on that interval while B is 
the maximum, then A ~ [j(X) - J(xo))f(X - xo) ~ B. 
[Cauchy expressed ~ verbally.) In his proof, Cauchy 
translated his definition of derivative into the language of 
delta-epsilon inequalities: "Designate by ~ and e two very 
small numbers; the first being chosen in such a way that, 
for numerical values of i less than ~, and for any value of x 
between Xo and X, the ratioJ(x + i) - J(x)fi always re
mains greater thanj'(x) - e and less thanj'(x) + e." 3 

In this delta-epsilon inequality-the first appearance 
in history, incidentally, of the delta-epsilon notation
Cauchy expressed the crucial property of the derivative 
in terms any modern mathematician would recognize. The 
only shortcoming of this translation of Cauchy's verbal 
definition is that he assumed his () would work for all x on 
the given interval, an assumption equivalent to that of the 
uniform convergence of the differential quotient. Never
theless, his use of the inequality to translate the definition 
is a major achievement. Cauchy knew exactly what he 
meant by "the derivative is the limit of the quotient of 
infinitesimal differences," and he was really the first person 
in history to know this.4 

For the derivative as for the concepts of limit, con
tinuity, and convergence, Cauchy disentangled the cru
cial {)..e property from the mass of earlier work and ex
ploited that property in proofs; its origin may be found in 
Lagrange's work on approximations involving derivatives. 
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By the end of the eighteenth century, Lagrange had de
rived two crucial properties ofj'(x) , (S.la) and (S.lb). 

f(x + i) = f(x) + ij'(x) + iV, where V goes to zero with i. 

"V goes to zero with i" means that given any D, i can be 
chosen sufficiently small so that V is between - D and 
+ D. Equivalently, given any D, i can be found such that 

f(x + i) - f(x) lies between ilf'(x) - D] and ilf'(x) + D].5 

Equation (S.la) will be called the Lagrange properry of the 
derivative, because not only was Lagrange the first to state it, 
but he was the first to use properties (S.la) and (5.1b), as 
they are still used today, to derive many of the known 
results about functions and their derivatives, including the 
properties of maxima and minima, tangents, areas, arc 
lengths, and orders of contact between curves. 

For Lagrange, (5.1 a) and (5.1 b) rested on the Taylor
series expansions offunctions. Cauchy saw that Lagrange's 
properties, which involve (save for explicit notation) deltas 
and epsilons, could be assimilated to his newly improved 
limit concept. Thus (5.la) and (5.lb) would be an im
mediate consequence of defining the derivative as a limit. 
Once the derivative had been so defined, all that Lagrange 
had deduced from (5.la) and (5.1b) would remain valid. 
Thus a large, already existing portion of the logical struc
ture of the calculus would rest for the first time on a firm 
foundation. 

Cauchy knew Lagrange's books on the calculus well. 
In addition, in 1806 Andre-Marie Ampere used both 
(S.la) and the associated Lagrangian proof technique in a 
paper about derivatives whose influence Cauchy more 
than once acknowledged. Cauchy recognized the value of 
this Lagrange-Ampere proof technique and exploited it; 
because he also justified it, he became the first rigorously 
to prove theorems about derivatives. 

Proving theorems about derivatives is important, but 
it is only one part of the differential calculus. The other 
part, so well developed in the eighteenth century, includes 
applying derivatives to the solution of problems: finding 
tangents to curves, tangent planes to surfaces, radii of 
curvature, maxima and minima, and so on. A rigorous 
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theory of derivatives ought to be expected to justify these 
applications; Cauchy's theory did so. Here too Cauchy's 
predecessor was Lagrange. Lagrange's work is almost, but 
not quite, acceptable by modern standards. Cauchy's de
finitions and rigorous proofs of results such as the mean
value theorem for derivatives made Lagrange's demons
trations and applications legitimate. 

Euler's Criterion: The work that probably inspired Lagrange not only to 
Infinite Series state the Lagrange property of the derivative but also to 
and Remainders exploit it at length is Leonhard Euler's Institutiones calculi 

differentialis. In this work Euler gave a criterion for when to 
use a finite number of terms of a power series, neglecting 
their remainder-that is, a criterion for the usefulness of 
power-series approximations. Euler explained his criterion 
in the following way. Given y a function of x, and (j) a 
change in x, 

(5.2) 

(5.3) 

Ay = p(j) + Q(j)2 + R(j)3 + .... 

"If the increment (j), which is added to the variable quan
tity, is very small, the terms Qw2, RWS ... , also become 
very small, until p(j) greatly exceeds the sum of all the rest." 
This is Euler's criterion. Essentially, p(j) can be taken to 
stand for the whole series in all those computations "where 
the greatest accuracy is not needed." Euler added that "in 
many cases to which the calculus is applied in practice, this 
kind of consideration is very fruitful." 6 

What Euler had in mind when he mentioned "cases to 
which the calculus is applied" is best illustrated by an 
application he made himself. He showed that if x is a 
relative maximum or minimum of y, then dy/dx is zero 
there. Suppose y(x) is a relative maximum. Then 

y(x) > y(x + a) = y(x) + ady/dx + (1/2)a2 d2y/dx2 + . ", 
y(x) > y(x - a) = y(x) - ady/dx + (1/2)a2 d2y/dx2 - .... 

In each series, for a sufficiently small, the term in a will 
exceed all the rest; this means that the sign of the entire 
series of terms containing powers of a will have the sign of 
the term ady/dx in (5.2) and -ady/dx in (5.3). Thus the 
only way both inequalities (5.2) and (5.3) can be satisfied 
simultaneously is for dy/dx to be zero.' Of course, this 
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argument requires that the function y be uniquely the sum 
of its Taylor series, a point that Euler took for granted. 

A Taylor-series treatment of maxima and minima in 
terms of the signs of fluxions of various orders had been 
given in 1742 and justified geometrically by Colin 
Maclaurin.s Maclaurin did not base his result, however, 
on a more general statement such as what I have called 
Euler's criterion. More important, Euler's derivation of 
the properties of maxima and minima was intended to be 
purely analytic, not geometric; in effect, he had given an 
algebraic theory of maxima and minima based on an 
approximation and thus based on the algebra of in equal i
ties. This theory would have been an important innovation 
even if it had not influenced Lagrange. But it did. 9 

It appealed to Lagrange because it was consistent 
with his general program offounding the calculus without 
geometry or intuition, but solely on what he called "the 
algebraic analysis of finite quantities." And Euler's work 
also fits in perfectly with the specifics of Lagrange's "alge
braic" foundation for the calculus. Since Lagrange wanted 
to base his calculus on Taylor series, he would have been 
impressed especially by Euler's use of Euler's criterion in 
cases like that of extrema. In fact Lagrange seized on 
Euler's criterion and extended it far beyond Euler's few 
examples. He even tried to prove it;lO though Lagrange's 
proof makes no reference to Euler, the many similarities 
between Fonctions analytiques and Institutiones calculi differen
tialis argue overwhelmingly for Euler's influence.ll Finally, 
Lagrange explicitly credit~d this property of maxima and 
minima (if not its derivation) to Euler;12 he made no 
reference to Maclaurin's treatment of the subject. Thus it 
was from Euler's criterion that Lagrange was led to what I 
have called the Lagrange property of the derivative. 

Obtaining the Lagrange property of the derivative was 
one of the first tasks Lagrange undertook in his Fonctions 
analytiques. Lagrange had begun this work on the foun
dations of the calculus by trying to "prove" that any 
functionJ(x) had a power series expansion of the form 

J(x + i) =J(x) + ip + i2q + ... ,13 

where by Jonction Lagrange meant any expression de calcul 
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into which the variable entered in any way.14 Given such 
an expansion, Lagrange followed Euler in stating that 
there was some i small enough so that any term of the series, 
"abstraction being made of the sign," would exceed the 
sum of the remainder of the terms in the series. But 
Lagrange, unlike Euler, tried to prove this fact. 15 

Lagrange began his proof by treatingJ(x + i) as the 
sum of two expressions, one depending on i, the other not: 

J(x + i) = J(x) + iP, 

where P is a function of both x and i. Analogously defining 
Q. by P = P + iQ., R by Q = q + iR, and so on, Lagrange 
gave Euler's criterion in the following form: 

For i small enough,j(x) > iP, or for some i, ip > i2Q., .... 

Lagrange appealed to the continuity of iP, iQ., ... to assert 
that i could be found sufficiently small for any particular one 
of the inequalities of (5.4) to hold. This for Lagrange 
proved Euler's criterion, since if "we can always give i a 
small enough value so any term of the series ... becomes 
greater than the sum of all the terms that follow," then 
"any value of i smaller than that one always satisfies the 
same condition." 16 

Euler himself had viewed his criterion as occasionally 
useful in justifying applications of the derivative. 
Lagrange, however, recognized the result (5.4) as funda
mental, saying "[This result] is assumed in the differential 
and the fluxional calculus, and it is because of this that one 
can say that these calculuses are the most fruitful, espe
cially in their application to problems of geometry and 
mechanics." 17 This quotation is an extraordinarily im
portant statement, both from Lagrange's point of view and 
from ours. 

For Lagrange (5.4) provided the answer to a major 
question he had raised in the Berlin prize proposal of 
1784:18 How could the differential and fluxional calculuses, 
with their somewhat shaky hypotheses, nevertheless yield 
"so many true results"? I think the reasoning behind 
Lagrange's statement was something like this: The dif
[erential and fluxional calculuses allow i to become "in
finitely small" or to "vanish" or to "have zero as its limit." 
Whatever else these phrases may mean, they seem at least to 
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require that i be a very small finite number-in particular, 
small enough so that! iQ.1 can be made less than Ipl. Thus 
any result of the differential or fluxional calculus that 
requires no more than making I iQ.lless thanlpl should follow, 
in Lagrange's view, from the truth of (5.4). 

Whatever the quoted statement may have meant to 
him, Lagrange in fact justified his applications of the calcu
lus by appealing to a Taylor-series form of (5.4). That is, 
after Lagrange had defined f'(x) as the coefficient of i 
in the Taylor-series expansion ofJ(x + i), * he translated 
the Euler criterion into the statement that if f(x + i) = 
f(x) + if'(x) + (i 2/2)J"(X) + "', then if'(x) exceeds, in 
absolute value, the remainder of the series (i 2/2)f"(x) + 
(i 3/6)f'"(x) + .... Lagrange said that this lact about the 
remainder is equivalent to the Lagrange property (5.la), 
f(x + i) = J(x) + if'(x) + iV, where V is a function of x 
and i that goes to zero when i does.19 

We, of course, recognize the Lagrange property as the 
crucial defining property of the derivative. Lagrange did 
not, but he did recognize its equivalence with Euler's 
criterion.20 Thus, though Lagrange's Taylor-series ap~ 
proach to the calculus was incompatible with a definition of 
f'(x) according to the Lagrange property, it did not pre
vent him from recognizing the fundamental importance of 
that property. 

Furthermore, Lagrange quickly translated (5.1 a) in
to inequalities, a step essential to Cauchy's rigorous in
equality proofs about derivatives. For V to go to zero when 
i does, said Lagrange, meant that some i could be found so 
that the corresponding value of V, "abstraction being 
made of the sign," would be less than any given quantity. 
And he followed this verbal statement with a beautiful 
treatment in terms of the algebra of inequalities, deriving 
(5.1 b): 

Let D be a given quantity that we can take as small as we 
please. We can then always give i a value small enough for 

* Lagrange first definedj'(x) 
as the coefficient of i in the 
Taylor-series expansion for 
J(x + i); then he defined 
J"(x) recursively as the coeffi
cient of i in the Taylor-series 

expansion forj'(x + i), and 
so on. He followed these 
definitions with a formal 
proofthatjtkl(x)/k! is the 
coefficient ofik in the Taylor 
expansion ofJ(x + i). 
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the value of V to be included between the limi ts D and - D. 
Thus, since 

j(x + i) - j(x) = i[j'(x) + V], 

it follows that the quantity 

j(x + i) - j(x) 

will be included between these two quantities: 

if'(x) ± D.21 

This is precisely the property Cauchy used in proving 
theorems abou t derivatives in his Calcul infinitesimal of 1823. 

Since Cauchy knew Lagrange's works on the calculus, 
it seems quite likely that his rigorous definition of the 
derivative of a function was based on Lagrange's use of 
(5.1 a) and (5.1 b). Lagrange's view of the facts expressed in 
(5.1) was not, however, the same as Cauchy's. For Cauchy 
(5.1 b) is equivalent to the definition ofj'(x); for Lagrange 
(5.1 b) is merely one property of the derivative, and not the 
most essential-though it is the most useful in applica
tions. 

Of course, there is more to the rigorous theory of the 
derivative than a mere definition. The mathematical value 
of Cauchy's definition stems not from its logical correctness 
alone, but from the proofs of the theorems to which Cauchy 
applied it. In proofs as in definition, however, Cauchy 
owed much to Lagrange. 

Cauchy was the first mathematician to prove theorems on 
the basis ofa rigorous definition of the derivative. One such 
theorem, of particular importance for Cauchy's calculus, 
states that ifj(x) is continuous between x = Xo and x = X, 
then 

minj'(x):;::; j(X) - j(xo):;::; maxj'(x). 
[xu, Xl X - Xo [x" Xl 

[Cauchy's own statement and proof of (5.5) and (5.6) are 
given in translation in the appendix; the notation on this 
page is modernized.] The mean-value theorem for de
rivatives is an easy corollary of (5.5) and of the inter
mediate-value theorem for continuous functions. Ifj'(x) is 
continuous between x = xo and x = Xo + h, then there is a e 
between 0 and I such that 
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[J(xo + h) - j(xo) l/h = j'(xo + Oh).22 

Theorem (5.5) and its consequences are essential to 
Cauchy's rigorous theory of derivatives and the logical 
structure of Cauchy's calculus.23 

But Cauchy was not the first to state and try to prove 
theorem (5.5). The statement of the theorem, which I shall 
call the mean-value inequality, and its corollary (5.6), the 
mean-value theorem, is to be found in the work of two of 
Cauchy's predecessors: Lagrange and Andre-Marie 
Ampere. 

Lagrange used the Lagrange property of j'(x) to 
prove a lemma that in modern terms states that a function 
with a positive (or negative) derivative on an interval is 
increasing (or decreasing) there. Lagrange then used this 
lemma to derive the Lagrange remainder of the Taylor 
series, a result that yields (5.6) as a special case. In 1806, 
Ampere, following Lagrange's lead, used inequality tech
niques to "prove" thatj'(x) satisfies relation (5.5) in the 
following slightly different form: Ifj is always finite, and 
not always zero, between x = a and x = k, and ifj(a) = A, 
j(k) = K, then there is some value of x between a and k for 
whichj'(x) ~ (K - A)/(k - a), and there is another value 
of x for which (K - A)/(k - a) ~ j'(x). In proving this 
fact, which is essentially equivalent to (5.5), Ampere stated 
and used a specific identity in the algebra of inequalities. 
The same identity later appears in Cauchy's Caul's d'analyse, 
and is used by Cauchy in his own proof of (5.5) in his Calcul 
infinitesimal. Cauchy knew Lagrange's work; it will be 
shown that he also knew Ampere's.24 

Lagrange's use of inequalities in the calculus was in 
the same spiri t as his use of inequali ties in algebra;25 they 
figured not in definitions, but in the determination of 
the finite approximations needed in applications and 
problem-solving. For Lagrange, even the remainder for a 
Taylor series wasjust a way offinding, in general terms, the 
error made when an infinite series is replaced by a finite 
approximation. Once again the exact mathematics of the 
nineteenth century has as an important forerunner the 
previous century's approximate mathematics. 

To find the Lagrange remainder, Lagrange first stat-
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ed and proved a lemma saying that a function with a 
positive derivative on an interval is increasing there. His 
method of proof is one of his most important positive 
contributions to the rigorous basis of the calculus. 
Lagrange stated the lemma in his Calcul desJonctions thus: 
"A function that is zero when the variable is zero will 
necessarily have, while the variable increases positively, 
finite values of the same sign as its derived function, or of 
opposed sign if the variable increases negatively, as long as 
the values of the derived function keep the same sign and 
do not become infinite." 26 

This sort of theorem is obvious if one draws a diagram. 
It is remarkable that Lagrange felt called upon to give a 
proofat all-but we must remember his strong preference 
for algebraic methods over geometric intuition. And the 
proofitselfis even more remarkable; it is as close to a delta
epsilon proof as can be found in the calculus prior to 
Cauchy. 

The proof begins with the assertion that for any func
tion], (5.1a) holds:J(x + i) = J(x) + i[j'(x) + V], where 
V is a function of x and i such that when i becomes zero, 
so does V. Lagrange justified (5.la) by his appeal to the 
positionofj'(x) in theTaylor-seriesexpansionforJ(x). For 
us or for Cauchy, (5.1 a) just states the defining property of 
j'(x). 

Lagrange then modified (5.la) to say that given D, i 
could be chosen sufficiently small so that (5.1 b) holds: that 
is, given D, i could be chosen sufficiently small so that 
J(x + i) - J(x) would be included between i[j'(x) ± D].2' 
Lagrange clearly appreciated that what is important is the 
absolute value of the difference betweenJ(x + i) - J(x) and 
if'(x) . 

His realization in 180 I of the significance of absolute 
values was an important step forward in the use of in
equalities in the calculus.28 While Cauchy was more explicit 
in his treatment of absolute values, Lagrange's Calcul des 
Jonctions had already shown how to use absolute values 
correctly in proofs. 

Lagrange's proof of the lemma begins by applying the 
"sufficiently small" i of (5.1 b) to various points in the 
interval over whichJwas defined: 
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f(x + 2i) - f(x + i) lies between i[j'(x + i) ± D]; 
f(x + 3i) - f(x + 2i) lies between i[j'(x + 2i) ± D]; 

The reader may have already noted that once D is given, 
Lagrange assumed that the same i would always work for 
any x in the given interval. 

Sincej'(x),j'(x + i), ... ,j'(x + [n - l]i) all have the 
same sign by the hypothesis of the lemma,j(x + nil - f(x) 
must lie between the quantities 

{ij'(x) + ij'(x + i) + ... + ij'(x + [n -l]i)} ± niD. 

Lagrange expressed this conclusion by saying that the 
telescoping sum 

f(x + i) - f(x) + f(x + 2i) - f(x + i) + ... 
+ f(x + nil - f(x + [n - l]i) 

"will have for limit the sum of the limits," 29 that is, 

ij'(x) + ij'(x + i) + ... + ij'(x + [n - 1]1) - niD 

and 

ij'(x) + ij'(x + i) + ... + ij'(x + [n - l]i) + niD. 

Lagrange noted that since D is arbitrary, it can be 
taken as less than the value of [j'(x) + j'(x + i) + ... + 
j'(x + [n - l]i)l/n, "abstraction made of the sign." He 
gave no reason for being able to choose such a D, but he 
probably had in mind the fact that D could be taken as less 
than the minimum value oflj'(x) I between x = 0 and x = 
ni. If D is so chosen, it will certainly be less in absolute value 
than [j'(x) + j'(x + i) + ... + j'(x + [n - l]i)l/n.* The 

* Lagrange elsewhere had 
given arguments based on 
calculating quantities like D 
on the basis of maximum or 
minimum properties off'(x) 
(see, for instance, the argu
ment about P immediately 
following), so this explanation 
is likely. Alternatively, 
Lagrange might have COI1-

sidered D to depend on i and 

----_._"_._-----
n, in which case:' D could be 
calculated. If this were his 
reason, the rest of the proof 
would be invalid, since i, and 
therefore 7/, must be chosen 
ajler D. Incidentally, Bolzano 
(Rein analytischer Beweis, §V) 
believed that the latter had 
been Lagrange's rationale 
and had criticized Lagrange's 
proof on these grounds. 
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existence of a non-zero minimum for I j'(x) I requires, 
however, not only that I j'(x) I> 0 but that it be bounded 
away from zero.30 Lagrange's hypothesis thus would have 
to be strengthened for this choice of D to be possible. 

Supposing that D has been so chosen, Lagrange con
cluded that J(x + ni) - J(x) will lie between 0 and 
2i[j'(x) + ... + j'(x + [n - l]i)].31 Then he defined P to 
be the greatest positive or. negative value of the n quantities 
j'(x) , j'(x + i), ... , j'(x +[n - lli). For such P, then, 
J(x + ni) - J(x) lies between 0 and 2inP. 

Lagrange explained what this last inclusion meant. 
Suppose we represent any function of z byJ(x + z) - J(x) 
and let z = ni. Thus z has the same sign as i. If i is taken as 
small as desired, n can become as large as desired. His proof 
then shows thatJ(x + z) - J(x) lies between 0 and 2zP, so 
that the lemma is proved to his satisfaction. 

There are impressive features distinguishing this proof 
from almost all previous proofs about properties of the 
derivative. Small positive quantities are treated by means 
of the algebra of inequalities, and a delta-epsilon calcu
lation is undertaken. Lagrange did not finish his proof by . 
saying "The sum of a finite number of positive infinite
simals is positive," appealing to a geometrical diagram, or 
building an impressive curtain of words; the proof is alge
braic. Furthermore, he supplied a respectable amount of 
detail. He developed an extremely useful technique for 
going from a property ofj'(x) on the interval [x, x + i] to a 
property ofj'(x) on the larger interval [x, x + nil by treat
ingJ(x + ni) - J(x) as the telescoping sumJ(x + ni) -
J(x + [n - l]i) + ... + J(x + i) - J(x). This procedure 
reappears in the work of Cauchy. 

His proof has several weaknesses, however. It assumes 
implicitly thatj'(x) is both bounded and bounded away 
from zero; he seems to have thought it enough thatj'(x) be 
finite and never equal to zero. And there are even more 
serious objections. First, the proof is based on the Lagrange 
property of the derivative (S.la), J(x + i) = J(x) + 
ij'(x) + iV, where V vanishes with i. Lagrange could prove 
this only (and even then incorrectly) by using the full 
Taylor-series expansion ofJ(x + i) in powers of i; but this 
requires that all the derivatives be bounded. Cauchy over
came this objection by definingj'(x) so as to satisfy (S.la). 
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Second, by assuming that one choice of i would make V 
small for all values of x in the given interval, Lagrange 
confused convergence with uniform convergence. Cauchy 
reproduced this error. 

Lagrange had given his lemma in order to find the "limits" 
(that is, bounds) of the remainder term of the Taylor series. 
He derived the remainder from his lemma as follows. Let 
the maximum ofj'(x) on a given interval bej'(q); the 
minimum,j'(p). Define two auxiliary functions g and h 
according to the equations 

g'(i) = j'(x + i) -j'(p), 
h'(i) = j'(q) - j'(x + i). 
The definitionsofg' and h' makeg'(i) and h'(i) positive for x 
on the given interval, so that the lemma can be applied. 
Going from these derivatives g' and h' to their "primitive 
functions," 32 and assuming that g(O) = h(O) = 0, he 
obtained 

g(i) = f(x + i) - f(x) _ ij'(p), 
h(i) = ij'(q) - f(x + i) + f(x), 

which by the lemma must be positive as long asj' remains 
finite. Then 

f(x + i) - f(x) - ij'(p) ~ ° and 
f(x) - f(x + i) + ij'(q) ~ 0. 

Thus 

f(x) + ij'(P) ~f(x + i) ~f(x) + ij'(q),33 

which sets "limi ts" -that is, bounds-on the value of 
f(x + i). This is Cauchy's theorem (5.5). 

Note that application of the lemma to finding (5.7) 
requires that the lemma hold also for the weak inequality 
J(x + z) - J(x) ~ 0, since all that can be claimed here 
is g'(i) = J'(x + i) - j'(P) ~ 0. (Lagrange could have 
avoided this difficulty had he considered instead the 
functions 

g'(i) = j'(x + i) - j'(p) + e and 
h'(i) = j'(q) - j'(x + i) + e, 

which would yield 
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-ei + j(x) + if'(P) <j(x + i) <j(x) + ij'(q) + ei. 

Realizing that e is arbitrary yields (5.7). Cauchy used 
precisely this procedure.) Unfortunately, Lagrange did 
not use special notation to distinguish between strict and 
weak inequalities, nor did he appear to appreciate the full 
significance of this distinction. 

Lagrange repeated the procedure exhibited in the 
caSe of (5.7) to obtain the nth-order Lagrange remainder. 
In general, 

j(x) + ij'(x) + ... + (iu/u!)j(u)(p) 
~j(x + i) 
~j(x) + ij'(x) + ... + (iu/u!)j(u)(q), 

where p and q are, respectively, the minimum and ma
ximum points of the uth derivative of j on the interval 
[x, x + iJ. Lagrange concluded from this that there is a 
quantity X in the interval such that 

j(x + i) = j(x) + ij'(x) + ... + (iu/u!)j(U)(X).34 

This is now called Taylor's series with Lagrange remain
der. Lagrange here stated without proof, as something 
obvious,35 the intermediate-value theorem for continuous 
functions, necessary for finding X. 

For Lagrange, using the Taylor series in the calculus 
made the remainder term seem essential. He derived this 
remainder by applying the inequality methods already 
exploited by him in algebraic approximations. Although 
he made errors, he deserves credit for introducing and 
helping develop a method of proof that eventually was to 
establish rigor in analysis. 

What Lagrange did for the Taylor series, Cauchy was 
to do for the derivative: estimate its value by a sequence of 
inequalities that bound it. What was for Lagrange just a 
stepping-stone to a first-order error estimate in the Taylor 
series became a defining property in the hands of Cauchy. 
Earlier, however, and in a different way, it had become a 
defining property in the hands of Ampere. 

Andre-Marie Ampere is best known for his work in elec
tricity. Nevertheless, he wrote a paper that was important 
in the history of the foundations of the calculus. 36 As a 
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matter offact, most of Ampere's early work was in mathe
matics, and it was on the basis of his mathematical work 
that he was made a member of the Institut de France in 
1814, six years before his epoch-making work on electricity 
began. Ampere's 1806 paper on derivatives and Taylor 
series, entitled "Recherches sur quelques points de la 
theorie des fonctions derivees ... ," was one reason for his 
mathematical eminence. 

Ampere's 1806 paper is important for the historian of 
the calculus for several reasons. First, it includes features 
that historians have credited to Cauchy. One of Ampere's 
goals was to free the calculus from not only the earlier 
concepts of limits, fluxions, and infinitesimals but also 
Lagrange's infinite Taylor-series foundation. In parti
cular, Ampere's paper gives inequality "proofs" about the 
basic properties of the derivative of a function. It also 
contains an inequali ty definition for the derivative
unfortunately, not a satisfactory one. 

Second, Ampere's paper relies heavily on the work of 
Lagrange.37 This is not only in matters of notation, the use 
of the term fonction derivee, and the concern with the re
mainder term of the Taylor series, bu t also in its refinement 
of Lagrange's technique for proving that a function with a 
positive derivative on an interval is increasing there. 
Ampere's first major order of business in this paper was 
to prove Cauchy's mean-value inequality (5.5). Like 
Lagrange, Ampere had no way of proving thatf(x + i) = 
f(x) + if'(x) + iV, where V vanishes with i; still, Ampere 
used this property and the inequalities based on it to prove 
theorems aboutj'(x). 

Even if nothing else were known about the relation
ship between the work of Ampere and Lagrange and the 
later work of Cauchy, the resemblances cited would sug
gest that Ampere's paper linked Lagrange and Cauchy. 
But in addition Cauchy knew Ampere personally and once 
had been his student. Cauchy said in the introduction to 
his Cours d'analyse that he had "profited several times from 
the observations ofM. Ampere, as well as from the methods 
that he has developed in his lectures on analysis." 38 More 
than once he acknowledged Ampere's assistance in a 
general way.39 And he explicitly referred to Ampere's 1806 
paper in his own proof of (5.5).40 Cauchy knew Lagrange's 
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Fonctions analytiques;41 it is worth adding therefore that 
Lagrange himself had called attention to Ampere's 1806 
paper in the second edition of the Fonctions analytiques 
( 1813), acknowledging therein the kinship between 
Ampere's method of proof and the one he had already 
given in his Calcul desfonctions (180 I) .42 

Unfortunately, Ampere's paper is confusing and 
poorly organized. On occasion it has been misread as an 
attempt to prove that every continuous function is dif
ferentiab1e.43 This misreading is due partly to Ampere 
himself, who wrote that a derivative "exists" when he 
meant that it was finite and nonzero,44 and partly to 
historians, among whom the prevailing view is that ana
lysis prior to Cauchy lacked rigor and sophistication. For 
these reasons, Ampere's paper has been not only mis
interpreted but neglected. What in fact does it say? 

Lagrange not only had discredited earlier definitions 
of the derivative but had given one of his own, thereby 
basing the calculus on Taylor's theorem. In effect Ampere 
asked himself, can the derivativej'(x) be defined indepen
dently of Taylor's series? The definition of j'(x) would 
have to specify j'(x) uniquely and define it in unexception
able terms. Ampere found what he thought was a suitable 
property ofj'(x) in Lagrange's work on the Taylor-series 
remainder; the property in question was (5.7), which 
Ampere adopted as the defining property ofj'(x): 

The derived function off(x) is a function of x such that 
[f(x + i) - f(x) ]/i is always included between two of the 
values that this derived function takes between x and x + i 
whatever x and i may beY; 

All the rigorous nineteenth-century definitions of 
j'(x) define it by the ratiof(x + i) - J(x)/i and the in
equalities that this ratio must satisfy; Ampere was thus the 
first to give such a definition. His definition has some major 
deficiencies, however. First, it definesj'(x) at the point x in 
terms of its values on the whole interval; thusj'(x) must 
exist on an entire interval to be defined at one single point. 
This is much too restrictive (though not as restrictive as 
assuming thatf(x) has an entire Taylor series). Second, 
there is no reason to believe that any suchj'(x) exists at all. 
Third, it is not clear thatj'(x) is the only function that 
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satisfies defining criterion (5.8), though Ampere did try to 
prove thatj'(x) was unique.46 Ampere believed that he 
had shown both the "existence"-that is, nonzero 
finiteness-and the uniqueness of j'(x) and that his de
finition therefore was justified. We, however, are !ess inter
ested in his definition than in his method of proving that 
the derivative satisfied it, for this method, based on the 
work of Lagrange, was adopted by Cauchy. 

Ampere began his work confronted with a problem in 
logic. To prove that his definition ofj'(x) made sense, he 
first had to prove some facts aboutj'(x). To do this, he had 
to characterize j'(x) in a way other than by his defining 
property. Ampere introducedJ'(x) as the value of the ratio 
J(x+i)-J(x)/i "when i=O."47 The properties he 
actually used in his proofs were the properties Lagrange 
had used: that is, the inequalities satisfied by the ratio 
J(x + i) -J(x)/i for arbitrarily small i. In particular, he 
assumed thatf'(x) has what I call the Lagrange property: 
J(x + i) - J(x)/i = j'(x) + iI, where I vanishes with i.48 
Once he had proved that the function j'(x) so charac
terized had the property expressed by (5.8), he turned 
around and used (5.8) to definej'(x). 

Ampere proved that a function with the Lagrange 
property also satisfies (5.8) as follows. LetJ (x) be defined 
on an interval from x = a tox = k. LetJ(a) = A,j(k) = K, 
a ~ k, A ~ K, and letJ(x) be finite. 49 (These conditions 
mean that the function is well behaved, the interval is not 
a point, and the function is not a constant.) Using a proof 
technique like Lagrange's, Ampere undertook to show that 
there was some value of x on the interval such thatj'(x) ~ 
(K - A)/(k - a) and some other value ofx on the interval 
such that (K - A)/(k - a) ~ j'(x). This gives (5.8). (This 
result also implies, among other things, that the derivative 
cannot be zero or infinite on the whole interval and thus, in 
Ampere's language, "exists.") 

Ampere's proof of (5.8) required an algebraic lemma 
about inequalities that is almost identical with the in
equality result used by Cauchy in his Cours d'ana!yse to 
prove (5.5):50 

In a given interval [a, k], define b, c, d, e. .. such that 
a < b < c' .. < e < h < k, and define B, C, ... H such that 
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f(b) = B, f(e) = C, .. . f(h) = H. Now consider the frac
tions B - Alb - a, C - Ble - b, ... K - Hlk - h. Among 
these fractions, we can always find a pair such that one of 
the pair will be greater than K - Alk - a, while the other 
will be less. 

This is not a quotation; Ampere intertwined the state
ment of this lemma with his proof of (5.8), so that it is 
impossible to disentangle.51 Let me indicate how Ampere 
proved the lemma. If, for instance, a < e < k, then 
K - Alk - a lies between K - Elk - e and E - Ale - a. 
For 

(K - E)/(k - e) - (K - A)/(k - a) 
= (aE - Ae + Ak - aK + eK - Ek) I (k - e) (k - a) 

and 

(K - A)/(k - a) - (E - A)/(e - a) 
= (aE - Ae + Ak - aK + eK - Ek)/(k - a)(e - a), 

giving two fractions with the same numerator and posi
tive denominators, so that both fractions must have the 
same sign. If both are positive together, K - Elk - e > 
K - Alk - a > E - Ale - a. Ifboth are negative together, 
K - Elk - e < K - Alk - a < E - Ale - a. This proof 
may be formalized by induction on the number of frac
tions; Ampere examined several cases and immediately 
concluded the general result. 

Once he had proved this lemma, Ampere specified 
that b - a = c - b = ... = k - h = i; thus the lemma 
shows that there is some x on the interval [a, kJ such that 
f(x + i) - f(x)li is less than K - Alk - a and another x on 
the interval such thatf(x + i) - f(x)li is greater than 
K - Alk - a. Ampere then appealed to the Lagrange pro
perty of the derivative to go from this result about finite 
differences to the corresponding result aboutf'(x): "Since 
f(x + i) - f(x)libecomesequal toj'(x) wheni= O,itcan 
be represented in general byj'(x) + I, where lis a function 
of x and i which vanishes with i, and which, therefore, can 
become as small as desired by taking i sufficiently small. "62 

Thus by taking i sufficiently small, Ampere concluded that 
he could find some x on [a, kJ such that 

j'(x) ~ K - Alk - a 
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and some other x on the interval such that 

j'(x) ~ K - Alk - a. 53 

This completes Ampere's proof of (5.8).54 
The key steps in the proof are the perfectly valid 

lemma on fractions and the passage from the inequalities 
for the ratio of finite differences f (x + i) - f (x) Ii to the 
inequalities for the derivative j'(x). The second of these 
steps is valid if the convergence of [j(x + i) - f(x) lli 
to its limit is uniform. But Ampere had no more reason to 
assume that he could find a value of i "sufficiently small" to 
work for all x in the interval than had Lagrange earlier or 
Cauchy later. 

Ampere's paper is important because it transmitted 
Lagrange's methods of proof, together with a new and 
useful lemma on fractions, to Cauchy. Also, it is striking 
that it advocated defining the derivative j'(x) uniquely 
and unexceptionably: not by the imprecise concepts re
jected by Lagrange, not in terms of the Taylor series, but by 
an inequality thatj'(x), andj'(x) alone, could satisfy. The 
choice of the inequalities appropriate to supporting the 
whole logical structure of the differen tial calculus was not 
made by Ampere, however, but by Cauchy. 

Ampere in effect used the Lagrange property of the 
derivative as a basis for a theory of derivatives "freed not 
only from the consideration of infinite sima Is, but also from 
that of the formula of Taylor." 55 For, since Ampere had 
shown that the derivative j'(x) satisfies his defining in
equality (5.8) ifit has the Lagrange property, he then
incorrectly-felt himself justified in using the Lagrange 
property to deduce further theorems-including Taylor's. 
In effect, Ampere assumed the equivalence of his defini
tion with the Lagrange property. To use the Ampere
Lagrange methods of proof, which rest on the Lagrange 
property of the derivative, Cauchy would have to define 
j'(x) so as to justify that property. Cauchy's definition was 
designed to do just that. 

Cauchy's rigorous proofs aboutj'(x) are vastly more than 
just the culmination of Lagrange and Ampere's work. 
Still, viewing them in this light helps explain their form. He 
defined the derivative so as to have the Lagrange property. 
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He applied this property-now for the first time justified 
by a definition-to prove the mean-value inequality (5.5) 
by means of the Lagrange-Ampere method of proof. 
Indeed, Cauchy's methods of proof are designed, whether 
consciously or not, to support the proofs worked out by 
Lagrange and Ampere. 

Cauchy stated the basic theorem (5.5) as follows 
(Cauchy's proof is given in translation in the appendix): 
"If,j(x) being continuous between the limits x = Xo, x = 
X, we designate by A the smallest, and by B the largest, 
value that the derived functionj'(x) receives in the inter
val, the ratio of the finite differencesJ(X) - J(xo)fX - Xo 

will necessarily be included between A and B." 56 Like 
Lagrange and Ampere, Cauchy used (5.lb), which is a 
translation into inequalities of the Lagrange property of 
the derivative, to prove this theorem. But for Cauchy the 
procedure was justified by his own definition ofj'(x) as a 
limit. Cauchy's proof is technically like Ampere's, but 
much easier to follow. Here is a shortened version. 

Given e > 0, we can find c5 such that 

j'(x) - e < [j(x + i) - J(x)lfi <j'(x) + e, iflil < J. 

Statement (5.10) is valid since it simply is a translation of 
Cauchy's definition of the derivative into an algebraic 
inequality-ajustification immeasurably superior to those 
given by Lagrange and Ampere. 

Note that Cauchy took his definition of j'(x) for a 
particular x and applied it to the whole interval; he as
sumed that given an e, he could find a J that works for every 
x in the interval. This assumes that j'(x) is the uniform 
limit of the quotientsJ(x + i) - J(x)fi in the interval, a 
confusion also found in the work of Ampere and Lagrange. 
The confusion arises from failing to specify the variables on 
which J depends. 

Cauchy then interposed n - I new values of the 
variable x, namely, Xl, X2,'" ,xn- l , between Xo and X, in 
such a way that (Xl - xo), (X2 - Xl)"", (X - xn- 1 ) are all 
less than c5. (Here Cauchy differs from Lagrange and 
Ampere, whose subintervals are equal.) By applying (5.10) 
to each subinterval Cauchy obtained 
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j'(Xo) - 8 <f(XI) - f(XO)/XI - Xo <j'(XO) + 8, 

j'(xd - 8 <f(X2) - f(Xl)/X2 - Xl <j'(xd + 8, 

j'(xn- 1) - 8 <f(X) - f(Xn-I)/X - Xn- l <j'(Xn- 1 ) + 8. 

If A and B are the minimum and maximum values ofj'(x) 
on the given interval, then each of the fractions in (5.11) is 
greater than A - 8 and less than B + 8. 

Now Cauchy applied his version of Ampere's lemma 
on fractions (5.9)57 to the fractionsf(xl) - f(XO)/X1 - Xo, 

... , f(X) - f(Xn-l)/X - Xn-b all of which have positive 
denominators. By combining this result with the telesco
ping property of the sumf(X) - f(x ll - l ) + ... + f(xd -
f(xo) used by Lagrange, he passed from (5.11) to the 
inequality 

A - 8 <f(X) - f(xo)/X - Xo < B + 8. 

But since this is true no matter how small 8 is, he concluded 
that 

A ~ f(X) - f(xo}/X - Xo ~ B. 

This completes Cauchy's proof of (5.5). 
There are many differences between Cauchy's proof 

and Ampere's. There is of course the difference that 
Cauchy definedj'(x) to justify the proof procedure. There 
are also notational differences: using the delta instead of 
saying "a value of i" makes it much easier to follow the 
proof, as does the index notation for the values of the 
variable. Much more important are the conceptual dif
ferences. Cauchy made his hypotheses explicit. His proof is 
crystal clear. And he understood the difference between ~ , 
< , and bounded away from, as is shown in the last lines of the 
proof, where he skillfully used epsilons to indicate that 
certain functions were bounded away from their limiting 
values. Contrasting Cauchy's proof of this theorem with 
Lagrange's and Ampere's reveals once again Cauchy's 
ability to cull precise concepts from ill-defined and hazy 
work and thereby transform them into models of clarity. 

One consequence of Cauchy's theorem (5.5) is a 
corollary (5.6), the mean-value theorem for derivatives. 
Cauchy derived (5.6) in the form 
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[j(x + h) - f(x) 1lh = f'(x + Oh), 0 ~ 0 ~ 1, 

using the intermediate-value theorem for continuous func
tions, which he had proved in the COUTS d' ana(yse. This result 
(5.6) is of importance to us for not only its rigorous proof 
but its applications. Cauchy found the mean-value 
theorem and its higher-order analogue, Taylor's theorem 
with Lagrange remainder, very useful in applying the 
derivative to solve problems. Reviewing these applications 
indicates how Cauchy used his theory of the derivative to 
make rigorous many major results. 

The differential calculus consists of not only theorems 
about functions and their derivatives but also applications 
of the derivative to problems of maxima and minima, the 
geometry of curves and surfaces, and physical phenomena. 
Such applications may not seem conceptually as interes
ting to us as the analytic theory of derivatives, but in the 
eighteenth century these applications were the major 
raison d'etre for the calculus. To set the differential calcu
lus on a firm basis, Cauchy not only had to prove the basic 
theorems butjustify rigorously the wealth of known results. 

Before the work of Lagrange, applications of the de
rivative usually are justified by the use of diagrams and 
analogies.58 For instance, the tangent is the limit (in 
eighteenth-century terms) of the secants, just as the dif
ferential quotient is the limit of the quotient of differences. 
Cauchy'S new definition of the derivative makes possible, 
at least in theory, the use of the algebra of inequalities and 
of theorems based on inequalities in all proofs about the 
applications of the derivative. Yet Cauchy, seeking 
to "reconcile the rigor of proofs with simplicity of 
methods," 59 often used the language of his contem
poraries, so that his arguments sometimes at first glance 
appear less rigorous than they really are. For instance, in 
computing the tangent to a curve represented by y, a 
function of x, Cauchy said, "Let us conceive now that the 
point (x + Ax,y + Ay) comes to approach indefinitely 
the point (x,y). The secant which joins the two points will 
tend more and more to coincide with a certain line which is 
called the tangent to the given curve, and which touches 
the curve at the point (X,y)."60 The slope of the tangent, 
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Cauchy added, is the limit of Ayl Ax "when the differences 
Ax, Ay, become infinitely small." 61 

But familiarity with Cauchy's work leads to the ex
pectation that his understanding of the phrases "comes to 
approach indefinitely," "tend more and more to coin
cide," "become infinitely small," was clearer than the 
statement just quoted suggests. And indeed Cauchy used 
the details of his theory of derivatives to justify many of the 
applications of the derivative. Here as elsewhere, Cauchy's 
choice of words should not obscure the great difference in 
rigor between his work and the work of the Bernoullis, 
Euler, d'Alembert, and Laplace. 

But Cauchy's work was quite similar to that of 
Lagrange. Cauchy, like Lagrange, obtained most of his 
applications of the derivative from properties ofj'(x) such 
as the mean-value theorem 

f(x + h) - f(x)/h = j'(x + Oh), 0 ~ {} ~ 1, 

and its higher-order analogue, Taylor's senes with 
Lagrange remainder, 

f(x + h) = f(x) + hj'(x) + ... + (hnln!)J'n)(x + (}h).62 

When expressions like (5.6) and (5.12) appear in Cauchy's 
work, the arguments used are often descendants of argu
ments given by Lagrange.63 With the mean-value theorem 
and the Lagrange remainder it is possible to justify most of 
the common applications of the calculus to problems of 
geometry and extrema. 64 

For instance, Lagrange followed Euler in using in
equalities to find necessary and sufficient conditions for 
relative minima and maxima. But instead of using the 
infinite Taylor series as Euler had done, Lagrange used 
finite Taylor series with Lagrange remainders.65 In his 
treatment of extrema, Cauchy first proved from Taylor's 
theorem with Lagrange remainder that if j'(xo) = 
fl/(xo) = ... = J'n-I)(xo) = 0 and i is "infinitely small," 
thenf(xo + i) - f(xo) has the same sign as itrj(n) (xo).66 He 
then applied this fact to state sufficient conditions for a 
function with zero derivative(s) at a point to be a mini
mum or maximum at that point.6? 

Lagrange also used his remainder to show that the 
slope of the line tangent to the curvey = f(x) isj'(x).68 
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Since he eschewed the limit concept, he defined the tan
gent to a curve as a line having one point in common with 
the curve and such that no other straight line can pass 
between that curve and its tangent line.69 With this de
finition he could treat the tangent as a special case of his 
general theory of orders of contact between curves-a 
theory in which he relied heavily on the Taylor series with 
Lagrange remainder.70 Since Cauchy defined the tangent 
as the limit of secants, he did not need to use the mean
value theorem (5.6) or the Lagrange remainder (5.12) to 
show that the tangent to) = ] (x) has slope j'(x). Still, 
Cauchy did need the mean-value theorem to show that the 
tangent (ifit exists) is parallel to the x axis at a minimum or 
maximum point of a curve.71 

In the works of Lagrange and Cauchy are found 
similar treatments of centers of curvature,12 involutes and 
evolutes,73 and Taylor series and remainders for functions 
of several variables74 and their application to the theory of 
curved surfaces.75 I cannot demonstrate that Cauchy con
sciousry borrowed Lagrange's methods; I can only show a 
close resemblance. But the resemblance is so striking, and 
the context and notation so similar, that it is hard to avoid 
concluding that Lagrange's applications of the derivative 
are the source for many of Cauchy's. 

I do not mean to imply that Cauchy did not go 
beyond Lagrange in applying the calculus. Cauchy ap
pears to have had a deeper geometric insight into the 
meaning of many ideas, and he found and justified many 
new results. For instance, Cauchy did not follow Lagrange 
in giving a wholly analytic treatment of orders of contact. 
He defined the order of contact between two plane curves76 

geometrically, by his theory ofinfinitesimals.77 He used his 
definition, theorems deduced from it, and the Lagrange 
remainder of the Taylor series to prove wha t Lagrange had 
made his definition: If n is the first integer greater than or 
equal to the order of contact a, then two curves F and] with 
order of contact a satisfy F(x) = ](x), F'(x) = j'(x) , ... , 
F(n)(x) = j(n)(x), but F(n+l) (x) ~ j(n+l) (X).78 

Among the new results Cauchy found and applied is 
what is now called the generalized (or Cauchy) mean
value theorem: If](x) and F(x) are continuous and have 
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continuous first derivatives between x = xo and x = X and 
F(x) is either increasing or decreasing throughout the 
interval, then for some () between 0 and I 

f (X) - f (xo) _ f' (xo + () (X - xo)) 79 

F(X) - F(xo) - F'(xo + O(X - xo)) . 

He proved this by a technique analogous to the one based 
on Ampere's work used to derive the mean-value in
equality (5.6). Cauchy applied theorem (5.13) to deduce 
several known results, including L'Hopital's rule and 
Cavalieri's theorem.SO 

Nevertheless, it must be concluded that Cauchy owed 
a good part-though not all-of the mechanics of his 
applications of the derivative to geometry to Lagrange's 
Fonctions analytiques. There is a major difference, however, 
between their works on applications of the derivative. The 
difference is not one of technique; it is one of context and, 
above all, justification. To be sure, Cauchy was not single
mindedly consistent about giving all his arguments a pre
cise form; sometimes he used intuitive descriptions oflimits 
or infinitesimals. But it is clear that he knew how to justify 
all his applications and could have done so explicitly had 
he wished. 

Cauchy received many suggestions from the work of his 
predecessors on rigorizing the calculus. In the case of the 
theory and applications of the derivative more than in any 
other subject, he found much of the work done for him. 
And it had been done chiefly by Lagrange. Starting with 
what I have been calling the Lagrange property of the 
derivative, Lagrange had been the first to apply the power
ful tool of delta-epsilon techniques to the calculus.s1 

Cauchy understood that what was for Lagrange and 
Ampere just a useful method of proof was the essential 
defining property of the derivative. By turning the 
Lagrange property into a definition, basing his work on a 
logically consistent set of definitions, and using his own 
theories oflimit and continuity, Cauchy was able to adapt 
Lagrange's techniques into his own rigorous proofs. Thus 
he achieved exactly what Lagrange had said should be 
done in the subtitle of the 1797 edition of his Fonctions 
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analytiques: the establishment of "the principles of the dif
ferential calculus, free of any consideration of infinitely 
small or vanishing quantities, of limits or of fluxions, and 
reduced to the algebraic analysis of finite quantities." 82 



6 

Introduction 

The Integral 
before Cauchy: 
General Views 

The Origins of Cauchy's Theory of the 
Definite Integral 

Cauchy's theory of the definite integral is the last of the 
major concepts of the calculus whose origins I shall trace. 
It is a suitable topic with which to end this book for several 
reasons. It is the last basic concept that Cauchy defined. 
Also, its understanding requires a clear grasp of the con
cepts already discussed: Cauchy defined the integral as the 
limit of sums; key to his theory is the proof of the existence 
of the definite integral of a continuous function;* and he 
proved (in what we now call the fundamental theorem of 
calculus) that the integral was the inverse of the derivative. 

Not surprisingly, some important techniques in 
Cauchy's work on integration came from not the 
eighteenth-century theory of the integral-there really 
had been no such thing-but from approximations to the 
values of definite integrals. Nevertheless, Cauchy found 
comparatively little of the work already done. His pre
decessors generally had confined themselves to working 
out foundations for the differential calculus, in the expec
tation that the integral-since it was the inverse of the 
derivative-would take care of itself. 

The integral was viewed quite differently in the eighteenth 
century than it is today. It had no independent definition 
of its own; instead, integration was defined as the inverse of 
differentiation.} Accordingly, the indefinite integral was 
considered to be more fundamental than the definite in
tegral. The definite integral of a functionf(x) evaluated 
between x = a and x = b was by definition F(b) - F(a), 
where F is defined by the differential equation dF(dx = 
f(x). 

To be sure, Leibniz had defined the integral as a sum; 
he even had chosen the integral sign S to be a stylized S for 

* Actually, his proofim
plicitly assumed the function 
to be uniformly continuous, 
though he did not distinguish 
between continuity and uni-

form continuity,jusl as he 
had not distinguished be
tween convergence and uni
form convergence. 
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sum.2 But most mathematicians rejected Leibniz's defi
nition of the integral as an infinite sum of infinitesimals. 
Such a definition involves both infinites and infinitesimals, 
which are problematic concepts at best.3 Instead, Euler, 
the Bernoullis, Lagrange, and Laplace preferred to think 
of integration as the inverse of differentiation, that is, 
finding the antiderivative. Besides its apparently greater 
precision, this definition provided a ready basis for compu
tation of integrals of many functions representable by al
gebraic expressions. 

Nevertheless, it was recognized that an integral could 
be evaluated, at least approximately, by sums. Indeed, 
there was a great deal of work on approximating the values 
of definite integrals-and, analogously, approximating 
the values of solutions to differential equations-by means 
of sums, and error bounds were sometimes sought for these 
approximations. Some of the inequality properties Cauchy 
needed for the definite integral came from such work. 

The study of approximations can lead-and with 
Cauchy often did lead-to discussions of convergence: 
approximating the values of infinite series led to treatments 
of speed of convergence, bounds on error, and ultimately, 
to the modern theory of convergence; approximating the 
roots of polynomials led to a proof of existence and a 
constructive definition of the intermediate value of a con
tinuous function. An analogous development occurred for 
the integral. Leonhard Euler, Adrien-Marie Legendre, 
Silvestre-Fran<;ois Lacroix, and Simon-Denis Poisson tried 
to find bounds on the errors of approximations to the 
values of definite integrals by means of sums; each tried to 
show, at least in some special cases, that the error could be 
made less than any given quantity. Cauchy drew on this 
work and transformed it into a rigorous theory. The trans
formation he made was not trivial. Indeed, going from the 
eighteenth-century treatment of the integral to Cauchy'S 
seems to me to have been the hardest of the steps Cauchy 
took in rigorizing the calculus. 

Why did Cauchy abandon the definition of the definite 
integral as the antiderivative in favor of its definition as the 
limit of sums? From a modern viewpoint the answer may 
seem obvious. Such a definition is absolutely necessary for 
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rigorous calculus. After all, there is no guarantee that every 
function has an antiderivative. A logically acceptable de
finition of the integral should support a proof of the exis
tence of the definite integral of a continuous function; 
defining the integral as a sum does this. But it is not a priori 
obvious that the limit of the sums approximating an in
tegral always exists, much less that the limit can be proved 
to exist. What, then, actually led Cauchy to make his 
definition? 

Henri Lebesgue has suggested that pedagogical con
siderations prompted Cauchy.' Lebesgue based this view 
on the close relationship between Cauchy's definition and 
the common pedagogical device of approximating a curvi
linear area with rectangles. Cauchy himself remarked that 
"one is naturally led by the theory of quadratures" to 
consider the integral as a sum.S But Euler and Lagrange 
had found the treatment of the integral as antiderivative 
sufficiently appealing for textbooks and lectures
presumably because it is easier to explain. And as I shall 
argue, in fact Cauchy did not derive his sum definition by 
considering rectilinear approximations to curvilinear 
areas. Nevertheless, Lebesgue is right in one sense. 
Cauchy's work on foundations in general, and the theory 
of the definite integral in particular, was presented in a 
course of lectures, and lecturing has forced many mathe
maticians to examine foundations more carefully. 

The courses Cauchy gave at the Ecole Poly technique 
certainly provided the occasion for his theory of the in
tegral. But the definition itself, as A. P. Iushkevich has 
said, was chosen by Cauchy to meet "the needs of re
search." 6 Mathematicians knew many cases in which the 
definite integral as the area under a curve makes sense, 
even though the area in question-and therefore the value 
of the integral-is not simply the antiderivative evaluated 
at the end points of the interval of integration. Joseph 
Fourier in particular had exhibited a number of piecewise
continuous functions whose graphs unquestionably en
close areas.' His work made clear that the definite integral 
of a function representable by trigonometric series can 
exist, even though the function representing the integral is 
not everywhere differentiable. Following standard prac
tice, Fourier evaluated-though he did not define-the areas 
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for hard-to-compute integrals as sums.S In fact, much sim
pler counterexamples to the statement "J!g'(x) dx always 
equals g (b) - g (a)" were known. Legendre had treated 
examples in which definite integrals are taken over in
tervals containing points at which the functions are dis
continuous or become infinite.9 Cauchy himself had been 
concerned with this problem in his 1814 memoir on inte
gration. lo Clearly, some modification of the accepted de
finition of the definite integral was called for. Cauchy's 
definition as a sum can be applied to such cases easily, 
whereas the definition as antiderivative cannot. 

Still, this circumstance in itself does not explain why 
Cauchy sought a new definition. After all, the integral of a 
piecewise continuous function can be defined simply as the 
sum of the integrals on the separate pieces; then the 
integral on each continuous piece can be defined, as before, 
as the difference between the antiderivatives evaluated at 
the end points of the intervals of continuity. Points of 
discontinuity can be handled-and Cauchy had handled 
them this way in his 1814 memoir on integration-by 
means of a special formula, the Cauchy principal value. In 
fact, even Cauchy's rigorous definition of 1823 was 
restricted to continuous functions; again, singular points 
were handled by the Cauchy principal value.l1 

Difficulties with the integral as antiderivative were 
not confined to singular points. Even more problems were 
found in complex integration.12 Cauchy was quite in
terested in the topic and had made important contribu
tions to it; as early as the memoir of 1814, he had given a 
version of the Cauchy-Riemann equations. 13 Indeed, his 
interest in this subject was a major impetus to his often 
expressed dissatisfaction with purely formal analogies 
in mathematical reasoning. He pointed out in the 1814 
memoir that one cannot establish theorems in complex 
analysis simply by carrying over results known for the reals 
and called instead for "a direct and rigorous analysis." 14 

He called reasoning from the real to the complex merely 
"a kind of induction," and stated explicitly (for the first 
time) that the integral ofa function between two points is 
the difference between the values of the anti derivatives at 
those points "only ... in the case of a function which 
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increases or decreases continuously between the limits in 
question." 15 

Since Cauchy evaluated complex integrals in terms of 
real integrals, both in his 1814 paper and later, logically he 
needed a satisfactory theory of the latter to treat rigorously 
the former. But he did not give it in 1814. Cauchy's 1814 
memoir described the integral about a rectangle in terms 
of the values of the antiderivatives at the end points of 
straight-line paths;16 and he wrote this memoir long before 
he gave his definition of the integral as the limit of sums. 

Still, Cauchy's interest in complex integration would 
have made him dissatisfied with the old definitions of 
integrals as antiderivatives. Gauss had remarked that if 
the path of integration between two points includes com
plex numbers, the value of the integral may depend on 
the pathY Cauchy may not have been acquainted with 
Gauss's remark; he did know, however, a paper of 1820 by 
Poisson18 in which it was observed that the value of an 
integral like f~l dxlx can be different for different paths of 
integration if one path includes infinity as a value of the 
function. 19 Thus it no longer could be held that the integral 
over an interval is simply the difference of the antideriva
tives at the end points. Poisson then suggested evaluating 
such integrals as sums. 

Poisson's juxtaposition of a treatment of the integral 
as a sum with a discussion of the relation between the 
values of complex integrals and their paths of integration 
might well have sufficed to influence Cauchy's thinking. 
The general concept of a line integral obviously clarifies 
the relation between the value of a complex integral and 
the path of integration. Only two years after giving his 
definition of the definite integral as a sum, Cauchy applied 
the idea to complex integration in a paper of 1825.20 

In addition Poisson's paper gave a proof that even 
though the definite integral is not always the difference of 
the antiderivatives, the integral as sum is still the difference 
of the antiderivatives at the end points if the function to be 
integrated is finite throughout the interval. Poisson's proof 
of this result, which he called "the fundamental proposi
tion of the theory of definite integrals," must have sug
gested to Cauchy the enormous mathematical fruitfulness 
of the conception of the integral as the limit of sums-at 
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the same time that Poisson's discussion of complex in
tegrals reemphasized the inadequacy of the old definition 
of the integral. 

I believe that mathematical fruitfulness was the deci
sive factor in Cauchy's desire for a new definition as well as 
in his particular choice. I think the main reason he chose to 
define the integral as the limit of sums was his need to make 
sure that the object he was defining existed. As Cauchy 
himself explained, 

In the memoir which has just been read, we consider each 
definite integral, taken between two given limits, as being 
nothing else than the sum of the infinitely small values of 
the differential expression placed under the integral sign, 
which corresponds to the various values of the variable 
included between the limits in question. When this way of 
viewing definite integrals is adopted, it is easiIJ proved that such an 
integral has a unique and finite value, whenever, if the two limi ts 
of the variable are finite, the function under the integral 
sign itself remains finite and continuous throughout the 
interval included between these limits.21 

Furthermore, said Cauchy, this definition of the definite 
integral is "equally suitable to all cases," even to those in 
which we cannot pass generally from the function under 
the sign S to the primitive function. 22 By treating the 
definite integral as the limit of sums, Cauchy was able to 
prove the existence of the integral of a continuous function, 
consider integrals offunctions that were not derivatives of 
known functions, and explain the behavior of integrals 
along a path. Thus the integral as sum was the answer 
to many of the perplexing questions raised by the work 
of Fourier, Gauss, Legendre, Poisson, and-in 1814-
Cauchy. 

The influence on Cauchy of Euler, Lacroix, and Poisson 
cannot be denied.23 Nevertheless, by far the hardest tasks, 
both technical and conceptual, were accomplished by 
Cauchy himself. Having returned to the Leibnizian view of 
the integral as a sum, Cauchy needed to make it more 
precise. It was not enough to say that the definite integral is 
the limit of sums. He first had to specify the sums precisely 
and then had to prove that the limit existed. 
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He tookf(x) to be continuous on a given interval with 
end points xo, X and set out to define the definite integral 
Jx!f(x) dx. He began by dividing the interval into n not 
necessarily equal parts Xl - XO,X2 - Xl, .•• , X - X n_ l• He 
multiplied each of these "elements" by the value off at its 
left-hand end point, forming the sum 

S = (Xl - xo)f(xo) + (X2 - x.)f(x.) + .. , 
+ (X - xn-l)f(xn- J ). 

Cauchy noted that the value of S obviously depends on 
both n and the mode of division of the interval. The crucial 
question is whether the particular mode of division no 
longer matters if the size of the subintervals becomes very 
small and n very large. Using the continuity off (x) (in his 
usual stronger version, which we now call uniform con
tinuity), Cauchy was able to prove that the mode of divi
sion does not matter, so that S has a unique limit, which he 
then defined to be the definite integral.24 

In order to prove that the value of the integral 
is independent of the mode of dividing up the interval 
[xo, X], Cauchy began by choosing the simplest case: there 
is only one subinterval, [xo, X] itself. (My translation of 
Cauchy's definition of the definite integral and the proof of 
its existence is given in the appendix. Essentially the same 
proof was given by Moigno in his Cauchy-based text of 
1840-1844, Lefons de calcul differential et de calcul integral, 
vol. 2, pp. 3-6; see G. Birkhoff, A Source Book in Classical 
Ana?Jsis, pp. 8-10.) By constructing a partition of this given 
interval, Cauchy showed that for some constant () between 
o and I 

S = (X - xo)f[xo + B(X - XO)].25 

Returning now to (6.1), Cauchy applied the same 
technique that produced (6.2) for the one interval to each 
of the n subintervals Xl - XO, X2 - Xl"'" X - Xn- 1 pro
duced by subdividing the original interval. He thus ob
tained by the same method that for the new subdivision 

S = (Xl - xo)f[xo + BO(XI - xo)] 
+ (X2 - Xl) f[XI + 01(X2 - Xl)] + ... 
+ (X -xn-l)f[xn-l + Bn_ 1(X - Xn-t)]. 
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He now defined a set of 8k values for k = 0, I, ... , n - 1 by 
f[Xk + Ok(XHl- Xk)] = f(Xk) ± 8k, 

so that 

S = (Xl - xo)[f(xo) ± 80] + (X2 - x1)[f(xl) ± 81] + ... 
+ (X - xn-l)[f(Xn-l) ± 8n-d. 

Cauchy then argued that if the subintervals of length 
Xk - X k-l are taken sufficiently small, then the 8k will 
become "very close to zero," so that taking a subpartition 
of the original partition will not change appreciably the 
value of S given by (6.1). (This argument actually requires 
thatfbe uniformly continuous.) 

Cauchy then observed that given any two modes of 
division whose parts are very small, a third mode of divi
sion can always be constructed that subdivides each of the 
two given ones. The value of S for this new subdivision is 
arbitrarily close to the value of S for either earlier division; 
and so, Cauchy concluded, as the numerical values of the 
elements Xk - X k-l become small and n gets very large the 
different values of S for the two given modes of division 
differ only imperceptibly from each other. Thus, "If we let 
the numerical values of these elements decrease while their 
number increases, the value of S ultimately becomes, for all 
practical purposes [sensiblement] constant. Or, in other 
words, it ultimately reaches a certain limit .... " 26 

Here Cauchy implicitly assumed the same property of 
the real numbers that he assumed in stating the Cauchy 
criterion for series: 27 If the various values of some 
expression-like S in this example, or the nth partial sum 
of a series-become closer and closer to each other, then the 
expression has a certain limit. In this case, Cauchy re
marked, the limit of the value of S depends only onf(x) and 
the end points Xo and X of the interval, and "this limit is 
what is called a definite integral." 28 

Notice again Cauchy's use of an eighteenth-century 
term-definite integral-in a new and precise way. First 
he proved that the limit of the expressions given by S 
existed; only then did he define the integral as equal to that 
limit. He reintroduced the conventional notation, which 
he credited to Fourier, S; f(x) dx for the definite integral, 
but reminded his readers ~hat the symbol S (a stylized S for 
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sum), and the notation ff(x) dx, "indicates not a sum of 
products ... but the limit of a sum of that sort." 29 

Sources for Cauchy's ideas shall include (I) approxi
mations of an integral by sums; (2) detailed discussions of 
the difference between the approximating sums and the 
value of the integral; (3) statements that the approximat
ing sums get arbitrarily close to the integral for sufficiently 
small subdivisions, regardless of the mode of partition; or 
(4) arguments that a common limit exists for the successive 
approximating sums (for sufficiently fine common sub
partitions). The works of Euler, Lacroix, and Poisson in
clude the first three features; Cauchy's own work (the 
Cauchy criterion) includes the fourth, so that here Cauchy 
was his own predecessor. 

The first systematic eighteenth-century discussion of ap
proximating the integral as the limit of a sum is found in 
the lnstitutiones calculi integralis (1768-1770) of Leonhard 
Euler. Although Euler had defined the integral as the 
inverse of the differential quotient, he realized that some
times it was necessary to use other properties of the integral 
to evaluate it, even approximately. Euler considered X, a 
function of x whose integral J X dx is to be evaluated be
tween the limits a and x. He divided the interval [a, xl into 
subintervals of length a' - a, a" - a', ... , x - 'x, where 
a < a' < a" < am < ... < "x < 'x < x. To represent the 
values of the function X at the points a, a', a", ... , 'x, x, he 
wrote A, A', AN, ... , 'X, and X. Finally, he let b be the 
constant of integration associated with the integral JX dx. 
Euler said that between two values of x differing by a small 
amount, the function can be treated as a constant, so that 
the integral f X dx over th~mall interval is the value of the 
function there multiplie'd by the length of the small in
terval. Thus the value of the integral S X dx between the 
limits a and x can be approximated by the sum 

y = b + A(a' - a) + A'(a" - a') + ... + 'X(x - 'X).30 

Here, then, is the sum that approximates the value of the 
definite integral, written (as Cauchy later wrote it) with 
the function evaluated at the left-hand end points of the 
su bintervals. 

Euler did not compute a general error estimate for the 
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approximation (6.5). He did discuss, however, different 
ways in which the approximation's closeness could be 
ensured. First, he said, assume that the function is either 
always increasing or always decreasing on the given in
terval. Then the integral J = J X dx between the given 
limits is always included between the sum of the lengths of 
the su bin tervals times the val ues of X taken at the left-hand 
end points of the subintervals, and the corresponding sum 
for the values of X taken at the right-hand end points. This 
gives an explicit error bound for the integral of a mono
tonic function. 51 

If the function is not always increasing or decreasing, 
this error bound will not work. Nevertheless, Euler still 
argued that the approximation could be made closer and 
closer to the true value by carefully choosing the sub
intervals; if the value of the function between two given 
values of x changes violently, very small intervals must be 
taken; if the value of the function between two given values 
of x does not change violently, large intervals may be 
taken. Thus for Euler the variation of the function de
termines whether the given interval should be divided into 
equal or unequal, large or small subintervals.32 

Euler and Cauchy used the same kinds of approxi
mating sums and realized that finer subdivisions produce 
better approximations, but their views of the integral 
differed greatly. Euler believed that the integral had an 
existence independent of the approximation procedure. 
Further, he could not prove the accuracy of the approxi
mation for a function that is not piecewise monotonic. In 
this is seen the characteristic attitude of the eighteenth
century approximator: The thing exists, and our job is to 
approximate it in the most expeditious way. Not until the 
work of Cauchy was the general question of the existence of 
the integral even rai~uch less rigorously answered. 

Meanwhile, Euler's approximations proved fruitful, 
in both his hands and the hands of others. For example, 
Adrien-Marie Legendre (1752-1833) used the sum tech
niques to approximate the values of integrals over intervals 
including points at which the function is infinite. He also 
gave an estimate of the "error" in the usual integral for
mula introduced by this singular point. 33 Several times 
in his Ana(ytical Theory of Heat, Fourier used the principle 



150 

(6.6) 

Chapter 6 

that an integral could be treated as a sum. 34 Fomier's 
work, like Legendre's and Euler's, showed the usefulness of 
considering the integral as a sum when computation of the 
antiderivative failed to give the integral's exact value. 
Interesting though the works of Legendre and Fourier may 
be, however, they do not seem to have been decisive in 
determining Cauchy'S approach to these problems. 

Just as Lacroix's Traite du calcul had transmitted to 
Cauchy eighteenth-century work on limits and conver
gence, most probably it played the major role in trans
mitting to him also Euler's approximations to the integral. 
As usual, Lacroix had not intended to do anything new; in 
elaborating Euler's work, his goal was to present, explain, 
and clarify. But whatever the modesty of Lacroix's inten
tions, his description of the Euler integral made the 
approximating formulas for the integral as sum readily 
available to Cauchy. 

Lacroix followed Euler closely in stating that the 
definite integral of the function X on an interval [a, an] is 
approximated by the sum of the values of X evaluated at 
the left-hand end points of the subintervals into which the 
given interval is divided. That is, if the given interval is 
[a, an], a < al < a2 < ... < an, r is a constant of integra
tion, and r' = X(a), rl ' = X(a 1), ••• , Yn-l' = X(an-I), 
the integral may be approximated by the sum 

r + r'(a1 - a) + rl'(a2 - a1) + ... + r'n-l (an - an_I).35 

Lacroix went beyond Euler in the discussion of the 
closeness of the approximation to the true value, perhaps 
because he was able to draw on more such work in 1797 
than Euler in 1768, or perhaps because he had the peda
gogically valuable desire to explain things at length. Like 
Cauchy, Lacroix began with just one interval. He took the 
interval [a, ad and let the function X be always increasing 
or always decreasing on that interval.36 Then, as Euler had 
shown, Lacroix said that the integral is bounded by the 
approximations r + r(al - a) and r + rl'(al - a).37 
Lacroix then further subdivided that same interval from a 
to al by means of the intermediate points <Xl> <X2, (l3, ••• , (Xm, 

so that a < <Xl < (X2 < ... < (Xm < al. Thus the integral lies 
between 
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r + Y'(al - a) + Y'(a2 - al ) + ... + Y'(a l - am) 

and 

Bu t, because the function X was assumed always increasing 
or decreasing, X(a l ), X(a2), ... ,X(am) aillie between X(a) 
and X(a l )· Let X(al) = Jl" X(a2) = J2', ... ,X(am) = J m'· 
Then the expression 

r + Y'(a l - a) + Jl'(a2 - a l ) + J2'(aa - ( 2 ) + ... 
+ J m' (a l - am) 

must lie between (6.7a) and (6.7b).38 The partition by 
the \l.k in (6.8) is a subpartition of the original partition; 
and since (6.8) lies between expressions (6.7a) and (6.7b) 
bounding the integral, (6.8) itself must be close to the 
integral. In fact, said Lacroix, (6.8) can be made as close to 
the integral as desired if the points \1.11 a2 , a3 , ••• , \l.m are 
taken sufficiently close together; in his words, "by imagin
ing a sufficient number of terms" (6.8) can become as close 
as desired to the "true value." 39 (Lacroix seems to have 
assumed that simply increasing the number of terms \l.k 

between a and al suffices to make (6.8) approach the 
integral as closely as possible. But, since the ak are not 
equally spaced, he should have required also that each 
ak - ak - l become arbitrarily small.) 

Of course, the result would not have surprised Euler. 
Indeed, except for the analytic notation the result would 
not have surprised Archimedes. But it is the specificjorm of 
Lacroix's result that is of interest, in particular as Cauchy'S 
most likely immediate source. Cauchy had read the Traite, 
including the section on integration, and consistently used 
Lacroix's terminology-element for subinterval, arbitrary 
constant, and above all definite integral and indefinite integral. 
Cauchy himself acknowledged the kinship between his 
sums and earlier approximations by pointing out that 
his formula (6.1) and the corresponding formula evaluat
ing the function at the right-hand end points, "are fre
quently employed in finding approximate values of de
finite integrals." 40 And Cauchy's Calcul infinitesimal in
cludes a number of approximations just like those given by 
Lacroix,41 
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What might Cauchy have owed to Lacroix's Traite du 
calcuP. Lacroix had picked out the key property of the 
definite integral-the integral is the limit of sums-and 
used it in a proof. Moreover, not only had Lacroix shown 
that the integral of a monotonic function is included be
tween two computable finite bounds, but he had spelled 
out in an algebraic argument that finer subdivisions can 
be shown to produce closer approximations. He also had 
stated that the interval over which a function is evaluated 
may be broken up into parts in such a way that in each part 
the function increases or decreases;42 thus the integral of 
the function can be divided into a sum of integrals in such a 
way that each can be given bounds. Lacroix's work thus 
implies, though not saying explicitly, that for any piece
wise monotonic function approximating sums can be 
found that are arbitrarily close to the function's integral. 
These insights, from whatever source Cauchy may have 
first gleaned them, were necessary to his theory of the 
integral. 

Still, Lacroix cannot be viewed as the predecessor for 
Cauchy's proof of the existence of the definite integral. 
Perhaps the approximation L~:~ !(xk ) (Xk +l - xk ) or 
simply the corresponding geometric picture might have 
suggested that the closeness of the approximation can 
be shown, at least in some cases, to increase with the 
fineness of the partition. And certainly the possibility of 
changing once again an approximation process into an 
existence proof might have occurred to Cauchy upon read
ing either Euler's or Lacroix's work. Nevertheless, Euler 
and Lacroix did not try to prove that the true value of the 
integral of an arbitrary function differs from the approxi
mating sums by less than any given quantity for sufficiently 
small subintervals. Nor did Lacroix explicitly state, let 
alone prove, that expressions like his sum (6.8) have as 
their limits values independent of the particular choice of 
the subdividing points ill' il2, ... , IXm provided the ilk are 
sufficiently close. Simon-Denis Poisson, however, did ad
dress himself to these problems. 

Poisson's work appeared in the 1820 paper dealing 
with aspects of real and complex integration.H Poisson had 
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tried to prove that if the function to be integrated on an 
interval is finite there, then the integral evaluated as a sum 
is equal to the difference of the antiderivatives.44 Appro
priately, he called this result "the fundamental proposition 
of the theory of definite integrals." His result is not quite 
our fundamental theorem of calculus, since it begs the 
question of the existence of both the definite and indefinite 
integral, and only works for functions that are antideriva
tives. Also, his proof is limited to the case in which the 
subintervals are equal. Still, the importance of his result is 
obvious. 

Poisson took the function J(x) , finite from x=a to 
x=b, and designated its antiderivative by F(x). He 
reminded the reader that F(b) - F(a) "is what is called 
the definite integral" ofJ(x) from x = a to x = b.45 After 
dividing the given interval [a,b] into n parts of length ex, 
Poisson undertook to prove that ifn becomes large and the 
sum S is defined by 

S = ex [J(a) + J(a + ex) + .. , + J{a + (n - l)ex}], 

then, "F(b) - F(a) is exactly [rigorousement] the limit of the 
sum represen ted by S." 46 

To prove that, as n increases, the limit of the sum Sis 
equal to the integral, Poisson made use of an approxi
mation to the value of an integral not yet discussed. This 
approximation, like so many others, was described in de
tail first by Euler. Euler had recognized that the contribu
tion to the integral of each term in a sum like (6.9)-for 
instance, the term exf(a)-is only approximate, since it 
treats the functionJin the subinterval [a, a + ex] as though 
it is the constantJ (a). A closer value for the contribution to 
the integral of the first su binterval can be given according 
to Euler by the Taylor series for F(a + ex) - F(a), where 

F(a + ex) = F(a) + exF' (a) + ex2/2! F" (a) + .... 47 

Analogous expressions can be written instead ofJ(a + ex), 
J(a + 2ex), .... 

Poisson took these approximations and supplied the 
Taylor series with their remainders. Taylor's theorem gave 
Poisson for the function F 
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F(y + z) = F(y) + if(y) + RZIH,* 

where y is the independent variable and z its increment, 
f (x) = F'(x), R is the remainder (assumed finite), and k is 
positive.48 

Thus, he obtained 

F(a + ~) = F(a) + ~f(a) + RO~lH, 
F(a + 2~) = F(a +~) + rxj(a + ~) + Rl~lH, 

F(a + n~)= F[a + (n - l)~] + rxj[a + (n - l)oc] 
+ Rn- 1 ~lH. 

Combining these equations and noting that a + nCl = b by 
definition of~, 

F(b) = F(a) + ~f(a) + ~(a + oc) + ... 
+ rxj[a + (n - l)oc] + (Ro + Rl + ... 
+ RIl_l)~l+k. 

Poisson now set M to be the maximum value over the 
interval [a, b] of the remainder function, "abstraction made 
of the sign." Then (Ro + Rl + ... + RIl-d ~ nM. Recal
ling the definition of S in (6.9) and the fact that n~ = 
b - a, he then obtained IF(b) - F(a) - SI ~ InM(oc1+k) I, 
and thus 

* The Lagrange form is not 
used for R, nor is the exact 
form of R important as long 
as it is finite. Poisson's knowl
edge of Lagrange is attested 
by a reference in '·Suite 
du memoire" (p. 320) to 
Lagrange's Caltul dl'S jOl1rlion.r. 
Lacroix had not supplied a 
remainder in this approxi
mation, hut instead had used 
"Euler's criterion" to argue 
that for sufficiently small 
values of the increment (for 
which Poisson wrote z), ::fev) 
exceeds the sum of all the rest 
of the terms (Lacroix, Traite 
du calcul, 1st ed., vol. 2, 
p. 136). Poisson knew 
Lacroix's treatises; sec, 

for example, the explicit 
reference in "Suite du 
mcmoire" (p. 319) to the 
treatment of approximating 
deftnite integrals as slims in 
section -t71 of the second 
edition of the Twill du calcul. 

In discLlssing (6.10), 
Poisson stated that if the 
second differential of F is 
infinite at a few points, the 
expressions are still valid and 
the third term of the Taylor 
series development of 
FU' + z) at those points "will 
contain a power of z whose 
exponent lies between I and 
2." Thus he wrote R::;l+k, and 
nol RZ2 ("Suite du mcmoire," 
p.322). 
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IF(b) - F(a) - sl ~ IM(b - a)ak l·49 

As n increases, ex decreases; thus since k is positive, the 
left-hand side of the inequality (6.11) "can become less 
than any given quantity." Poisson concluded that 
"F(b) - F (a) is exactly the limit of the sum represented by 
S."50 (The form of the bound M(b - a)a k may have been 
suggested by either the Lagrange or the Lacroix notation 
for the mean-value theorem for integrals.5l) 

Poisson's proof is not bad. His theorem really means 
that the difference of the antiderivatives of 1, namely, 
F(b) - F(a), can be approximated by the sums (6.9) to 
within any given quantity. Poisson's proof easily can be 
made acceptable by modern standards if F is assumed to 
have bounded second derivatives, that is, ifjis assumed to 
have antiderivatives and bounded first derivatives, on the 
given interval. Poisson's proof well may have suggested to 
Cauchy that the equivalence of the conceptions of the 
integral as antiderivative and as sum could be proved-at 
the same time that Poisson's remarks about complex in
tegrals made clear the general inadequacy of the anti
derivative as a definition of the integral. 

One major weakness of Poisson's proof is that it is 
restricted to the case of equal divisions of the interval. 
Poisson recognized that he had to justify the conclusion of 
his prooffor the case of unequal divisions as well. But he 
could not demonstrate with comparable rigor that the 
value of the integral did not depend on the mode of division 
for this case. He simply made an appeal to geometry of the 
kind that Lagrange and Bolzano were always warning 
against "If the integral is represented by the area of a 
curve, this area will be the same, if we divide the difference of 
the extreme abscissas into an infinite number of equal 
parts, or an infinite number of unequal parts following any 
law." 52 Poisson's statement must have cried out to Cauchy 
for proof. And Cauchy proved it. 

Once Cauchy had defined the integral and established its 
existence, he was able to prove theorems about it.. In 
particular, he was able to obtain what is now called the 
fundamental theorem of calculus: Ifj(x) is finite and con
tinuous throughout the interval [xo, Xl and 
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%(x) = IX f(x) dx, 
Jxo 

then 

%' (x) = f(X).53 

Ever since Newton and Leibniz, the fundamental 
theorem of calculus has been the key result of the calculus. 
For Cauchy and his successors, it relates his new rigorous 
definitions of derivative and integral by means of one 
theorem linking the differential calculus with the integral 
calculus. Though Cauchy himself did not call the theorem 
fundamental, the place it occupies in the calculus amply 
justifies this designation. 

Cauchy proved the fundamental theorem by com
bining two things: the mean-value theorem for integrals,M 
already known to Lagrange;55 and the additivity of the 
definite integral over intervals, a fact long known and, for 
Cauchy, an easy consequence of the sum definition of the 
integral. (The proof-which is closely akin to that used 
today-is given in translation in the appendix.) The key 
step is 

% (x + IX) - % (x) = JX+ct f(x) dx - IX f(x) dx 
Xo Xo 

= t+Ctf(X)dX = rt.f(x + (Jrt.) 

where 0 ~ ()~ 1. The theorem now follows from Cauchy's 
definition of the derivative. 

The sources of Cauchy's proof are twofold: 
Lagrange's proof of what amounts to the fundamental 
theorem, in which there is a careful consideration of 
expressions like § (x + 0:) - § (x); and Lagrange and 
Lacroix's statements of the mean-value theorem for inte
grals (though neither fully appreciated the importance of 
the resul t). 
How, one might ask, could Lagrange prove the funda
mental theorem of calculus? He had no definition of the 
definite integral; to him, the indefinite integral was just the 
antiderivative. Yet he did prove a version of the theorem: 
Lagrange proved that f(x) = F'(x) for a function F(x) 
defined as the area under the curve) = f(x) up to some x. 
In fact, Lagrange's proof of the theorem is technically very 
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much like Cauchy's, even though the logical settings of the 
two proofs are entirely different. 

The area under the curvey = J(x) from x to x + i is 
given, said Lagrange, by F(x + i) - F(x), where Fre:' 
presents the area function. Let the functionJbe increasing 
on the interval [x, x + i]. In this case, the geometry of the 
situation makes it clear that the area under the portion of 
the curve between x and x + i lies between ij(x) and 
ij(x + i). That is, 

ij(x) ~ F(x + i) - F(x) ~ ij(x + i).56 

Of course the result is obvious. But, Lagrange continued, 
the Taylor series with remainder implies that 

J(x + i) = J(x) + if'(x + )j), 
F(x + i) = F(x) + iF'(x) + (i2 /2)F"(x + )F). 

(Lagrange used only) for both the quantities I have 
called )f and )F, but recognized explicitly that they are 
distinct.) Thus, (6.12) now becomes 

ij(x) ~ iF'(x) + (i2/2)F"(x + )F) ~ ij(x) + i2f'(x + if), 
Therefore 

o ~ i[F'(x) - J(x)] + (i2/2)[F"(x + jF)] ~ i2f'(x + jf)· 
(6.13) holds for all i, no matter how small. Therefore, said 
Lagrange, F'(x) - J(x) must be zero. If not, he pointed 
out, Iii < I [F'(x) - J(x)]/[j'(x + jf) - (1/2) F"(x +jF)]1 
would make (6.13) false. 57 Therefore, it must follow that 
F'(x) = J(x). 

Lagrange's Taylor-series expressions play the same 
logical role in his proof that the mean-value theorem for 
derivatives plays in Cauchy's. Furthermore, Lagrange 
carried out his proof of the theorem with a sophisticated 
treatment of the relevant inequalities. These resemblances 
are sufficiently close to suggest influence-possibly direct, 
possibly through the work of Poisson (which obviously is 
based on Lagrange's work)-on Cauchy. 

But Lagrange's proofhas limitations deriving from its 
context, if not its internal logic. Lagrange assumed-as 
Poisson, following in his footsteps, did in his 1820 paper
that the function F had two derivatives: that is, he ex
plicitly used the assumption that J had both derivatives 
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and anti derivatives. Moreover, he had defined neither 
area nor integral, and his proof requires that the function 
be monotonic. Thus he did not have the essence of 
Cauchy's proof of the fundamental theorem. 

To adapt Lagrange's proof for his own purposes, 
Cauchy had to define and to prove the existence of F. He 
did so. In addition he had to find and prove a result 
equivalent to (6.12), but not limited to monotonic func
tions. This he did by stating the mean-value theorem for 
definite integrals. The mean-value theorem for integrals 
had been derived by both Lagrange and Lacroix.58 Each 
had derived it from Lagrange's lemma that a function 
with positive derivative on an interval is increasing there. 
But each had defined the integral as the inverse of the 
derivative and thus considered this theorem as a variant of 
the mean-value theorem for derivatives. Because Cauchy 
saw the integral as a sum, not an antiderivative, he needed 
a new proof of the mean-value theorem for integrals. The 
mean-value theorem for integrals was stated by Cauchy 
thus: 

rXj(x)dx= (X-xo)j[xo+ e(X-xo)l,O~ e~ I. 
Jxo 
He derived this theorem from one of the steps in his proof 
that the mode of division does not affect the value of the 
definite integral. Once again Cauchy had taken an earlier 
result, given it a different logical basis, and used it for an 
entirely different purpose. Based on an acceptable proof of 
the mean-value theorem (Cauchy's does not meet modern 
standards without modification), Cauchy's proof of the 
fundamental theorem can be used today. 

The works of Euler, Lagrange, Lacroix, and Poisson con
tain useful techniques, fundamental questions, and a 
wealth of examples whose direct bearing on Cauchy's 
formulation of the essential properties of the definite inte
gral can be documented. 

Cauchy acknowledged that he had read the textbooks 
of Euler.59 Also, Cauchy's proof of the existence of the 
solution to a differential equation by what is now called the 
Cauchy-Lipschitz method is based on a method of con-
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structing the approximate solution first explained in 
Euler's lnstitutiones calculi integralis.60 Indeed, the relation
ship between Cauchy's existence proof and Euler's approx
imation is exactly analogous to the case of the definite 
integral. 

I have already pointed out that Cauchy acknowl
edged Poisson's 1820 paper several times. Moreover, 
Poisson and Cauchy were colleagues at the Ecole Poly
technique and on occasion must have discussed areas of 
common concern, among which surely would have been 
integrals. Numerous resemblances between their works 
show that Cauchy knew and used Lacroix's books. Finally, 
I have given evidence several times for Cauchy's acquain
tance with Lagrange's Fonctions analytiques. 

But the technical similarities in their treatments of the 
definite integral cannot dispel the differences in points of 
view between Cauchy and his predecessors. For Euler and 
Lacroix, approximation by sums is just one property of the 
integral, related to little else in the theory of the integral 
calculus. For Cauchy, it became the fundamental and 
defining property. For Euler and Lacroix, the integral is 
the antiderivative, whose value can be approximated by 
sums. For Cauchy, the integral is the limit of sums of a 
certain type-a limit whose existence has to be shown: If 
the integral J!f(x) dx exists and equals F(b) - F(a), 
where F'(x) = f(x), then these facts have to be proved, not 
merely stated. 

Similar comments apply to the work of Poisson. In 
fact, his work serves as a reminder that merely describing 
the work before Cauchy cannot explain Cauchy's accom
plishment. Poisson had the same materials at hand in 1820 
as Cauchy in 1823: the work of Lacroix and Euler on 
approximating integrals as sums; the Taylor-series ap
proximations to the integral; Lagrange's use of Taylor 
series with remainder; the mean-value theorem for inte
grals; and of course the relationship between the integral 
and the antiderivative. But this common historical back
ground was not enough for Poisson. Nor does it help much 
to point out that Cauchy was required to teach courses at 
the Ecole Poly technique; Poisson was too. 

In the case of integrals even more than in the cases 
of limits, continuity, convergence, and derivatives, the 
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achievements of Cauchy's predecessors, though necessary, 
were far from sufficient. None of his predecessors even 
appreciated the need for a rigorous theory of the integral. 
Only one man had the genius to choose-and to choose 
almost unerringly-the techniques that would be fruitful, 
put those techniques together in:o proofs, and state and 
prove the additional results required. 

The second part of Cauchy's Lefons sur les applications du 
calcul infinitesimal a la geometrie includes applications of his 
theory of the integral to geometry. Some of the applica
tions-for example, to arc lengths or the calculation of 
specific areas or volumes-are done much as they had 
been done in the eighteenth century. But to show that the 
definite integral represents the area under a curve, Cauchy 
used the mean-value property of areas and his mean-value 
property of derivative and integral-an approach vaguely 
akin to Lagrange's derivation of his version of the funda
mental theorem of calculus. 61 Cauchy used analogous con
siderations to derive the integrals for the areas between two 
plane curves62 and to find the area of a curved surface63 

and the volumes of solids. 64 

One motivation for Cauchy's theory of the integral 
was his perception that such a theory would be needed to 
study complex integrals. And in fact Cauchy did apply his 
definition of the integral as the limit of sums from the 1823 
Calcul irifinitesimal to the 1825 paper "Memoire sur les in
tegrales definies prises entre des limites imaginares" (first 
published in 1874-1875), in which appear the Cauchy 
integral theorem and the calculus of residues. The intro
duction to this 1825 memoir emphasized the principal 
value of improper integrals rather than the integral as the 
limit of sums in the continuous case. Nevertheless, Cauchy 
referred there to recent work of his showing how to "fix in 
every possible case" the sense of the notation J;'f (x) dx. He 
then said, "I propose today to apply the principles which 
have guided me in those researches to integrals taken 
between imaginary [that is, complex] limits." 65 

Cauchy began by recalling the definition of the real 
definite integral as the limit of sums. Then, "to include 
integrals taken between real limits and imaginary limits in 
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the same definition," he defined the complex integral 

fx+rR 

Xo + Jo..r::I 
f(z) dz (where z = x + Y Fi) 

as "the limit, or one of the limits" toward which the sums 
(in modern notation) 

I;= )f(xj + fyj)[(Xj+l-Xj) + i(Yj+l - Yj)] 

converge when the terms of the monotonic sequences xo, 
Xl"",Xn-l,X and YO,Yl, ... ,Yn-hr "approach each 
other indefinitely as their number increases." 66 Cauchy 
used his definition to show that when the sequences are 
chosen from the curve x = ifJ (t) andy = X (t), the com plex 
integral is given by 

fx+ rFT 
_f(z) dz = A + B Ft 

Xo + Jo.J-l 

=J T (ifJ'(t) + X'(t) P)f(ifJ(t) + X(t) p) dt. 67 

to 

Cauchy then showed by using ideas from the calculus of 
variations that if "the function f(x + yJ=T) remains 
finite and continuous," then the "expression A + B ~ 
is independent of the nature of the functions x = ifJ (t) and 
Y = X(t)."68 This result is often called the Cauchy integral 
theorem. (Cauchy's proof of the integral theorem and 
other results in this memoir needs more than the continuity 
off In fact his proofs always assume thatfhas as many 
complex derivatives as needed.) Then he used the integral 
theorem and his theory of principal values of improper 
integrals to prove the Cauchy integral formula and de
velop the calculus of residues, which in turn he applied to 
the evaluation of improper integrals. 

To what extent did Cauchy actually need the 1823 
sum definition of the definite integral to do the 1825 work 
on complex integration? The definition's role seems to 
have been purely foundational; it does not enter into the 
proofs of any of the theorems once the parameterized form 
(6.15) has been obtained. Of course Cauchy could not 
define the complex integral as an antiderivative; yet it had 
to be introduced somehow. But had the 1825 paper begun 
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with a definition of the complex integral as satisfying the 
parameterized equation (6.15), the rest of the paper could 
have proceeded unchanged, largely on the basis of facts 
about integrals already accepted. Cauchy, however, 
wanted a rigorous foundation for his theory of complex 
integration, and the basis he chose was his definition of 
real-valued integrals. Indeed, because the parameterized 
equation followed from the sum definition in the "direct 
and rigorous" manner he so prized, Cauchy felt free to let it 
serve-just as the Lagrange property of the derivative had 
served-as the basis for an entire topic. Thus although the 
sum definition was not built into his proofs about complex 
integrals as it had been into his proof of the existence of the 
real definite integral, his use of it shows both that complex 
integration partly motivated his definition and that it was 
one area of the definition's application. 

Any assessment of Cauchy's definition of the integral 
must conclude with the observation that Bernhard 
Riemann drew on it to develop his own theory of the 
integral. Of course Riemann's theory differs from-and 
goes beyond-Cauchy's. First, Cauchy took the values of] 
at the left-hand end points of subintervals; Riemann took 
any arbitrary point in his subintervals. (But Cauchy's use 
of the expression S = ~d[Xk + Ok(Xk - Xk-l)], I ~ Ok ~ 0, 
to represent S for another mode of division shows that for 
continuous functions at least, evaluation at the left-hand 
end point is not essential.) Second, and more fundamental, 
Cauchy assumed explicitly that the function whose inte
gral is to be defined is continuous, while implicitly as
suming that it is uniformly continuous; Riemann assumed 
neither and in fact gave an example of an integrable 
function with infinitely many discontinuities in an arbi
trarily small interval. Riemann stated that when the limit 
of his sum expressions exists, it is the definite integral; when 
the limit does not exist, the expression J!](x) dx has no 
meaning. Thus Riemann extended Cauchy's definition to 
a wider class of functions. (For continuous functions, 
Cauchy's and Riemann's integrals have the same value. 
Note that Cauchy extended his conception of the integral 
to include functions with finitely many discontinuities, 
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that is, improper integrals, as early as 1814.69 ) But the 
Riemann integral is a natural development of Cauchy's 
ideas, in the same way as are late-nineteenth-century 
theories of continuity, convergence, and derivatives.70 



Conclusion 

What is our estimate of Cauchy's achievement? Cauchy's 
work established a new way of looking at the con
cepts of the calculus. As' a result, the subject was trans
formed from a collection of powerful methods and useful 
results into a mathematical discipline based on clear de
finitions and rigorous proofs. His views were less intuitive 
than the old ones, but they provide a new set of interesting 
questions. His definition of limit and elaboration of the 
associated method of proof by inequalities are the basis for 
modern theories of continuity, convergence, derivative, 
and the integral. And many of the important consequences 
of these theories-in the study of convergence, existence 
proofs for the solution of Jifferential equations, and the 
properties of definite integrals-were pioneered by 
Cauchy himself. 

Moreover, Cauchy's rigorization of the calculus was 
much more than the sum of its separate parts. It was not 
merely that Cauchy gave this or that definition, proved 
particular existence theorems, or even presented the first 
reasonably acceptable proof of the fundamental theorem 
of calculus. He brought all these things together into a 
logically connected system of definitions, theorems, and 
proofs. 

The implications of this achievement go beyond the 
calculus. In a very important sense, it may be said that 
Cauchy brought ancient and modern mathematics to
gether. He cast his rigorous calculus in the deductive mold 
characteristic of ancient geometry. And unlike his pre
decessors, he did this successfully; that is, he, not only gave 
his work a Euclidean form but presented definitions that 
generally are adequate to support the desired results, 
proofs that basically are valid, and methods that were 
fruitful sources for later mathematical work. Cauchy, then, 
brought together three elements: the major results of analy
sis, most of which he could now prove; some fruitful concepts 
and techniques from algebra (particularly algebraic approx
imations) and analysis; and the rigor and proof structure of 
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Greek geometry. For a long time Greek geometry had been 
considered the model for all of mathematics. If the origins 
of modern mathematics are traced to the Renaissance, 
then the rigor and structure characteristic of Greek geo
metry first effectively became part of modern mathematics 
only with Cauchy's work. Of course the late-nineteenth
century idea that mathematics is the science of abstract 
logical systems in general is absent from Cauchy's work. 
But Cauchy's rigorization of the calculus was an indis
pensable first step in that direction. 

Cauchy left some unfinished business, as subsequent 
history shows. Some gaps in specific proofs had to be filled; 
some assumptions had to be proved, or at least explicitly 
stated; some crucial distinctions had yet to be made. But 
there is little in nineteenth-century analysis that was not 
marked, directly or indirectly, by his ideas. The basic 
logical structure Cauchy erected provides the framework 
in which we still think about rigorous calculus. 

Tracing Cauchy's innovations in the foundations of 
analysis back to their sources yields a pleasing new result 
for the historian. Historians looking at the eighteenth
century debates over the foundations of the calculus had 
seen comparative mathematical unknowns-Bishop 
Berkeley, James Jurin, Benjamin Robins, Simon 
L'Huilier, and Lazare Carnot-among Cauchy's most im
portant predecessors. To be sure, their philosophical dis
cussions, as well as those of Maclaurin, Euler, D' Alembert, 
and Lagrange, influenced Cauchy. But Cauchy needed 
more than philosophical discussions; he needed mathe
matics. And the mathematics he needed came from the 
work of the major mathematicians of the eighteenth cen
tury. I find this conclusion satisfying because it seems to 
reflect more convincingly than older views the way in 
which one expects great mathematicians to relate to their 
greatest predecessors. The evidence shows that the men to 
whom Cauchy owed most in working out his foundations 
were Euler, D' Alembert, Ampere, Poisson, and-above 
all-Lagrange, and this seems altogether fitting. 

Cauchy's originality in the foundations of the calculus 
lies in part in the use he made of what others had done. Yet, 
as the work of many historians of scientific ideas reminds 
us, there can be as much innovation in transforming old 
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methods as in developing new ones. The fact that many 
of the basic techniques of Cauchy's calculus existed in 
the eighteenth century should increase, not decrease, our 
wonder at his achievement. Cauchy was able to see
where nobody else had been able to see-how these ideas 
could be used to build a new rigorous calculus. We do not 
insist that an architect make every brick he uses with his 
own hands; instead, wt: marvel that the beauty of his 
creations can come from such commonplace materials. 
Augustin-Louis Cauchy neither began nor completed the 
rigorization of analysis. But more than any other mathe
matician, he was responsible for the first great revolution in 
mathematical rigor since the time of the ancient Greeks. 
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Appendix: Translations frolll Cauchy's 
Oeuvres 

Theorem. Let f(x) be a real function of the variable x, 
continuous with respect to that variable between x = Xo, 

x = X. If. the two quantities f(xo), f(X) have opposite 
sign, the equation 

(1) f(x) = 0 

can be satisfied by one or more real values of x between Xo 

and X. 

Proof Let Xo be the smaller of the two quantities xo, X. 
We will set X - Xo = h, and we designate by m any integer 
greater than one. Because one of the two quantitiesf(xo), 
f(X) is positive, the other negative, it follows that if we 
form the sequence 

J(xo) , f(xo + hIm), f(xo + 2hlm), ... , f(X - hIm), f(X), 

and compare successively the first term in that sequence 
with the second, the second with the third, the third with 
the fourth, etc., we necessarily will finish by finding once
or more than once-two consecutive terms that are of 
opposite sign. 

Letf(x l ) , f(X) be two such terms, where Xl is the 
smaller of the two corresponding values of x. Clearly we 
will have 

Xo < Xl < X' < X 

and 

X' - Xl = hIm = 11m (X - xo). 

[Cauchy uses the sign < for less than or equal to.] Having 
determined Xl and X' in the way just described, similarly 
we can place between these two new values of x two other 
values X2,X", which, when substituted inf(x), give results 
of opposite sign, and which satisfy the conditions 

and 
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Appendix 

Continuing thus, we obtain, first, a series of increasing 
values of x, that is, 

(2) XO,Xl,X2,"'; 

second, a series of decreasing values 

(3) X, X', X", ... 

whose terms, since they exceed those of the first series by 
quantities equal, respectively, to the products 

(1)· (X-xo), (l/m)(X-xo), (l/m2)(X-xo), ... , 

ultimately will differ from the values in the first series by as 
little as desired. We must conclude from this that the 
general terms of the series (2) and (3) converge toward a 
common limit. Let a be that limit. Since the functionJ(x) is 
continuous between x = Xo and x = X, the general terms of 
the following series, 

J(xo), J(Xl), J(x2),·.·, J(X), J(X), J(X"), ... 

both converge toward the common limitJ(a); and since 
they always remain of opposite sign when they approach 
this limit, it is clear that the quantity J(a), which must be 
finite, cannot differ from zero. Therefore, the equation 

(I) J(x)=O 

will be satisfied if we give the variable x the particular 
value a, which lies between Xo and X. In other words, 

(4) x = a will be a root of equation (1). 

Theorem. If the function J(x) is continuous between the 
limits [that is, bounds or end points] x = Xo, x = X, and if 
we let A be the smallest, B the largest value of the deriva· 
tivej'(x) in that interval, the ratio of the finite differences 

(4) [j(X) - J(xo) l/(X - xo) 

must be included* between A and B. 

* I have translated Cauchy's 
comprise as "included" and his 
rmjl'fm{; as "lying between." 
The context of the proof 
makes clear that c is included 

between a and b means 
a ~ , ~ h :1I1cl that r Ii," 
between a and b means 
a < c < h. 
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Proof Let 0, e be two very small numbers; the first is 
chosen so that for all numerical [that is, absolute] values of i 
less than 6, and for any value of x included between the 
limits xo, X, the ratio 

f(X + i) - f(x)/i 

will always be greater thanj'(x) - e [Cauchy's Oeuvres has 
the misprintf(x) - e] and less thanj'(x) + e. Ifwe inter
pose n - 1 new values of the variable x between the limits 
xu, X, that is, 

so that the difference X - Xu is divided into elements 

that all have the same sign and numerical values less than 
6, then, since of the fractions 

(5) f(Xl) - f(XO)/Xl - Xu, f(X2) - f(Xl)/X2 - Xl>"" 
f(X) - f(Xn-l)/X - Xn- 1 

the first will be included between the limits j'(xo) - e, 
j'(xo) + e, the second between the limits j'(Xl) - e, 
j'(x1 ) + e, ... ,etc., each of the fractions will be greater 
than A - e and less than B + e. Moreover, since the frac
tions (5) have denominators of the same sign, if we divide 
the sum of their numerators by the sum of their denomi
nators, we obtain a mean fraction, that is, one included 
between the smallest and the largest of those under con
sideration (see AnalYse algebrique, Note II, Theorem XII). * 

Thus the expression (4), with which that mean coin-

* Here Cauchy was referring 
to this theorem: "If 
b, b', b", ... are n quantities 
with the same sign, and if 
a,a',a", ... are any n quan
tities, we have 
a + a' + a" + .. . 
b + b' + b" + .. . 
= M(a/b,a'/b', a"b", .. . )." 

He had defined a mean of 
c, c', e", ... = M (c, c', e", . .. ) 
as "a new quantity included 
between the smallest and the 
largest of those under con
sideration" in COUTS d' analyse; 
see the edition of Cauchy's 
Oeuvres, series 2, vol. 3, pp. 27, 

368. 



170 Appendix 

cides, itself will lie between the limits A - e, B + e, and 
since this conclusion holds no matter how small e may be, 
we can conclude that the expression (4) will be included 
between A and B. 

CoroLLary. If the derived functionj'(x) is itself contin
uous between the limits x = Xo, x = X, this function, as it 
goes from one limit to the other, will vary in such a way as 
always to remain included between the two values A andB 
and to take, successively, all the intermediate values. Thus 
any quantity intermediate between A and B will be a value 
ofj'(x) corresponding to a value of x lying between the 
limits Xo and X = Xo + h, or, what amounts to the same 
thing, to a value of x of the form 

Xo + Oh = Xo + O(X - xo), 

where o designates a number less than one. Ifwe apply this 
remark to the expression (4), we can conclude that there 
exists, between the limits 0 and 1, a value of 0 which 
satisfies the equation 

[j(X) - f(xo) l/(X - xo) = j'[xo + O(X - xo) l, 

or, what amounts to the same thing, the equation 

(6) [j(xo + h) - f(xo) l/h = j'(xo + Oh). 

Since this last formula continues to hold for whatever value 
of x is represented by xo, as long as the functionf(x) and its 
derivative f'(x) remain continuous between the limits 
x = Xo, x = Xo + h, we have in general, if that condition 
holds, 

(7) [j(x + h) - f(x)l/h =j'(x + Oh). 

Then, writing Ax instead of h, we have 

(8) f(x + Ax) - f(x) = j'(x + 0 Ax) Ax. 

It must be noted that in equations (7) and (8) () always 
signifies an unknown [nonnegativel number less than one. 
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Translations from Cauchy's Oeuvres 

Suppose that the function y = j(x) is continuous with 
respect to the variable x between the two finite limits 
x = Xo,X = X. We designate by Xl,X2,'" ,Xn-l new values 
of x placed between these limits and suppose that they 
either always increase or always decrease between the first 
limit and the second. We can use these values to divide the 
difference X - Xo into elements 

which all have the same sign. Once this has been done, let 
us multiply each element by the value ofj(x) correspond
ing to the left-hand end point [originel of that element: that 
is, the element Xl - Xo will be multiplied by j(xo) [Calcul 
infinitesimal has the misprintj(x)], the element X2 - Xl by 
j(xd, ... and finally the element X - Xn- l by j(xn- l ); 
and let 

(2) S = (Xl - xo)j(xo) + (X2 - xtlj(xtl + ... 
+ (X - xn-1)j(Xn_ l) 

be the sum of the products so obtained. The quantity S 
clearly will depend upon 

1st: the number n of elements into which we have divided 
the difference X - Xo; 

2nd: the values of these elements and therefore the mode 
of division adopted. 

It is important to observe that if the numerical values of 
these elements become very small and the number n very 
large, the mode of division will have only an insignificant 
effect on the value of S. This in fact can be proved as 
follows. 

If we were to suppose all the elements of the difference 
X - Xo reduced to a single one, which would just be that 
difference, we would have simply that 

(3) S = (X - xo)j(xo). 

When instead we take the expressions (1) for the elements 
of the difference X - xo, the value of S, determined in this 
case by equation (2), will be equal to the sum of the 
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elements multiplied by a mean of the coefficientsJ(xo), 

J(x\), J(X2), ... ,J(xn- 1)· * 
Moreover, since these coefficients [theJ(xk)] are par

ticular values of the expression.f[xo + (j(X - xo) 1 for values 
of (j between zero and one, we can prove by arguments 
similar to those used in the seventh lecture [in proving the 
theorem about bounds on the differential quotient: see the 
appendix, p. 169] that the mean in question is another 
value of the same expression, corresponding to a value of e 
between the same limits. We can then substitute the follow
ing for equation (2): 

(4) S = (X - xo) J[xo + (j(X - xo)], 

where (j will be a [nonnegative] number less than one. 
To go from the mode of division we have just con

sidered to another in which the numerical values of the 
elements of X - Xo are still smaller, it suffices to divide each 
of the expressions (I) [that is, the (Xk - Xk-l)] into new 
elements. We must then replace in the right-hand side of 
equation (2) the product (Xl - xo)J(xo) by a sum of simi
lar products, for which sum we may substitute an ex
pression of the form (Xl - xo)J[xo + eo (Xl - xo)], where eo 
is a [nonnegative] number less than one; note that we 
will have a relation between this sum and the product 
(Xl - xo) f (xo), which is similar to the relation that exists 

* Cauchy had defined a mean 
of a set of elements 
{all ... ,anI, which he desig
nated by M(al ... an), to be a 
quantity included between 
the minimum and maximum 
of the elements of the set. At 
this point in the discussion of 
the integral, to justify the 
conclusion quoted above, 
Cauchy referred to the Cours 
d'analyse, Theorem III, 
Corollary (see the edition of 
Cauchy's Oeuvres, series 2, 
vol. 3, p. 28). This corollary, 
restated in modern index 
notation for clarity, is as 
follows: Suppose we are given 
a set of 1/ quantities all having 
the same sign: :]),]t,··· ,]nf. 

Consider another set 
{al> ... , ani of n quantities, 
and recall that their mean 
M(a) ... an) is included be
tween the minimum and 
maximum of the a/c. Then 
the corollary states 
al)) + a2Yt + ... + an]n = 
(Yl + ... +}n)M(a)·"an). 

Applying this to the 
problem in the text, let 
a/c=j(xk-l),k= 1,2, ... ,11, 
and let}/c= X/c - xk-t,k = 
I, 2, ... , n - I, Yn = 
X - Xn-l. Using the 
corollary, Cauchy's conclu
sion isj(xl)) (Xl - Xu) + ... + 
j(Xn-l) (X - Xn-I) = 
(X - Xu) M[j(xu) .. "!(xn-1J]. 
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between the values of S given by equations (4) and (3). 
Similarly, we must substitute for the product (X2 - Xl) . 
f(Xl) a sum of terms that can be written in the form 
(X2 - xl)f[XI + (Jl (X2 - xd], where (Jl again designates a 
[nonnegative] number less than one. Continuing in this 
way, we finally conclude that in the new mode of division 
the value of S will be of the form 

(5) S = (Xl - xo)f[xO(JO,(XI - xo)] 
+ (X2 - Xl) f[XI + (Jl (X2 - Xl)] + ... 
+ (X - xn-l)f[x n- l + (In_l(X - xn_l)]. 

If in equation (5) we set 

f[xo + (Jo (Xl - xo) 1 = f(xo) ± eo, 

f[XI + (Jl (X2 - Xl) 1 = f(xtl ± el, 

we can derive 

(6) S = (Xl - xo)[f(xo) ± eo] + (X2 - Xl) [f(Xl) ± 8tl 
+ ... + (X - xn-1)[f(x n- t) ± en-d· 

Then, working out these products, 

(7) S = (Xl - xo)f(xo) + (X2 - xl)f(x1) + ... 
+ (X - xn-l)f(xn-l) ± 8o(Xl - xo) 
± 81 (X2 - Xl) ± ... ± 8n-l(X - Xn-l). 

We may add that if the elements XI-XO,X2-Xl, 
... , X - Xn-t have very small numerical values, each of 
the quantities ± eo, ± 81> ... , ± 8.-1 will be very close 
to zero, and therefore the same will be true for the 
sum ± 80 (Xl - Xo) ± 8dx2- xd ± ... ± en-t(X - Xn-J), 
which is equivalent to the product of X - Xo by a mean 
between these quantities [the ek; again, Cauchy has used 
the corollary about means]. Granting this, when we com
pare equations (2) and (7) we see that we would not 
change perceptibly the value of S that was calculated by a 
mode of division in which the elements of the difference 
X - Xo have very small numerical values if we went to a 
second mode of division in which each of those elements 
was further subdivided into others. 
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Now suppose that we consider two separate modes of 
division of the difference X - xo, in both of which the 
elements of the difference have very small numerical 
values. We can compare these two modes with a third 
mode, chosen so that each element, from either the first or 
second mode, is formed by bringing together several ele
ments of the third mode. To satisfy this condition, it suffices 
for each of the values of x placed between the limits Xo and 
X in the first two modes to be used in the third; and we can 
prove that we change the value of S very little in going from 
the first or the second mode to the third-and therefore, in 
going from the first to the second. Thus, when the elements 
of the difference X - Xo become infinitely small, the mode 
of division has only an imperceptible effect on the value of 
S; and, if we let the numerical values of these elements 
decrease while their number increases, the value of S ulti
mately becomes, for all practical purposes [sensiblement] , 
constant. Or, in other words, it ultimately reaches a certain 
limit that depends uniquely on the form of the function 
f(x) and on the bounding values xo, X of the variable x. 
This limit is what is called a d¢nite integral. 

If in the definite integral S; f(x) dx we let one of the two 
o 

limits of integration , for instance X, vary, the integral itself 
will vary with that quantity. And if the limit X, now 
variable, is replaced by x, we obtain as a result a new 
function of x, which will be what is called an integral taken 
from the origin x = Xo. Let 

(1) §(x) = f:/(X) dx 

be that new 
(Lecture 22) 
(X - Xo) l] 

function. We derive from formula (19) 
[that is, I; J(x) dx = (X - xo)J[xo + {}. 

o 

(2) §(x) = (x - xo)J[xo + {}(x - xo)],§(xo) = 0, 

() being a [nonnegativel number less than one. Also, from 
formula (7) (Lecture 23) [that is, S; f(x) dx = IJ J(x) . 

Ix 0 0 

dx + ~ J(x) dx, where Xo ;;;; ~ ;;;; X], 

fx+/X JX JX+1X 
XO J(x) dx - x/(x) dx = x J(x) dx = lif(x + (}y.), 
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or 

(3) ff (x + IX) - ff (x) = IX] (x + OlX). 

It follows from equations (2) and (3) that if the function 
] (x) is finite and continuous in the neighborhood of some 
particular value of the variable x, the new function ff (x) 
will not only be finite but also continuous in the neighbor
hood of that value, since an infinitely small increment of x 
will correspond to an infinitely small increment in ff (x). 
Thus if the function] (x) remains finite and continuous 
from x = Xo to x = X, the same will hold for the function 
ff (x). In addition, if both members of formula (3) are 
divided by a, we may conclude by passing to the limits that 

(4) ff/(X) = ](x). 

Thus the integral (I) considered as a function of x has as its 
derivative the function] (x) under the integral sign f. 



Chapter 1 

Notes 

Works are cited by author and reference number. 

I. Of course this precept was violated often in practice; there has 
never been a mathematician who did not leave "obvious" steps 
out of proofs. But these omitted steps are supposed to be easily 
suppliable, at least in theory. 

2. For examples of this attitude see the introduction to Bolzano's 
Rein analytischer Beweis (Bolzano [3]), Cauchy's Cours d'analyse 
(Cauchy[I]), and Abel [2] (also in Abel [I, vo!' I, p. 219]). Finally, 
see Poincare [I, pp. 120-122], who stated that through the labors 
of nineteenth-century mathematicians "absolute rigor" had been 
attained. 

3. Of course there are gaps of various kinds in the reasoning of 
Euclid and Archimedes (as there are in nineteenth-century mathe
matics), bu t these gaps were not widely noticed in the 1820s. And 
it was not the occasional lapses in Greek geometry that made the 
subject so widely admired. A look at T. 1. Heath's editions of The 
Thirteen Books if Euclid's Elements or The Works if Archimedes will 
illustrate amply the claims I have made for them. 

4. Cauchy's COUl'S d'anaD'se (Cauchy [I]; also in Cauchy [14, series 
2, vol. 3, pp. ii-iii]); italics mine. Compare Cauchy'S Calcul 
irifinitesimal (Cauchy [15]; also in Cauchy [14, series 2, vol. 4, 
preface]). All page references to these two works will be from the 
editions reprinted in Oeuvres completes d' Augustin Cauchy (Cauchy 
[14]). 

5. These impressions come from a number of classic and modern 
expositions. See, for instance, Voss [I, pp. 59, 60, 95]; E. GOUl'sat, 
COUI"S d'analyse mathematique, vol. I (Paris: Gauthier-Villars, 
1910), pp. 10, 12; Ch.-J. de la Vallee-Poussin, Cours d'ana£vse 
irifinitisimale, vol. I (Louvain and Paris: Gauthier-Villars, 
1914), pp. 13-14; F. Klein, Elementarmathematik vom hOheren 
Standpunkte aus, vol. I (Berlin: Springer, 1924), pp. 229-230, also 
pp. 166,218,254, and vol. 3 (Berlin: Springer, 1928) pp. 26[, 62; 
Pierpont [I, especially pp. 32-35]; G. Kowalewski, Die klassischen 
Probleme der Analysis des Unendlichen (Leipzig: Teubner, 1937), pp. 
38-42, 69, 104-105, 350; D. Widder, Advanced Calculus (New 
York: Prentice Hall, 1947), pp. 233-235, 242; T. M. Apostol, 
Mathematical Analysis (Reading, Massachusetts: Addison-Wesley, 
1957), pp. 66, 356; J. Dieudonne, Fondements de {'analyse modeme 
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(Paris: Gauthier-Villars, 1963), pp. 48-50; R. Courant and F. 
John, Introduction to Calculus and Anarysis, vol. 1 (New York: Inter
science, 1965), pp. 75,97,511-512. 

6. For examples of this reaction, see Robinson [I, chapter 10]. See 
also Grattan-Guinness [3, pp. 49, 60-61]. An extreme form of this 
reaction is in Dubbey [I]. Both Robinson and Grattan-Guinness, 
nevertheless, have made acute observations concerning many 
aspects of Cauchy's work. 

7. As Cauchy remarked in the preface to the COUTS d'anaryse 
(Cauchy [14, series 2, vol. 3, p. ii)), some things "for those who 
want to make a special study of analysis" were to be found only in 
the notes at the back of the book. 

8. A good short account of Cauchy's contribution to analysis is 
given by Klein [l, vol. I, pp. 82-87]. A good briefintroduction to 
all aspects of Cauchy's life and work, with an extensive and 
critically annotated bibliography, is Freudenthal's article on 
Cauchy (Freudenthal [I]). A faithful description of much of 
Cauchy's work, together with English translations of extensive 
selections from the original texts, may be found in Iacobacci [l]. 
See also Dieudonne [I, vol. I, especially chapters 2-6]. 

9. Coul's d'anaryse (Cauchy [14, series 2, vol. 3, p. 19]). 

10. Encyclopedie article entitled "Limite"; see d' Alembert and de 
la Chapelle [I]. The first sentence quoted is by de la Chapelle, the 
second by d'Alembert. D'Alembert later defined the differential 
quotient as the limit of the ratio of the finite differences; this 
definition of dyldx was not original with d'Alembert; see Boyer [I] 
and Cajori [I] for numerous examples of mathematicians who 
defined the differential quotient in terms of limits-including 
Newton and Leibniz. 

II. Coul's d'anaryse (Cauchy [14, series 2, vol. 3, p. 54)). 
Freudenthal [I] has also noted the modernity of this statement. 

12. Coul'sd'anaryse (Cauchy [14, series 2, vol. 3, pp. 54-57]). 

13. COUI'S d'anaryse (Cauchy [14, series 2, vol. 3, pp. 58-61, 
121-123]). 

14. The best-known pre-1860 reference is Abel's brief journal 
entry "Bolzano is an able man." Also, N. I. Lobachevsky read 
Bolzano's 1817 paper on the intermediate-value theorem; see 
Grattan Guinness [3, p. 52n]. We can only conjecture about what 
work ofBolzano's Abel had seen. Abel'sjournal entry was quoted 
by L. Sylow [I, p. 13]; Sylow added that he did not understand 
the reference when he first read it, believing "Bolzano" to be the 
name of a town, until reading about the mathematician Bo1zano 
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in the En;:,yclopiidie del' Mathematischen Wissenschajten-proof of how 
little Bolzano was known until historically minded mathema
ticians like Otto Stolz and Hermann Hankel rediscovered him. 
Dugac [3, p. 52; 2, p. 47] has shown recently that Weierstrass 
knew and used Bolzano [3] as early as 1865. 

15. Rein anafytischer Beweis des Lehrsatzes dass zwischen je zw~ 
Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele 
Wurzel del' Gleichung liege (Prague: 1817) (Bolzano [3]). 

16. Die dr~ Probleme del' Rectification, del' Complanation und del' Cubirung, 
ohne Betrachtung des unendlich Kleinen, ohne die Annahmen des 
Archimedes, und ohne irgend eine nicht streng erweisliche Voraussetzung 
geliist, in Bolzano [4, vol. 5, pp. 67-137]. 

17. Rein anafytischer Beweis (Bolzano [3, sections I-II]. 

18. We cite both definitions of continuity in our full discussion in 
chapter 4 and discuss both proofs in chapter 3. 

19. Rein anafytischer Beweis (Bolzano [3, article 6). Bolzano gave a 
proof in this paper that the existence of the limit of a Cauchy 
sequence involves no contradiction (in effect proving the neces
sity of the Cauchy criterion for convergence), then used the suffi
ciency of the criterion to prove that a bounded set of real numbers 
has a least upper bound; finally, he used the least-upper-bound 
property to prove the intermediate-value theorem. Cauchy's own 
treatment of the criterion is for series; he first proved its necessity, 
then stated-without further argument-its sufficiency in COUTS 

d'anafyse (Cauchy [14, series 2, vol. 3, pp. 115-116]). He used it
albeit rarely-in discussing convergence for particular series. 
The Cauchy criterion and its history are treated in detail in 
chapter 4. 

20. Functionenlehre, written in 1830, but not published until the 
twentieth century. The sections discussed are reprinted in 
Bolzano [4, vol. I, pp. 144-183]; Cauchy is cited on p. 94. 
Compare Bolzano's Die binomische Lehrsatz (Bolzano [I]) discussed 
in Stolz [I]. 

21. Not mentioned in print, however, until after Weierstrass had 
published his own example of such a function in 1872; Boyer [I, p. 
282]. For Bolzano see Kowalewski [I]. Kowalewski [I, p. 315J 
stated that the Bohemian Academy first aired this discovery of 
Bolzano's in 1921, bu t that Bolzano had found the function before 
1834. 

22. Grattan-Guinness [3, pp. 51 ff]; see also Grattan-Guinness [2). 

23. Compare Grabiner [I). 

24. Freudenthal [2) and Sinaceur [I). 
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25. See chapter 4; COUTS d'ana{yse (Cauchy [14, series 2, vol. 3, pp. 
128-129]) . 

26. Coursd'ana{Yse (Cauchy [14, series 2, vol. 3, p. 120]). This proof 
is discussed in Robinson [I, pp.)n 1-273], and in Grattan
Guinness [4, pp. 476-477]. 

27. Stolz [I, p. 265]; in 1830, FunctionenlehTe (Bolzano [2, section 
75]; in Bolzano [4, vol. 1, p. 114]); compare van Rootselaar [I, 
p. 276]. 

28. Abel [2] (also in Abel [I, pp. 221-250, and footnote to 
theorem V, pp. 224-225]). 

29. "Uniform convergence," as Grattan-Guinness [3, p. 123] has 
put it, "was tucked away in the word 'always,' with no reference 
to the variable at all." 

30. For a fuller discussion of Cauchy's assumptions about com
pleteness, see chapter 4. 

31. COUTS d'ana{yse (Cauchy [14, series 2, vol. 3, p. 19]) states that a 
real number is the limit of a sequence of rationals. Cauchy did 
define the product of a rational number A by an irrational 
number B in CoUts d'ana{yse (Cauchy, [14, series 2, vol. 3, p. 337]): 
If lhere is a sequence of rationals b, b', b", . .. [expressed verbally 
by Cauchy] that approach B closer and closer, then the product 
AB will be the limit approached by Ab,Ab',Ab", .... But nothing 
is said here about difining B or about the sequences b, b', b", ... , 
Ab, Ab', Ab", . .. satisfying the Cauchy criterion. In any case, the 
point had already been made in antiquity; see, for example, 
Archimedes, On the Measurement of the Circle. In 1817, by contrast, 
Bolzano did show that the Cauchy criterion implied that a 
bounded sequence of real numbers had a least upper bound, 
though Bolzano did not yet have his own theory of real numbers 
fully worked out. 

32. For Weierstrass see Heine [l], published in 1872. For Meray 
see Meray [I]. Compare Dedekind [I], published in 1872. The 
year 1872 was evidently a good one for real numbers; for Cantor, 
see G. Cantor [I], and Dauben [I]. 

33. Abel's writings abound with statements about rigor, espe
cially Cauchy's rigor; see, for example, Abel [2], where the COUTS 
d'anafvse is termed "an excellent work, one which should be read 
by all analysts who love mathematical rigor." This is often 
quoted, for example by Freudenthal [I, p. 135]. 

3+. For Abel's life see the article by Sylow cited in note I +, as well 
as the other articles in the memorial volume in which Sylow's 
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article appeared. Abel's life has been engagingly presented by 
Ore [I]. 

35. For Cauchy's influence on Bolzano, see, for example, Bolzano 
[2] (also in Bolzano [4, vol. I, p. 94]). See also Kolman [I, part V). 
Paul Funk [I, p. 133) quotes Bolzano as saying that Cauchy "is 
among all living mathematicians the one whom I most esteem 
and for whom I feel the most affinity, whose genius for discovery is 
responsible for some of the most important demonstrations." For 
Cauchy's influence on Dirichlet, see, for example, P. G. L. 
Dirichlet, "Sur la convergence des series trigonometriques, ... ," 
Crelles Journal 4 (1829): 157 -169 (also in Dirichlet [I, pp. 
117 -139, especially pp. 118-119]). Compare Dirichlet's "Sur les 
integrales Euleriennes," D'elles Journal 17 (1837) :56- 67 (also in 
Dirichlet [1, pp. 271-278, especially pp. 274, 277]). To document 
the influence on Riemann, see Riemann, "Ueber de Darstell
barkeit ... " (Riemann [1, for example pp. 234, 238-239]) for 
references to Cauchy and to work of Dirichlet closely related to 
Cauchy's. For Abel's influence on Weierstrass see Weierstrass [I, 
vol. I], where several papers study Abelian functions; and com
pare Biermann [I]. Weierstrass read Cauchy's works, though not 
until 1842, according to G. G. Mittag-Leffler [I]. Weierstrass 
occasionally referred directly to Cauchy; see, for example, Weier
strass [I, vol. 2, p. 90). 

36. Besides the books of 1821-1823, Cauchy's rigor could be 
learned from numerous articles; from Lefon.r sur Ie caicul differentiel 
(1829) (Cauchy [4)), or Lefons sur les aNlieations du caleul infinitesimal 
ii /a geometrie (1826-1828) (Cauchy [5]). Among the important 
translations, there was a German translation of Cours d'analyse by 
C. L. B. Huzler, Lehrbuch der algebraisehen Analysis (Cauchy [6]), 
and a German translation of Lefons sur Ie calcul differentiel by C. H. 
Schnuse, Vorlesungen iiber die Di[ferendalrec/l7lung (Cauchy [21)); 
there was also a Cauchy-based Dei melodi analilici (Cauchy [2]). 

37. F. N. M. Moigno wrote a Cauchy-based textbook, Lefons de 
caleul differentiel el de calcul integral, redz!!,ees d'apres les methodes et les 
OUl'rages .. . de M. A.-L. Cauchy (Moigno [I)); a German translation 
was rorlesullgen uber die Inl~gralrechllung, 1'0rzuglieh naeh den Melhoden 
lion A. L. Caurhy bl'OI'beitet (Moigno [2)). See also C. L. Schnuse's 
German translation, Cauchy [20), of Cauchy's Lecons sur les ajJJJli
cations du ealcul infinitesimal it la gfometrie (Cauchy (5)). Of impor
tance in spreading Cauchy's work in Sweden was a book, which I 
have not seen, based on the Calcul infiniftlsimal, C. J. Malmsten's 
T"or/esungen uhfi' Differential- und lnte.gralreclmul//!" according to 
l\littag-Leffier [I). What is essentially l'vloigno's version of 
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Chapter 2 

Notes 

Cauchy's fundamental theorem of calculus may be found in Birk
hoff [I , pp. 8-11). 

38. For the historical comments of the mathematicians, see first 
Klein [I, pp. 82-87); and then Stolz [I, especially p. 255); Staeckel 
[I); Brill and Noether [I); and Merz [I, vol. 2, chapter 13) (though 
Merz was not a mathematician, he had wide competence). 

39. See Merz [I, chapter I, "The Scientific Spirit in France")' See 
also Ecole Poly technique, Livre du centenaire 1794-1894, vol. I, 
"L'ecole et la science" (Paris: Gauthier-Villars, 1894). Valson [I, 
p. 66) states that Cauchy'S lectures were heard by not only French 
students but faculty from France and elsewhere; Cauchy's audi
tors included Ampere, Sturm, Coriolis, Lame, Dirichlet, Vallejo, 
Ostrogradsky, and Boniakovski. Boniakovski, for instance, ex
pressed his pride, as late as 1882, in being a disciple of Cauchy's; 
see Dugac [I, p. 30). 

40. See, for example, Kolman [1) and Winter [I). 

I. This is largely true of Newton's calculus, too, though Newton's 
notation was somewhat less automatic in its application; he used i 
for the fluxion (differential quotient) of x and x or [Ii for its fluent 
(integral). (See discussion of Newton later in this chapter.) 
Leibniz's notation, of course, was the one generally used in the 
eighteenth century on the Continent. 

2. This opinion has recently been disputed by lushkevich [4, pp. 
151 ff). I do not claim that no one in the eighteenth century was 
interested in foundations; my thesis is that foundations were not 
considered of central importance by any mathematician until 
Lagrange. 

3. An extensive survey is given by Boyer [I, chapter 5, "Newton 
and Leibniz," and chapter 6, "The Period of Indecision"). 
Examples of the actual statements of Newton, Leibniz, 
L'H6pi tal, Johann Bernoulli, Jakob Bernoulli, Bishop Berkeley, 
Maclaurin, d' Alembert, Euler, John Landen, and Lagrange, 
may be consulted in Struik [1, chapter 5). 

4. An unusually thorough account in a short space of the prob
lems studied in eighteenth-century mathematics may be found in 
Hofmann [1, vol. 3, chapter 8). An extensive account may be 
found in M. Cantor [1, vols. 3-4) and Kline [I). A good selection 
of examples of eighteenth-century mathematics may be found in 
Struik [I). 

5. Besides the references already given, see Truesdell [1); E. L. 
Ince, Ordinm) Differential Equations (New York: Dover, 1944), 
appendix A, "Historical Note on Formal Methods of Integra-
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tion," pp. 529-539; I. Todhunter, A History of the Mathematical 
Theory of Probability (New York: Stechert, 1931); L. E. Dickson, 
History of the Theory of Numbers, 3 vols. (Washington, DC: 
Carnegie Institution, 1919-1923); Goldstine [I]. Primary sources 
which collect a large number of results include Maclaurin [l], 
Euler [3,4,5,8], and Lacroix [1]. 

6. The 1749 installment of d'Alembert's second paper on inte
gration, "Recherches du calcul integral," Mbnoires ... de Berlin 
(1749), may appear to be an exception to our generalization, 
since it contains his pioneering attempt to prove the fundamental 
theorem of algebra. For a criticism of the inadequacies of 
d'Alembert's proof from the nineteenth-century point of view, 
however, see Gauss, "Demonstratio nova theorematis omnem 
functionem algebraicam ... ," section 6, in Gauss [2, vol. 3, pp. 
3-56, especially pp. 6, 9]. A complete translation of Gauss's paper 
into German may be found in E. Netto, Die 4 Gauss'che Beweisen, 
Ostwalds Klassiker 14 (Leipzig: Engelmann, 1890). 

7. Proofs in number theory, though relying on formulas and 
making no explicit use of mathematical induction, are neverthe
less more rigorous than proofs in other parts of eighteenth
century mathematics. This is in part because the problems dealt 
with usually are finite, and also because number theory was 
treated in Euclid's Elements, so that a rigorous model existed. For 
examples of eighteenth-century number theory, see Struik [I, 
especially pp. 36-40) for Euler's tour de force on Fermat's last 
theorem for n = 3 and 4. 

8. Gruson [1,2]. 

9. For a discussion of Lagrange's interest in foundations and his 
promotion of the question in the Berlin Academy, as well as for 
the basic doctrines of Gruson and Lagrange, see later in this 
chapter. Although Gruson claimed that his 1798 paper was 
independent of Lagrange's 1797 ThCorie desfonctions analytiques, he 
certainly had read Lagrange's first exposition of their common 
doctrine, Lagrange [15] (also in Lagrange [9, vol. 3, pp. 439-476). 

10. There were no journals devoted solely to mathematics until 
the nineteenth century. Other leading eighteenth-century jour
nals, besides Berlin's, that published the mathematical contri
bu tions ofleading scientists include the Philosophical Transactions of 
the Royal Society of London, the Acta and Commentarii of the 
Imperial Academy at St. Petersburg, the Memoires of the Turin 
Academy, and the Memoiresofthe Paris Academy. Mathematical 
contributions were also made in the form of books and pamphlets. 
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II. As C. Caratheodory has remarked, "We should not ... speak 
oflack of rigor when we deal with methods of previous mathema
ticians that we can handle in a satisfactory way with the aid of 
techniques that we have acquired through the course of time. We 
should only speak of lack of rigor when some result has been 
obtained by means of a reasoning that cannot be logically main
tained" (quoted by Struik [2, p. 125] from the introduction to 
Euler [6, series 1, vol. 24, p. xvi]). Caratheodory's remark helps us 
evaluate eighteenth-century work more fairly, but it does not 
change the fact the period's mathematicians themselves did not yet 
have the techniques or the interest to put their methods on a 
basis rigorous by modern standards. 

12. For the detailed doctrines involved and for their influence on 
Cauchy, see first chapter 4. There are several extensive accounts 
of the debate; Grattan-Guinness [3, especially p. 2n] provides a 
list of most of them together with one of his own. Some of th(, 
relevant primary sources are excerpted in Struik [I, pp. 
351-369]. 

13. Thus we postpone our discussion of this debate until chapter 
4, where we discuss the concept of continuity and the importance 
of the debate abou t the vibrating string in clarifying that concept. 

14. Thus Jakob Bernoulli remarked [I, vol. 2, "EIlIMETPA," 
no. 10, p. 765] that "if equals are subtracted from equals, the 
results are equal" ought not to be applied to arguments involving 
infinitesimals. He gave no example, but we can easily supply one: 
Suppose, as the infinitesimalists like Johann Bernoulli and 
L'H6pital postulate, a + dx = a. Then adding dx to each side 
gives a + 2dx = a + dx. Subtracting a from each side yields 
2dx = dx, and dividing by dx yields the result 2 = I. 

15. Often quoted, for example by Struik [2, p. 149]. The fact that 
this statement could be attributed to d'Alembert, a man who for 
his time was quite interested in foundations, illustrates the prevail
ing attitude. Incidentally, Dugac, [3, pp. 6-7] though agreeing 
that the sentiment expressed is not inconsistent with d' Alembert's 
views, argues that the words "Ia foi vous viendra" are due instead 
toA. Fontaine (1705-1771). 

16. For a fuller treatment of this topic, see Grabiner [2]. 

17. The first full-scale book to receive respectful attention from 
mathematicians that was wholly devoted to explaining the foun
dations of the calculus was Simon L'Huilier, Exposition clementail'e 
des pl'incipes des calcuis Jupcl'ieurs (L'Huilier [I]), published in 1787 
but submitted as a prize essay to the Berlin Academy of Sciences 
in 1784. Its genesis is discussed later in this chapter. The second 
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such book in the century was Lazare Carnot's Rejlexions sur fa 
metaphysique du calcul infinitesimal (Carnot [I J), published in 1797, 
but based on the manuscript submitted to the Berlin Academy 
prize competition; Iushkevich [4) published the manuscript. The 
third was Lagrange's Fonctions ana!Jtiques (Lagrange [16]), 1797. 

18. These developments are well summarized in Hall [I). 

19. On popularized science, see the brief account in Frank 
Manuel, The Age oj Reason (Ithaca: Cornell, 1951), chapter 2; 
compare Paul Hazard, The European Mind, 1680-1715 
(Cleveland and New York: World, 1953). 

20. The Newton-Leibniz controversy was by no means limited to 
the question of who first had invented the calculus. A short 
account ofthe philosophical side of the controversy is given in A. 
Koyre, From the Closed World to the Irifinite Universe (Baltimore: 
Johns Hopkins, 1957), chapter II. Simultaneous discovery, as I 
have argued in the case of Bolzano and Cauchy, suggests the 
existence of a large body of work done by earlier thinkers; see 
Baron [I), of which chapter 7 has a bibliography giving 
background for Newton and Leibniz's contributions to the calcu
lus. Compare Boyer [I, chapter 6), and Hell, Philosophers at War: 
The Quarrel between Newton and Leibniz (New York: Cambridge U. 
Press, 1980). 

21. An overview of British statements on this subject may be 
found in Cajori [I). For a sample of the invective against 
Continental methods, see B. Robins, "Concerning the Nature 
and Certainty of Sir Isaac Newton's Methods of Fluxions and of 
Prime and Ultimate Ratios," 1735, in Robins [I, vol. 2, especially 
p. 7); compare the book's preface by James Wilson, especially pp. 
x, xxiv. Incidentally, Robins's paper was written as a reply to 
Bishop Berkeley's attack on the calculus. 

22. See Mendelsohn [I). See also Struik [2, chapter 7, especially 
pp. 117, 140). 

23. For Lagrange see later in this chapter. For Cauchy see 
chapter I. For Weierstrass see Klein [I, vol. I, pp. 283ff). For 
Dedekind, see his own remarks in the introduction to Stet(gkeit und 
irrationale {phlen, in R. Dedekind, Gesammelte mathematische Werke, 
vol. 3, (Braunschweig: Vieweg, 1932), pp. 314-334; translated in 
the Dover reprint of his Continuity and Irrational Numbers, in R. 
Dedekind, Essays on the Theory q{ Numbers (New York: Dover, 
1963), p. I. For the role of schools, see also Merz [I, chapters 1-3). 

24. One sign of the new attitude Lagrange brought to the subject 
was his claim that his "principles" of the subject were "in-
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dependent of all metaphysics." See later in this chapter for 
further discussion. 

25. In a letter to d'Alembert of24 February 1772 (Lagrange [9, 
vol. 13, p. 229)). It cannot be a coincidence that Lagrange made 
this statement in the same year that he published the first version 
of his new foundations of the calculus. 

26. Struik [2, p. 137). Struik holds that this pessimism was partly 
due to falsely identifying the success of mathematics with that of 
mathematical physics; though he is correct, this does not con
stitute a complete explanation. 

27. D. Diderot [1, section 4, pp. 180-181). 

28. Among mathematicians the principal critic was Michel Rolle. 
Among Continental theologians, an attack on infinitesimals was 
made by Bernhard Nieuwentijdt. These attacks provoked replies 
from Leibniz, who abandoned infinitesimals in favor of a version 
of the limit concept. See Boyer [I, pp. 213ff, 241-242). Compare 
G. Vivanti [I). 

29. The AnalYst, or a Discourse Addressed to an Infidel Mathematician 
(Berkeley [2)). Berkeley's attack on the ideas of the calculus can 
be seen, in part, as coming from his "idealist" philosophy and 
thus as an aspect of his criticism of the prevailing Lockeian and 
Newtonian ideas, including the Newtonian concepts of absolute 
space and absolu te motion. See, for instance, Berkeley's Principles 
oj Human Knowledge, sections 101-133. Berkeley held that "to be is 
to be perceived"; what could not be perceived, or even imagined 
to be an object of perception (such as absolute space or in
finitesimals), did not exist; see Berkeley [2, section 5, queries 7 -8). 
But according to both Berkeley's explicit statements and the 
general emphasis of his attack on the calculus, the Ana6,st was 
principally motivated by his religious concerns. He replied to 
critics of the AnalYst in a work even more explicitly religious in its 
inspiration, if not its content: A Defence oj Freethinking in 
Mathematics (Berkeley [I)). 

30. For a good short introduction to the thought of this period, see 
C. Brinton, The Shaping oj Modern Thought (Englewood Cliffs: 
Prentice-Hall, 1963), chapter 4. 

31. Berkeley [2). Besides the various collections of Berkeley'S 
works, there are other places to consult at least selections from the 
AnalYst: J. R. Newman, ed., The World oj Mathematics, vo!' I, pp. 
286-293; Struik [1, pp. 333-338); D. E. Smith, Source Book in 
Mathematics, vo!' 2 (New York: Dover, 1959), pp. 627 -63+. The 
AnalYst is worth reading in full; Berkeley is a master polemicisl. I 
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shall discuss the mathematical particulars of Berkeley's attack 
later in this chapter. 

32. For Maclaurin see the preface to Maclaurin [2, book I). For 
d' Alembert see d' Alembert [2, 4). In neither work did d' Alembert 
cite Berkeley, but the similarity oflanguage and argument is too 
close for coincidence. For Lazare Carnol, see his remarks on 
"compensation of errors" in Carnot [I). For Lagrange see the last 
sections of this chapter, p. 38ff. 

33. See the first section of chapter 3. 

34. The linguistic distinction between analysis and synthesis 
given here goes back to the Greeks and was common in the 
eighteenth century. Euler used the words Anarytik and Algebra 
interchangeably; see Euler [8) and C. Boyer, "Analysis: Notes on 
the Evolution of a Subject and a Name," Mathematics Teacher 
47(1954) :450-462. 

35. On this point see H. Butterfield, The Origins if Modem Science, 
/300-1800 (New York; Macmillan, 1958) and Hall [I). 

36. In the light of Thomas Kuhn's thesis about the total breaks 
brought about by scientific revolutions, it may be of value to 
point out that this is the way mathematics usually has progressed. 
As Hermann Hankel said in Die Entwicklung der Mathematik in den 
letzen Jahrhunderten (Tiibingen: 1884, p. 25), "In most sciences 
one generation tears down what another had built, and what one 
has established another undoes. In mathematics alone each gene
ration builds a new story to the old structure" (quoted by Boyer 
[2, p. 598]). Most mathematical activity, including many major 
innovations, is what Kuhn has called "articulation of the para
digm"; see Kuhn [I, chapter 3, especially pp. 32-33). I would 
argue, however, that at least the revolutions associated with the 
names of Cantor, Cauchy, and whoever first axiomatized 
geometry were revolutions in Kuhn's sense; see Grabiner [3). I 
shall return to this question in the conclusion to this book. 

37. The theory, usually attributed to Eudoxus, can be found in 
Euclid's Elements, books V and X. For references to it, see Newton 
[4, p. 343); Leibniz [2, pp. 287-289), a letter to L'H6pital, 14June 
1695; excerpt quoted by Robinson [I, p. 265); Maclaurin [2, book 
I); L'Huilier [I; 2, passim). 

38. Euclid, Elements, book V, definition +. 
39. E. J. Dijksterhuis, Archimedes (Groningen: 1938). 

40. On the Measurement if the Circle, in T. L. Heath [2, pp. 91-93). 

41. The details of how one shows this can be found in Euclid, 
Elements, book XII, proposition 2. 
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42. See the papers of Newton and Leibniz cited in note 47. 

43. Most notably by Maclaurin and L'Huilier, for many specific 
results, in Maclaurin [2) and L'Huilier [I). 

44. See The Method of Archimedes, discovered by Heiberg in 
1906, reprinted in Heath [2). 

45. See note 3 for references to fuller discussions. 

46. I shall not treat here the related problem of the convergence of 
series. But when the question was how the successive partial sums 
approach the sum of an infinite series, eighteenth-century discus
sions are similar to those for the differential quotient of x2• A more 
detailed discussion of eighteenth-century ideas on convergence 
will be found in chapter 4. 

47. Newton [5, p. 141). For Leibniz see first Leibniz [4). His 
various views on infinitesimals may be found in his letters, 
published in Leibniz [2); for example, see his letters to Varignon, 
1702, in Leibniz [2, vol. 4, pp. 91-95, 106-110). For L'Hopital 
see L'Hopital [I). For Bernoulli see Die Dijferentialrechnung 
(Leipzig: Akademische Verlags-Gesellschaft, 1924 [sic]), bu this 
views were known through L'Hopital. For Newton's argument 
against infinitesimals see Newton [1, p. 39). Both Berkeley 
(Berkeley [2, sections IX, XVIII)) and Lagrange, Fonctions analy
tiques (Lagrange [16, p. 3); also in Lagrange [9, vol. 9, p. 17]) 
viewed neglecting infinitesimal quantities as introducing errors. 
For Lagrange's criticisms see later in this chapter. For a modern 
rigorous treatment of infinitesimals based on powerful logical 
methods, see Robinson [I). 

48. Newton [3, pp. 49, 52). Newton wrote 0 where we have h. This 
o notation, which was borrowed from James Gregory, was ap
parently intended to suggest a small increment. 

49. Berkeley [2, sections XXX, XXXI); d'Alembert [2); 
Lagrange, Fonctions anarytiques (Lagrange [16, p. 4); also in 
Lagrange [9, vol. 9, p. 17)). In fairness to Newton, it should be 
emphasized that probably he had meant here to give an expla
nation, not a rigorous justification, of the neglect of h. 

50. Newton [I, pp. 38-39); Newton [5, p. 142). Excerpts from 

Newton's writings on the calculus may be consulted in Struik [1, 
pp. 291-312). 

51. Maclaurin [2, book I, p. 289), d'Alembert [1,4), d'Alembert 

and de la Chapelle [I), Lacroix, [1, vol. 1, p. 6). I shall discuss the 
limit concept in the eighteenth century at greater length in 
chapter 4. 

52. Berkeley [2, sections XIII-XVI, XVIII, XXXI). 
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53. Berkeley [2, sections XXI - XXII). The demonstration rests 
on Apollonius, Conics, book I, proposition 33. 

54. Carnot [I, sections X, XXXVI, et passim). The circumstances 
under which arguments like Carnot's are valid are discussed in 
Grattan-Guinness [l]. On Carnot see Gillispie [I), especially the 
essay on Carnot [I) by A. P. Iushkevich (Iushkevich [4]). Note 
that the 1813 revision of Carnot's work was much enlarged and 
Carnot's original doctrine mixed with those of others. 

55. Lagrange [8) (also in Lagrange [9, vol. 7, pp. 597 -599)). 
Compare Fonetions ana!Jtiques (Lagrange [16, pp. 2-3); also in 
Lagrange [9, vol. 9, p. 7]). 

56. Maclaurin [2, book I). For the algebraic-style arguments 
modeled on the method of exhaustion, see Maclaurin [2, book II, 
p. 58Iff). My example is simpler than Maclaurin's usually are; I 
have not done justice to his ingenuity, although the principle is 
the same. 

57. Lagrange gave no explicit reason for this equivalence. He 
may have argued that, if (a - b) is less than any given quantity, 
then the Newton -d' Alembert limit concept allows the conclusion 
that a = b, so that a - b = 0; yet, for instance, 
lim[(a - b)/(a - b)) has a finite value. For Euler see Euler [3, 
section 83ff]; a selection may be found in Struik [I, pp. 38-1--386]. 
F or Laplace see Laplace [I]; on p. 7-1- he stated as the first 
principle of the differential calculus that "two quantities whose 
difference can be proved to be less than any given magnitude are 
evidently equal to each other." For Lagrange's comment, see 
Fonetions anafytiques (Lagrange [16, pp. 2-3); also in Lagrange [9, 
vol. 9, p. 16]). 

58. Landen [I), but Landen did not identify the power series he 
got with Taylor series; Arbogast [1,2); Gruson [1]; Lagrange [15); 
and compare Fonetions anafytiques (Lagrange [16]). 

59. Cauchy [16) (also in Cauchy [1-1-, series 2, vol. 2, pp. 
276-282]). Compare Calcul infinitesimal (Cauchy [15, le<;on 38); 
also in Cauchy [1-1-, series 2, vol. -1-, p. 230)). 

60. Detailed examples are given in chapters -1--5. For Lagrange's 
influence on Cauchy, see these chapters. Also see later in this 
chapter. 

61. For more detail on this point, see Grabiner [2). 

62. Lagrange [9, vol. 14, p. 173). This was Lagrange's first teach
ing job; he was eighteen. P. E. B. Jourdain has claimed that 
Lagrange's views at this time were those later expounded in the 
Fonetions anafytiques (Lagrange [16)). This is probably not the case; 
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Lagrange accepted the views of Newton and d' Alembert as late as 
1760; see note 66. For Jourdain see Jourdain [1]. 

63. Gerdil [I]. The interest in mathematical infinity on the part 
of theologians was already evident in medieval times. In the 
eighteenth century, besides Gerdil there were Nieuwentijdt and 
Berkeley. For Nieuwentijdt see Boyer [I, pp. 213-214]; for the 
views of Fontenelle, see Boyer [I, p. 242). In the nineteenth 
century, the most notable examples are Bolzano and Cantor. 

64. Gerdil [I, p. 171f]. 

65. This was of course Berkeley's view of 1734, though Lagrange 
did not say so. See note 68. Lagrange's note (Lagrange [8]) is 
reprinted, but without Gerdil's paper, in Lagrange's Oeuvres 
under the title "Note sur la metaphysique du calcul infinites
imal" (Lagrange [9, vol. 7, pp. 597 -599]). 

66. Lagrange [8, p. 18) (also in Lagrange [9, vol. 7, pp. 598-599]). 
Lagrange's discussion closely resembled those given by 
d'Alembert in his Encyclopedie articles and in d'Alembert [4]. 
D' Alembert [I] was cited by Gerdil [I). 

67. Lagrange [15] (also in Lagrange [9, vol. 3, pp. 439-476]). 

68. Lagrange certainly was acquainted with some of Berkeley's 
arguments. Unfortunately, there is no evidence about when, if 
ever, he read the AnalYst (Berkeley [2)). He knew the idea of 
compensation of errors; Gerdil [I, p. 17]. He might have learned 
some of Berkeley's criticisms through their adaptation in 
d'Alembert's articles (note 66). We know Lagrange read the 
work of his friend and correspondent d'Alembert; in 1797-1799 
he expressed himself in exactly the language d'Alembert had 
used; see notes 89-90. Lagrange did read English, as his citations 
of Colin Maclaurin andJohn Landen show, so he might well have 
read Berkeley [2). 

69. See, for instance, his major papers on algebra, Lagrange (13) 
and Lagrange [12]. I shall go into this point more thoroughly in 
chapter3. For the generality of his mechanics, see Lagrange [6,7). 

70. Lagrange [15) (also in Lagrange [9, vol. 3, pp. 439-476]). The 
purpose of Lagrange [IS] basically was to give an operational 
calculus for the operators d and dldx, including results like 

eh(du/dx} - 1 = hduldx + h2/2!d2u/dx2 + h3/3!d3u/dx3 + .... 
For an account of this paper, see Koppelman [I, especially pp. 
158-160]. 

71. The origin of his idea (Lagrange [15); also in Lagrange [9, vol. 
3, pp. 442, +45]) was Euler's Introductio (Euler [5]) which derived 
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the infinite-series expansions for all the common transcendental 
functions without appearing to appeal to the concept of differen
tial quotient. See Struik [I, pp. 345-351) for a sample of Euler's 
style. Euler's view will be discussed in chapter 3. In the Fonciions 
anarytiques (Lagrange [16]) Lagrange deduces the well-known 
properties of the derivative from his definition. Lagrange's no
tation p, p', pI', ... is not our notation for denvatives, but the 
notation he introduced for the functions u, u', ... in the Taylor 
series is-and Lagrange was its originator. 

72. Lagrange [15) (also in Lagrange [9, vol. 3, p. 443]). 

73. For instance, in 1746 d'Alembert, who previously had been 
little known, gained much renown and began a brilliant career 
by winning the Berlin prize competition on finding the causes 
of the winds. Both Euler and Lagrange had won the Paris 
Academy's prize several times. On prizes see Hankins [I]. 

74. The prize competition was set by the "Classe de mathema
tiques," which in 1784 included Lagrange, Johann (II) Ber
noulli, and Johann Karl Gottlieb Schulze. Lagrange was the 
leading light; his long concern with the problem strongly in
dicates that posing it was his idea. This conclusion is supported by 
Hofmann [I, vol. 3, p. 68] and Iushkevich [4, p. 155]. 

75. Apparently because the Archimedean axiom is violated. For 
instance, d'Alembert said, "Given any magnitude, we can always 
find a magnitude larger than it." This version of the 
Archimedean axiom in the article "Limite" in the Encyclopedie 
(d'Alembert and de la Chapelle [I]) is clearly violated by "in
finite magnitude." According to Gerdil [I, p. 2n], Gerdil, 
Jacquier, and Boscovitch all held "infinite magnitude" to be 
con tradictory. 

76. This phrase has a clear Lagrangian ring. Compare the full 
title of his fionctions anarytiques (Lagrange [16]) and the lan
guage of Lagrange [15). 

77. "Substituted for the infinite" recalls Lagrange's comments on 
Gerdil's paper. 

78. This requirement seems to reject the method of exhaustion in 
advance. 

79. The whole proposal may be found in Lagrange [10, pp. 
12-13). It is reproduced in Dugac [3, p. 12). 

80. Lagrange [II, p. 8). All subsequent quotations from the 
committee's report are from this page; the report is quoted from 
extensively in Dugac [3, p. 12]. 
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81. L'Huilier's essay (L'Huilier [I I), which used a combination of 
the Euclidean theory of irrationals and the limit concept, was 
fairly rigorous in appearance. There was some confusion, how
ever, about what happened when-or if-a variable reached its 
limit. For instance, he wrote, "If a variable quantity at all stages 
enjoys a certain property, its limit will enjoy this same property" 
(L'Huilier [I, p. 167]), a statement called in the eighteenth 
century "the law of continuity." L'Huilier's essay was long and 
tedious; it was not algebraic enough to have satisfied Lagrange, 
and not enough of the received results of the calculus were 
deduced. My conclusions are based on my reading ofL'Huilier's 
essay, since Lagrange did not go beyond the one-page critique of 
Lagrange [II]. L'Huilier's work was expanded into a full-scale 
Latin treatise, L'Huilier [2). 

82. As maintained by G. Vivanti [I, p. 645]. Vivanti is certainly 
correct in stating that the episode increased Lagrange's dis
satisfaction. Vivanti held, however, that it was Lagrange's dis
satisfaction with the winning essay that was decisive; I believe that 
it was the dissatisfaction caused by reading scores of inadequate 
papers on a subject they claimed to understand, but clearly did 
not. 

83. See "Advertissement" in the 2nd ed. of Mecanique analytique 
(Lagrange [7); also in Lagrange [9, vol. II, p. xiv)). Since this 
statement did not appear in the 1st ed. (Lagrange [6]), its appear
ance after the Fonetions analytiques (Lagrange [16] may be viewed 
as Lagrange's expression of confidence in his achievement in 
Fonetions analytiques or (I think less plausibly) as evidence that he 
did not worry about foundations in 1788. 

84. Delambre [I, p. xxxix]. Delambre relates that this "repos 
philosophique" lasted until the Revolutionary government 
assigned Lagrange to serve on the Weights and Measures 
Commission. 

85. Fonetionsanalytiques (Lagrange [16, p. 5); also in Lagrange [9, 
vol. 9, p. 19]). 

86. Lagrange [2]. 

87. Fonetions analytiques (Lagrange [16, pp. 2-3]; also in Lagrange 
[9, vol. 9, p. 16]). 

88. Fonetions analytiques (Lagrange [16, p. 5], [9, vol. 9, p. 17]). 
Berkeley showed that the errors were compensated in the case of 
finding the tangent to a parabola. Incidentally, Lazare Carnot 
took Lagrange's statement that it was difficult to demonstrate 
that the errors were always compensated as praise for himself for 
having accomplished this difficult task! But Lagrange, since he 
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did not adopt Carnot's views, clearly meant it as criticism. See 
Carnot [2, pp. 47-48]. 

89. Fonctions analytiques (Lagrange [16, p. 4]; also in Lagrange [9, 
va!. 9, p. 17]). This argument is borrowed almost verbatim from 
the Encyclopedie article "Fluxion" by d'Alembert (d'Alembert 
[2]), though Lagrange did not cite that article. It is instructive 
to compare Lagrange's criticisms with Lazare Carnot's whole
hearted acceptance of all the earlier foundations and his claim 
that they were equivalent to his own; here Carnot said that 
Lagrange accepted fluxions because Lagrange said that everyone 
has an idea of velocity; Cam at [2, p. 167]. 

90. Lagrange, Fonctions analytiques (Lagrange [16, p. 4]; also in 
Lagrange [9, va!. 9, p. 17]). This argument, too, including the 
phrase "foreign idea," comes from d' Alembert [2]. Lagrange's 
attack on using the idea of motion in analysis was repeated by 
Balzano, Rein analytischer Beweis (Balzano [3, section II]). 
Balzano's very title reinforces this point. 

91. Lagrange Fonctions analytiques (Lagrange [16, pp. 3-4]; also in 
Lagrange [9, va!. 9, pp. 16-18]). Compare Berkeley [2, section 
IV, query 31]. 

92. Lagrange [2] (also in Lagrange [9, va!. 7, p. 325]). The 
subtangent and subsecant are, respectively, the x intercepts of the 
tangent and secant. The argument itself had appeared earlier in 
the same words in the introduction to Gruson [I] and reminds one 
of Berkeley'S remark that the subsecant cannot become a sub
tangent. Lacroix, following L'Huilier, effectively met this objec
tion, which he did not explicitly mention, by abandoning the 
"never surpass" requirement in 1810. See chapter 4, pp. 84-85. 
See also Dugac [3, pp. 13-16]. 

93. Lagrange [2, pp. 325-326]. He gave no reference, but this 
example is linked with the limit concept in d' Alembert and de la 
Chapelle [I] and in Newton [I], among other places. 

94. This argument too was first found in Gruson [II; it is exactly 
the kind of argument that would appeal to Lagrange. 

95. The Fonctions analytiques of 1797 (Lagrange [16]) appeared in a 
second edition in 1813 (Lagrange [17]). Another version of the 
first part, omitting the applications to geometry and mechanics, 
appeared in 1799 as Lefons sur Ie calcul des jonctions; this work 
appeared in a second edition in 1806 (Lagrange [4]). Lagrange's 
views were used in England as the basis for the reform of the 
teaching of the calculus at Cambridge; his ideas were set forth as a 
s~ries of notes to the English translation of Lacroix's shorter book 
on calculus (Lacroix [3]): Elementary Treatise on the Differential and 
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Chapter 3 

Notes 

Integral Calculus, tr. Charles Babbage, John F. W. Herschel, and 
George Peacock (Cambridge: 1816). The Fonctions analytiques 
itself was translated into German by J.-P. Gruson. Many other 
works were written using Lagrange's principles; a list of these, to
gether with other examples of Lagrange's influence, is given in 
Dickstein [I]. Finally, Lagrange taught these doctrines over a 
period of many years at the Ecole Poly technique, thus influenc
ing many future mathematicians. 

96. Italics mine; Rein analytischer Beweis (Bolzano [3]). Compare 
sections 1- II of that work, and note the references to Lagrange. 
Compare, further, chapters 3 and 4 of the present work. 

97. Valson [I, p. 27]; the other three were Vergil, Laplace's 
Mecanique celeste, and Thomas a Kempis's Imitation oj Christ. 

I. The universal-arithmetic view was originated by Isaac Newton, 
whose lectures on algebra at Cambridge (1673-1683) were pub
lished in 1707 under the title Arithmetica universalis (English trans
lation 1728: Newton [6]). General symbolic notation had been 
introduced in 1591 by Francois Viete; Struik [I, pp. 74-81] has 
a selection from Viete's influential work. For examples of the 
general acceptance of the universal-arithmetic view in the 
eighteenth century see Euler [3] (reprint, p. 42); d'Alembert, 
"Algebre," in the Diderot-d'Alembert Encyclo/)idie; Maclaurin 
[1]. 

2. The prevailing view in the eighteenth century was that the 
basis for arithmetic was the theory of magnitudes in Euclid, 
Elements, book V: that is, Eudoxus' theory ofirrational ratios. See, 
for example, Newton [6], [2, vol. 2, p. 7]; Euler [8] (reprint, p. 42). 

3. See Newton [4, section 52]; (also in Newton [2, vol. 1, p. 22]) for 
an early and influential statement. 

4. Newton [4, section II] (also in Newton [2, vol. 1, p. 6]). 

5. The title itself, which may be translated as Introduction to the 
Analysis of the Infinite, makes this point. 

6. For a sample of Euler's methods see Struik [1, pp. 3+8-350]. A 
good brief introduction to all aspects of Euler's career may be 
consulted in Iushkevich [I]; the article has an extensive 
bibliography. 

7. Euler was not the only person to have tried this. Lagrange's 
work in this area has already been mentioned in chapter 2; for 
additional remarks see later in this chapter. As Lagrange himself 
pointed ollt,John Landen's Residual Analysis (1758, revised 1764; 
Landen [I]) had the same general program, though Landen did 



194 Notes 

not pay attention to the transcendental functions. In addition, 
much later, L. F. A. Arbogast, stimulated by Lagrange's sugges
tions along these lines in 1772, wrote-but did not publish-an 
attempt to base the calculus on the supposed algebra of infinite 
series; see Arbogast's remarks on his manuscript in Arbogast [1, 
pp. xii-xiv). Two copies of Arbogast's manuscript exist: one, 
Arbogast [2), of which the Laurentian library has kindly provided 
me a microfilm, is in the Bibliotheca Medicea-Laurenziana, 
Florence, Codex Ashburnham Appendix, sig. 1840; the other is in 
the Ecole Nationale des Ponts et Chaussees, Paris, MS 2089. An 
accurate, though incomplete account of the Florence copy of this 
MS is given by Zimmermann [I ). 

8. Euler [5) (also Euler [6, series I, vol. 8, section 4, p. 18]). Euler 
had recognized and discussed more general functional relations 
as early as 1734; the more limited definition quoted here was 
strictly to delineate the subject of the fntroduetio. For "analytic 
expression" Euler could have written equally well "algebraic 
expression." In his Algebra (Euler [8); reprint, p. 42) he used the 
words "Analytik oder Algebra" as synonyms; compare Newton 
[4, section 52) (also in Newton [2, vol. I, p. 22]). 

9. Fonetions analytiques (Lagrange [16); also in Lagrange [9, vol. 9, 
pp.22-23]). 

10. Fonetions ana(ytiques (Lagrange [16, chapter I, section 7]). 

II. Some specific results are discussed in chapter 5. This is the 
principal task of Lagrange's Fonetions ana(ytiques (Lagrange [16)) 
and his Lefons sur Ie ealcul desfonctions (Lagrange [4]). 

12. Once the question of convergence has been dealt with, in fact 
a great deal of information can be obtained about functions by 
studying their Taylor-series expansions. Weierstrass later ex
ploited this idea in his theory offunctions of a complex variable, 
retaining Lagrange's term "analytic function" to designate, for 
Weierstrass, a function of a complex variable with a convergent 
Taylor series. 

13. D'Alembert [2). 

14. Euler [3] (also in Euler [6, series I, vol. 10, p. 9]). 

15. Rein ana(ytischer Beweis (Bolzano [3, section IJ). Bolzano refers 
several times in the body of the Rein ana(ytischer Beweis to 
Lagrange's work. In a recent article Kitcher [I) has argued 
cogently for an Aristotelian origin for Bolzano's general philo
sophy of mathematics; I think he is correct, but this is not the 
whole story. The specifics of Bolzano's program seem to me 
Lagrangian. 
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16. Rein analytischer Beweis (Bolzano [3, section II]). 

17. The importance of this more general definition was first really 
appreciated in the work of Dirichlet, although Dirichlet did not 
origina te it. 

18. Equations numiriques (Lagrange [18)); also in Lagrange [9, vol. 
8, p. 243]), upon introducing the prime notation for derivatives. 

19. Though he had been somewhat concerned with convergence, 
as his work on the Lagrange remainder shows, he did not expect 
his general computations with series to admit any but trivial 
exceptions. For the Lagrange remainder, see chapter 5. 

20. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. iii)). 

21. COUTS d'analyse (Cauchy [14, series 2, vol. 3, pp. iii-v]); Calcul 
infinitesimal (Cauchy [14, series 2, vol. 4, "Avertissement," p. 10). 
Compare Cauchy [7) (also in Cauchy [14, series 2, vol. 8, p. 14]). 

22. Calculinfinitesimal (Cauchy [14, series 2, vol. 4, p. 10)). In 1822 
Cauchy gave the now familiar example e-x' and e- x' + e- 1/x' at 
x = 0; see Cauchy [16] (also in Cauchy [14, series 2, vo!' 2, pp. 
277 -278]). Compare Calcul infinitesimal (Cauchy [14, series 2, vol. 
4, p. 230)). But had this counterexample been the decisive reason 
for Cauchy'S rejection of Lagrange's views, he surely would have 
made more of it than he did in the Calcul infinitesimal. 

23. The explicit statement of the commutative, associative, and 
distributive laws together is in the work of George Peacock in the 
184Os. See Koppelman [I]. 

24. As Viete had pointed out in the very title of the work in which 
he had introduced general symbolic notation, Introduction to the 
Analytic Art (my translation from Latin). The meaning "problem 
solving" of the term "analytic" goes back to the Greeks. 

25. This is clear when one examines any of the leading 
eighteenth-century algebras, for example those of Newton, 
Maclaurin, Clairaut, and Bezout. 

26. An accessible summary is given in Condorcet [I]. The first 
systematic survey of the subject is Lagrange's Equations numiriques, 
1798 (2nd ed. 1808; Lagrange [18]), which is discussed later in 
this chapter. For specific examples, the reader may consult Euler 
[3], Maclaurin [I], Euler [8], D. Bernoulli [I]; also see notes 28, 
30,32. 

27. This view was expressed with particular force by Euler, who 
said that the "true sum" of the series I + t + t + t + ... was 2 
because when the series is carried on infinitely, the error term, 
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which he wrote as (x <Xl + 1 fl - X), becomes precisely zero; Euler 
[3, section 107]. 

28. Lambert [I]. A brief account of the method is found in Reiff 
[I ]. 

29. See later in this chapter, pp. 58-59. 

30. Newton [4, sections 21-29] (also III Newton [2, vol. I, 
pp. 10-12]), Compare Newton [3, pp. 7-IOJ (also in Newton [2, 
vol. I, pp. 39-41]). 

31. Newton [2, vol. I, pp. 10, 39J. Newton did not say why 
differing by "less than .. , a tenth part" was considered close 
enough, but some of his other remarks suggest that it was to make 
his approximation resemble the way a decimal fraction approxi
mated a real number. See, for instance, Newton [4, rule III] (also 
in Newton [2, vol. 1, p. I)). 

32. The exact equation fory according to Taylor's theorem would 
be, since Ply) = PIty - a) + a] = 0, 

y = a - P(a)/[P'(a) + (y - a)P"(a)/2! 
+ (y - a)2P"'(a)/3! + "'). 

Neglecting the higher powers ofthe small quantity (y - a) gives 
y = a - P(a)/P'(a). Newton's works of course were written before 
the publication of Taylor's theorem in 1715, but he knew the 
result himself. Maclaurin and Lambert presented Newton's 
method more generally than Newton. They took the general 
polynomial of form yn + qyn-l_ ... + A = 0, with first approxi
mation y = a, and gave the second approximation y = a + p 
according to the equation p = (A-an- 1+ qan- 1_ •• ')1 
(na n- 2+ q(n - 1 )an- 2+ ... ), which would be recognized readily 
by any eighteenth-century mathematician as p = - P(a)IP'(a); 
see Maclaurin [I, p. 234] and Lambert [I, pp. 148-149]. Euler 
and Lagrange, unlike Maclaurin and Lambert, preferred to 
present Newton's approximation in the language of the calculus; 
see Euler [3, section 234) and Lagrange's Equations numeriques 
(Lagrange [18J; see also Lagrange [9, vol. 8, pp. 258-285). 

33. Newton, rather than substitute his second approximation 
back in the original equation, used it as a first approximation to 
the solution of the cubic equation for p. 

34. I think that he derived it from his general requirement that 
errors in approximations be less than 1/10. Newton did not write 
the equation for p in general as I have done; his treatment was 
entirely verbal. My reconstruction of his supposed derivation of 
the inequality I have written 10ec < b2 is as follows: Let us forget 
about p3, which is very small, and consider only Cp2 + bp + e = O. 
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We can neglect ep2 with respect to bp, while not neglecting bp with 
respect to e, if ep2/bp < (I/IO)(bp/e). Cross-multiplying in this 
inequality, we obtain Newton's condition lOee < b2• Newton's 
verbal statement is in Newton [4, section 25) (also in Newton [2, 
vol. I, p. II)) and Newton [3) (also in Newton [2, vol. I, p. 49]). 

35. Euler [3, section 230). Becausey(a) = - b,y'(a) = nan-I. 

36. Possibly he had in mind the fact that the Taylor-series expan
sion for y(f - a) was a power series in (f - a), and its terms 
should diminish if (f- a) is less than unity. In factlJ - al < I 
implies Euler's condition an + b < (a + I )n, but the converse does 
not hold. 

37. The second term of the Taylor-series expansion for y(f - a), 
which for the given functiony is [(f - a)2. n(n - I )/2)an- 2, can 
exceed the first term (f - a)na n- I unless t(f - a) (n - I) < a. 

38. He usually chose to satisfy Newton's criterionlJ - al < a/lO, 
in which case the second term of the Taylor series becomes equal 
to or greater than the first only for n ~ 21. 

39. Nor is this discussion un typical of Euler's procedure in dealing 
with algebraic approximations. Another example of the avoi
dance of general error estimates is found in Euler's discussion of 
the approximation method due to Daniel Bernoulli; for an ex
position, see Euler [5, sections 333-355]. Euler's derivation of 
Bernoulli's approximation actually produced a term that that 
could have been used to estimate the error (Euler [5, section 
346]). But instead, Euler "tested" the method as follows. He used 
the method, which generated a sequence of numbers {ak} in 
which the ratio ak/ak-l got closer and closer to the root, to solve 
the particular equation x2 - 3x - I = OJ he then compared the 
seventh approximation, a7/a6, with the known root of that quad
ratic equation (Euler [5, section 338]). 

+0. Cours d'analyse (Cauchy [14, note VIII, pp. 455-457]). For 
instance, in proving that L~ l/k converged to n2/6, Cauchy de
rived a formula for the nth partial sum and showed by means of 
extremely intricate inequality manipulation how n could be 
chosen to make the sum arbitrarily close to n2/6. 

41. Fonctions analytiques (Lagrange (16); also in Lagrange [9, vol. 9, 
p. 84])·; compare Calcul des Jonctions (Lagrange (4); also in 
Lagrange [9, vol. 10, p. 9+]). 

42. D'Alembert [3, pp. 171-215)j though published in 1768, it 
probably was written earlier. Of special interest to us is section I, 
"Reflections on Divergent and Convergent Series," pp. 171-183. 
(As I shall explain in chapter -1-, d'Alembert used the term con-
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vergent to mean terms of the series are strictly decreasing, abstraction being 
made of the sign.) D'Alembert discussed the application of his 
results to approximations made in celestial mechanics; for in
stance, he referred to his own Recherches sur differens points im
pOl·tans du .rysteme du monde, 2e partie, II, p. 59ff. 

43. Lagrange [13]; see note 51. 

44. D'Alembert [3, p. 175]. 

45. He did a few other such computations. For instance, fasci
nated by the fact that the series for sin x was considered valid for 
all x, he computed that its general ratio was (in absolute value) 
x2/2n(n + I). The ratio can be made less than I for n sufficiently 
large, even if x = k for some very large k; d'Alembert [3, p. 181]. 

46. D'Alembert [3, p. 177]. 

47. Note that even after he had done this, it would not prove that 
the sum of the infinite series in fact converges to (I + J1.)m, but 
merely that the partial sums of the infinite series are bounded. 
Cauchy attempted a proof of the real binomial theorem in his 
Caul'S d'analyse; (Cauchy [14, series 2, vol. 3, pp. 146-147]), but it 
used his (false) theorem that an infinite series of continuous 
functions was continuous. Abel gave a rigorous proof of the 
binomial theorem for real and complex values of J1. and m in his 
1826 paper (Abel [2, pp. 221-250]). 

48. D' Alembert [3, pp. 177-178]. D'Alembert made the substi
tution n = w + 1, so that in his derivation the ratio was 
J1.(w-mll +w) and the error less than AJ1.(m+ 1)/(1-J1.)· 
(1 + w - wJ1. + j1.m). Other than this, I have translated 
his explanation exactly. 

49. For instance, working out.J2 = t· (I - 1/9) 1/2, he computed 
A, the tenth term, to be (1.3.5".15)/99'2'4'6 ... 18) and 
stated that the remainder of the series was less than AI (I - 1/9); 
d'Alembert [3, p. 178]. 

50. Lacroix's account is slightly fuller than d'Alembert's, but it 
too neglects the problem of absolute value; it may be found in 
Lacroix [2, vol. I, p. 8fi' ] and is there called the method that found 
"the limits of the approximation," where "limit" means 
"bound." 
51. Lagrange [13] (also in Lagrange [18] and [9, vol. 8, p. 4Iff]. He 
used his error estimate to show that his fractions were the closest 
possible such approximating fractions. The Lagrange·_· 
d' Alembert correspondence indicates lhat Lagrange had nOl 
read d' Alembert's paper until 1769 and therefore not until afler 
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composing his own; letter from Lagrange to d' Alembert, 28 
February 1769, in Lagrange [9, vol. 13, p. 127]. 

52. For a brief account of this work, see Hamburg [1]. 

53. As for his continued fraction method, first published in 
1767 -1768, see note 51. 

54. As he did for Newton's method, as I shall show next. The 
question had been raised by d' Alembert in 1768 for the binomial 
series. 

55. One example of this is his discussion of a method due to 
Fontaine. D'Alembert and Condorcet, Lagrange noted, had 
been content to criticize the method and say it did not work well; 
Lagrange, instead, found algebraically the cases for which it did 
and did not work. Fontaine's method, he concluded, could be 
applied whenever the real roots of an equation differ among 
themselves by numbers greater than unity; Lagrange [18, note 
VII]. Similarly, Lagrange discussed Daniel Bernoulli's method; 
Euler had found a particular case in which the method did not 
work (Euler [8, p. 362]). Lagrange's general formulas showed 
that the method broke down whenever there were multiple roots; 
Lagrange [18, note VI]. 

56. Lagrange [18, note V]; also in Lagrange [9, vol. 8, especially 
pp. 161-163]. He did not mention d'Alembert, but the source is 
evident; neither the language nor the questions were common
places. We know Lagrange had read d' Alembert's paper because 
he commented on part of its contents in a letter to Almembert of 
15 July 1769; Lagrange [5, p. 140]. 

57. Lagrange [18, note XI] (also in Lagrange [9, vol. 8, p. 258]). 
Though the examples he gives are polynomials, the derivation is 
general. This discussion, by the way,jollows the argument about 
the closeness of the successive approximations. 

58. Equations numeriques (Lagrange [18]; also in Lagrange [9, vol. 8, 
pp.162-163]). 

59. Equations numeriques (Lagrange [18]; also in Lagrange [9, vol. 8, 
p. 163]). He then gave a simple method for finding out whether 
the first approximation a is greater (or less) than each of the roots; 
Lagrange [9, vol. 8, pp. 164-165]). 

60. Lagrange gave an analogous condition for the case when 
some roots are complex: either the real parts of those complex 
roots are less than the largest real root, or are greater than the 
smallest real root; Equations numeriques (Lagrange [18]; also in 
Lagrange [9, vol. 8, p. 1641). 
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61. Equations numeriques (Lagrange [18, note V]; also in Lagrange 
[9, vol. 8, p. 166]). 

62. See, for example, Cours d'analyse (Cauchy [14, series 2, vol. 3, 
p. 413]), where Cauchy referred specifically to Lagrange's dis
cussion of Newton's method in Equations numeriques, though not to 
the specific result we have just discussed. Compare also Cauchy 
[14, series 2, vol. 3, p. 389]. 

63. Cours d'analyse (Cauchy [14, series 2, vol. 3, pp. 400-407, 

especially pp. 403, 407]). 

64. Cauchy [1, p. 412]; see Fourier [I] (also in Fourier [3, vol. 2, 
pp. 243-253]). His concern with the closeness of Newton's ap
proximation was aroused by Lagrange's Equations numeriques, as 
Fourier himself remarked in section 2 of his paper (Fourier [3, vol. 
2, p. 244]). Fourier, however, did not completely solve the prob
lem he had set, nor did he rigorously prove what he did do. 

65. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 415]), though 
without mentioning Lagrange on this page. He did mention 
Lagrange elsewhere in this note; see, for exam pIe, pp. 389, 413. 

66. See, for instance, Maclaurin [I, p. 230ff], in which a nu
merical example is given. 

67. Maclaurin [I, p. 233]. This was enough accuracy for some 
examples, though Newton would not have been satisfied. 

68. This discussion is found in Lagrange [3] (also in Lagrange [9, 
vol. 7, pp. 260-261]). Compare the analogous result in the 
Equations numeriques (Lagrange [18, sections 2 and 6]). 

69. Equations numeriqufs (Lagrange [18, note IV]). Compare 
Condorcet [I] and Cauchy's treatment of the same problem in 
Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 396ff]). 

70. Lagrange did not explicitly repeat the approximation pro
cedure, though he did suggest transforming the original equation 
by letling x = ),/m and then solving the new equation. This latter 
possibility was spelled out in a bit more detail in Condorcet [I], 
which explicitly referred to Lagrange's work. Either of these 
discussions, or Maclaurin's halving method, might have sug
gested repeating the procedure to Cauchy-or he might well not 
have needed such a suggestion. 

71. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 43]). 

72. Coursd'analyse (Cauchy [14, series 2, vol. 3, pp. 50-51]). 

73. The remark about proofis in Lagrange [9, vol. 8, pp. 19-20]. 
Note I, incidentally, contains a description of the continuity ofa 
function that will be discussed in chapter 4. 
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Chapter 4 

Notes 

74. Cauchy proved this as a consequence of the intermediate
value theorem in Cours d'anaryse (Cauchy [14, series 2, vol. 3, pp. 
381-384]). 

75. Equations numeriques (Lagrange [18], in Lagrange [9, vol. 8, 
p. 134]). 

76. Bolzano, Rein anarytischer Beweis (Bolzano [3, section II]; in the 
preface he explicitly cited Lagrange's Resolution des equations nume
riques (Lagrange [1]). 

77. Grattan-Guinness [2], [3, p. 54]. For a fuller discussion of this 
point, see Grabiner [I]. 

78. Freudenthal [1, p. 134]. 

79. "Note on the formulas which result from using the signs < or 
>, and on the means between several quantities." 

80. See, for example, Newton [6, rule II]; quoted in Struik [1, p. 
96]. 

81. See, for example, Cauchy [17]. 

1. Grattan-Guinness [3, pp. 76-77] also has noted that Cauchy's 
pre-1821 work showed few signs of the program of rigorizing 
analysis, though he gave this fact a different interpretation, 
saying that the program is borrowed from Bolzano. Recently 
Freudenthal [2] has put forward the same explanation I have 
given. As indicated in chapters 2 and 3, both Bolzano and 
Cauchy easily could have drawn their program from the work of 
Lagrange and, to some extent, from d'Alembert, Euler, and 
Berkeley. In fact, however, Cauchy's ISH paper already shows 
more rigor than most eighteenth-century work. On the 
eighteenth-century origins of Cauchy's program, see also 
Grabiner [I]. 

2. See chapter I, pp. 13-14. 

3. I shall document the claim that Lagrange's work was "out
standing" in chapter 5 and explain in what area its superiority 
lay. 

4. See chapter 2, p. 431r. 

5. Grattan-Guinness has claimed that Bolzano was Cauchy's 
main source. I do not expect to be able to prove that Cauchy never 
had read Bolzano's Rein anarytischer Beweis of 1817. I can show, 
however, that there was nothing in Bolzano's work on conver
gence and continuity used by Cauchy that Cauchy could not 
have derived from elsewhere-indeed, from sources that Bolzano 
himself almost certainly knew. 
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6. Lacroix [1, 2]. 

7. Lacroix [2, vol. I, p. xviii]. See chapter 2 on the need for 
textbooks for the newly expanded eighteenth-century scientific 
community. 

8. Lacroix [l, vol. I, preface, especially p. xxiv]. See also Lacroix 
[2, vol. I, preface, pp. xviii-xix]. For examples of his use of 
different methods see, for instance, Lacroix [I, vol. I, pp. 82-95] 
(Lagrange's power series); Lacroix [I, vol. I, 'pp. 6, 189-194] 
(limits); Lacroix [l, vol. 1, p. 193] (differentials treated as an 
independent concept); Lacroix [I, vol. I, pp. 192-193] (on the 
rigor of ancient geometry); Lacroix [1, vol. 1, p. 10] (on in
finitesimals and their equivalence to limits). Compare Boyer's 
assessment of Lacroix in Boyer [I, p. 265]. 

9. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 19]). Compare 
Calcul infinitesimal (Cauchy [14, series 2, vol. 4, p. 13]). 

10. Boyer [I, pp. 256,272-273]. 

11. Lacroix [2, vol. I, p. 13]; italics in original. 

12. Lacroix [2, vol. 1, pp. xlix, 14]. 

13. Newton's Philosophiae naturalis principia mathematica (1687) 
solved the most important problems of physics. For instance, in 
an elliptical orbit with a central force directed toward one focus of 
the ellipse, the force needed to hold the planet in the orbit is 
inverse square. Under an inverse-square force proportional to the 
mass of a body, a spherical body acts as though all its mass were 
concentrated at its center. If a central force acts on a body, the 
line connecting the body to the center of force sweeps out equal 
areas in equal times. The Principia also contains Newton's laws of 
motion and the law of universal gravitation. Several modern 
editions exist. The most easily available is the edition by Cajori 
(Newton [I]). Compare chapter 2. 

14. Newton [I, section I, lemma VII, p. 32]; italics mine. 

15. Newton [1, scholium to lemma XI, p. 39]; italics mine. 

16. Newton [I, scholium to lemma XI, p. 39]; italics mine. 

17. D' Alembert [2]. 

18. See chapters 2 and 3. 

19. The "error" <: by which the slope ofthe secant differs from the 
slope of the tangent can thus be made-as in algebraic 
approximations-less than any given quantity. D'Alembert's 
treatment of the tangent to the parabola is clearly, though not 
explicitly, an answer to Berkeley's treatment of the same ques
tion, with an almost identical diagram, in Berkeley [2, sections 
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XXI - XXIV]. Berkeley, unlike d' Alembert, explicitly had called 
z an "error" because "a secant cannot be a tangent .... Be the 
difference ever so small, yet still there is a difference" (Berkeley [2, 
section XXIV]. Understanding limits in terms of inequalities-a 
step d'Alembert almost, but not quite, took-is the way to an
swer this objection. For d' Alembert's discussion, see d' Alembert 
[2]. Extensive selections can be found in Struik [I, pp. 342-345]. 

20. If z is positive, the difference (aJ~) - (aJ2y + z) will be less 
than e if z < e(4y2/a - 2ye); which would have been an easy com
putation for d'Alembert had he cared to make it. But he did not 
make it. He did not understand his words in these terms or 
appreciate that much more than meets the eye is involved in 
taking z small enough to make the difference as small as desired: 
in particular, on what does z depend? 

21. Lacroix [3, p. 7]. This one-volume work was an abridgment of 
his three-volume treatise, and emphasized limits more, and 
power series less, than the longer work. The theorem proved here, 
that the limit of a product is the product of the limits, is stated in 
d'Alembert and de la Chapelle [I] and had (according to them) 
appeared earlier in de la ChapelIe's Geometrie. The analogous 
theorem for ratios (without special attention to the case where the 
denominator may be zero) was proved by L'Huilier [2, p. 18] by 
an argument exactly like that given for products in Lacroix [2, 
vol. I, p. IS]. 

22. Boyer [I, pp. 256, 272-273]. 

23. L'Huilier [2, pp. 17-18], where L'Huilier applied this 
broadened definition only to alternating series. The two ex
amples he gave were the series I - P + p2 - ... and the series 
I - t + t - .... His general definitions, which applied only to 
increasing or decreasing sequences of values of variables, always 
included the restrictions (L'Huilier [2, p. I]). 

24. Lacroix [2, vol. I, p. xlix]. 

25. Lacroix [2, vol. I, p. 140]; compare Lacroix [I, vol. I, p. 82]. 

26. Lacroix [2, vol. I, p. 14]. 

27. Lacroix [2, vol. I, p. IS]. 

28. Berkeley [2, query 31]. 

29. Lacroix [I, vol. I, p. 192). 

30. Maclaurin [2, book II, p. 422]. 

31. D'Alembert [4, vol. 5, p. 247]. Lacroix cited d'Alembert as the 
source [or his own discussion; Lacroix [I, vol. I, p. xxx]. 
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32. Calcul infinitesimal (Cauchy [15, lec;on 3]; also in Cauchy [14, 
series 2, vol. 4, p. 22]). 

33. Calcul infinitesimal (Cauchy [14, series 2, vol. 4, p. 22]); italics 
mine, notation his. 

34. See, for instance, Fonctions ana{ytiques (Lagrange [9, vol. 9, 
pp. 59-62]) for a number of exam pies offunctions without deri
vatives at particular points. 

35. I have given an example.ofthe translation of the definition in 
chapter I. For an example of Cauchy's determination of the n 
corresponding to e for a complicated case, see COUTS d'ana{yse 
(Cauchy [I, note VIII]; also in Cauchy [14, series 2, vol. 3, 
pp. 456-458]); compare chapter 3. 

36. COUfS d'ana{yse (Cauchy [14, series 2, vol. 3, p. 43]). 

37. COUfS d'analyse (Cauchy [14, series 2, vol. 3, p. 44]. Cauchy did 
not compute the deltas and epsilons, however. He used the iden
tity sin(x + a) - sinx = 2 sin(ta) cos(x + tal, and noted that, 
whatever x may be, sin(ta) "decreases indefinitely" with a. 
Cauchy here gave no reason for this indefinite decrease, but it was 
well known that, for 0 < a < n/2, sin a < a. See, for example, 
Fonctions ana{ytiques (Lagrange [9, vol. 9, p. 541). 

38. Rein anafvtischer Beweis (Bolzano [3, section IIa]). He under
stood in practice thatlf(x + w) -f(x)1 is needed here. Cauchy 
and Bolzano did not seem to appreciate that they were assuming, 
in effect, that given an e, their 0 works for all x. 

39. Arguments like this go back to Euclid, Elements, book I, 
proposition I. See, in this connection, the remarks of Bolzano in 
the introduction to his Rein ana{ytisclm Beweis (Bolzano [3]). It is 
probably worth remarking also that attempts to characterize 
continuity in geometry go back at least to Aristotle. 

40. Chapter 3. Resolution des equations numeriques (Lagrange [I, note 
2]). Recall that Bolzano criticized Lagrange's proof, quite pro
perly, as depending on the idea of time. Bolzano [3, section lIe; 
Ostwalds Klassiker, p. 6]. 

41. Equations numeriques (Lagrange [I, note 2]); also in Lagrange 
[9, vol. 8, pp. 136-1 ~9]. 

42. See Boyer [I, p. 256]. 

-1-3. Lacroix [3, section 60, p. 82]. Compare the parallel discussions 
(though without mention of continuity) that go back to Newton; 
see earlier in this chapter. 

44. There is an extensive literature on this problem. An excellent 
recent account is that given by Truesdell [I, especially 
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pp. 237 -300]. The leading papers on the vibrating-string contro
versy are excerpted, with useful explanatory remarks, in Struik 
[I, pp. 351-358; see also "Note on the Emergence of the Concept 
of Function," p. 358], and Jourdain (2), who discusses the work of 
Fourier also. Grattan-Guinness [3, chapter I) has cited all the 
relevant secondary literature, beginning with Riemann, in his 
footnotes. 

45. And, of course, conversely. Reproducing d'Alembert's ori
ginal notation would add nothing to the clarity of my account; it 
is reproduced in Struik [I, pp. 351-358]. 

46. Hist. Berl. (1750); quoted by Struik [I, p. 3'61). 

47. See Jourdain [2] or Reiff [1] for Fourier and Dirichlet's 
solution to the problem of the generality of trigonometric-series 
representations of functions. For the way the various views 
changed throughout the eighteenth century, see Truesdell [IJ. 

48. Quoted by Jourdain [2, p. 675J. Algebraic, a term established in 
this usage by Descartes, meant anything represented by a finite 
polynomial; mechanical, everything else. Mechanical had also been 
used for curves generated by machinery, which did the drawing. 
Transcendental was introduced by Leibniz for curves representa ble 
by infinite series. For discontinuous in this context, read Euler's 
"not representable by the same formula throughout," and see' 
later in this chapter. "Produced by a voluntary movement of the 
hand" can mean almost anything; it could perhaps be taken to 
refer to any general dependence relation. 

+9. Euler [5, vol. 2, chapter 1 J (also in Euler [6, series I, vol. 9]). 

50. Memoires de I' A cadimie des Sciences, Paris, 1771. 

51. Arbogast [3, p. 5 J. 

52. Arbogast [3, p. 9J. Compare Lacroix [3, section 60, p. 82J: 
"The smaller the increments of the independent variable, the 
closer the successive values of the function are to each other." 

53. Arbogast [3, p. 9]. 

54. Arbogast [3, p. 9J. 

55. Arbogast [3, p. 10J. Conversely, Arbogast seems implicitly 
to hold that a continuous function is necessarily contiguous 
(Arbogast [3, p. II)). Grattan-Guinness [2, p. 53J implies that 
since Cauchy followed Bolzano in talking about intervals of 
continuity, Cauchy borrowed his definition from Bolzano. But 
this contention is not tenable in the face of widespread eigh
teenth-century usage. Furthermore, Cauchy, three years before 
Bolzano's 1817 paper, had an independent reason for concern 
with intervals of continuity-his study of the integrals of piece-
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wise continuous functions; see in this chapter. It is possible that 
the stress on continuity over intervals helped obscure the distinc
tion between uniform continuity and continuity at a point. 

56. Lacroix [3, p. 82). 

57. Bolzano [2, p. 16], though in a somewhat different connection. 
This reference to Lacroix is cited by Grattan-Guinness [3, p. 77, 
note 23]. 

58. Cauchy [10] (also in Cauchy [14, series 1, vol. 1, pp. 329-475, 
especially p. 332, and compare p. 402]). I have modernized the 
notation for the definite integral. 

59. Jourdain [2, pp. 681-682, 688]. 

60. Cauchy [9] (also in Cauchy [14, series 1, vol. 1, pp.402-403]). 
The function in question is an indefinite integral; one example 
Cauchy gives is arctan(l/cosz), which has ajump discontinuity 
at Z = n. Freudenthal [2, p. 380] has taken this discussion to mean 
that Cauchy already had the "full-fledged idea of continuity" in 
1814. This claim had already been made on other grounds by 
Jourdain [2], who pointed out that two theorems in Cauchy's 
memoir (Cauchy [14, series 1, vol. 1, pp. 428, 441)) explicitly 
assume that a function is continuous. The proofs, however, re
quire only "no jumps." Perhaps Cauchy did already have the. 
full-fledged idea of continuity, but this is not demonstrated by his 
use of the no-jumps property in 1814. 

61. This result was long known and believed; I shall return to the 
result and its applications in chapter 5. See Fonctions ana(ytiques 
(Lagrange [16]; also in Lagrange [9, vol. 9, pp. 28-29]). 

62. In Lagrange's theorem, hPis the function hp + h2q + ... , but 
its form is irrelevant to the continuity argument presented here. 

63. Fonctions ana(ytiques (Lagrange [9, vol. 9, p. 28]); italics mine. 

64. In modern notation, Lagrange is saying that hP continuous at 
h = 0 means that given an e > 0, there exists ho such thatl hopi < e 
and, moreover, IhPI < e for h < ho. Compare the equivalent 
characterization in Lagrange's Calcul des fonctions (Lagrange [4]; 
also in Lagrange [9, vol. 10, p. 87]) where, however, the term 
continuous does not occur. Notice that the choice of ho does not 
depend on x. 

65. For Bolzano see, for example, Bolzano [2, p. 170], Rein ana(ytis
cher Beweis (Bolzano [3, section V]). The Fonctions ana(ytiques was in 
his library; see Bolzano [2, K. Rychlik, "Anmerkungen" p. 23). 
For Cauchy see, for example, Calcul infinitesimal (Cauchy [14, 
series 2, vol. 4, pp. 9-10]) and Calcul difprentiel (Cauchy [14, series 
2, vol. 4, p. 268]). 
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66. Bolzano [2, pp. 15-16). 

67. Bolzano [2, p. 16); italics his. Among the "others" who used 
this definition is Klugel [I, vol. 4, p. 550), who is cited by Bolzano 
[2,p.151. 

68. Bolzano [2, p. 14). 

69. See the appendix for these proofs. 

70. On Bolzano's unfortunate lack of influence, see chapter 1. 

71. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 130; compare 
pp. 121, 136]). 

72. Especially Euler [5, passim). 

73. Gauss [I) (also in Gauss [2, vol. 3]). See, for example, Bell [I, 
p. 291), Reiff[l, p. 161). 

74. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 114]). For the 
Cauchy criterion, see later in this chapter, p. 102ff. 

75. See, for instance, Klugel [I, "Convergirend, annahrend," 
section 2). Note the title of this article. The term converge in this 
sense is also used in optics. Lagrange used converge in Klugel's 
sense; see Lagrange [131 (also in Lagrange [9, vol. 2, p. 541)), 
where he spoke of a series diverging after beginning to converge; 
the context makes clear that he meant that the terms get bigger 
after decreasing for a while. The same usage may be found in 
d'Alembert [3, especially p. 1731 and in Legendre [I, vol. 3, 
p. 437). Euler also used converge for terms decrease; see Euler (2) (also 
in Euler [6, series I, vol. 14, pp. 586, 588]). 

76. Both definitions exist together in Hutton [I); the article 
"Converging Series" has the nth term go to zero, but the term 
convergence is defined in the article "Series" as having a finite sum. 
The same situation exists in Dictionnaire encyclopedique des mathema
tiques, "Convergent," by d' Alembert, and "Serie ou suite" by 
Condorcet (Condorcet (2)). Nevertheless, Condorcet clearly 
understood what was involved, since he specifically mentioned 
the harmonic series; see Condorcet (2). 

77. For Oresme, see H. L. Busard's edition of Nicole Oresme, 
Qyestiones super geometriam Euclides (Leiden: E.J. Brill, 1961), pp. 6, 
76. Jakob Bernoulli's work is in "Proportiones arithmeticae de 
seriebus infinitis earumque summa finita" (Jakob Bernoulli [I, 
vol. I, pp. 375-402)). Selections may be consulted in Struik [I, 
pp. 320-324). For Euler see Euler (2) (also in Euler [6, series I, vol. 
14, pp. 87-100)). For Condorcet, see Condorcet [2). 

78. Coursd'analyse (Cauchy [14, series 2, vol. 3, pp. iv, 114]). Some 
such "uncritical manipulations" may be found in Euler [2, 
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pp. 204-237] (also in Euler [6, series I, vol. 14, pp. 585-617, 
especially pp. 591-597]). 

79. Lacroix use converge here to mean nth term goes to zero. 

80. This part of the sentence is equivalent to convergence in the 
modern sense. The "true value" is the expression that produced 
the series; for the binomial series, for instance, it would be 
(I + x)m; Lacroix [2, vol. I, p. 5]. Compare d'Alembert[3, p.183]. 

81. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. iv]). 

82. Maclaurin [2, book I, p. 289). 

83. A sequence {un] is now called a Cauchy sequence iffor any G, 

there is an.N such that IUn - uml < G whenever n, m > .N. 

84. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 114]). 

85. Caul's d'analyse (Cauchy [1+, series 2, vol. 3, pp. 115-1161; 
italics mine. 

86. Rein analytischer Beweis (Bolzano [3, section 7; Ostwalds 
Klassiker, p. 21). The proofhe gave of this fact, as Jourdain has 
remarked in "Anmerkungen" to the edition (Bolzano [3; 
Ostwalds Klassiker, p. 42]), shows only that the limit X can exist 
without there being a contradiction. 

87. Lacroix [2, vol. I, pp. 8-9), which is an exposition, in some
what clearer notation, of results in d' Alembert's 1768 paper 
(d'Alembert [3]). See chapter 3, note 50. 

88. Lacroix [2, vol. I, p. 8); italics mine. An additional resem
blance between Lacroix's and Cauchy's characterizations of 
these finite expressions is that Lacroix spoke of the "diverse" 
approximations, Cauchy of the "diverse conditions." 

89. Caul's d'analyse (Cauchy [1+, series 2, vol. 3, pp. 116-117]). 
Compare Lacroix-d'Alembert, chapter 3, pp. 62-63. 

90. Cours d'analyse (Cauchy, [I-!-, series 2, vol. 3, p. 117]). 

91. Euler [I). Enestrom [I) has somewhat overenthusiastically 
seen this paper as a source of the general Cauchy criterion. For 
another possible source, this time from Gauss, see Kurdyumova 
[I), again just lor a specific case. 

92. There were a few other proofs available. Lacroix showed the 
divergence by interpreting the harmonic series as the logarithm 
of an infinite number (Lacroix [3, vol. I, pp. 5-6]). 

93. Caul's d'analyse (Cauchy [14, series 2, vol. 3, pp. 130-131)). 
The sum of this series was given in 1673 by Leibniz, who used its 
telescoping property; Reiff [I, pp. 42--1-3). Cauchy's proof also 
used the telescoping property. For instance, if 12 + I is odd, then 
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I/n+ 1-lln+2+'" ± I/n+m= (1/n+ 1-l/n+2) 
+(l/n+3-lln+4)+'" 

lies between lIn + I and + lIn + I - lIn + 2. The series con
verges now by the Cauchy criterion. 

94. Besides the alternating series proof, Cauchy implicitly used 
something very close to the Cauchy criterion in his treatment of 
the existence of the definite integral; see chapter 6. Had he given 
a correct proof of the convergence of an absolutely converging 
series, he would have had to use it there too; see note 106. 

95. See in particular the work of d' Alem bert, chapter 3. 

96. COUTS d'analyse (Cauchy [14, series 2, vo!' 3, pp. 114-1151). 
Since the nth remainder xn{l - x converges to 0 iflx\ < I and n 
increases. 

97. Lacroix [2, vo!' I, p. 8ff). The table of contents explicitly cites 
d'Alembert's paper. 

98. COUTS d' analyse (Cauch y [14, series 2, vo!' 3, p. 121 I). Cauchy 
implicitly assumed that such a "greatest of these limits" or "limit 
of the greatest values" exists; we would call this object the lim su p 
and assert its existence from the completeness of the real numbers. 

99. Nor has it been improved on much since, as can be seen from 
looking at the proof oft he root test in a modern advanced calculus 
text. See, for example, D. Widder, Advanced Calculus (New York: 
Prentice-Hall, 1947), chapter 9. 

100. Caul's d'analyse (Cauchy [14, series 2, vo!' 3, pp. 121-122]), 
assuming the comparison test. He showed analogously that if 
k > I, then the series diverges. In his treatment of the hyper
geometric series in 1813, Gauss also made careful use of the 
comparison with a convergent geometric progression-as indeed 
the very term hype1geometric, dating back to the seventeenth cen
tury, suggests. Though Cauchy did not need Gauss's paper for 
the development of the theory of convergence in the Caul's 
d'analyse-indeed, he did not even mention the general hyper
geometric series-it is hard to imagine that Cauchy had not read 
Gauss's papcr. Bolzano also used the comparison test, with re
spect to the geometric series L I 12k; however, in the Rein anarytis
clzer Beweis he gave no general convergence tests. Comparisons 
with the series L 1/2k are common in the seventeenth and 
eighteenth centuries; see Newton [4) and compare Newton's 
source, Euclid, Elements, book X, proposition I. 

lOl. Caul's d'analyse (Cauchy [14, series 2, vo!' 3, p. 1231). 

102. Le'ton 38 (Cauchy [14, series 2, vo!' 4, pp. 226-228]). The 
derivation is somewhat more sophisticated. 
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103. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 63]). The 
theorem just cited is a simple corollary of this theorem: If 

limx-+",j(x + I) jj(x) = k, then limx-+",j(x)l/x = k. Cauchy al
lowed k to be infinite; see Cours d'analyse (Cauchy [14, series 2, vol. 
3, pp. 58-61]). The proof of this theorem is intricate and inge
nious. It somewhat resembles an argument in Gauss [I, section 
iv). Alternatively and, I believe, more plausibly, it may have been 
constructed by analogy (changing sums to products) from 
Cauchy's own earlier proof of the theorem that if limx-+",' 

I(x + I) - j(x) = k, then limx-+",j(x)jx = k; see Cauls d'analyse 
(Cauchy [14, series 2, vol. 3, pp. 54-57]). The technique Cauchy 
used to prove this last-stated theorem is similar to, though some
what easier than, that used in proving a theorem about deriva
tives in the Calcul infinitesimal (Cauchy [15, le~on 7]); the history of 
the proof technique used in le~on 7 of the Calcul irifinitesimal is 

discussed in chapter 5 and in Grabiner [4); compare also Dugac 
[2). 

IO·J.. See, for instance, Lacroix [2, vol. I, pp. 27-39J and 
Lagrange's Caleul des jonetions (Lagrange [4J, [9, vol. 10, 
pp. 48-49]). For Cauchy's statement of the theorem for positive 
terms, see Cours d'analyse (Cauchy [14, series 2, vol. 3, p. 127]); for 
power series, see Cauchy [14, series 2, vol. 3, pp. 140-141 J. 

105. Cours d'analyse (Cauchy [1-1-, series 2, vol. 3, pp. 13-1--135]). 
Let the two series to be multiplied each be 
Ijl - Ij.fi + Ij.J3 - IjJ+ + .... I have been unable to find 
any indication that this property of this series was known before; 
see Reilf[l, pp. 170-171]). The series itself was discussed in the 
eighteenth century; see, for example, Euler [7) (also in Euler [6, 
series I, vol. 15, section 13, p. 83]). I am indebted to Kenneth 
Manning for this reference. 

106. He tried to prove this by means of the comparison test, 

comparing LUk with the series Llukl. But the partial sums of a 
series can be bounded without the series converging: lor instance, 
I - I + I - I + I - .... It is a shame no alert student noticed 
the error in Cauchy's proof, since Cauchy certainly would have 

been able to correct it, using the Cauchy criterion. See Cours 
d'analyse (Cauchy [1-1-, series 2, vol. 3, p. 129]). 

107. Cours d'analyse (Cauchy [1-1-, series 2, vol. :l, p. 129]). 

108. Cours d'analyse (Cauchy [1-1-, series 2, vol. 3, p. 137]). 
Incidentally, Cauchy's notation for radius of convergence was 
usually x = IjA; Lacroix had used x = Ija in dealing with the 

binomial series. This is another one of the "incidental" resem
blances between the language or notation of the two men that 

suggests influence; see Lacroix [2, vol. I, p. 7). 
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Chapter 5 

Notes 

109. For a history of convergence tests from Cauchy on, see the 
appendix to Grattan-Guinness [3, pp. 132-151]; compare Reiff 
[I, pp. 196-211]. 

110. COUTS d'analyse, (Cauchy [14, series 2, vol. 3, p. ii]). 

III. COUTS d'analyse, (Cauchy [14, series 2, vol. 3, pp. iv-v]). 

112. COUTS d'analyse (Cauchy [14, series 2, vol. 3, pp. 132-135]). 
See also chapter 4; compare chapter 3 and Calcul irifinitesimal 
(Cauchy [14, series 2, vol. 4, p. 230]). 

113. Cauchy used the term imaginary where we would use complex. 

114. COUTS d'analyse (Cauchy [14, series 2, vol. 3, pp. 222-225]). 

115. COUTS d'analyse (Cauchy, [14, series 2, vol. 3, pp. 230-238]). 

116. COUTS d'analyse (Cauchy [14, series 2, vol. 3, pp. 243-247]). 

117. Coursd'analyse (Cauchy [14, series 2, vol. 3, pp. 146-147]). 

118. The false theorem for the complex case is stated in COUTS 
d'analyse (Cauchy [14, series 2, vol. 3, p. 234]); it is proved by 
reference to the theorem for the real case (Cauchy [14, series 2, 
vol. 3, p. 120]). 

119. Grattan-Guinness [3, p. 78], Lakatos [I, p. 130]. 

120. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 146]), where he 
referred to it as Theorem I, sec. I., that is, Cauchy [14, series 2, 
voI.3,p.120]. 

121. Cours d'analyse (Cauchy, [14, series 2, vol. 3, p. 257]). 

122. COUTS d'analyse (Cauchy, [14, series 2, vol. 3, pp. 248-250]); 
compare the simpler argument for the real case in Cauchy [14, 
series 2, vol. 3, pp. 147-148]. 

123. Fonctions analytiques (Lagrange [9, vol. 9, pp. 45-47]). 

124. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 251]). 

125. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 252]). 

126. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 253]). 

127. COUTS d'analyse (Cauchy [14, series 2, vol. 3, p. 254]). 

128. I have, of course, by no means exhausted the richness of the 
COUTS d'analyse. See Freudenthal [l] and chapter 1. See also the 
literature cited in chapter I, note 8, and Freudenthal's biblio
graphy, especially on complex variables. 

1. Calcul irifinitesimal (Cauchy [14, series 2, vol. 4, p. 13]). 

2. Calcul irifinitesimal (Cauchy [14, series 2, vol. 4, pp. 22-23]). 



212 Notes 

3. This proofis given in translation in the appendix. The notation 
is Cauchy's throughout. The proof and its historical antecedents 
are discussed later in the chapter. Notice how the inequality 
translation of the definition of derivative resembles that for the 
definition of limit; see chapter I and compare Cours d'anaiyse 
(Cauchy [14, series 2, vol. 3, p. 5+]). On this theorem and its 
history see Grabiner [4], and compare Dugac [I]. 

t. With the possible exception ofBolzano, who knew in 1816 that 
I/J(x + co) + I/J(x) = fjJ'(x) + Q where Q can be made as small as 
desired when co is small; this, however, was a properry of the 
derivative for Bolzano, not a definition. The property can already 
be found in Lagrange's Fonetions anaiytiques, as I shall show. For 
Bolzano see Stolz [I, p. 26t]. Bolzano's major work on de
rivatives, the Funetionenlehre (Bolzano [2]), dates from the 1830s, 
and cites Cauchy's work; see, for example, Bolzano [2, p. 9t]. 

5. Lagrange, Caleul des fonetions (Lagrange [9, vol. 10, p. 87]). 
Compare Fonetions anaiytiques (Lagrange [9, vol. 9, p. 77]) for a 
similar formulation. 

6. Euler [3, section 122]. This criterion, incidentally, is also the 
ultimate source of Cauchy's theory of infinitesimals of different 
orders. The criterion was adopted by S.-F. Lacroix, from whose 
work Cauchy-as similarities strongly suggest-probably de
rived his theory. For instance, compare their statements and 
proofs of the theorem that the su m of infini tesi mals of orders n, n', 
nO, ... is a new infinitesimal of order n if n < n' < n° < .... See 
Lacroix [I, vol. I, pp. 16-18] and Lacroix [2, vol. I, pp. 15-18]; 
compare Cauchy, Cours d'anaiyse (Cauchy, [It, series 2, vol. 3, 
pp. 38-42, 64-65]). As indicated in chapter 4, Cauchy knew 
the work of Lacroix. 

7. Euler [3, sections 253-254]. Similarly, since the a2 term can be 
made to exceed the sum of all that follow it, Euler argued that if x 
is a relative maximum, then d:'y/dx2 must be negative; and if x is a 
minimum, then dy/dx' must be positive. He added that similar 
considerations applied to higher-order examples (Euler [3, sec
tion 255]). The use of these considerations in Euler's treatment of 
maxima and minima was highlighted by Iushkevich I2]. 
Iushkevich also pointed out that there was a kinship between this 
work of Euler's and Lagrange's treatment of maxima and 
minima using the Taylor-series remainder. For details on 
Lagrange's theory of extrema, see later in this chapter. 

8. Maclaurin [2, sections 261,858-859]. 

9. Possibly mediated by a paper of Arbogast (Arbogast [2]). See 
Grabiner [2]. 
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10. Fonetions ana!Jtiques (Lagrange [9, vol. 9, pp. 28-29]). 

11. This case is strongly supported by Iushkevich [2]. 

12. Fonetions ana!Jtiques (Lagrange [9, vol. 9, p. 282]). 

13. Except, possibly, at some finite number ofisolated points. He 
thought he had proved this; Fonetions ana!Jtiques (Lagrange [9, vol. 

9, pp. 22-23]). 

14. This definition is borrowed from Euler [5]. Note that Euler 

used this definition because the work (Euler [5]) is solely the study 
ofinfinite analytic expressions; elsewhere he recognized and used 
a broader definition of function. 

15. Fonetions ana!Jtiques (Lagrange [9, vol. 9, pp. 28-29]). 
Arbogast earlier (1789) had tried to prove this too, though in a 
very different way than Lagrange. Arbogast's method was to 
choose i so that each term of the series was more than twice the 
following term. See Zimmermann [I, pp. 47-48]. Once i is so 
chosen the conclusion follows from the term-by-term comparison 
with the geometric series 1: 1/2k. On the use of the comparison 
with this series to insure the good behavior of infinite series see 
Newton [4) (also in Newton [2, vol. 1, p. 24]) and Euclid, Elements, 
book X, proposition 1. For evidence that Lagrange knew 
Arbogast's unpublished memoir, see his own statement in 

Fonetions ana!Jtiques (Lagrange [16, p. 5]; also in Lagrange [9, vol. 
9, p. 19]). 

16. Fonetions ana!Jtiques (Lagrange [9, vol. 9, p. 29]). 

17. Lagrange [9, vol. 9, p. 29]. Compare Euler's analogous 
remark in Euler [3, section 122], quoted earlier, on p. 117. 
Compare also Lagrange, Caleul des fonetions (Lagrange [4]; in 
Lagrange [9, vol. 10, p. 101]. For Lagrange's own "applications" 
see later in the chapter. 

18. See chapter 2 for a full discussion. 

19. Caleuldesfonetions (Lagrange [9, vol. 10, pp. 86-87]). Compare 
Fonetions ana!Jtiques (Lagrange [9, vol. 9, pp. 72, 77]). Lagrange 

there gave this alternative form:f(x + i) = f(x) + if'(x) + i2(L, 
where (Lis finite. 

20. In Fonetions ana!Jtiques (1797) Lagrange derived the Lagrange 
property from Euler's criterion. In the Caleul desfonetions (1801) he 
derived the Lagrange property of the derivative directly from the 
existence of the Taylor series of a function and then proved 
Euler's criterion as a corollary of Taylor's theorem with 
Lagrange remainder (Lagrange [9, vol. 10, pp. 100-101]). The 
earlier derivation strongly supports my conclusion that Euler's 
criterion led Lagrange to the crucial property of the derivative, 
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while the later one shows that he recognized the equivalence of 
the two properties, provided the functionf(x) is represented by 
its Taylor series. 

21. Caleul desfonetions (Lagrange [9, vol. 10, p. 87]). 

22. Caleul infinitesimal (Cauchy [14, series 2, vol. 4, pp. 44-46]). 

23. For the central role of (5.6) in Cauchy's calculus see Calcul 
infinitesimal (Cauchy [14, series 2, vol. 4, pp. 89, 123, 131, 
151-152, 243]) and see later in this chapter. 

24. The relationship between the problems treated in these 
papers has often been noted. See, for example, Pringsheim and 
Molk [I). For the history of the proof techniques and the logical 
relationship between them see Grabiner (4). Excerpts from the 
relevant text and a connecting narrative may be found in Dugac 
(2). 

25. See chapter 3. 

26. Caleul desfonctions: 1st ed., 1801; 2nd ed., 1806 (Lagrange [9, 
vol. 10, p. 86]). Compare Fonetions ana!Jtiques (Lagrange [9, vol. 9, 
pp. 78-80]): "If a prime function of x , likej'(x) , is always positive 
for all values of x from x = a to x = b, b greater than a, then the 
difference of primitive functions corresponding to these two 
values of x, that is,j(b) - f(a), necessarily will be positive." The 
version in Caleul des fonetions has been chosen because the proof 
there is better, specifically in deriving the relevant inequalities. 

27. Caleul desfonetions (Lagrange [9, vol. 10, p. 87]). In the version 
of the lemma given in the Fonetions ana!Jtiques Lagrange did not 
make entirely clearly whether or not the quantity the Calcul des 
fonetions calls V had to be restricted to positive values; see 
Lagrange [9, vol. 9, pp. 78-80). No confusion on this point 
remains in the Calcul desfonctions. 

28. As we have observed in chapter 3, even as late as d' Alembert's 
treatment of the binomial series (1768) people easily could be led 
in to errors by not distinguishing whether the terms of a series or 
their absolute values are small. For another sample of the 
eighteenth-century confusion on this point see "Can a Variable 
Surpass Its Limit?" in chapter 4, p. 84ff. 

29. By limit Lagrange here meant bound; Calcul des fonetions 
(Lagrange [9, vol. 10, p. 88]). Recall that the derivatives 
j'(x + ki) are all assumed finite. 

30. The confusion between greater than zero and bounded away from 
zero is frequent in the eighteenth century; the distinction was first 
correctly made (in practice, though not in words) by Cauchy. 
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31. Because, though he does not say so, for such D, 

0< [if'(x) + ... + j'(x + {n - I}i)]- niD 

and 

[if'(x) + ... + if'(x + {n - Iii)] + niD 

< 2[if'(x) + ... + if'(x + {n - I }i)]. 

32. For Lagrange, primitive functions were the functions whose 
derivatives were being considered. Finding a primitive function, 
for Lagrange, was what most eighteenth-century mathema
ticians would call integration. 

33. Caleul des fonetions (Lagrange [9, vol. 10, p. 91]). Compare 
Fonetions anarytiques (Lagrange [9, vol. 9, pp. 80-81]). Lagrange 
does not write ~ but <; however, the context indicates that he 
means ~. 

34. Calcul desfonetions (Lagrange [9, vol. 10, pp. 91-95]); compare 
Fonctions anarytiques [9, vol. 10, pp. 80-85]. Again, Lagrange did 
not use the notation ~ , but <. 

35. For Lagrange's attempt to prove this, see chapter 3, p. 73. 

36. Ampere [I]. 

37. For explici t references to Fonetions anarytiques see Am pere [I, 
pp. 160, 169J; to Caleul desfonetions see Ampere [I, p. 163]; for 
references to the common doctrine of both Lagrange's books see 
Ampere[l,pp.149,165,etpassim]. 

38. Cauchy [14, series 2, vol. 3, pp. vii-viii]. 

39. Cours d'analyse (Cauchy [14, series 2, vol. 3, p. viii]) and 
Applications du caleul infinitesimal a La geometrie (Cauchy [14, series 2, 
vol. 5, p. 10]). 

40. Caleul infinitesimal (Cauchy [14, series 2, vol. 4, p. 44n]). He 
mentioned the paper again in Calcul differentiel (Cauchy [14, series 
2, vol. 4, p. 268]). 

41. See Calcul differentiel (Cauchy [14, series 2, vol. 5, p. 268]) and 
Caleul infinitesimal (Cauchy [14, series 2, vol. 4, pp. 9-10]), for 
instance. 

42. Fonetions anarytiques (Lagrange [9, vol. 9, p. 85]). The re
ference, without any evaluative comment by Lagrange, links 
Ampere [I] to le~on IX of the Caleul desfonetions (Lagrange [9, vol. 
10, pp. 85-105]). I wish to thank Lagrange for this reference to 
Ampere. 

43. The major source of this interpretation seems to be 
Pringsheim and Molk [I, p. 44]. 
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H. Ampere [I, p. 149]. 

45. Ampere introduced this (Ampere [I, p. 156]) by saying it was 
"a definition of the derived functionf'(x) that seems to me the 
most general and the most rigorous one possible." Cauchy's 
theorem (5.5) proves thatj'(x) satisfies Ampere's definition. 

46. In fact, if the derivative j'(x) is continuous, then no other 
continuous function has this property. Ampere's uniqueness 
proof, with a bit of modification, can be adapted to show this. 
Ampere himself, however, did not explicitly restrict himself to 
continuous functions; before Cauchy, the distinction between 
continuous and noncontinuous functions would not have seemed 
important in this context. 

47. Ampere [I, p. 149]. 

48. Ampere [I, pp. 154-155]. This is Ampere's notation. He did 
not mention Lagrange explicitly as the source of this particular 
property. See, however, note 37 in this chapter. 

49. Ampere [I, p. 151]. 

50. Cours d'analyse (Cauchy [14, series 2, vol. 3, note II, theorem 
XII, p. 368]). See the appendix for a translation of Cauchy's 
result. Cauchy did not acknowledge Ampere when giving his own 
result. He probably was not conscious of the relationship; see 
Freudenthal [I] for a discussion of Cauchy's way of working. 

5!' Ampere [I, pp. 151-154]. 

52. Ampere [I, pp. 154-155]. Compare Lagrange's characteri
zation of the function iP as going to zero with i in Fonctions 
analytiques (Lagrange [9, vol. 9, pp. 28-29]) and also p. 95. 

53. Ampere [I, p. 152] expressed these inequalities verbally, 
saying "plus grande," "plus petite," but said specifically that he 
meant "greater than or equal to," or "less than or equal to." 
Additionally, I have substituted the notation [a,k] for his verbal 
descri ption. 

54. I have tried to isolate the theorem ofinterest. But part of the 
difficulty in reading Ampere's paper is that the proof just con
sidered is embedded in the proof of the theorem thatj'(x) cannot 
be zero or infinite on the whole interval. Of course (5.8) does 
imply this. 

55. Ampere [I, p. 162]. 

56. Caicui infinitlsimai (Cauchy [14, series 2, vol. 4, p. H]. Cauchy 
said "comprise" for what I have translated as "included"; he 
meant .,;;. For strict inequality, he said "renferme," which I have 
translated as "lying between." Lagrange did not make this dis-
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tinction clear in his proofs; Ampere at least tried to. I use Iii for 
Cauchy's "numerical value" of i. 

57. Cauchy did not refer to Ampere, but to his own result in the 
Cours d'analyse, note II. 

58. See the works on the calculus cited in chapter 2. A selection 
may be consulted in Struik [I, for instance pp. 272-28+ 
(Leibniz); 303-309 (Newton); 312, 315 (L'H6pital); +00-+01 
(Euler)). But recall the contrary example of Euler's treatment of 
extrema. 

j9. Le(ons sur les applications du calcul infinitesimal a lageometrie (1826) 
(Cauchy [5); also in Cauchy [1+, series 2, vol. 5, p. 9)). This work 
was intended by Cauchy as a companion volume to the Calcul 
infinitesimal of 1823. 

60. Cauchy [5) (also in Cauchy [1+, series 2, vol. 5, p. HI). I have 
deleted italics from the words "tangent" and "touches." 

61. Cauchy [5) (also in Cauchy [1+, series 2, vol. 5, p. HI). 

62. For instance, see Calcul irifinitesimal (Cauchy [H, series 2, vol. +, 
pp. 88-89, 2171). The notation is Cauchy's, save for 0 ,,;; 0";; I, 
which he expressed verbally. 

G3. Bolzano also adapted some of Lagrange's arguments of this 
type. See, for instance Functionenlehre (Bolzano [4, vol. I, 
p. 155ff)). For an explicit acknowledgement by Bolzano of 
Lagrange's prior use of such techniques in Lagrange's Fonetions 
analytiques and Calcul des fonetions, see Bolzano, Functionenlehrl' 
(Bolzano [2, vol. I, p. 1701). 

G+. Cauchy, again like Lagrange, chose first to expound the 
calculus analytically, and then to give a separate, almost equally 
lengthy, treatment of its applications to geometry. Lagrange 
carried out these separate tasks in the separate parts I and II of his 
Fonctions analytiques; Cauchy did it in two separate books, his Calcul 
infinithimal of 1823 and his Lerons sur les applications du calcul in
finitisimal it la lteometrie of 1826. In this separation of treatments, 
Lagrange in turn was following the practice of Euler in volumes I 
(analytic) and 2 (geometric) of his Introductio in ana!ysin infinitorum 
of 17+8. In part III of Fonctions analytiques Lagrange discussed the 
application of the calculus to mechanics. But in his textbooks 
from the Ecole Poly technique Cauchy did not devote space to this 
specific set of problems, though of course he worked with con
vergent series in mechanics and was proficien t in mathematical 
physics. 

65. For Euler, see pp. 117-118. For Lagrange, see Fonctiolls 
analytiques (Lagrange [9, vol. 9, pp. 233-237]). For a modern 
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treatment of maxima and minima using Lagrange's procedures 
see, for example, D. Widder, Advanced Calculus (New York: 
Prentice-Hall, 1947), pp. 76-77,99. 

66. Caleul irifinitesimal (Cauchy [14, series 2, vol. 4, pp. 88-90)). 

67. Caleul irifmitesimal (Cauchy [14, series 2, vol. 4, pp. 90-92]). 

68. Fonetions analytiques (Lagrange [9, vol. 9, pp. 183-189]). 

69. Compare Euclid Elements, book III, definition I and pro
position 16, for the case of the circle. This definition of tangent in 
general is found before Lagrange: see Maclaurin [2, book I, 
p.179]. 

70. This theory began by proving the following: Given two curves 
represented by J(x) and F(x) intersecting at x such that 
j'(x) = F'(x), another curve rjJ(x) can be interposed between the 
two given curves only ifj'(x) = F'(x) = rjJ'(x) at the fixed point x. 
Lagrange proved this by applying Taylor's theorem with 
Lagrange remainder to the dilferencesJ(x + i) - F(x + i) and 
J(x + i) - rjJ(x + i), and by careful computation with the in
equalities resulting from interpreting the statement "rjJ lies be
tween the curvesJ and F" and those Taylor-series remainders. 
Analogous results were derived whenJ"(x) = F"(x), and so forth. 
These results led Lagrange to define two curves as having a 
contact of order m at a point when they had m equal derivatives at 
that point; see Fonetions analytiques (Lagrange [9, vol. 9, pp. 189, 
198]). The detailed study and theory of orders of contact of curves 
is considered to begin with Lagrange; see Struik, Lectures on 
Classical Differential GeometlJ (Cambridge, Mass.: Addison
Wesley, 1950), p. 25. 

71. Cauchy [5] (also in Cauchy [14, series 2, vol. 5, pp. 77-80]). 

72. Fonetions analytiques (Lagrange [9, vol. 9, pp. 193-196]), 
Cauchy [5, le<;on 7] (also in Cauchy [14, series 2, vol. 5, especially 
pp. 115-116)). 

n. Fonetions analytiques (Lagrange [9, vol. 9, pp. 229-231]). 

74. Fonctionsanalytiques (Lagrange [9, vol. 9, pp. 151-157]). 

75. Fonetions analytiques (Lagrange [9, vol. 9, pp. 258-267]). For 
Cauchy see Caleul infinitesimal (Cauchy (14, series 2, vol. 4, 
pp. 47-49, 221-222)). 

76. Suppose two plane curves are tangent to each other at the 
point P. Let i be infinitely small. Choose a point Q on the first 
curve and R on the second such that PQ = PR = i. Let w rep
resent the angle between the lines PQand PRo Since the curves 
are tangent, w, like i, is infinitely small. Cauchy then defined the 
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Chapter 6 

Notes 

order of contact a between the curves as the order of the in
finitesimal w considered as a function ofi; see Cauchy [5] (also in 
Cauchy [14, series 2, vol. 5, p. 138]). Cauchy was proud of this 
definition because, among other things, it defined orders of con
tact between curves independently of the coordinate system; see 
"Avertissement" in Cauchy [5] (also in Cauchy [14, series 2, vol. 
5, pp. 9-10]). 

77. For Cauchy's theory of infinite sima Is of various orders, which 
is based on his theory of limits, see Cours d'ana/yse (Cauchy [14, 
series 2, vol. 3, p. 38ff]) and compare Cauchy [5] (also in Cauchy 
[14, series 2, vol. 5, pp. 132-137]). 

78. Cauchy [5] (also in Cauchy [14, series 2, vol. 5, p. 138]). 

79. Calcul irifinitesimal (Cauchy [14, series 2, vol. 4, pp. 243-244]). 

80. Calcul irifinitesimal (Cauchy [14, series 2, vol. 4, pp. 246-247]) 
for L'Hopital's rule; he also applied (5.14) to derive some results 
on orders of infinitesimals and Taylor's theorem; see Calcul in
finitesimal (Cauchy [14, series 2, vol. 4, pp. 257-261]). For 
Cavalieri's theorem, see Cauchy [5J (also in Cauchy [14, series 2, 
vol. 5, p. 457]). 

81. To within an alphabetical isomorphism. Lagrange used D 
(for donnee) for our epsilon, i (for indeterminee) both for his incre
ment and for what we call delta. 

82. Except, of course, for his not distinguishing between conver
gence and uniform convergence, a distinction not made clearly 
until the I 84Os. 

l. For instance, see Euler [4, p. I J (also in Euler [6, series I, vol. II, 
p. II]) and Lacroix [I, vol. 2, pp. 1-2]. This point has been made 
and amply documented by nUmerous historians, for example, 
Vivanti [I, pp. 741-742], and Voss [I, especially pp. 88-89]. 

2. Cajori [2, vol. 2, p. 243] reproduces the page of Leibniz's 
manuscript of 29 October 1675 in which the integral sign first 
appeared. The first publication of the integral sign was in Leibniz 
[I]; an excerpt from this paper may be found in Struik [I, 
pp. 281-282]. On Leibniz's integral see also Baron [I, p. 284]. 

3. See Euler [4,p. 4]. 

4. Lebesgue [I, p. 5]. lowe this reference to Iushkevich [5]. 

5. Postscript, 1823, added in 1822 to a paper begun in 1821, 
"Memoire sur I'integration des equations lineares aux differen
tielles partie lies et a coefficients constants" (Cauchy [II]). The 
paper is in Oeuvres completes d' Augustin Cauclry (Cauchy [14, series 2, 
vol. I, pp. 275-357]): pp. 275-333 comprise the body of the 
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paper; pp. 333-354 is an addendum called "Observations gene
rales et additions," which-because of a reference to the Calcul 
infinitesimal on p. 334-we know was composed after he had 
conceived the theory of the definite integral as a sum; the 
postscript is found on pp. 354-357, and apparently was com
posed after the "Observations generales." The point I have 
quoted is on p. 354 of Cauchy [14, series 2, vol. I]. 

6. lushkevich [5, p. 406]. 

7. This point has been argued at length by Jourdain [2, especially 
p. 665; compare pp. 679, 681-682, 684-685]. Compare Grattan
Guinness [3, pp. 44-45]. 

8. Fourier [2, for example sections 186,220]. Compare references 
in note 7. 

9. Legendre [I, pp. 309-314]. Compare Grattan-Guinness [3, 
p. 38], who gives another example from elsewhere in Legendre's 
work. 

10. Cauchy [9] (also in Cauchy [14, series 1, vol. 1, pp. 319-506]). 

II. Calcul iTifinitesimal (Cauchy [14, series 2, vol. 4, pp. 140-144]). 
Compare Cauchy [9], [14, series 1, vol. I, pp. 402-406]. 

12. Cauchy himself suggested that complex integration helped 
motivate his new definition in the postscript cited in note 5. In 
1825 Cauchy applied his sum definition to complex integrals in 
Cauchy [10], not published, however, until 187-1--1875. An 
English translation of this 1825 memoir may be found in 
lacobacci [I]. I shall return to Cauchy's 1825 paper at the end of 
this chapter. 

13. Cauchy [9] (also in Cauchy [B, series 1, vol. 1, p. 337ff]). For 
an account of this paper see Iushkevich [5, p. 389ff] and compare 
Iacobacci [I, p. 350ff]. 

14. Cauchy [9] (also in Cauchy [14, series 1, vol. 1, pp. 329-330]). 

15. Cauchy [B, series 1, vol. I, p. 322]. 

16. Cauchy [14, series 1, vol. 1, pp. 338, 390]. 

17. Letter to Bessel of 1811; often cited, for example by Kline [I, 
p.632]. 

18. Poisson [1]. For references by Cauchy to Poisson's work see, for 
example, Cauchy [B, series 1, vol. 1, pp. 333-334, 354ff]. For 
their relation see Iushkevich [5, pp. 397-401] and later in this 
chapter. 

19. For instance, Poisson noted that J~l dxjx should by sym
metry considerations be zero, yet if J ~l dxjx is evaluated over a 
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complex path, then transforming it by the substitution x = 

cos <: + i sin <: yields - (2n + I) n for the definite integral. See 
Poisson [I, pp. 320-321]. 

20. Cauchy [10], cited in note 12. 

21. Cauchy [14, series I, vol. I, pp. 333-334]; italics mine. As 
pointed out in note 5, this was written closely following Calcul 
infinitesimal and published in the same year-1823. 

22. Postscript, in Cauchy [14, series I, vol. I, p. 354]. 

23. An account of the work of Euler, Lacroix, and Poisson, and of 
some of the resemblances between their work and Cauchy's, is 
given in Iushkevich [5]. Iushkevich also treats there Cauchy's 
work on complex integration and on improper integrals. This 
study deserves to be more widely known. I shall cite Iushkevich in 
subsequent footnotes whenever his findings have anticipated my 
own. I go beyond Iushkevich in stressing how Lagrange showed 
Poisson and Cauchy how to use the Taylor-series remainders, in 
drawing the parallel between Cauchy'S existence arguments here 
and in his other adaptations of eighteenth-century approxi
mations, in my analysis of Cauchy's 1825 memoir (for which see 
later in the chapter), and in my analysis of some of Cauchy'S 
proofs. 

2+. Calrol irifinitesimal (Cauchy [1+, series 2, vol. +, p. 125]). 

25. Calcul irifinitesimal (Cauchy [1+, series 2, vol. +, p. 123]). 

26. Calcul infinitesimal (Cauchy [It, series 2, vol. t, p. 125]). 

27. See chapter t, and COUTS d'ana/yse (Cauchy [I +, series 2, vol. 3, 
pp. 115-116]). 

28. Calcul irifinitesimal (Cauchy [It, series 2, vol. -t, p. 125]); italics 
his. 

29. Calcul infinitesimal (Cauchy [1+, series 2, vol. -t, p. 126]). 

30. Euler [4] (also in Euler [6, series I, vol. II, p. 184]). Rewriting 
(6.5) in Cauchy's notation, let the "constant of integration" b be 
zero, let the function X be represented by f(x), let a = xo, 
a' = X h ... ) IX = Xn-h and x = X. Then (6.5) becomes 
y = f(XO)(Xl - xo) + f(xd(X2 - Xl) + ... + f(xn-,)(X - Xn-I), 
which is exactly (6.1). Compare Iushkevich [5, p. 378]. 

31. Euler H] (also in Euler[6, series I, vol. II, p. 186]). Compare 
Iushkevich [5, p. 379]. Euler showed that the integral is always 
included between 

b + A(a' - a) + A'(a" - a) + ... + 'X(x - 'x) 

and 
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b + A'(a' - a) + A"(a" - a) + ... + X(x - 'x). 

Euler does not use the word monotonic. 

32. Euler [6, series I, vol. II, pp. 186-187]. 

33. Legendre [I, part III, p. 314]. For the derivation see his p. 
309ff. For Cauchy's knowledge of Legendre's work, though with
out reference to this particular passage see, for example, Grattan
Guinness [3, pp. 36-41]. For the Cauchy principal value as a way 
of dealing with singular points, see Cauchy [9] (also in Cauchy 
[14, series I, vol. I, pp. 319-506]). 

34. 1822. See, for example, articles 186, 346, 415-418; compare 
Grattan-Guinness [3, p. 44]. 

35. Lacroix [I, vol. 2, p. 137]. This is exactly Euler's expression 
(6.5) save for a change in notation. Lacroix expressly referred to 
Euler's Institutiones calculi integralis as his source in writing this 
section; Lacroix [I, vol. 2, p. 135]. However, he derived (6.6) 
somewhat differently; see Iushkevich [5, p. 381]. 

36. Lacroix [I, vol. 2, p. I 39ff]. 

37. Lacroix wrote r = X(a), r t ' = X(aj). 

38. Lacroix [I, vol. 2, p. 140]. 

39. Lacroix [I, vol. 2, p. 140]. 

40. Calcul infinitesimal (Cauchy [14, series 2, vol. 4, p. 129]). 

41. Cauchy [1+, series 2, vol. 4, pp. 131-133], for instance; 
compare the pages in Lacroix [I] that I have just discussed. 

42. Lacroix [I, vol. 2, p. 140]: "Other cases are reducible to the 
two we have just considered." Lacroix did not, however, make 
any explicit appeal to the concept of continuous function. 

43. Poisson [I, pp. 295-341]. For Cauchy's acquaintance with 
this paper, see his "P.S." to Cauchy [II, p. 354]. 

H. He credits the fact that the integral is a sum to Lacroix [I, vol. 
2, article 471]; Poisson [I, p. 319]. 

45. Poisson [I, p. 319]. 

·l6. Poisson [1, p. 323]. Iushkevich [5, p. 399] cites this also. 

47. Euler [4] (also in Euler [6, series I, vol. II, p. 199]). Compare 
Lacroix, [1, vol. 2, pp. 136-139], where such approximations are 
discussed in both the equal and unequal-division cases. 

48. Poisson [1, p. 322]. 

49. Poisson [I, p. 323]. I use absolute value signs; he said "abstrac
tion ·made of the sign." Also, he wrote < where I have";;; the 
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latter seems to be intended. He expressed Ro + Rl + ... + 
Rn+l = T, and omitted the step IF(b) - J(a) - SI.:;;I nM(C(I+kJl. 

50. Poisson [I, p. 323]. The proof is reproduced by Iushkevich [5, 
p.399]. 

51. See Lagrange [16] (in Lagrange [9, vol. 9, pp. 80-81]), 
Lacroix [I, vol. 2, p. 141]. Poisson's knowledge of these works has 
been touched on in this chapter. 

52. Poisson [l, pp. 329-330]; italics mine. 

53. Cauchy [15, pp. 151-152]. Compare Moigno's version, in 
Birkhoff[l, pp. 8-11]. 

54. Cauchy [15, p. 131, formula 19]. 

55. For Cauchy's source for the mean-value theorem for integrals, 
see Lagrange, Fonetions ana(ytiques (Lagrange [9, vol. 9, p. 81]) and 
Lacroix [I, vol. 2, pp. 141-142], where Lacroix follows 
Lagrange's notation. 

56. Fonetions ana(ytiques (Lagrange [9, vol. 9, pp. 238-239]). He 
also treated the case whereJ decreases. I use the notation [x, x + i] 
for the interval; he used words only. For (6.16), Lagrange, 
characteristically, did not draw a diagram; the reader may easily 
supply one. I have substituted , which is meant, for his usual 
(and ambiguously used) <. 

57. Fonetions ana(ytiques (Lagrange [9, vol. 9, p. 239]). I have 
supplied the absolute value signs; he used the concept, but not the 
notation. 

58. See note 55. 

59. "Avertissement," Cauchy [4] (in Cauchy [14, series 2, vol. 4, 
p. 268]), cites the lnstitutiones calculi differentialis (Euler [3]); the 
Institutiones calculi integralis (Euler[ 4]) is ci ted in Cauchy [8], also in 
Cauchy [14, series 2, vol. I, p. 512]. 

60. Cauchy made no explicit reference here to Euler; as usual, I 
argue from the close resemblance. For Euler's treatment of this 
approximation, see Euler [+, p. 493] or Euler [6, vol. II, 
pp. 424-425]. The standard historical account of this method, 
pointing out the almost certain debt of Cauchy to Euler, is in 
Painleve [I, especially p. 193, note 5]. Cauchy's method was first 
published as Cauchy [19]; I have not seen this edition. It was 
reprinted in 1840 as Exercices d'ana(yse, vol. I, and may be found in 
Cauchy [1+, series 2, vol. II, p. 3991f]. 

61. Cauchy [5, pp. 431-432]. 

62. Cauchy [5, pp. 4+3-+46]. 
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63. Cauchy [5, pp. 464-466]. 

64. Cauchy [5, pp. 498-499]. 

65. Cauchy [10, section I], given in Iacobacci [I, p. 460]. 

66. Cauchy [10, section 2], cited in Iacobaccl [I, p. 462]. Compare 
Birkhoff[l, p. 33]. 

67. Cauchy [10, section 2], cited in Iacobacci [I, p. 463]; Birkhoff 
[I, p. 34]. 

68. Cauchy [10, section 3], cited in Iacobacci [I, p. 464]; Birkhoff 
[I, p. 34, 34n]. 

69. See Cauchy [9] (in Cauchy [14, series I, vol. I, p. 329ff, 
especially pp. 402-404]). 

70. See Riemann [2] (in Riemann [I, especially pp. 239-241]). 
For a Riemann reference to Cauchy, see Riemann [I, p. 234], and 
for the chain of influence from Cauchy to Dirichlet to Riemann, 
see Hawkins [I, chapter I] and compare Dauben [I, pp. 11-14]. 
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influence of Lagrange on, 

45,52-53, 74,95, 192 
(n.90) 

lack of influence, 14-15 
motivation for proof of 

intermediate-value 
theorem, 74 

opinion of Cauchy, 180 
(n.35) 

preference for purely 
analytic proofs, 10, 45, 
52-53, 155 

proof of intermediate-value 
theorem, 10, 69 

contrasted with Cauchy's 
proof, 74 
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Rein analytischer Beweis, xi, 
178 (n. 19), 179 (n. 31) 

use of Lagrange property of 
derivative, 212 (n. 4) 

work compared with 
Cauchy's, 9-11,74,75 

Bound 
limit as, 82, 84, 124, 126 
upper, 74,105,106-107 

Boyle, R., 26 
British views of foundations 

in eighteenth century, 24 
Burja, A., 20 

Calculus 
as logical structure of 

theorems, I 
as problem-solving tool, I 

Calculus of residues, 160 
Caratheodory, C., on rigor, 

183 (n. II) 
Carnot, L., 24, 34,41,165, 

191-192 (n. 88), 192 
(n. 89). See also Compen
sation of errors 

Cauchy, A. L. 
absolute values, 108-109 
applications of his theory of 

the integral, 160-162 
applications of his theory of 

series, 110-112 
binomial series for real and 

complex variables, 111-112 
Calcul infinitesimal, xi, 78, 97, 

107,113,114,121,122, 
151,168-175 

completeness of real 
numbers, 12, 13,72, 
105-106,209 (n. 98) 

complex integration, 143-
144,160-162 

complex-valued series, 
110-112 

as motivation for theory 
of real series, 112 

continuity, 143-144 (see also 
Cauchy, definitions; 
Cauchy, proofs; Inter
mediate-value theorem) 

nature of achievement, 
96-97 

proof, for sin x, 87 
terminology 

resemblance to Arbogast's, 
93 
resemblance to 
Lagrange's, 93 

views on, 1814,93-94 
convergence of Newton's 

method,68 
convergence tests, 106-109 

(see also Cauchy, criterion 
for convergence; Cauchy, 
definitions; Convergence 
tests) 

counterexamples in his 
work,108 

for Cauchy product of 
converging series, 108, 
110 

two functions with same 
Taylor series, 54, 110 

COUTS d'analyse, xi, 13, 78, 
97, lOS, 107, 109, 110, 
112, 122, 130, 135, 
167-168 

criterion for convergence, 
10, 102-106 

anticipation by Bolzano, 
102-103 

possible motivation for 
Cauchy's statement, 103 

statement by Cauchy, 102 
use by Cauchy, 105, 106, 

209 (n. 14) 
use by Cauchy in proof 
about integrals, 147 

definitions 
of complex definite 

integrals, 160-161 
of continuity, 87 
of convergence, 99 
of derivative, 86, 114-115 
of integrals 144, 146 
oflimit, 7, 80, 114 
of order of contact, 218 

(n.76) 
of sum of a series, 99 

derivative 
applications, 135-138 
defined as a limit, 86, 

114-115 
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Cauchy, A. L. (cont.) 
distinction between weak 

and strict inequality, 
216 (n. 56) 

existence of defini te 
integral, 145, 146-148 

false theorem on infinite 
series of continuous 
functions, 12, 111 (see also 
Uniform convergence) 

first look at his calculus, 6-9 
generalized mean-value 

theorem, 137-138 
geometric argument for 

intermediate-value 
theorem, 72 

infinitesimals, theory, 212 
(n. 6), 219 (n. 77) 

influence, 13-15, 171-181 
(nn. 33, 35-39) 

on Bolzano, Dirichlet, 
Riemann, Weierstrass, 
180 (n. 35) 

through his lectures, 181 
(n.39) 

influences on him (see also 
d'Alembert; Ampere; 
Euler; Lacroix; 
Lagrange; Poisson) 

of Lacroix's treatment of 
the integral, 151-152 

of Lagrange, 38, 45, 46, 47, 
53,54,72-74,75,79,95, 
136-137, 157, 158, 159, 
200 (nn. 62, 65) 

of Poisson, 159 
integral formula, 161 
integral theorem, 160, 161 
intermediate-value theorem 

used to prove mean
value theorem, 135 

Lefons SUT les applications du 
calcul infinitesimal a la 
geometrie, 135-137, 160 

limit concept, 7-9, 36, 77, 
80, 97 (see also Cauchy, 
convergence tests; 
Cauchy, derivative; 
Cauchy, integral 
theorem; Cauchy, 
proofs) 

mean-value theorem for 
integrals, 158 (see also 
Cauchy, proofs) 

memoir on complex integra
tion of 1825,160-161 

methodological ideal, 6, 30, 
54, lID, 135, 143-144, 
162,164 

motivation for definition of 
integral, 141-145 

note on the resolution of 
numerical equations, 72 

"Notes" to COUTS d'analyse, 
177 (n. 7) 

principal value of integrals, 
143,160 

product theorem for 
absolutely convergent 
series, 107-108 

proofs 
of existence of solution to 

differential equation, 
158-159 

of false theorem on 
convergence of power 
series, 12 (see also 
Uniform convergence) 

offundamental theorem of 
calculus, 155-156 

of intermediate-value 
theorem for continuous 
functions, 69,70-72,94, 
167-168 
contrasted with 
Bolzano's proof, 74 

of theorems involving 
limits, 210 (n. 103) 

radius of convergence, 109 
real numbers, views on, 

179 (n. 31) (see also 
Cauchy, cri terion for 
convergence; Complete
ness of real numbers) 

rejection of Lagrange's 
foundation for calculus, 
54 

role of definition of real 
integral in complex 
integration, 161 

series for trigonometric 
functions, 112 
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shortcomings in analysis, 
12-13 (see also 
Completeness of real 
numbers; Uniform 
continuity; Uniform 
convergence) 

superiority of limit concept, 
80,86 (see also Cauchy, 
convergence tests; 
Cauchy, derivative; 
Cauchy, integral 
theorem; Cauchy, limit 
concept) 

tangents, 135-136 
textbooks from Ecole 

poly technique, 217 (n. 64) 
translation oflimit concept 

into inequalities, 8, 86-87 
(see also Cauchy, limit 
concept) 

translations and textbooks 
based on the works of, 
180 (nn. 36,37) 

use of com parison test, 
106- 107 (see also Cauchy, 
convergence tests) 

use of index notation, 72 
use of Lagrange-Ampere 

proof technique, 133-134 
way of working, 74-75 

Cauchy-Lipschitz method, 
158-159 

Cauchy-Riemann equations, 
143 

Cauchy-Schwarz inequality, 75 
Cauchy sequence, modern 

definition, 208 (n. 83) 
Cavalieri, B., 138 
Cen ters or curvature, 137 
Chret, M., 19 
Comparison test, 63, 209 

(n. 100),213 (n. 15). 
See also Cauchy 

Compensation of errors, 34, 
38,42. See aiJo Berkeley; 
Carnot 

Lagrange's view, 44, 
191-192 (n. 88) 

Completed structure of 
calculus at end of 

eighteenth century, 25-26 
Completeness of real 

numbers. See Cauchy 
Complex integration. See 

Cauchy 
Complex-valued series. See 

Cauchy 
Condorcet,J. M. Marquis, 

de, 91, 92 
Contiguous function, 91 
Continuous function. See 

Continuity; Intermediate
value theorem 

Continuity. See also Arbogast; 
Bolzano; Cauchy; 
Condorcet; Con tiguous 
function; Lagrange 

Arbogast's characterization, 
92 

Bolzano's definition, 87, 96 
Cauchy's definition, 87 
eighteenth-century 

properties given that 
name, 88-89 

over intervals, 92 
Lagrange's views, 88-89, 

93, 95, 96 
Convergence. See also 

d'Alembert; Cauchy 
d'Alembert's definition, 61n, 

61-62, 101, 197-198 
(n.42) 

Cauchy's definition, 99 
eighteenth-century 

definitions, 99-100, 101, 
207 (n. 75) 

Convergence tests. See also 
d'Alembert; Cauchy 

comparison test, 106 
histories, 211 (n. 109) 
ratio test, 61-62, 99, 100, 

107 
root test, 106 

Copernicus, N., 4, 28 
Counterexamples. See 

Cauchy 
COUTS d'analyse. See Cauchy 

Dedekind, R., 2, 3, 25, 106 
"Definite integral," 151 
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Delta-epsilon inequalities, 
115, 133-134. See also 
Epsilon, origin of the 
notation 

Derivative. See also Cauchy; 
Differential quotient; 
Lagrange 

Ampere's definition, 129 
Cauchy's definition, 114-

115 
Lagrange's definition, 35, 

52,53-54, 120, 120n 
Lagrange property, 116, 

120, 130, 132 
proofs, 121-135 

Diderot, D., 26 
Differential equation, 

Cauchy's proof of 
existence of a solution, 
158-159 

Differential quotient, 31-36 
(see also d' Alembert) 

Dirichlet, P. G. 1., 195 
(n. 17) 

Discontiguous function. See 
Contiguous function 

Divergent series, 100. See 
also Convergence 

Ecole poly technique, 25, 43, 
142, 159 

Cauchy's courses in 
analysis at, 77 

Eighteenth-century 
mathematics, 16-17 

relative lack of interest in 
foundations, 18-23,41 

theory of algebra, 49 
Eighteenth-century 

occasions for discussion 
of foundations, 23 

Elementary functions 
functional equations, 111-

112 
power series, 51, 110-112 

Encyclopedie defini tion of 
limit, 7-8. See also 
d'Alembert 

Epsilon, origin of the 
notation, 76, 115 

Error bounds, 59-60 

Error estimates. See also 
Lagrange remainder of 
Taylor series 

in algebraic approxi
mations, 56, 57 

in approximating definite 
integrals, 148-152 

Euclid, 6, 29 
Euclid's theory of ratios, 29 
Euler, 1., 19,22,37,52,99, 

100, 110, 141, 165 
accuracy of Newton's 

method, 35, 58-59 
approximations to values of 

definite integrals, 148-
149,153 

criterion for use of series, 
117,119,154 

use in Cauchy's theory of 
infinitesimals, 212 (n. 6) 

use by Lagrange, 118-120 
definition offunction in 

Introductio, 213 (n. 14) 
discontinuous functions, 91 
influence on Cauchy, 3, 79, 

158-159 
Introductio, 51 
Institutiones calculi 

dijJerentialis, 118 
Institutiones calculi integralis, 

148,158-159 
maxima and minima, 117-

118 
power series, 98 
proof of divergence of 

harmonic series, 104 
vibrating string, 90 

Fluxions, 32, 44, 52. See 
also Maclaurin; Newton 

Fonctions analytiques. See 
Lagrange 

Fontaine, A. 
approximation method, 199 

(n.55) 
on calculus, 183 (n. 15) 

Fourier, J., 68, 79 
on integrals, 142-143, 145 
notation for definite 

integral, 147 
Fourier series, III 
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French Revolution, 25, 43 
Freudenthal, H., II, 177 

(n. II) 
Functional equations, used 

by Cauchy, 111-112 
Function concept, extension 

of, 89-91. See also 
Dirichlet; Euler; 
Lagrange 

Functions developed in 
series by Euler, 51 

Fundamental theorem of 
calculus, 155-158 

Cauchy's proof, 155-156, 
158 

Lagrange's proof, 156-157 
Moigno's proof, 223 (n. 53) 

Galileo, G., 28 
Gauss, K. F., 3 

on complex integrals, 144, 
145 

on hypergeometric series, 
99,209 (n. 100) 

possible source of Cauchy 
criterion, 208 (n. 91) 

proof of fundamental 
theorem of algebra, 74, 
182 (n. 6) 

Geometry 
as foundation for calculus, 

34-35 
opposition to, 10,45,52, 155 

Gerdil, H. S., 38 
Grattan-Guinness, I., 92, III 

anticipation of Cauchy 
criterion by Bolzano, 
views on, 103 

argument for Cauchy'S 
dependence on Bolzano, 
11,74 

on mathematical validity 
of compensation of errors, 
188 (n. 54) 

on uniform convergence, 
179 (n. 29) 

Greek tradition in 
eighteenth-century 
mathematics, 28-31 

Gregory, j., 0 notation for 

small increments, 187 
(n.48) 

Gruson,j. P., 20, 21, 35 

Hankel, H., 
on development of mathe

matics, 186 (n. 36) 
as discoverer of Bolzano's 

work, 178 (n. 14) 
Harmonic series, divergence 

of,99, 100, ]04,208 
(n. 92). See also Jakob 
Bernoulli; Euler; Oresme 

I'H6pital, G. F. A. de, 
32,38,44 

I'H6pital's rule, 138 
I'Huilier, S., 31, 36,41,42, 

165 
con ten ts of prize essay, 191 

(n.81) 
limit concept, 81 
limits above and below, 84 

Hypergeometric series. See 
Gauss 

Imitation qfChrist, 193 (n. 97) 
Improper integrals, 160, 162 
"Indefinite integral," 151 
I ndex notation, use of by 

Cauchy, 72 
Inequalities. See Algebra; 

Approximations; Means 
Infinite processes, as part of 

eighteenth-century 
algebra, 50-51 

Infinite series. See also 
Approximations; Euler; 
Lagrange; 

Taylor series considered as 
polynomials, 21 

Infinitesimals. See also 
Cauchy; Jakob 
Bernoulli 

as basis for calculus, 32 
Lagrange's criticism of, 44 

Infinity, actual, 38 
Integral. See also Cauchy 

additivity, over intervals, 
156 

as the antiderivative, 140-
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Integral (cont.) 
141, 143, 159 

approximatio!ls to value, 
148-152 

by Euler, 148-149 
by Lacroix, 150-151 
by Legendre, 149 

eighteenth-century view, 31 
existence, 146 
notation, 140 (see also 

Fourier; Leibniz) 
Intermediate-value property 

for polynomials, 69-70 
Intermediate-value theorem. 

See Bolzano; Cauchy; 
Lagrange 

proofs, 69-75 
Involutes and evolutes, 137 
Iushkevich, A. P., 142 
contents of 1947 memoir on 

integration, 221 (n. 23) 

Jourdain, P. E. B., 93, 188 
(n.62) 

Jurin, J., 165 

Kies,]. 19 
Kitcher, p., on 

Aristotelianism in 
Bolzano, 194 (n. 15) 

Kluge!, G. S., 101 
Kuhn, T. S., on scientific 

revolutions, 186 (n. 36) 

Lacroix, S. F., 141, 158 
binomial series, 63, 109 
continuity, 93 
convergence of series, 10 I 
Elementary Treatise on the 

Differential and Integral 
Calculus, 192-193 (n. 95) 

on foundations of calculus, 
33, 78, 79-80 

influence of treatment of 
integral on Cauchy, 
151-152 

influence on Poisson, 154n 
"law of continuity," 89 
limit concept, 80-81, 84-85 
limit of product, 83 
mean-value theorem for 

integrals, 155-156 
notation used by Cauchy, 

210 (n. 108) 
proof of divergence of har

monic series, 208 (n. 92) 
remainder for binomial 

series, 103 
terminology for integrals, 

151 
terminology for integrals 

like Cauchy'S, 208 (n. 88) 
Traite du calcul differentiel et du 

calcul integral, 63, 79-80, 
101, 106, 151, 154n 

Lagrange, J. L., 20, 23, 33, 
80,99, 110, 165 

algebra as foundation for 
calculus, 43, 45, 139 

approximating roots of 
polynomials as inter
mediate values, 70 

binomial series, III 
Calcul des fonctions, xi, 79, 

123, 154n 
continuity of a polynomial, 

88-89,93-94 
continuity of a power series, 

95 
critique of older 

foundations, 44-45 
crucial transitional figure 

between eighteenth- and 
nineteenth-century points 
of view, 3-4. 45,137-145 

definition of derivative, 35, 
52, 120, 120n 

derivation of Euler's 
criterion, 118-119 

Equations numeriques, xi, 
64-74 

referred to by Cauchy, 75, 
200 (nn. 62, 65) 

as source for Cauchy, 72-
74,79 

error-estimates, 64-68 
for Taylor series, 119-120 

Euler's zeros, view of, 35 
Fonctions analytiques, xi, 37, 

41,43-46,78,98, 138 
as source for Cauchy, 79, 

159 
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function, concept of, 51, 53 
influence of Euler, 117-119 
influence 
on Bolzano, 45, 52-53, 74, 
95, 192 (n. 90) 

on Cauchy, 38, 45, 46, 47, 
53, 54, 72-74, 75, 79, 
136-137, 157, 158, 159, 
200 (nn. 62, 65) 

on Gruson, 182 (n. 9) 
on Poisson, 154 (n. 157) 

influence of views on 
calculus, 21, 192-193 
(n. 95) (see also Bolzano; 
Cauchy) 

interpolation formula, 72 
limit concept, views on, 81, 

82 
mathematical style, 39 
mean-value theorem for 

integrals, 155, 156 
Mecanique analytique, 42, 52 
new attitude toward 

foundations, 45-46 
Newton's method, 

convergence of, 64-68 
notation for derivatives, 53, 

189-190 (n. 71) 
on orders of contact be

tween curves, 218 (n. 70) 
origin of in terest in 

foundations, 37 (see also 
Teaching) 

paper of 1772 on series, 39, 
189 (n. 70) 

power series, 98 
program of reducing 

calculus to algebra, 
51-52,138 

proofs 
of Euler's criterion, 95 
of fundamental theorem 
of calculus, 156-157 

of intermediate-value 
theorem, 73, 73 (n. 88) 

oflemma on function with 
positive derivative, 
123-126, 158 
delta-epsilon style, 125 
weaknesses, 125-126 

of mean-value inequality, 

126 
of statement that all 
functions have power
series expansions, 52 

vibrating string, 90 
Lagrange property of 

derivative, 116, 120-121, 
130, 132, 162 

use by Ampere, 130 
use by Bolzano, 212 (n. 4) 
use by Cauchy, 133 

Lagrange remainder of 
Taylor series, 45, 60, 98, 
154 

derivation, 126-127 
as error bound, 60 
proof technique used to 

derive,76,122-126 
use in applications of 

derivative, 136-137 
Lakatos, I., III 
Lalande,].,19 
Lambert, J. H., 56 
Landen,J., 35, 193 (n. 7) 
Laplace, P. S., 35, 99, 193 

(n.97) 
on infinitesimal calculus, 

188 (n. 57) 
"Law of continuity," 89. See 

also Lacroix 
Lebesgue, H., 142 
Legendre, A. M., 141, 145, 

149, 150 
Leibniz, G., 16,44,49,50 

integral of, 140-141, 145 
notation for integral, 

140-141 
Limit. See also d' Alembert; 

Bound; Cauchy; 
I'Huilier; Lacroix; 
Lagrange 

d'Alembert's definition, 7-8 
Cauchy's definition, 7, 36, 

80 
Cauchy's delta-epsilon 

translation, 8, 86-87 
eighteenth-century concepts, 

33 
eighteenth-century proofs, 

83-84 
existence, according to 
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Limit (cont.) Fundamental theorem 
Cauchy, 86 of calculus 

foundation for calculus, Motion, concept of, 52, 83. 
77-78 See also V dod ty 

inequalities for based on 
Greek methods, 30-31 Newton, I., 24, 26, 38, 99 

Lagrange's criticism, 44-45 binomial series, 60 
shortcomings of eighteenth- fluxions, 23, 32-33, 52 

century definition, 8-9, on infinitesimals, 34, 82 
33-34, 36 limit concept, 78, 81-82, 

variable reaching, for 85,86 
d' Alembert, Maclaurin, notation for fluxions, 181 
Lacroix, Cauchy, 85-86 (n. I) 

Lobachevsky, N. I., 29, 177 Principia, 81, 202 (n. 13) 
(n.14) Newton-Leibniz controversy, 

Locke, J., 26 24 
Newton's method, 57-58,59 

Maclaurin, C., 24, 165 Number theory in eighteenth 
approximation to root by century, 182 (n. 7) 

repeated halvings, 70 
definition of sum of series, Orders of contact, 137. See 

101 also Cauchy; Lagrange 
on fluxions, 27, 32 Oresme, N., 100 
on limits, 82, 85 
on maxima and minima, Partitions, 146-147 

118 Pascal, B., 84 
use of Taylor series, 118 Peacock, G., 195 (n. 23) 

Manning, K., 210 (n. 105) Poincare, H., 176 (n. 2) 
Maxima and minima Poisson, S. D., 141, 145, 158, 
Cauchy, 136 165 
Euler, 117-118 complex integration, 144, 
Lagrange, 136 152 
Maclaurin, 118 fundamental proposition of 

Means, 168n, 169n, 172, theory of definite integrals, 
172n, 173 144-145 proof, 153-155 

Mean-value inequality, 121- influence on Cauchy, 145, 
122,130-132,133-134, 159 
168. See also Ampere; influence of Lacroix and 
Cauchy; Lagrange Lagrange, 154n 

Mean-value theorem for Power series, eighteenth-
derivatives, 121-122, century study of, 98. See 
134-135 also Cauchy; Euler; 

application of, 136 (see also Lagrange 
Cauchy) "Primitive functions," for 

Mean-value theorem for Lagrange, 215 (n. 32) 
integrals, 155, 156, 158 

Mechanical vs. algebraic Radius of convergence, 109. 
curves, 205 (n. 48) See also Cauchy 

Method of exhaustion, 29- Ratio test, Lagrange's use of 
30,34-35, 190 (n. 78) d' Alembert's, 65. See also 

Moigno, F., 146. See also d'Alembert; Cauchy 
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Real numbers. See Bolzano; 
Cauchy; Completeness of 
real numbers 

Remainder. See d'Alembert; 
Lacroix; Lagrange 

Riemann, B., influence of 
Cauchy, 162 

Riemann integral, 3, 162-
163 

Rigor in analysis, nineteenth
century view, 5 

Robins, B., 165, 184 (n. 21) 

Saint Petersburg Academy 
Prize of 1787, 19-92 

Schulze,]. K. G., 190 (n. 74) 
Scientific journals in 

eighteenth century, 21, 
182 (n. 10) 

Scientific revolutions, 2, 186 
(n.36) 

secant, 33 
Segner,]. A., 19 
Series. See also d'Alembert; 

Cauchy; Convergence; 
Euler, proof of divergence 
of harmonic series; 
Lagrange, power series; 
Taylor series 

absolutely convergent, 108 
alternating, 12, 105 
divergent, 100 (see also 

Cauchy, methodological 
ideal) 

geometric, 106-107 (see also 
Comparison test) 

hypergeometric,99 (see also 
Gauss) 

Sinaceur, H., II 
Stolz, 0., as discoverer of 

Bolzano, 178 (n. 14) 
Struik, D., 185 (n. 26) 
Sum of series 

Cauchy's definition, 99 
Maclaurin's definition, 101 

Sylow, L., on Bolzano, 177 
(n.14) 

Synthesis, 28 

Tangent, 33. See also Cauchy; 
Lagrange 

Taylor series. See also Euler, 
cri terion for use of series; 
Lagrange, definition of 
derivative; Maxima and 
minima 

in approximating integrals, 
153-154 

in foundation of calculus, 
35,36, 118 

in Lagrange's proof of 
fundamental theorem of 
calculus, 157 

and Lagrange property of 
derivative, 120 

non uniqueness of represen
tation, 54, 195 (n. 22) 
(see also Cauchy, counter
examples in his work) 

Taylor's theorem for functions 
of several variables, 137 

Teaching 
of calculus, increase in late 

eighteenth century, 24-25 
for Cauchy'S definition of 

the integral, 142 
for Lagrange, 43 
as stimulus to study founda

tions of calculus, 25 
Textbooks. See Cauchy; 

Lacroix; Lagrange; 
Teaching 

Theological interest in 
infinity, 189 (n. 63) 

Trembley,].,20 
Trigonometric series 

representing solution of 
wave equation, 90. See 
fllso Fourier 

"Tru~ metaphysics of the 
calculus," 25 

Turin, military school, 37 

Ultimate ratios, 33. See also 
Newton, limit concept 

Uniform continuity, 97 
140n, 146 

Uniform convergence, 12-13, 
126, 132 

"Universal arithmetic," 49, 
50 
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Velocity, 44 
Vergil, 193 (n. 97) 
Vibrating string, differential 

equation for, 21, 90-91 
Viere, F., symbolic notation, 

193 (n. I) 
Voltaire, F., 29 

Wave equation. See Vibrating 
string 

Weierstrass, K., 2, 14, 106 
continuous nondifferentiable 

function, 178 (n. 21) 
distinction between 

continuity and uniform 
continuity, 97 

teaching and work on 
foundations, 25 

theory of analytic functions, 
194 (n. 12) 

theory of functions of a 
complex variable, 112 

uniform convergence, 12, 
132 

Wilson,]., 184 (n. 21) 

Zeros of Euler, 35 


