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Translators’ Preface

Modern mathematics strives to be rigorous. Ancient Greek geometers had similar
goals, to prove absolute truths by using perfect deductive logic starting from incon-
trovertible premises.

Often in the history of mathematics, we see a pattern where the ideas and appli-
cations come first and the rigor comes later. This happened in ancient times, when
the practical geometry of the Mesopotamians and Egyptians evolved into the rigor-
ous efforts of the Greeks. It happened again with calculus. Calculus was discovered,
some say invented, almost independently by Isaac Newton (1642–1727) about 1666
and by Gottfried Wilhelm von Leibniz (1646–1716) about 10 years later, but its rig-
orous foundations were not established, despite several attempts, for more than 150
years.

In 1821, Augustin-Louis Cauchy (1789–1857) published a textbook, the Cours
d’analyse, to accompany his course in analysis at the École Polytechnique. It is one
of the most influential mathematics books ever written. Not only did Cauchy provide
a workable definition of limits and a means to make them the basis of a rigorous
theory of calculus, but also he revitalized the idea that all mathematics could be set
on such rigorous foundations. Today, the quality of a work of mathematics is judged
in part on the quality of its rigor; this standard is largely due to the transformation
brought about by Cauchy and the Cours d’analyse.

The 17th century brought the new calculus. Scientists of the age were convinced
of the truth of this calculus by its impressive applications in describing and predict-
ing the workings of the natural world, especially in mechanics and the motions of the
planets. The foundations of calculus, what Colin Maclaurin (1698–1746) and Jean
le Rond d’Alembert (1717–1783) later called its metaphysics, were based on the
intuitive geometric ideas of Leibniz and Newton. Some of their contemporaries, es-
pecially Bishop George Berkeley (1685–1753) in England and Michel Rolle (1652–
1719) in France, recognized the problems in the foundations of calculus. Rolle, for
example, said that calculus was “a collection of ingenious fallacies,” and Berkeley
ridiculed infinitely small quantities, one of the basic notions of early calculus, as
“the ghosts of departed quantities.” Both Berkeley and Rolle freely admitted the
practicality of calculus, but they challenged its lack of rigorous foundations. We
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should note that Rolle’s colleagues at the Paris Academy eventually convinced him
to change his mind, but Berkeley remained skeptical for his entire life.

Later in the 18th century, only a few mathematicians tried to address the ques-
tions of foundations that had been raised by Berkeley and Rolle. Over the years,
three main schools of thought developed: infinitesimals, limits, and formal algebra
of series. We could consider the British ideas of fluxions and evanescent quanti-
ties either to be a fourth school or to be an ancestor of these others. Leonhard
Euler (1707–1783) [Euler 1755] was the most prominent exponent of infinitesi-
mals, though he devoted only a tiny part of his immense scientific corpus to issues
of foundations. Colin Maclaurin [Maclaurin 1742] and Jean le Rond d’Alembert
[D’Alembert 1754] favored limits. Maclaurin’s ideas on limits were buried deep
in his Treatise of Fluxions, and they were overshadowed by the rest of the opus.
D’Alembert’s works were very widely read, but even though they were published
at almost the same time as Euler’s contrary views, they did not stimulate much of a
dialog.

We suspect that the largest school of thought on the foundations of calculus was
in fact a pragmatic school – calculus worked so well that there was no real incentive
to worry much about its foundations.

In An V of the French Revolutionary calendar, 1797 to the rest of Europe, Joseph-
Louis Lagrange (1736–1813) [Lagrange 1797] returned to foundations with his
book, the full title of which was Théorie des fonctions analytiques, contenant les
principes du calcul différentiel, dégagés de toute considération d’infiniment petits
ou d’évanouissans, de limites ou de fluxions, et réduits à l’analyse algébrique des
quantités finies (Theory of analytic functions containing the principles of differential
calculus, without any consideration of infinitesimal or vanishing quantities, of limits
or of fluxions, and reduced to the algebraic analysis of finite quantities). The book
was based on his analysis lectures at the École Polytechnique. Lagrange used power
series expansions to define derivatives, rather than the other way around. Lagrange
kept revising the book and publishing new editions. Its fourth edition appeared in
1813, the year Lagrange died. It is interesting to note that, like the Cours d’analyse,
Lagrange’s Théorie des fonctions analytiques contains no illustrations whatsoever.

Just two years after Lagrange died, Cauchy joined the faculty of the École Poly-
technique as professor of analysis and started to teach the same course that Lagrange
had taught. He inherited Lagrange’s commitment to establish foundations of calcu-
lus, but he followed Maclaurin and d’Alembert rather than Lagrange and sought
those foundations in the formality of limits. A few years later, he published his
lecture notes as the Cours d’analyse de l’École Royale Polytechnique; I.re Partie.
Analyse algébrique. The book is usually called the Cours d’analyse, but some cat-
alogs and secondary sources call it the Analyse algébrique. Evidently, Cauchy had
intended to write a second part, but he did not have the opportunity. The year after
its publication, the École Polytechnique changed the curriculum to reduce its em-
phasis on foundations [Lützen 2003, p. 160]. Cauchy wrote new texts, Résumé des
leçons données a l’École Polytechnique sur le calcul infinitesimal, tome premier in
1823 and Leçons sur le calcul différentiel in 1829, in which he reduced the material
in the Cours d’analyse about foundations to just a few dozen pages.
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Because it became obsolete as a textbook just a year after it was published, the
Cours d’analyse saw only one French edition in the 19th century. That first edition,
published in 1821, was 568 pages long. The second edition, published as Volume 15
(also identified as Series 2, Volume III) of Cauchy’s Oeuvres complètes, appeared
in 1897. Its content is almost identical to the 1821 edition, but its pagination is
quite different, there are some different typesetting conventions, and it is only 468
pages long. The Errata noted in the first edition are corrected in the second, and a
number of new typographical errors are introduced. At least two facsimiles of the
first edition were published during the second half of the 20th century, and digital
versions of both editions are available on line, for example, through the Bibliothèque
Nationale de France. There were German editions published in 1828 and 1885, and
a Russian edition published in Leipzig in 1864. A Spanish translation appeared in
1994, published in Mexico by UNAM. The present edition is apparently the first
edition in any other language.

The Cours d’analyse begins with a short Introduction, in which Cauchy acknowl-
edges the inspiration of his teachers, particularly Pierre Simon Laplace (1749–1827)
and Siméon Denis Poisson (1781–1840), but most especially his colleague and for-
mer tutor André Marie Ampère (1775–1836). It is here that he gives his oft-cited
intent in writing the volume, “As for the methods, I have sought to give them all the
rigor which one demands from geometry, so that one need never rely on arguments
drawn from the generality of algebra.”

The Introduction is followed by 16 pages of “Preliminaries,” what today might
be called “Chapter Zero.” Here, Cauchy takes pains to define his terms, carefully
distinguishing, for example, between number and quantity. To Cauchy, numbers
had to be positive and real, but a quantity could be positive, negative or zero, real or
imaginary, finite, infinite or infinitesimal.

Beyond the Preliminaries, the book naturally divides into three major parts and
a couple of short topics. The first six chapters deal with real functions of one and
several variables, continuity, and the convergence and divergence of series.

In the second part, Chapters 7 to 10, Cauchy turns to complex variables, what
he calls imaginary quantities. Much of this parallels what he did with real numbers,
but it also includes a very detailed study of roots of imaginary equations. We find
here the first use of the words modulus and conjugate in their modern mathematical
senses. Chapter 10 gives Cauchy’s proof of the fundamental theorem of algebra, that
a polynomial of degree n has n real or complex roots.

Chapters 11 and 12 are each short topics, partial fraction decomposition of ra-
tional expressions and recurrent series, respectively. In this, Cauchy’s structure re-
minds us of Leonhard Euler’s 1748 text, the Introductio in analysin infinitorum [Eu-
ler 1748], another classic in the history of analysis. In Euler, we find 11 chapters on
real functions, followed by Chapters 12 and 13, “On the expansion of real functions
into fractions,” i.e., partial fractions, and “On recurrent series,” respectively.

The third major part of the Cours d’analyse consists of nine “Notes,” 140 pages
in the 1897 edition. Cauchy describes them in his Introduction as “. . . several notes
placed at the end of the volume [where] I have presented the derivations which may



x Translators’ Preface

be useful both to professors and students of the Royal Colleges, as well as to those
who wish to make a special study of analysis.”

Though Cauchy was only 32 years old when he published the Cours d’analyse,
and had been only 27 when he began teaching the analysis course on which it was
based, he was already an accomplished mathematician. This should not be surpris-
ing, as it was not easy to earn an appointment as a professor at the École Polytech-
nique. Indeed, by 1821, Cauchy had published 28 memoirs, but the Cours d’analyse
was his first full-length book.

Cauchy’s first original mathematics concerned the geometry of polyhedra and
was done in 1811 and 1812. Louis Poinsot (1777–1859) had just established the
existence of three new nonconvex regular polyhedra. Cauchy, encouraged to study
the problem by Lagrange, Adrien-Marie Legendre (1752–1833) and Étienne Louis
Malus (1775–1812), [Belhoste 1991, pp. 25–26] extended Poinsot’s results, discov-
ered a generalization of Euler’s polyhedral formula, V −E +F = 2, and proved that
a convex polyhedron with rigid faces must be rigid. These results became his earliest
papers, the two-part memoir “Recherches sur les polyèdres” and “Sur les polygones
et les polyèdres.” [Cauchy 1813] Despite his early success, Cauchy seldom returned
to geometry, and these are his only significant results in the field.

After Cauchy’s success with the problems of polyhedra, his father encouraged
him to work on one of Fermat’s (1601–1665) problems, to show that every integer
is the sum of at most three triangular numbers, at most four squares, at most five
pentagonal numbers, and, in general, at most n n-gonal numbers. He presented his
solution to the Institut de France on November 13, 1815 and published it under the
title “Démonstration générale du théorème de Fermat sur les nombres polygones”
[Cauchy 1815]. Belhoste [Belhoste 1991, p. 46] tells us that this was the article “that
made him famous,” and suggests that “[t]he announcement of his proof may have
supported his appointment to the École Polytechnique a few days later.”

Just a month later, on December 26, 1815, the Academy’s judgment was con-
firmed when Cauchy won the Grand Prix de Mathématiques of the Institut de
France, and its prize of 3000 francs, for an essay on the theory of waves.

With his career established, Cauchy married Aloı̈se de Bure (1795?–1863) in
1818. They had two daughters. It is a measure of Cauchy’s later fame and success
that one of his daughters married a count, the other a viscount. Indeed, Freudenthal
[DSB Cauchy, p. 135] says that Cauchy “was one of the best known people of his
time.”

The de Bure family were printers and booksellers. The title page of the Cours
d’analyse, published by de Bure frères, describes them as “Libraires du Roi et de la
bibliothèque du Roi.”

It seems that Cauchy was an innovative but unpopular teacher at the École Poly-
technique. He, along with Ampère and Jacques Binet (1786–1856), proposed sub-
stantial revisions in the analysis, calculus and mechanics curricula. Cauchy wrote
the Cours d’analyse to support the new curriculum.

In 1820, though, before the Cours d’analyse was published, but apparently af-
ter it had been written and the publisher had committed to printing it, the Conseil
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Fig. 1 Cauchy, by Susan Petry, 18× 28 cm, bas relief in tulip wood, 2008. An interpretation of
portraits by Boilly (1821) and Roller (∼ 1840). Photograph by Eliz Alahverdian, 2008. Reprinted
with permission of Susan Petry and Aliz Alahverdian. All rights reserved.
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d’Instruction, more or less a Curriculum Committee, largely influenced by de Prony
(1755–1839) and Navier (1785–1836), ordered that Cauchy and Ampère change
the curriculum again. As a consequence, the Cours d’analyse was never used as a
textbook. A more complete account of this episode is found in [Belhoste 1991, pp.
61–66].

Lectures at the École Polytechnique were scheduled to be 50 lectures per term,
each consisting of 30 minutes “revision” then 60 minutes of lecture. On April 12,
1821, Cauchy was delivering the 65th lecture of the term. When the lecture neared
the end of its second hour, students began to jeer, and some walked out. A formal
investigation followed, and eventually both the students and Cauchy were found
responsible, but nobody was punished. Fuller accounts are found in [Belhoste 1991,
pp. 71–74] and [Grattan-Guinness 1990, pp. 709–712].

From 1824 to 1830, Cauchy also taught part-time at the Collège de France, where
he presented, among other techniques, methods of differential equations, and gave
lectures on the theory of light. At the same time he worked also as a substitute pro-
fessor on the Faculté des Sciences de Paris, where he replaced Poisson, and lectured
on the mechanics of solids, fluid mechanics and on his general theory of elasticity.

By 1826, Cauchy had grown impatient with the time it took for the Academy
to publish his articles and memoirs. That year they published only 11 of his
memoirs, up from six in 1825, so he founded a private journal, the Exercises de
mathématiques, published by his in-laws, Debure frères. By 1830, he had published
five volumes of the Exercises, containing 51 of his articles. These comprise volumes
18 to 21 of the Oeuvres complètes.

The July Revolution of 1830 deposed the Bourbon monarch, Charles X. Cauchy
refused to take a loyalty oath to his Orleans successor, Louis-Philippe, and went into
8 years of voluntary exile. He taught at the University of Turin from 1831 to 1833,
where he continued his journal under the new name, Résumés analytiques (Oeuvres
complètes, volume 22), and then spent the rest of his exile tutoring in Prague in
the exile court of Charles X. While in Prague, his king awarded Cauchy the title
“Baron.”

In 1838, Cauchy returned to Paris, but because he had not taken the loyalty oath,
he was not allowed to teach, either at the École Polytechnique or at his part-time
jobs. He was still an active member of the Académie des Sciences, though, and over
the next 10 years he submitted over 400 items to the Comptes rendus, the published
notes and articles presented at the weekly meetings of the Academy. Because the
Academy took breaks and vacations, “weekly” meetings did not actually take place
every week. Over these 10 years, Cauchy averaged an article for each week the
Academy was in session. These articles occupy most of volumes 4 to 10 of Cauchy’s
27-volume Oeuvres complètes. At the same time, he continued his private journal
under yet another title, the Exercises d’analyse et de physique mathématique. These
47 articles fill volumes 23 to 26 of the Oeuvres complètes. During his decade away
from the classroom, 1838 to 1848, Cauchy produced about half of his published
works by item count, about a third of them by page count. It was a remarkable
decade.
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The February Revolution of 1848 ended the reign of Louis-Philippe and estab-
lished the Second Republic. Loyalty oaths were not required, so Cauchy returned
to the Faculté des Sciences as professor of mathematical astronomy. When loyalty
oaths were reestablished in 1852, Napoleon III made an exception for Cauchy.

Cauchy’s last 9 years were active. In 1853, he published one last volume of the
Exercises d’analyse et de physique mathématique. He did a good deal of research
on the theory of light and bickered with his colleagues. He made another 159 con-
tributions to the Comptes rendus. The last of his 589 contributions to that journal
came on May 4, 1857. [Oeuvres 12, p. 435] It was a short note on mathematical
astronomy, and he closed it with the words C’est ce que j’expliquerais plus au long
dans un prochain Mémoire, “I will explain this at greater length in a future Memoir.”
Clearly, he was not expecting to die just 18 days later.

Many studies give more detailed accounts of Cauchy’s life, works and times than
we give here. For a full biography of Cauchy, we refer our readers to [Belhoste
1991]. The entry in the Dictionary of Scientific Biography [DSB Cauchy] is much
briefer; it contains many inaccurate citations to Cauchy’s work and in general seems
to suffer from “hero worship.” For example, we find no other source that describes
Cauchy as “one of the best-known people of his time, and must have been often
mentioned in newspapers, letters and memoirs.” Still, its basic facts are correct.

For accounts of Cauchy’s work and its importance, we recommend [Grabiner
2005] and [Grattan-Guinness 2005] as good places to begin. See also [Grattan-
Guinness 1990] for a comprehensive account of the French mathematical commu-
nity in the time of Cauchy.

Grattan-Guinness first presents his case that Cauchy “plagiarized” Bolzano in
[Grattan-Guinness 1970a]. This assertion precipitated a controversy that raged
through [Grattan-Guinness 1970b], [Freudenthal 1971b], and still echoed in [Gra-
biner 2005].

Other modern contributions to Cauchy scholarship are more numerous than we
wish to describe, but we will mention in particular [Jahnke 2003], [Lützen 2003],
[Ferraro 2008] and [Bottazzini 1990]. Starting with these references, the interested
reader can find a great many more.

As we translated the Cours d’analyse, we laid out the text and formulas, used
italics, bold face and punctuation, and, as much as possible, adopted the styles of
the 1897 edition of the text. We have also added an index (neither the 1821 nor
the 1897 editions have indices), and we have used our footnotes to note passages
that are quoted, cited or translated in certain important secondary sources. We have
not made note of errors cited in the Errata of the 1821 edition, all of which were
corrected in the 1897 edition, but we have noted errors not mentioned in the Errata,
as well as new errors introduced in the second edition. We distinguish such footnotes
with the signature “(tr.).” Expository footnotes are unsigned.

We believe that the primary purpose of a translation such as this one is to make
the work available in English, and not to provide a platform for our opinions on
how this work should be interpreted. Towards this end, we have generally limited
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our commentary to expository remarks rather than interpretative ones. For those
passages that are controversial and subject to a variety of interpretations, we try to
refer the interested reader to appropriate entry-point sources and do not try to be
comprehensive.

For a variety of reasons, we decided to follow Grabiner [Grabiner 2005], Freuden-
thal [DSB Cauchy] and others, rather than Kline [Kline 1990], and to make our
translation, as well as to cite page numbers, from the second edition. Although elec-
tronic copies of both editions are freely available on the World Wide Web, bound
copies of the 1821 edition are rather hard to find, while the second edition is found
in many university libraries. The on-line library catalog WorldCat reports 57 copies
of the 1821 edition in North America, and only seven copies of the facsimiles. Yet
they report at least 117 copies of the 1897 edition in North America. We say “at
least” because there are several different kinds of catalog entries, and it is difficult
to tell how much duplication there is. We would estimate at least 200 copies. The
two editions are identical in content, notation and format, but differ in pagination,
page layout and some punctuation. In general, we found the typography and page
layout of the 1821 edition somewhat cluttered, even quirky, particularly in the ways
that formulas were cut into many lines to be arranged on the page. Weighing all these
circumstances, it seemed more reasonable to follow the more accessible version.

In general, we resisted the temptation to modernize Cauchy’s notation and termi-
nology. When he uses the word limites to mean both what we call “limits” and what
we call “bounds,” we translate it as “limits” in both cases. In the index, citations
of the word “limit” direct the reader to instances in which the limit process is being
used, and not to instances meaning “bounds.” Moreover, when he fails to distinguish
between open intervals and closed intervals, or between “less than” and “less than
or equal to,” we translate it as Cauchy wrote it, and do not attempt to force upon
Cauchy distinctions he himself did not make.

There are two conspicuous exceptions. Cauchy wrote lx, or sometimes Lx to de-
note the logarithm of x to a given base A. We modernize this to logx or Logx to
avoid unnecessary confusion. Likewise, we write lnx to denote the natural loga-
rithm of x, rather than using Cauchy’s lx. Also, Cauchy used periods at the end of
the abbreivated names of trignonometric functions (such as cos. x) and denoted the
tangent and arctangent functions tang. x and arc tang. x. Following modern usage,
we omit the periods and use tanx and arctanx.

Cauchy did not adopt Euler’s innovation of the 1770s, to write i for
√
−1, so we

write
√
−1 as well.1

Within our translation of the text, numbers in square brackets, like [116], mark
where new pages begin in the 1897 edition. Thus, for example, when we find the
notation [116] in the midst of the statement of the Cauchy Convergence Criterion,
we know that Cauchy’s statement of that criterion appeared on pages 115 and 116

1 Many people attribute Euler’s first use of the symbol i to denote
√
−1 to his 1748 text, the

Introductio in analysin infinitorum [Euler 1748] , but readers who check Volume II, Chapter 21, §
515 will see that the quantity Euler denotes there as i is actually ln(−n), for some positive value of
n, and not the imaginary unit,

√
−1.
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of the 1897 edition. We give a page concordance of the two French editions in an
appendix.

Cauchy seemed to enjoy choosing his words carefully and precisely, and then
once the correct words were chosen, using those very words over and over again.
For example, in Chapter VII, § III, he studies the n-th roots of unity, or, as he calls
them, 1 to the fractional power 1

n . He states his theorems and gives his proofs about
these objects. Later in that same section, when he studies other fractional powers
of 1, − 1

n , m
n , and −m

n , the words in his theorems and proofs are almost identical,
changing only what must be changed. We have taken care to do the same in our
translation.

Our ambition is, as much as the very idea of translation allows, to let Cauchy
speak for himself.

We are grateful to Emili Bifet, David Burns, Larry D’Antonio, Ross Gingrich,
Andy Perry, Kim Plofker, Fred Rickey, Chuck Rocca and Jeff Suzuki who, as partic-
ipants in the ARITHMOS reading group, read early drafts of portions of this trans-
lation. Likewise, we are grateful to our students Shannon Abernathy, Erik Gundel,
Amanda Peterson and Joseph Piraneo, who read parts of this manuscript in a his-
tory of mathematics seminar at Western Connecticut State University in the Spring
of 2008. Careful proofreading and helpful suggestions by both groups have greatly
improved this translation. We also acknowledge the assistance of the editorial staff
at Springer, particularly Ann Kostant and Charlene Cruz Cerdas. Most importantly,
we thank our wives Susan Petry and Terry Sandifer for supporting and encouraging
our efforts, and for being understanding about the many long days that this project
occupied.

Garden City, New York, Robert E. Bradley
Danbury, Connecticut, C. Edward Sandifer
March 2009
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Introduction

[i] Because several people, who were so good as to guide the first steps of my sci-
entific career, and among whom I would cite with recognition Messieurs Laplace1

and Poisson2 have expressed the desire to have me publish the Cours d’analyse of
the École Royale Polytechnique, I have decided to put this Course in writing for the
greatest usefulness to students. I offer here the first part of it3 known by the name
Algebraic analysis,4 and in which I successively treat the various kinds of real and
imaginary functions, [ii] convergent and divergent series, the resolution of equations
and the decomposition of rational fractions.5 In speaking of the continuity of func-
tions, I could not dispense with a treatment of the principal properties of infinitely
small quantities, properties which serve as the foundation of the infinitesimal cal-
culus.6 Finally, in the preliminaries and in several notes placed at the end of the
volume, I have presented the derivations which may be useful both to professors
and students of the Royal Colleges, as well as to those who wish to make a special
study of analysis.

As for the methods, I have sought to give them all the rigor which one demands
from geometry, so that one need never rely on arguments drawn from the gener-
ality of algebra.7 Arguments of this kind, although they are commonly accepted,
especially [iii] in the passage from convergent to divergent series, and from real

1 Pierre-Simon Laplace (1749–1827).
2 Siméon Denis Poisson (1781–1840).
3 Cauchy planned a second part of the Cours d’analyse, but no such volume was ever published.
When Navier replaced Ampère as the second teacher of analysis, the faculty of the École Poly-
technique considered revisions to the analysis curriculum. The changes that were made in 1822 as
a result of these reforms took most of the emphasis on foundations out of the course in analysis,
making Cauchy’s planned second volume obsolete before it was written. This also explains why
Cauchy produced no subsequent editions of the Cours d’analyse.
4 Cours d’analyse is sometimes referred to as Analyse algébrique, for example, in the on-line
catalog of the Bibliotèque Nationale de France.
5 As we will see in Chapter I, these are “rational functions” in the modern sense.
6 It is interesting that Cauchy does not also mention limits here.
7 This sentence is quoted, in translation, in [DSB Cauchy, p. 135].
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2 Introduction

quantities to imaginary expressions,8 may be considered, it seems to me, only as
examples serving to introduce the truth some of the time, but which are not in har-
mony with the exactness so vaunted in the mathematical sciences. We must also
observe that they tend to grant a limitless scope to algebraic formulas, whereas, in
reality, most of these formulas are valid only under certain conditions or for certain
values of the quantities involved. In determining these conditions and these values
and in establishing precisely the meaning of the notation that I will be using, I will
make all uncertainty disappear, so that the different formulas present nothing but re-
lations among real9 quantities, relations which will always be easy to verify [iv] by
substituting numbers for the quantities themselves. It is true that, in order to remain
consistently faithful to these principles, I will have to accept several propositions
which may appear to be a bit rigid at first. For example, I state in Chapter VI that a
divergent series does not have a sum;10 in Chapter VII that an imaginary equation
is nothing but the symbolic representation of two equations involving real quanti-
ties;11 in Chapter IX that if the constants or the variables involved in a function,
having first been taken to be real, become imaginary, the notation used to express
the function can be kept in the calculation only by virtue of a new convention keep-
ing the sense of the notation in the latter hypothesis;12 &c. But those who read my
book will recognize, [v] I hope, that propositions of this nature, entailing the happy
necessity of putting more precision into the theories and of applying useful restric-
tions to assertions that are too broad, work in favor of analysis and furnish several
research topics which are not without importance. Therefore, before summing any
series, I must examine the cases in which the series can be summed, or, in other
words, the conditions for its convergence; and I have, on this subject, established
general rules which appear to me to merit some attention.

Moreover, if I have sought, on the one hand, to perfect mathematical analysis,
yet on the other hand I am far from pretending that this analysis ought to be applied
to all the rational sciences. Without a doubt, in those sciences we call “natural,” the
only [vi] method which we may successfully employ consists in observing the facts
and then subjecting those observations to calculation. But it would be a grave error
to think that we can find certainty only in geometric proofs, or in the evidence of
the senses; and even though nobody has yet tried to prove by analysis the existence
of Augustus13 or that of Louis XIV,14 all sensible people would admit that their
existence is as certain to them as the square of the hypotenuse or the theorem of

8 Cauchy never speaks of imaginary numbers, but only of imaginary expressions. His imaginary
expressions correspond to the modern notion of complex numbers. Here and throughout the book,
we will use Cauchy’s terminology and write “imaginary expressions.”
9 Here, Cauchy is careful to exclude imaginary expressions. As we will see later, imaginary ex-
pressions are equal, for example, when their corresponding real quantities are equal.
10 See p. 85 or [Cauchy 1821, p. 123] or [Cauchy 1897, p. 114].
11 See p. 119 or [Cauchy 1821, p. 176] or [Cauchy 1897, p. 155].
12 See p. 159 or [Cauchy 1821, p. 240] or [Cauchy 1897, p. 204].
13 Probably Caesar Augustus (63 BCE – 14 CE).
14 Louis XIV (1638–1715). We note that Cauchy, whose given name is Augustin-Louis, may be
engaging in a rare dsiplay of humor by choosing these two particular examples.
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Maclaurin.15 Furthermore, the proof of this last theorem is within reach of only a
few people, and scientists themselves do not all agree on its scope one ought to
attribute to it; whereas everyone knows quite well who ruled France in the 17th
century, and no reasonable argument can be raised against this. What I say here
[vii] about historical facts applies equally well to a whole range of questions in
religion, ethics and politics. We should thus believe that there are truths other than
algebraic truths, and realities other than tangible objects. Let us cultivate with ardor
the mathematical sciences, without wishing to extend them beyond their domain;
and let us not imagine that we are able to attack history with formulas, nor to make
moral judgments with theorems of algebra or integral calculus.

In closing this Introduction, I cannot but acknowledge the insights and advice
of several people who have been very helpful, particularly Messieurs Poisson,
Ampère16 and Coriolis.17 I am indebted to this last person for the rule on the con-
vergence of infinite products,18 among other things, and I have profited many times
from [viii] the observations of Monsieur Ampère, as well as from the methods which
he develops in his lessons on analysis.19

15 Colin Maclaurin (1698–1746); the reference is probably to Maclaurin series.
16 André-Marie Ampère (1775–1836).
17 Gaspard Gustave de Coriolis (1792–1843).
18 See Note IX, Theorem I, p. 386 or [Cauchy 1821, p. 564] or [Cauchy 1897, p. 460].
19 These appear to have been collected in Cours d’analyse et de mécanique l’école polytechnique,
a manuscript of notes taken by G. Vincens of Ampère’s course, which is available in the Dibner
Collection of the Smtihsonian Institute.





Preliminaries

Cours d’analyse
of

the École Royale Polytechnique

PRELIMINARIES
REVIEW OF THE VARIOUS KINDS OF REAL QUANTITIES WHICH ONE MIGHT

CONSIDER, BE THEY ALGEBRAIC OR TRIGONOMETRIC, AND OF THE NOTATION
WE USE TO REPRESENT THEM. ON THE AVERAGES OF SEVERAL QUANTITIES.

[17] To avoid any kind of confusion in algebraic language and notation, we shall
establish here in these Preliminaries the meanings of various terms and notation
that we will use in ordinary algebra and trigonometry. The explanations that we
will give for these terms are necessary so that we will be certain of being perfectly
understood by those who read this work. First of all, we will indicate what idea will
be appropriate to attach to the two words number and quantity.

We always take the meaning of numbers in the sense that is used in arithmetic,
where numbers arise from the absolute measure of magnitudes, and we will only
apply the term quantities to real positive or negative quantities, that is to say to
numbers preceded by the signs + or −. Furthermore, we regard these quantities as
intended to express increase and decrease, so that a given magnitude will simply
be represented by a number if we only mean to compare it to another magnitude
of the same type taken as a unit, and by the same number preceded by the sign +
or the sign −, if we consider it [18] as being capable of increasing or decreasing a
given magnitude of the same kind. Given this, the signs + or − placed in front of
a number modify its meaning, more or less as an adjective modifies the meaning
of a noun. We call the numerical value of a quantity that number which forms its
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6 Preliminaries

basis.1 We say that two quantities are equal if they have the same sign and the same
numerical value, and two quantities are opposites2 if their numerical values are the
same but with opposite signs. From these principles, it is easy to give an account of
the various operations that one may perform on these quantities. For example, given
two quantities, one may always find a third quantity which, taken as increasing a
fixed number, if it is positive, and as decreasing, if it is negative, brings us to the
same result as the two given quantities, applied one after the other in the same way.
This third quantity, which by itself produces the same effect as the other two is what
we call their sum. For example, the two quantities −10 and +7 have as their sum
−3, given that a decrease of 10 units followed by an increase of 7 units is equivalent
to a decrease of 3 units.3 To add two quantities is to form their sum. The difference
between a first quantity and a second is a third quantity which, added to the second,
gives the first. Finally, we say that one quantity is larger or smaller than another
depending on whether the difference between the first and the second is positive or
negative. It follows from this definition that positive numbers are always larger than
negative numbers, and the latter ought to be considered as being as small as their
numerical values are large.4

In algebra, we use letters to represent quantities as well as numbers. Since it
is customary to classify the a numbers as positive quantities, we may denote the
positive quantity that has as its numerical value the number A by +A or just by A,
whereas the opposite negative quantity is denoted by −A. Likewise, when the letter
a represents a quantity, it is customary to regard [19] the two expressions a and +a
as synonyms, and to denote by−a the quantity that is opposite to +a. These remarks
suffice to establish what we call the rule of signs (see Note I).

We call a quantity variable if it can be considered as able to take on successively
many different values. We normally denote such a quantity by a letter taken from
the end of the alphabet. On the other hand, a quantity is called constant, ordinarily
denoted by a letter from the beginning of the alphabet, if it takes on a fixed and
determined value. When the values successively5 attributed to a particular variable
indefinitely approach a fixed value in such a way as to end up by differing from it
by as little as we wish, this fixed value is called the limit of all the other values.6

Thus, for example, an irrational number is the limit of the various fractions that give
better and better approximations to it.7 In Geometry, the area of a circle is the limit

1 That is, the absolute value of the quantity.
2 Later in Note III, Cauchy uses “contrary” rather than “opposite” to represent this idea.
3 Cauchy discusses arithmetic operations and signs in some detail in Note I.
4 In the 18th century, opposite numbers were considered to be the same size. Here, when Cauchy
proposes that negative numbers are smaller than positive ones, it is a relatively new idea.
5 This adverb “successively” (successivement) seems appropriate to a discussion of convergence
of sequences, although perhaps less so in the case of continuous variables.
6 This passage is translated in [Kline, p. 951].
7 [DSB Cauchy, p. 136] cites this passage, but incorrectly states that it defines “convergence and
absolute convergence of series, and limits of sequences and functions.” It clearly does less than
that.
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towards which the areas of the inscribed polygons converge when the number of
their sides grows more and more, etc.

When the successive numerical values of such a variable decrease indefinitely, in
such a way as to fall below any given number, this variable becomes what we call
infinitesimal, or an infinitely small quantity. A variable of this kind has zero as its
limit.8

When the successive numerical values of a given variable increase more and
more in such a way as to rise above any given number, we say that this variable has
positive infinity as its limit,9 denoted by the symbol ∞, if it is a positive variable, and
negative infinity, denoted by −∞, if it is a negative variable. The infinities, positive
and negative, are designated together by the name of infinite quantities.

The quantities that arise in calculation as the result of operations made on one
or more constant or variable quantities can be divided into various kinds, depend-
ing on the [20] nature of the operations that produce them. In algebra, for example,
we distinguish sums and differences, products and quotients, powers and roots, and
exponentials and logarithms. In trigonometry, we distinguish sines and cosines, se-
cants and cosecants, tangents and cotangents, and the arcs of a circle for which a
trigonometric line is given.10 To better understand what is meant by these last kinds
of quantities, it is necessary to review the following principles.

A length measured along a straight or curved line may, like any kind of magni-
tude, be represented either by a number or by a quantity. It would be represented
as a number when we consider it only as a measure of this length, and as a quan-
tity, that is to say as a number preceded by a + or a − sign, when we consider the
length in question as drawn from a fixed point along the given line in one direction
or the other, serving as the increase or the decrease of another constant length that
ends at this fixed point. The fixed point in question from which we must measure
the variable lengths denoted by these quantities is what we call the origin of these
same lengths. Two lengths measured from a common origin but in opposite direc-
tions must be represented by quantities of different sign. We may choose at will the
direction in which lengths are denoted by positive quantities, but once that choice is
made, we must necessarily consider lengths denoted by negative numbers as going
in the opposite direction.

In a circle, whose plane is assumed to be vertical, we ordinarily take for the origin
of the arcs the endpoint of the radius drawn horizontally from left to right, and we
measure positive arcs as rising above this point, that is to say, those arcs which we
measure by positive quantities. On the same circle, when the radius is assumed to be
1, the sine of an arc, that is to say the projection of the radius which passes through
the endpoint of the arc onto the vertical diameter is measured [21] positively from
bottom to top, and negatively in the opposite direction, taking the center of the circle
as the origin of the sines. The tangent is measured positively in the same direction
as the sine but measured from the origin of the arcs along the vertical line drawn

8 This passage is also translated in [Kline, p. 951].
9 This passage is also translated in [Kline, p. 951].
10 Cauchy means inverse trigonometric functions. Note that they were still called “lines” and that
this is implicitly using Euler’s unit circle definition of trigonometric functions.
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from this origin. Finally, the secant is measured from the center of the circle along
the radius drawn through the endpoint of the arc in question11 and positively in the
direction of this radius.

Frequently, the result of an operation performed on a quantity may have several
values, different from one another. When we do not wish to distinguish among the
various values, we use a notation in which the quantity is enclosed in doubled sym-
bols or double parentheses and we reserve the ordinary notation for the most simple
value, or the one that seems to deserve to be distinguished. Therefore, for example,
if a is a positive quantity, the square root of a has two values, numerically equal, but
with opposite signs, an arbitrary one of which is expressed by the notation

((a))
1
2 or

√√
a

while the positive value alone is written as

a
1
2 or

√
a,

so that we have √√
a =±

√
a(1)

or, what amounts to the same thing,

((a))
1
2 =±a

1
2 .(2)

Similarly, if we represent a positive or negative quantity by a, the notation12

arcsin((a)) or arctan((a))

denotes an arbitrary arc having the quantity a for its sine or for its tangent, respec-
tively, while the notation

arcsin(a) or arctan(a)

[22] indicates only that particular arc with the smallest numerical value. With the
aid of these conventions, we avoid the confusion that could result from the use of
symbols, the values of which have not been determined precisely. In order to remove
all difficulty in this matter, I give here the table of notations which we will use for
expressing the results of algebraic and trigonometric operations.

The sum of two quantities is usually denoted by the juxtaposition of these two
quantities, each of which is expressed by a letter preceded by the sign + or−, which
we may suppress (if the sign is +) in front of the first letter only. And so,

11 That is, along the radius from the center through the circumference and to the vertical line along
which tangents are measured.
12 Cauchy writes “arc sin((a))” and “arc tang((a)).” Here and subsequently we will use the more
modern notation and write “arcsin” and “arctan.” (tr.)
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+a+b, or simply a+b,

denotes the sum of the two quantities +a and +b, and

+a−b, or simply a−b,

denotes the sum of the two quantities +a and −b, which is equivalent to the differ-
ence of the two quantities +a and +b.

We indicate the equality of two quantities a and b by the sign =, written between
them, as follows,

a = b,

and we indicate that the first is greater than the second, that is to say that the differ-
ence a−b is positive, by writing

a > b or b < a.

As usual, we represent the product of two quantities +a and +b by13

+a×+b, or simply a.b or ab

and their quotient by
a
b

or a : b.

[23] Now let m and n be two whole numbers, A an arbitrary number and a and b
two arbitrary quantities, positive or negative. Then

Am, A
1
n = n√A, A±

m
n and Ab

represent the positive quantities which we obtain by raising the number A to the
powers denoted respectively by the exponents

m,
1
n
, ±m

n
and b,

and
a±m

denotes the quantity, positive or negative, that arises from taking the quantity a to
the power ±m. We use the notation

((a))
1
n = n

√√
a and ((a))±

m
n

to denote not only the positive and negative values, when they exist, of the powers
of the quantity a raised to the exponents

13 In [Cauchy 1821, p. 9, Cauchy 1897, p. 22] Cauchy used a period in a.b rather than a centered
dot, as we would today.
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1
n

and ± m
n

,

but also the imaginary values14 of these same powers (see Chap. VII for the meaning
of imaginary expressions). It is helpful to observe that if we let A be the numerical
value of a, and if we assume that the fraction m

n is in lowest terms, then the power

((a))
m
n

has a single positive or negative real value, namely

+A
m
n or −A

m
n ,

as long as m
n is a fraction with an odd denominator, but if the denominator is even,

then it has [24] either the two real values just mentioned, or no real values. We could
make a similar remark about the expression

((a))−
m
n .

In the particular case where the quantity a is positive and we let m
n = 1

2 , the expres-
sion ((a))

m
n has two real values, given by formula (2) or, what amounts to the same

thing, by formula (1).
The notations15

l(B), L(B), L′(B), . . .

denote the real logarithms of the number B to different bases, whereas each the
following,

l((b)), L((b)), L′((b)), . . .

denote, in addition to the real logarithm of the quantity b, when it exists, any of
the imaginary logarithms of this same quantity (see Chap. IX for the meaning of
imaginary logarithms).

In trigonometry,

sina, cosa, tana, cota, seca, csca, siva and cosiva

denote, respectively, the sine, cosine, tangent, cotangent, secant, cosecant, versine
and vercosine of the arc a.16 The notations

14 Cauchy does not actually define an “imaginary value,” but it is clear that it is what we get when
we assign particular real values to the real quantities in an imaginary expression.
15 Here we have reproduced Cauchy’s notation for logarithm. Subsequently, we will always use
more modern notation, like ln(B), log(B), Log(B).
16 We note that Cauchy uses “tang. a” for the trigonometric function as well as the inverse trigono-
metric function. His notations for secant and cosecant are “séc. a” and “coséc. a.” Note also his
use of the obsolete trigonometric functions versed sine and versed cosine. He will later also use the
obsolete function chord on p. 45; [Cauchy 1821, p. 63, Cauchy 1897, p. 66].
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arcsin((a)), arccos((a)), arctan((a)),
arccot((a)), arcsec((a)), arccsc((a))

indicate some one of the arcs which have the quantity a as their sine, cosine, tangent,
cotangent, secant or cosecant. We use the simple notations

arcsin(a), arccos(a), arctan(a), arccot(a), arcsec(a), arccsc(a),

[25] or we may suppress the parentheses and write

arcsina, arccosa, arctana, arccota, arcseca, arccsca

when, from among the arcs for which a trigonometric function is equal to a,17 we
wish to designate the one with smallest numerical value, or, if there are two such
arcs with opposite signs, the one with the positive value. Consequently,

arcsina, arctana, arccota, arccsca,

denote positive or negative arcs between the limits

−π

2
and +

π

2
,

where π denotes the semiperimeter of the unit circle, whereas

arccosa and arcseca

denote positive arcs between 0 and π .
By virtue of the conventions that we have just established, if we denote by k

an arbitrary positive integer, we obviously have, for arbitrary positive or negative
values of the quantity a,

arcsin((a)) = π

2 ±
(

π

2 − arcsina
)
±2kπ,

arccos((a)) =±arccosa±2kπ,
arctan((a)) = arctana± kπ,
arccosa+ arcsina = π

2 and

arccsca+ arcseca = π

2 .

(3)

Furthermore, we find that, for positive values of a,

arccota+ arctana =
π

2
,(4)

[26] and for negative values of a,

17 Here, Cauchy writes “. . . parmi les arcs dont un ligne trigonométrique est égale à a.” This trans-
lates literally “. . . among the arcs for which a trigonometric line is equal to a.” Cauchy is treating
trigonometric functions as giving lines, which have signed lengths, rather than in the modern view
of giving real numbers.
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arccota+ arctana =−π

2
.(5)

When a variable quantity converges towards a fixed limit, it is often useful to
indicate this limit with particular notation. We do this by placing the abbreviation18

lim

in front of the variable quantity in question. Sometimes, when one or several vari-
ables converge towards fixed limits, an expression containing these variables con-
verges towards several different limits at the same time. We therefore denote an
arbitrary one of these limits using the doubled parentheses following the abbrevia-
tion lim, so as to enclose the expression under consideration. Specifically, suppose
that a positive or negative variable denoted by x converges towards the limit 0, and
denote by A a constant number. It is easy to see that each of the expressions

limAx and limsinx

has a unique value determined by the equation

limAx = 1

or
limsinx = 0,

whereas the expression

lim
((

1
x

))
takes two values, +∞ and −∞, and

lim
((

sin
1
x

))
admits an infinity of values between the limits −1 and +1.

We will finish these preliminaries by presenting several theorems on average
quantities, the knowledge of which will [27] be extremely useful in the remainder
of this work. We call an average among several given quantities a new quantity be-
tween the smallest and the largest of those under consideration. From this definition
it is clear that there are an infinity of averages among several unequal quantities,
and that the average among several equal quantities is equal to their common value.
Given this, we will easily establish, as one can see in Note II, the following propo-
sitions:

18 The notation “Lim.” for limit was first used by Simon Antoine Jean L’Huilier (1750–1840)
in [L’Huilier 1787, p. 31]. Cauchy wrote this as “lim.” in [Cauchy 1821, p. 13]. The period had
disappeared by [Cauchy 1897, p. 26].
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Theorem I.19 — Let b, b′, b′′, . . . denote n quantities of the same sign, and a, a′,
a′′, . . . be the same number of arbitrary quantities. The fraction

a+a′+a′′+ . . .

b+b′+b′′+ . . .

is an average of the following quantities,

a
b
,

a′

b′
,

a′′

b′′
, . . . .

Corollary. — If we let
b = b′ = b′′ = . . . = 1,

it follows from the preceding theorem that the quantity

a+a′+a′′+ . . .

n

is an average of the quantities
a, a′, a′′, . . . .

This particular kind of average is called the arithmetic mean.

Theorem II. — Let A, A′, A′′, . . . ; B, B′, B′′, . . . , be two sequences of num-
bers taken at will, which we suppose contain n terms each. Form from these two
sequences the roots

B√A,
B′√A′, B′′√A′′, . . . .

[28] Then B+B′+B′′+...
√

AA′A′′ . . . is a new root which is an average of the other roots.

Corollary. — If we let

B = B′ = B′′ = . . . = 1,

we find that the positive quantity

n√AA′A′′ . . .

is an average of
A, A′, A′′, . . . .

This particular average is called the geometric mean.

Theorem III. — With the same hypotheses as in theorem I, and if α , α ′, α ′′, . . .
again denote quantities of the same sign, the fraction

19 Cauchy gives a proof of this theorem in Note II, Theorem XII [Cauchy 1821, p. 447, Cauchy
1897, p. 368].
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αa+α ′a′+α ′′a′′+ . . .

αb+α ′b′+α ′′b′′+ . . .

is an average of
a
b
,

a′

b′
,

a′′

b′′
, . . . .

Corollary. — If we suppose that

b = b′ = b′′ = . . . = 1,

we conclude from the previous theorem that the sum

aα +a′α ′+a′′α ′′+ . . .

is equivalent to the product of

α +α
′+α

′′+ . . .

with an average of the quantities a, a′, a′′, . . ..
For brevity, when we wish to denote an average of [29] several quantities a, a′,

a′′, . . ., we use the notation
M(a,a′,a′′, . . .).

Given this, the preceding theorems and their corollaries are included in the fol-
lowing formulas:

a+a′+a′′+ . . .

b+b′+b′′+ . . .
= M

(
a
b
,

a′

b′
,

a′′

b′′
, . . .

)
,(6)

a+a′+a′′+ . . .

n
= M

(
a,a′,a′′, . . .

)
,(7)

B+B′+B′′+...
√

AA′A′′ . . . = M
(

B√A,
B′√A′, B′′√A′′, . . .

)
,(8)

n√AA′A′′ . . . = M
(
A,A′,A′′, . . .

)
,(9)

aα +a′α ′+a′′α ′′+ . . .

bα +b′α ′+b′′α ′′+ . . .
= M

(
a
b
,

a′

b′
,

a′′

b′′
, . . .

)
,(10)

aα +a′α ′+a′′α ′′+ . . . = (α +α
′+α

′′+ . . .)M
(
a,a′,a′′, . . .

)
.(11)

In these formulas,

a, a′, a′′, . . . ;b, b′, b′′, . . . ;α, α
′, α

′′, . . .

denote three sequences of quantities, and

A, A′, A′′, . . . ;B, B′, B′′, . . .
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two sequences of numbers, all five sequences consisting of n terms. The second and
third sequences consist of quantities of the same sign. The notation that we have just
adopted gives a way to express that a quantity is included between two given limits.
In fact, any quantity between the limits a and b is an average of those two limits,
and may be denoted by

M(a,b).

And so, for example, any positive quantity can be represented by M(0,∞), and any
negative quantity by M(−∞,0), and any real quantity by M(−∞,+∞). When we do
not want to indicate [30] any particular one of the quantities contained between the
limits a and b, we double the parentheses and write

M((a,b)).

For example, if we suppose that the variable x converges to zero, we have20

lim
((

sin
1
x

))
= M((−1,+1)),

given that the expression lim
((

sin 1
x

))
admits an infinity of values between the ex-

treme values −1 and +1.

20 Note that here M((−1,+1)) is meant to include both endpoints, but that above, M(0,∞) was
meant to exclude the endpoint 0. Apparently, Cauchy does not see a need to distinguish between
open and closed intervals.





Chapter 1
On real functions.

First Part1

ALGEBRAIC ANALYSIS

Chapter I. ON REAL FUNCTIONS.

1.1 General considerations on functions.

[31] When variable quantities are related to each other such that the value of one
of the variables being given one can find the values of all the other variables, we
normally consider these various quantities to be expressed by means of the one
among them, which therefore takes the name the independent variable. The other
quantities expressed by means of the independent variable are called functions of
that variable.

When variable quantities are related to each other such that the values of some of
them being given one can find all of the others, we consider these various quantities
to be expressed by means of several among them, which therefore take the name
independent variables. The other quantities expressed by means of the independent
variables are called functions of those same variables.

The various expressions that are used in algebra and trigonometry, when they
involve variables that are considered to be independent, are also functions of these
same variables. And so, for example,

log(x), sinx, . . .

[32] are functions of the variable x, while

1 Cauchy had originally planned for the Cours d’analyse to consist of two volumes. He never wrote
the second one; see p. viii.

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 17
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 1,
c© Springer Science+Business Media, LLC 2009
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x+ y, xy, xyz, . . .

are functions of the variables x and y, or of x, y and z, . . . .
When the functions of one or several variables are directly expressed, as in the

preceding examples, by means of those same variables, they are called explicit func-
tions. But when they are given only as relations among the functions and the vari-
ables, that is to say the equations that the quantities must satisfy, as long as the
equations are not solved algebraically, the functions are not expressed directly by
means of the variables, then they are called implicit functions. To make them ex-
plicit, it suffices to solve, when it is possible, the equations that determine them. For
example, when y is given by the equation

log(y) = x,

then it is an implicit function of x. If we let A be the base of the system of logarithms
being considered, the same function made explicit by solving the given equation will
be

y = Ax.

When we want to denote an explicit function of a single variable x or of several
variables, x, y, z, . . ., without specifying the nature of that function, we use one of
the notations

f (x), F(x), φ(x), χ(x), ψ(x), ϖ(x), . . . ,
f (x,y,z, . . .), F(x,y,z, . . .), φ(x,y,z, . . .), . . . .

For a function of one variable to be completely determined, it is necessary and
sufficient that from every particular value assumed by the variable, one can deduce
the corresponding value of the function. Sometimes, for each value of the variable,
the given function [33] takes on several values different from one another. Conform-
ing to the conventions adopted in the preliminaries, we will usually designate these
multiple values of a function by the notations in which the variables are written with
doubled symbols or with doubled parentheses. Thus, for example

arcsin((x))

indicates one of the arcs that have x as their sines, and√√
x =±

√
x

indicates one of the two square roots of the variable x, assuming that x is positive.

1.2 On simple functions.

Among the functions of a single variable x, the ones we call simple are those that
result from just one operation on that variable. There are only a few simple func-
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tions that we ordinarily consider in analysis, some of which arise from algebra and
the others from trigonometry. Addition and subtraction, multiplication and division,
raising to powers and extracting roots, and finally the formation of exponentials and
logarithms, produce the simple functions that arise in algebra. Thus, if A denotes a
constant number and if a =±A is a constant quantity, the simple algebraic functions
of the variable x are

a+ x, a− x, ax,
a
x
, xa, Ax and log(x).

Here we need not account for roots because we can always write them as pow-
ers. There are a great number of simple functions that arise in trigonometry. They
include the simple functions of all the trigonometric lines as well as the arcs that
correspond to these same lines, but [34] they all reduce to the four following func-
tions:

sinx, cosx,
arcsinx and arccosx,

and we will put the other trigonometric lines, tanx, secx, . . ., along with the corre-
sponding arcs, arctanx, arcsec x, . . ., among the composite functions, because these
lines can always be expressed by means of the sine and the cosine. We could even,
for the sake of rigor, reduce the two simple functions, sinx and cosx, to a single one
because they are related to each other by the equation sin2 x+cos2 x = 1, but we use
these two functions so frequently that it is useful to keep both of them among the
simple functions.

1.3 On composite functions.

The functions that are given by a single variable by means of several operations are
called composite functions. We will distinguish among these the functions of func-
tions that result from several successive operations, the first operation acting upon
the variable and each of the others acting on the result of the preceding operation.
By virtue of these definitions,

xx, x
√

x,
logx

x
, . . .

are composite functions of the variable x, and

log(sinx) and log(cosx), . . .

are functions of functions, of which each is the result of two successive operations.
Composite functions are distinguished from each other by the nature of the oper-

ations that produce them. It seems that we ought [35] to call by the name algebraic
functions all those functions that are formed by the operations of algebra, but instead
we will reserve that name particularly for those functions formed using only the first
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algebraic operations, namely addition and subtraction, multiplication and division,
and finally the raising to fixed powers. Those functions that involve variable expo-
nents or logarithms we will call exponential or logarithmic functions.

The algebraic functions are divided into rational functions and irrational func-
tions. The rational functions are those in which the variable is raised only to integer
powers.2 In particular, an integer function3 is any polynomial function4 that involves
only integer powers5 of the variable, for example

a+bx+ cx2 + . . . ,

and a fractional function or rational fraction is the quotient of two such polynomials.
The degree of an integer function of x is the exponent of the highest power of x in
that function. A function of the first degree, namely

a+bx,

is also called a linear function because in Geometry we use it to represent the or-
dinates6 of a straight line. Every integer or fractional function is at the same time
rational, and every other kind of algebraic function is irrational.

The functions produced by the operations of trigonometry are called trigonomet-
ric or circular functions.

The various names that we have just given to composite functions of just one
variable apply as well to functions of several variables when these functions enjoy,
with respect to each of the variables that they involve, the properties corresponding
to the various names. Thus, for example, any polynomial [36] that contains nothing
but integer powers of the variables x, y, z, . . . is an integer function of these variables.
We call the degree of this integer function the sum of the exponents of the variables
in the term where that sum is the largest. An integer function of the first degree, like

a+bx+ cy+dz+ . . .

is called a linear function.

2 Cauchy uses the term puissances entières here. This is the second appearance of the adjective
entier, the first being on [Cauchy 1821, p. 9, Cauchy 1897, p. 23], where he spoke of nombres
entiers. The word translates literally as “entire.” Because to Cauchy, “numbers” are positive, there
was no question in the first case that he meant to exclude negative values. Here, though, when he
writes of puissances entières, and because he has never actually defined the word entier, it is not
clear whether these powers are allowed to be negative, or if they are strictly positive.
3 Cauchy calls this a fonction entière, which translates literally as an “entire function.” We translate
it as an “integer function” to avoid confusion with the modern definition of “entire” from complex
variables. Cauchy’s “integer” functions form a subset of the modern set of “entire” functions.
4 Note that Cauchy does not define “polynomial.”
5 Again, Cauchy writes puissances entières, but here it is clear from his example that he means
positive integers only.
6 I.e., y-coordinates.



Chapter 2
On infinitely small and infinitely large quantities,
and on the continuity of functions. Singular
values of functions in various particular cases.

2.1 On infinitely small and infinitely large quantities.

[37] We say that a variable quantity becomes infinitely small when its numerical
value decreases indefinitely in such a way as to converge towards the limit zero. It is
worth remarking on this point that one ought not confuse a constant decrease with
an indefinite decrease. The area of a regular polygon circumscribed about a given
circle decreases constantly as the number of sides increases, but not indefinitely,
because it has as its limit the area of the circle.1 Similarly, a variable which takes as
successive values only the different terms of the sequence2

2
1
,

3
2
,

4
3
,

5
4
,

6
5
, . . . ,

taken to infinity, would decrease constantly, but not indefinitely because its succes-
sive values converge towards the limit 1. On the other hand, a variable which takes
as successive values only the different terms of the sequence

1
4
,

1
3
,

1
6
,

1
5
,

1
8
,

1
7
, . . . ,

taken to infinity, does not decrease constantly, since the difference between two
consecutive terms of this sequence is alternately [38] positive and negative. Never-
theless, it decreases indefinitely because its value ultimately becomes smaller than
any given number.

1 The example of the polygon circumscribed about or inscribed in a circle had been the standard
example illustrating the informal definition of the limit for many years. See, for example, [Chapelle
1765].
2 When Cauchy uses suite, he almost always means “sequence.” When he uses series, he may mean
either “sequence” or “series.” We translate suite as “sequence,” série as “series” and progression as
“progression,” because we do not want to leave the reader with the impression that Cauchy made
modern distinctions that he did not actually make.

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 21
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 2,
c© Springer Science+Business Media, LLC 2009
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We say that a variable quantity becomes infinitely large when its numerical value
increases indefinitely in such a way as to converge towards the limit ∞. It is again
essential to observe here that one ought not confuse a variable that increases in-
definitely with a variable that increases constantly. The area of a regular polygon
inscribed in a given circle increases constantly as the number of sides increases, but
not indefinitely. The terms of the natural sequence of integer numbers

1, 2, 3, 4, 5, . . .

increase constantly and indefinitely.
Infinitely small and infinitely large quantities enjoy several properties that lead

to the solution of important questions, which I will explain in a few words.
Let α be an infinitely small quantity, that is a variable whose numerical value

decreases indefinitely. When the various integer powers of α , namely

α, α
2, α

3, . . . ,

enter into the same calculation, these various powers are called, respectively, in-
finitely small of the first, the second, the third order, etc. In general, we call any
variable quantity infinitely small of the first order if its ratio with α converges to a
finite limit different from zero as the numerical value of α diminishes.3 We call a
variable quantity involving α infinitely small of the second order if its ratio with α2

converges towards a finite limit different from zero, and so forth for higher orders.
Given this, if k denotes a finite quantity different from zero and ε denotes a variable
number that decreases indefinitely with the numerical value of α , the general form
of infinitely small quantities of the first order is

kα or at least kα (1± ε) .

[39] The general form of infinitely small quantities of the second order will be

kα
2 or at least kα

2 (1± ε) ,
. . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, the general form of infinitely small quantities of order n (where n represents
an integer number) will be

kα
n or at least kα

n (1± ε) .

We may easily establish the following theorems concerning these various orders of
infinitely small quantities.

3 Here, Cauchy is making the implicit assumption that α is never zero. Contemporaries, such as
L’Huilier and Lacroix, were unclear on whether a variable quantity could ever exceed its limit. By
explicitly using the numerical value, Cauchy evidently avoided such problems. Nevertheless, he
resists allowing the variable quantity to attain its limiting value during the limiting process. See
[Grabiner 2005, pp. 84–85] for further discussion.
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Theorem I. — If we compare two infinitely small quantities of different orders
with each other, while both converge towards the limit zero, then eventually the one
of the higher order will constantly have the smaller numerical value.

Proof. — Indeed, let

kα
n (1± ε) and k′αn′ (1± ε

′)
be two infinitely small quantities, one of order n, the other of order n′, and suppose
that n′ > n. The ratio between the second of these infinitely small quantities and the
first, namely

k′

k
α

n′−n 1± ε ′

1± ε
,

converges indefinitely with α towards the limit zero, which cannot occur unless the
numerical value of the second eventually becomes constantly less than that of the
first.

Theorem II. — An infinitely small quantity of order n, that is to say of the form

kα
n (1± ε) ,

changes sign with α whenever n is an odd number, and for very small numerical
values of α takes the same sign as the quantity k whenever n is an even number.

Proof. — Indeed, under the first hypothesis, αn changes [40] sign with α , and
under the second hypothesis, αn is always positive. Furthermore, the sign of the
product k (1± ε) is the same as that of k, when ε is very small.

Theorem III. — The sum of several infinitely small quantities of orders

n, n′, n′′, . . .

(where n′, n′′, . . . denote numbers larger than n) is a new infinitely small quantity of
order n.

Proof. — Indeed,

kαn (1± ε)+ k′αn′ (1± ε ′)+ k′′αn′′ (1± ε ′′)+ . . .

= kαn
[
1± ε + k′

k αn′−n (1± ε ′)+ k′′
k αn′′−n (1± ε ′′)+ . . .

]
= kαn (1± ε1) ,

where ε1 is a number which converges with α towards the limit zero.
From the principles which we have just stated, we easily deduce, as we will

see, several remarkable propositions concerning polynomials ordered according to
increasing powers of an infinitely small quantity α .
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Theorem IV. — Any polynomial ordered according to increasing powers of α ,
for example

a+bα + cα
2 + . . . ,

or more generally
aα

n +bα
n′ + cα

n′′ + . . . ,

(where the numbers n, n′, n′′, . . . form an increasing sequence), will eventually be
constantly of the same sign as its first term

a or aα
n

for very small numerical values of α .

Proof. — Indeed, the sum formed by the second term and those that follow is, in
the first case, an infinitely small quantity of the first order, whose numerical value
will eventually be smaller than the finite quantity a,4 and, in the second case, an
infinitely small quantity [41] of order n′, which eventually takes a numerical value
that is constantly smaller than that of the infinitely small quantity of order n.

Theorem V. — When, in the polynomial

aα
n +bα

n′ + cα
n′′ + . . . ,

ordered according to increasing powers of α , the degree n′ of the second term is
an odd number, then for very small numerical values of α , this polynomial is either
greater than or less than its first term aαn, depending on whether the variable α

and the coefficient b have the same or opposite signs.

Proof. — Indeed, under the given hypothesis, the sum of the terms that follow
the first, namely

bα
n′ + cα

n′′ + . . . ,

has the same sign as each of the two products bαn′ and bα , for very small numerical
values of α .

Theorem VI. — When, in the polynomial

aα
n +bα

n′ + cα
n′′ + . . . ,

ordered according to increasing powers of α , the degree n′ of the second term is
an even number, then for very small numerical values of α , this polynomial will
eventually become constantly greater than its first term whenever b is positive, and
constantly less whenever b is negative.

4 Here, Cauchy means the sum to be smaller than the numerical value of a, as a may be negative.
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Proof. — Indeed, under the given hypothesis, the sum of the terms that follow
the first has, for very small numerical values of α , the sign of the product bαn′ , and
consequently the sign of b.

Corollary. — Supposing in the preceding theorem that n = 0, we get the follow-
ing proposition:

Theorem VII. — If, in the polynomial5

a+bα
n′ + cα

n′′ + . . . ,

ordered according to increasing powers of α , n′ denotes an even number, [42] then
among the values of this polynomial corresponding to infinitely small values of α ,
the one that corresponds to α = 0, that is a, will always be the smallest whenever b
is positive, and the greatest when b is negative.

This particular value of the polynomial, either larger or smaller than all of its
neighboring values, is what we call a maximum or a minimum.

The properties of infinitely small quantities having been established, we deduce
from them the analogous properties of infinitely large quantities by observing that
any variable quantity of this last kind may be represented as 1

α
, where α denotes an

infinitely small quantity. Thus, for example, when, in the polynomial

axm +bxm−1 + cxm−2 + . . .+hx+ k,

ordered according to decreasing powers of x, this variable becomes infinitely large,
then substituting 1

α
for x we reduce the given polynomial to

a
αm

(
1+

b
a

α +
c
a

α
2 + . . .+

h
a

α
m−1 +

k
a

α
m
)

.

Thus we see immediately that for very small numerical values of α , or what amounts
to the same thing, for very large numerical values of x, this polynomial has the same
sign as its first term,

a
αm = axm.

As this remark applies even in the case where some of the quantities b, c, . . ., h, k
reduce to zero, we can state the following theorem:

Theorem VIII. — When, in a polynomial ordered according to decreasing pow-
ers of the variable x, we let the numerical value of this variable increase indefinitely,
then the polynomial will eventually have the same sign as its first term.

5 In [Cauchy 1897, p. 41], there is a typographical error here, writing n where we write n′′. This
error was not in [Cauchy 1821, p. 32]. (tr.)
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2.2 On the continuity of functions.

[43] Among the objects related to the study of infinitely small quantities, we ought
to include ideas about the continuity and the discontinuity of functions. In view of
this, let us first consider functions of a single variable.

Let f (x) be a function of the variable x, and suppose that for each value of x
between two given limits, the function always takes a unique finite value. If, begin-
ning with a value of x contained between these limits, we add to the variable x an
infinitely small increment α , the function itself is incremented by the difference6

f (x+α)− f (x),

which depends both on the new variable α and on the value of x. Given this, the
function f (x) is a continuous function of x between the assigned limits if, for each
value of x between these limits, the numerical value of the difference

f (x+α)− f (x)

decreases indefinitely with the numerical value of α . In other words, the function
f (x) is continuous with respect to x between the given limits if, between these limits,
an infinitely small increment in the variable always produces an infinitely small
increment in the function itself.7

We also say that the function f (x) is a continuous function of the variable x in
a neighborhood of a particular value of the variable x whenever it is continuous
between two limits of x that enclose that particular value, even if they are very close
together.

Finally, whenever the function f (x) ceases to be continuous in the neighborhood
of a particular value of x, we say that it becomes discontinuous, and that there is
solution of continuity8 for this particular value.

[44] Having said this, it is easy to recognize the limits between which a given
function of a variable x is continuous with respect to that variable. So, for example,
the function sinx, which takes a unique finite value for each particular value of
the variable x, is continuous between any two limits of this variable, given that the
numerical value of sin

( 1
2 α
)
, and consequently that of the difference9

sin(x+α)− sinx = 2sin
( 1

2 α
)

cos
(
x+ 1

2 α
)
,

6 Cauchy defines continuity only on the interior of a bounded interval, and for the whole interval,
not just at a single point. See [Grabiner 2005, p. 87] for more on this point. This passage is also
cited in [DSB Cauchy, p. 136].
7 [Grattan-Guinness 1970b] has suggested that Cauchy “stole” this and other ideas from Bolzano’s
paper of 1817. See also [Freudenthal 1971b, Jahnke 2003, p. 161, Grabiner 2005, pp. 9–12].
8 This word “solution” takes an old meaning here; it means that continuity dissolves or disappears.
9 To verify this formula, let u = x+ 1

2 α and v = 1
2 α , then apply the usual formula for sin(a+b) to

the expression sin(u+ v)− sin(u− v).
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decreases indefinitely with the numerical value of α , whatever finite value is given
to the variable x.10 In general, with respect to the 11 simple functions which we have
considered above (Chap. I, § II), namely

a+ x, a− x, ax, a
x , xa, Ax, log(x),

sinx, cosx, arcsinx, arccosx,

if we consider the question of the continuity, we find that each of these functions
remains continuous between two finite limits of the variable x whenever they are
always real11 between these two limits and they are never infinite on the interval.

It follows that each of these functions is continuous in the neighborhood of any
finite value given to the variable x if that finite value is contained:12

For the
functions

a+ x
a− x

ax
Ax

sinx
cosx


between the limits x =−∞ and x = +∞,

For the
function

a
x

{
first, between the limits x =−∞ and x = 0,
second, between the limits x = 0 and x = ∞,

[45] For the
functions

xa

log(x)

}
between the limits x = 0 and x = ∞,

and finally

10 This proof is somewhat unsatisfying because it relies on the unspoken assumptions that sinx is
continuous at zero and that cosx is bounded.
11 This is meant to rule out imaginary quantities that might arise from roots of negative numbers
or complex values of logarithm functions. In modern terms, the content of this passage is that the
11 simple functions are continuous on their domains of definition.
12 Recall from the Preliminaries [Cauchy 1821, p. 9, Cauchy 1897, p. 23] that A is a number, hence
positive, so there is no ambiguity about whether Ax is well defined. Because a may be negative,
Cauchy avoids problems with ax by restricting his interval of definition. His treatment of a

x makes
it clear that here Cauchy considers an interval not to contain its endpoints.
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For the
functions

arcsinx
arccosx

}
between the limits x =−1 and x = +1.

It is worth observing that in the case where a = ±m (where m denotes an integer
number), the simple function

xa

is always continuous in the neighborhood of a finite value of the variable x, as long
as this value is contained:

if a = +m, between the limits x =−∞ and x = +∞,

if a =−m,

between the limits x =−∞ and x = 0
as well as

between the limits x = 0 and x = ∞.

Among the 11 functions that we have just cited, only two become discontinu-
ous for a value of x contained in the interval between whose limits these functions
remain real.13 The two functions in question are

a
x

and xa (when a =−m).

Both become infinite and, as a consequence, discontinuous when x = 0.
Now let

f (x,y,z, . . .)

be a function of several variables, x,y,z, . . ., and suppose that in the neighborhood of
particular values X ,Y,Z, . . . of these [46] variables, f (x,y,z, . . .) is simultaneously
a continuous function of x, a continuous function of y, a continuous function of z,
. . .. We prove easily that if we let α , β , γ , . . . denote infinitely small quantities, and
that if we give x, y, z, . . . the values X , Y , Z, . . . or values very near to these, the
difference14

f (x+α,y+β ,z+ γ, . . .)− f (x,y,z, . . .)

is itself infinitely small. Indeed, it is clear from the previous hypothesis that the
numerical values of the differences

f (x+α,y,z, . . .)− f (x,y,z, . . .),
f (x+α,y+β ,z, . . .)− f (x+α,y,z, . . .),
f (x+α,y+β ,z+ γ, . . .)− f (x+α,y+β ,z, . . .),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Cauchy does not have the notion of the “domain” of a function. For him, even functions like 1
x

or
√

x are always defined, but sometimes the values of those functions are infinite or complex.
14 In [Cauchy 1821, p. 38, Cauchy 1897, p. 46], this was written f (x+α,y+β ,z+ γ) −
f (x,y,z, . . .), with no ellipses in the first term. (tr.)
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decrease indefinitely with those of the quantities α , β , γ , . . ., namely the numerical
value of the first difference decreases with the numerical value of α , that of the
second difference with the numerical value of β , that of the third with the numerical
value of γ , and so on. We must conclude that the sum of all these differences, namely

f (x+α,y+β ,z+ γ, . . .)− f (x,y,z, . . .) ,

converges towards the limit zero if α , β , γ , . . . converge to the same limit. In other
words,

f (x+α,y+β ,z+ γ, . . .)

has as its limit
f (x,y,z, . . .).

The proposition that we have just proven evidently remains true in the case where
we have established certain relations among the variables α , β , γ , . . .. It is sufficient
that these relations permit the new variables to converge all at the same time towards
the limit zero.

When, in the same proposition, we replace x, y, z, . . . by [47] X , Y , Z, . . ., and
x+α , y+β , z+ γ , . . . by x, y, z, . . ., we obtain the following statement:

Theorem I.15 — If the variables x, y, z, . . . have for their respective limits the
fixed and determined quantities X, Y , Z, . . ., and the function f (x,y,z, . . .) is con-
tinuous with respect to each of the variables x, y, z, . . . in the neighborhood of the
system of particular values

x = X , y = Y, z = Z, . . . ,

then f (x,y,z, . . .) has f (X ,Y,Z, . . .) as its limit.

Because in the second statement, the variables α , β , γ , . . . are replaced by x−X ,
y−Y , z−Z, . . ., the relations that we were able to establish in the first statement
among α , β , γ , . . . may be established in the second statement among the quantities
x−X , y−Y , z−Z, . . ..16 As a result, the function f (x,y,z, . . .) has f (X ,Y,Z, . . .) as
its limit in the case where the variables x, y, z, . . . are subject to certain relations, as
long as these relations permit them to approach indefinitely the limits X , Y , Z, . . ..

To clarify these ideas, suppose that x, y, z, . . . are functions of the same variable
t, considered to be independent and continuous with respect to this variable in the
neighborhood of the particular value

t = T.

If for convenience we let
f (x,y,z, . . .) = u,

15 As stated, this theorem is not true. See [Gelbaum 2003, p. 115 ff] for counterexamples.
16 [Cauchy 1821, p. 39, Cauchy 1897, p. 47] omitted ellipses here, writing x−X , y−Y , z−Z. (tr.)
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then u is a composite function of the variable t. If

X , Y, Z, . . . , U,

respectively, denote the values of

x, y, z, . . . , u

in the case where t = T , it is clear, on the one hand, that a [48] value of t very
close to T gives for u a unique and finite value. On the other hand, it is sufficient to
let t converge towards the limit T for the variables x, y, z, . . . to converge towards
the limits X , Y , Z, . . ., and consequently, the function u = f (x,y,z, . . .) towards the
limit U = f (X ,Y,Z, . . .). We prove in absolutely the same way that if we give t a
value very close to T , the corresponding value of the function u is the limit towards
which this function approaches indefinitely as t converges towards the given value.
We must conclude that u is a continuous function of t in the neighborhood of t = T .
We may therefore state the following theorem:

Theorem II. — Let
x, y, z, . . .

denote several functions of the variable t, which are continuous with respect to this
variable in the neighborhood of the particular value t = T . Furthermore, let

X , Y, Z, . . .

be the particular values of x, y, z, . . . corresponding to t = T . Suppose that in the
neighborhood of these particular values, the function

u = f (x,y,z, . . .)

is simultaneously continuous with respect to x, continuous with respect to y, contin-
uous with respect to z, . . .. Then u, considered as a function of t, is also continuous
with respect to t in the neighborhood of the particular value t = T .

If in the previous theorem we reduce the variable quantities x, y, z, . . . to a single
variable x, we get a new theorem, which can be stated as follows:

Theorem III. — Suppose that in the equation

u = f (x),

the variable x is a function of another variable t. Imagine further that [49] the
variable x is a continuous function of t in the neighborhood of the particular value
t = T , and that u is a continuous function of x in the neighborhood of the particular
value x = X corresponding to t = T . The quantity u, considered as a function of t, is
also continuous with respect to this variable in the neighborhood of the particular
value t = T .
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Suppose, for example,
u = ax and x = tn,

where a denotes a constant quantity and n an integer number. We conclude from
theorem III that between any arbitrary limits of the variable t,

u = atn

is a continuous function of this variable.
Similarly, if we let

u =
x
y
, x = sin t, and y = cos t,

we conclude from theorem II that the function

u = tan t

is continuous with respect to t in the neighborhood of any finite value of this variable
any time the value in question does not have the form

t =±2kπ ± π

2
,

where k denotes an integer number, that is to say any time that this value of t corre-
sponds to a finite value of tan t. On the contrary, the function tan t admits solution of
continuity, by becoming infinite, for each of the values of t given by the preceding
formula.

Now let us suppose
u = a+ x+ y+ z+ . . . ,
x = bt, y = ct2, . . . ,

[50] where a, b, c, . . . denote constant quantities. Because u is a continuous function
of x, y, z, . . . between any limits of these variables, and because x, y, z, . . . are
continuous functions of the variable t between arbitrary limits of t, we conclude
from theorem III that the function

u = a+bt + ct2 + . . .

is itself continuous with respect to t between arbitrary limits. As a consequence,
because t = 0 gives u = a, if we make t converge towards the limit zero, then the
function u converges towards the limit a and eventually takes the same sign as this
limit, and this agrees with theorem IV of § I.

A remarkable property of continuous functions of a single variable is that they
may be used in Geometry to represent the ordinates of straight or curved continuous
lines. From this remark we easily deduce the following proposition:
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Theorem IV.17 — If the function f (x) is continuous with respect to the variable
x between the limits x = x0 and x = X, and if b denotes a quantity between f (x0)
and f (X), we may always satisfy the equation

f (x) = b

by one or more real values of x contained between x0 and X.

Proof. — To establish the preceding proposition, it suffices to show that the curve
that has as its equation

y = f (x)

meets the straight line that has for its equation

y = b

one or more times in the interval contained between the ordinates that correspond
to the abscissas x0 and X . Now it is evident under the given hypothesis that this is
what happens. Indeed, because the function f (x) is continuous between the limits
x = x0 and x = X , the curve which has y = f (x) as its equation and which passes
[51] 1◦ through the point corresponding to the coordinates x0, f (x0), and 2◦ through
the point corresponding to the coordinates X and f (X), is continuous between these
two points. Because the constant ordinate b of the straight line which has y = b as
its equation is found between the ordinates f (x0) and f (X) of the two points being
considered, the straight line necessarily will pass between these two points, which
it could not do without meeting the above-mentioned curve in the interval.

Furthermore, as we will do in Note III, we can prove theorem IV by a direct and
purely analytic method, which also has the advantage of providing the numerical
solution to the equation

f (x) = b.

2.3 On singular values of functions in various particular cases.

When a function of one or several variables admits but a single value for a system
of values attributed to the variables which it contains, this unique value is ordinarily
deduced from the definition itself of the function. If a particular case arises in which
the given definition cannot immediately give the value of the function under con-
sideration, we seek the limit or limits towards which this function converges as the
variables approach indefinitely the particular values assigned to them. If there exist
one or more limits of this kind, they are regarded as the values of the function under

17 This is the Intermediate Value Theorem. Cauchy gives a rigorous proof of this theorem in Note
III [Cauchy 1821, pp. 460–462, Cauchy 1897, pp. 378–380].
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the given hypothesis, however many there may be. We call singular values of the
proposed function those values determined as we have just described. For example,
such values are those which we obtain by attributing infinite values to the variables,
and also those values which correspond to the solutions of continuity.18 Research
on singular values of functions is one of the most important and most delicate ques-
tions of Analysis: it offers more or less [52] difficulty depending on the nature of
the functions and the number of variables which they contain.

If we first consider simple functions of a single variable, we find that it is easy to
determine their singular values. These values always correspond to one of the three
cases

x =−∞, x = 0 or x = ∞,

and are, respectively,

for the

functions

a+ x a arbitrary a+(−∞) =−∞ . . . . . . . . . a+∞ = ∞

a− x a arbitrary a− (−∞) = ∞ . . . . . . . . . a−∞ =−∞

ax
{

a positive
a negative

a× (−∞) =−∞

a× (−∞) = ∞

. . . . . . . . .

. . . . . . . . .
a×∞ = ∞

a×∞ =−∞

a
x

{
a positive
a negative

a
−∞

= 0
a
−∞

= 0

a
0 =±∞
a
0 =∓∞

a
∞

= 0
a
∞

= 0

xa
{

a positive
a negative

. . . . . . . . .

. . . . . . . . .
0a = 0
0a = ∞

∞a = ∞

∞a = 0

Ax
{

A > 1
A < 1

A−∞ = 0
A−∞ = ∞

A0 = 1
A0 = 1

A∞ = ∞

A∞ = 0

log(x)
{

base > 1
base < 1

. . . . . . . . .

. . . . . . . . .
log(0) =−∞

log(0) = ∞

log(0) = ∞

log(0) =−∞

sinx . . . . . . . . . sin(−∞) = M((−1,+1)) . . . . . . . . . sin(∞) = M((−1,+1))
cosx . . . . . . . . . cos(−∞) = M((−1,+1)). . . . . . . . . cos(∞) = M((−1,+1))

Here, as in the preliminaries, the notation M ((−1,+1)) denotes one of the average
quantities between the two limits

−1 and +1.

18 Recall [Cauchy 1821, p. 35, Cauchy 1897, p. 43] that a “solution of continuity” is a point where
continuity dissolves, what we would call a point of discontinuity.
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It is worth observing that, in the case where we suppose that a =±m, [53] where
m is an integer number, the simple function

xa

always admits three singular values, namely:

when
a = +m

{
m being even
m being odd

(−∞)m = ∞,
(−∞)m =−∞,

0m = 0,
0m = 0,

∞m = ∞,
∞m = ∞,

when
a =−m

{
m being even
m being odd

(−∞)−m = 0,
(−∞)−m = 0,

0−m = ∞,
((0))−m =±∞,

∞−m = 0,
∞−m = 0.

Now let us consider functions composed of a single variable x. Sometimes it is
easy to find their singular values. Thus, for example, if we denote by k any integer
number, we recognize without trouble that the composite function

tanx =
sinx
cosx

has its singular values contained in the three formulas

tan((∞)) = M ((−∞,∞)) ,

tan
((

2kπ ± π

2

))
=±∞ and

tan((−∞)) = M ((−∞,∞)) ,

while the singular values of the inverse function

arctanx = arcsin
x√

1+ x2

are, respectively,

arctan(−∞) =−π

2
and arctan(∞) =

π

2
.

Often such questions also present true difficulties. For example, we do not im-
mediately see how to determine the singular value of the function

xx,

[54] when we suppose that x = 0, or that of the function

x
1
x ,

when we take x = ∞. To give an idea of the methods which lead to the solution
of questions of this kind, I am going to establish here two theorems by the aid of
which we can, in a great number of cases, determine the singular values which the
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two functions
f (x)

x
and [ f (x)]

1
x

take when we suppose that x = ∞.

Theorem I. — If the difference

f (x+1)− f (x)

converges towards a certain limit k, for increasing values of x, then the fraction

f (x)
x

converges at the same time towards the same limit.

Proof. — First suppose that the quantity k has a finite value, and denote by ε a
number as small as we wish. Because the increasing values of x make the difference

f (x+1)− f (x)

converge towards the limit k, we can give the number h a value large enough that,
when x is equal to or greater than h, the difference in question is always contained
between the limits

k− ε and k + ε.

Given this, if we denote by n any integer number, each [55] of the quantities

f (h+1)− f (h) ,
f (h+2)− f (h+1) ,
. . . . . . . . . . . . . . . . . . . . . ,
f (h+n)− f (h+n−1) ,

and consequently their arithmetic mean, namely

f (h+n)− f (h)
n

,

is contained between the limits k− ε and k + ε . Thus we have

f (h+n)− f (h)
n

= k +α,

where α is a quantity contained between the limits −ε and +ε . Now let

h+n = x.

The preceding equation becomes
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f (x)− f (h)
x−h

= k +α,(1)

and we thus conclude

f (x) = f (h)+(x−h)(k +α) ,

f (x)
x

=
f (h)

x
+
(

1− h
x

)
(k +α) .(2)

Moreover, to make the value of x increase indefinitely, it suffices to make the in-
teger number n increase indefinitely without changing the value of h. Consequently,
let us suppose that in equation (2) we consider h as a constant quantity and x as a
variable quantity which converges towards the limit ∞. The quantities

f (h)
x

and
h
x
,

contained in the right-hand side, converge towards the limit zero, [56] and the right-
hand side itself converges towards a limit of the form

k +α,

where α is always contained between −ε and +ε . Thus the ratio

f (x)
x

has for its limit a quantity contained between k− ε and k + ε . This conclusion re-
mains true however small the number ε may be, and as a result the limit in question
is precisely the quantity k. In other words, we have

lim
f (x)

x
= k = lim [ f (x+1)− f (x)] .(3)

Second, let us suppose that k = ∞. Denoting by H a number however large we
may wish, we can always find a number h so large that, for x equal to or greater than
h, the difference

f (x+h)− f (x) ,

which converges towards the limit ∞, becomes always greater than H. Reasoning as
above, we establish the formula

f (h+n)− f (h)
n

> H.

Now, if we set h+n = x, we find the following formula instead of equation (2),
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f (x)
x

>
f (h)

x
+H

(
1− h

x

)
,

from which we conclude that

lim
f (x)

x
> H

by making x converge towards the limit ∞. The limit of the ratio

f (x)
x

[57] is thus greater than the number H, however great it may be. This limit, larger
than any assignable number, cannot be anything but positive infinity.

Finally, let us suppose that k =−∞. To reduce this last case to the preceding one,
it suffices to observe that because the difference

f (x+1)− f (x)

has as its limit −∞, the following

[− f (x+1)]− [− f (x)]

has for its limit +∞. We then conclude that the limit of − f (x)
x is equal to +∞, and

consequently the limit of f (x)
x equals −∞.

Corollary I. — To give an application of the preceding theorem, let us suppose
that

f (x) = log(x),

where log is the characteristic of logarithms in a system for which the base is greater
than 1. We find that

f (x+1)− f (x) = log(x+1)− log(x) = log
(

1+
1
x

)
,

and consequently

k = log
(

1+
1
∞

)
= log(1) = 0.

We can thus affirm that as x grows indefinitely, the ratio

log(x)
x

converges towards the limit zero, and it follows that in a system for which the base is
greater than 1, the logarithms of numbers grow much less rapidly than the numbers
themselves.
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Corollary II. — Suppose, on the other hand, that

f (x) = Ax,

[58] where A denotes a number greater than 1. We find that

f (x+1)− f (x) = Ax+1−Ax = Ax (A−1) ,

and consequently
k = A∞ (A−1) = ∞.

We can thus affirm that when x grows indefinitely, the ratio

Ax

x

converges towards the limit ∞, and it follows that the exponential Ax, when the
number A is greater than 1, eventually grows more rapidly than the variable x.

Corollary III. — We ought to observe, moreover, that it is not necessary to use
theorem I to find the value of the ratio

f (x)
x

corresponding to x = ∞ except in the case where the function f (x) becomes infinite
along with the variable x. If this function remains finite for x = ∞, the ratio f (x)

x
evidently has zero as its limit.

I pass to a theorem which serves to determine in many cases the value of

[ f (x)]
1
x

for x = ∞. It consists of this:

Theorem II. — If the function f (x) is positive for very large values of x and the
ratio

f (x+1)
f (x)

converges towards the limit k when x grows indefinitely, then the expression

[ f (x)]
1
x

converges at the same time to the same limit.

[59] Proof. — First suppose that the quantity k, necessarily positive, has a finite
value, and denote by ε a number as small as we wish. Because increasing values of
x make the ratio
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f (x+1)
f (x)

converge towards the limit k, we can give the number h a value large enough that
when x is equal to or greater than h, the ratio in question is always contained between
the limits

k− ε and k + ε.

Given this, if we denote by n any integer number, each of the quantities

f (h+1)
f (h)

,
f (h+2)
f (h+1)

, . . . ,
f (h+n)

f (h+n−1)

and consequently their geometric mean, namely[
f (x+h)

f (x)

] 1
n

,

is contained between the limits k + ε and k− ε . Thus we have[
f (h+n)

f (h)

] 1
n

= k +α,

where α is a quantity contained between the limits −ε and +ε . Now let

h+n = x.

The preceding equation becomes[
f (x)
f (h)

] 1
x−h

= k +α,(4)

and we thus conclude

f (x) = f (h)(k +α)x−h ,

[ f (x)]
1
x = [ f (h)]

1
x (k +α)1− x

h .(5)

[60] Moreover, to make the value of x increase indefinitely, it suffices to make the in-
teger number n increase indefinitely without changing the value of h. Consequently,
let us suppose that in equation (5) we consider h as a constant quantity and x as a
variable quantity which converges towards the limit ∞. The quantities

[ f (h)]
1
x and 1− h

x
,

contained in the right-hand side, converge towards the limit 1, and the right-hand
side itself converges towards a limit of the form



40 2 On infinitely small and infinitely large quantities and on continuity.

k +α,

where α is always contained between −ε and +ε . Thus the expression

[ f (h)]
1
x

has for its limit a quantity contained between k− ε and k + ε . This conclusion re-
mains true however small the number ε , and as a result the limit in question is
precisely the quantity k. In other words, we have

lim [ f (x)]
1
x = k = lim

f (x+1)
f (x)

.(6)

On the other hand, let us suppose that the quantity k is infinite, that is to say,
because this quantity is positive, that k = ∞. Then, denoting by H a number as large
as we wish, we can always find a number h so large that when x is equal to or greater
than h, the ratio

f (x+1)
f (x)

,

which converges towards the limit ∞, becomes always greater than H. Reasoning as
above, we establish the formula[

f (h+n)
f (h)

] 1
n

> H.

[61] Now, if we set h+n = x, we find the following formula instead of formula (5)

[ f (x)]
1
x > [ f (h)]

1
x H1− h

x ,

from which we conclude that

lim [ f (x)]
1
x > H,

by making x converge towards the limit ∞. The limit of the expression

[ f (x)]
1
x

is thus greater than the number H, however great it may be. This limit, larger than
any assignable number, cannot be anything but positive infinity.

Note. — We can easily prove equation (6) by using theorem I to find the limit
towards which the logarithm

log [ f (x)]
1
x =

log [ f (x)]
x

converges and then returning from logarithms to numbers.
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Corollary I. — To give an application of theorem II, let us suppose that

f (x) = x.

We have
f (x+1)

f (x)
=

x+1
x

= 1+
1
x
,

and consequently, by passing to the limits,

k = 1.

Then, if we make the variable x grow indefinitely, the function

x
1
x

converges towards the limit 1.

[62] Corollary II. — On the other hand, let

f (x) = axn +bxn−1 + cxn−2 + . . . = P,

so that P denotes a polynomial in x of degree n. We find that

f (x+1)
f (x)

=
a
(
1+ 1

x

)n + b
x

(
1+ 1

x

)n−1 + c
x2

(
1+ 1

x

)n−2 + . . .

a+ b
x + c

x2 + . . .

and, by passing to the limits,
k =

a
a

= 1.

Thus, if P represents any integer polynomial, then P
1
x has 1 as its limit.

Corollary III. — Finally let

f (x) = log(x) .

We find that

f (x+1)
f (x)

=
log(x+1)

log(x)
=

log(x)+ log
(
1+ 1

x

)
log(x)

= 1+
log
(
1+ 1

x

)
log(x)

,

and passing to the limits,
k = 1.

Consequently, [log(x)]
1
x also has 1 as its limit.

Theorems I and II evidently remain true in the case where the variable x takes
only integer values. Indeed, to make the proofs that we have given to these two
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theorems apply in this particular case, it suffices to suppose that the quantity denoted
by h in each of these proofs is a very large integer number. If in the same case we
represent the successive values of the function f (x) corresponding to the various
integer values of x, namely

f (1) , f (2) , f (3) , . . . , f (n) ,

by
A1, A2, A3, . . . , An,

[63] we obtain the following propositions instead of theorems I and II:

Theorem III. — If the sequence of quantities

A1, A2, A3, . . . , An, . . .

is such that the difference between two consecutive terms of this sequence, namely

An+1−An,

converges constantly towards a fixed limit A for increasing values of n, then the ratio

An

n

converges at the same time towards the same limit.

Theorem IV. — If the sequence of numbers

A1, A2, A3, . . . , An,

is such that the ratio between two consecutive terms, namely

An+1

An
,

converges constantly towards a fixed limit A for increasing values of n, then the
expression

(An)
1
n

converges at the same time towards the same limit.

To give an application of this last theorem, let us suppose that

An = 1 ·2 ·3 . . .n.

The sequence A1, A2, . . . becomes

1, 1 ·2, 1 ·2 ·3, . . . , 1 ·2 ·3 . . .(n−1)n, . . . ,
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and the ratio between two consecutive terms of this same series, namely

An+1

An
=

1 ·2 ·3 . . .n(n+1)
1 ·2 ·3 . . .n

= n+1,

[64] evidently converges towards the limit ∞ for increasing values of n. Conse-
quently, the expression

(An)
1
n = (1 ·2 ·3 . . .n)

1
n

converges towards the same limit.
On the other hand, we find that the expression(

1
1 ·2 ·3 . . .n

) 1
n

converges, for increasing values of n, towards the limit zero.
Often, with the aid of theorems I and II, we can determine the singular value of a

composite function of the variable x when this variable vanishes. Thus, for example,
if we wish to obtain the singular value of xx corresponding to x = 0, it suffices to

look for the limit towards which the expression
( 1

x

) 1
x = 1

x
1
x

converges for increasing

values of x. This limit, by virtue of theorem II (corollary I), is equal to 1.
Likewise, we conclude from theorem I (corollary I) that the function

x log(x)

vanishes with the variable x.
When the two terms of a fraction are infinitely small quantities, the numerical

values of which decrease indefinitely with that of the variable α , the singular value
of this fraction for α = 0 is sometimes finite, sometimes zero or infinite. Indeed,
let us denote by k and k′ two finite constants that are not zero, and by ε and ε ′ two
variable numbers which converge with α towards the limit zero. Two infinitely small
quantities, one of order n, the other of order n′, can be represented, respectively, by

kα
n (1± ε) and k′αn′ (1± ε

′) ,
[65] and their ratio, namely

k′αn′ (1± ε ′)
kαn (1± ε)

=
k′

k
1± ε ′

1± ε
α

n′−n =
k′

k
1± ε ′

1± ε

1
αn−n′ ,

evidently has as its limit

k′
k , if we suppose that n′ = n,

0, if we suppose that n′ > m, and

±∞, if we suppose that n′ < n.
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Likewise, we can prove that the limit towards which the ratio of two infinitely large
quantities converges when their numerical values increase indefinitely with that of
a variable x can be zero, finite or infinite. But this limit has a determined sign,
constantly equal to the product of the signs of the two quantities being considered.

Among the fractions for which the two terms converge with the variable α to-
wards the limit zero, we ought to include the following19

f (x+α)− f (x)
α

,

always attributing to the variable x a value in the neighborhood of which the function
f (x) remains continuous.20 Indeed, under this hypothesis, the difference

f (x+α)− f (x)

is an infinitely small quantity. We might also remark that in general it is an infinitely
small quantity of the first order, so that the ratio

f (x+α)− f (x)
α

ordinarily converges towards a finite limit different from zero as the numerical value
of α diminishes. This limit is, for example,

2x, if we take f (x) = x2

and
− a

x2 , if we take f (x) =
a
x
.

[66] In the particular case where we suppose that x = 0, the ratio

f (x+α)− f (x)
α

reduces to
f (α)− f (0)

α
.

Among the ratios of this last kind, we will restrict ourselves to considering the fol-
lowing

sinα

α
.

Because it can be put into the form

19 This, and what follows over the next few pages, are as close as Cauchy gets to using the derivative
in the Cours d’analyse. It highlights the fact that the book is about the foundations of calculus, and
not about calculus itself. It is not until the third lesson of his Résumé [Cauchy 1823] that he takes
the next step and defines the derivative as the limit of the difference quotient.
20 Note that Cauchy does not seem to consider the necessary and sufficient conditions for a function
f (x) to be differentiable at a point x.
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sin(−α)
−α

,

its limit will remain the same, whatever the sign of α may be. Given this, suppose
that the arc α takes a very small positive value. Because the chord21 of the double arc
2α is represented by 2sinα, we evidently have 2α > 2sinα, and as a consequence,

α > sinα.

Moreover, the sum of the tangents taken at the endpoints of the arc 2α is represented
by 2tanα , and, by forming a portion of a polygon which encloses this arc, we now
have 2tanα > 2α ,22 and consequently

tanα > α.

By combining the two formulas which we have just established, we find that23

sinα < α < tanα,

then by replacing tanα with its value

sinα < α <
sinα

cosα
,

and consequently we have

1 <
α

sinα
<

1
cosα

and

1 >
sinα

α
> cosα.

[67] Now, when α decreases, cosα converges towards the limit 1. Thus, a fortiori
the ratio sinα

α
is always contained between 1 and cosα , and consequently we have24

lim
sinα

α
= 1.(7)

Because the study of the limits towards which the ratios f (x+α)− f (x)
α

and f (α)− f (0)
α

converge is one of the principal objects of the infinitesimal Calculus, there is no
need to dwell any further on this.

21 The chord is an obsolete trigonometric function; see p. 10 or [Cauchy 1821, p. 11, Cauchy 1897,
p. 24] for others. The chord of x is 2sin

( x
2

)
.

22 Following Lagrange, Cauchy does not supply diagrams in his text. Presumably, he expected the
reader to supply any diagrams necessary for following the argument.
23 [Cauchy 1897, p. 66] has “sina” instead of “sinα .” This error is not in [Cauchy 1821, p. 63].
(tr.)
24 Cauchy is using what we call the Squeeze Theorem here. He considers it evident and sees no
need either to state the theorem explicitly or to prove it.
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It remains for us to examine the singular values of functions of several variables.
Sometimes these values are completely determined and independent of the relations
which we may establish among the variables. Thus, for example, if we denote by

α, β , x and y

four positive variables of which the first two converge towards the limit zero and the
last two towards the limit ∞, we recognize without trouble that the expressions

αβ , xy,
α

x
,

y
β

, α
y and xy

have for their respective limits

0, ∞, 0, ∞, 0 and ∞.

But more often the singular value of a function of several variables cannot be entirely
determined except in the particular case where, in making these variables converge
towards their respective limits, we establish certain relations among them, and when
these relations are not fixed, the singular value in question is a quantity either totally
indeterminate, or only required to remain contained between known limits. Thus,
as we have remarked above, the singular value to which the ratio of two infinitely
small variables is reduced in the case where each of its variables vanishes can be
any quantity, either finite, zero or infinite. [68] In other words, this singular value
is completely indeterminate. If instead of two infinitely small variables we consider
two infinitely large variables, we find that the ratio of these last ones, when their
numerical values increase indefinitely, converge again towards an arbitrary limit,
which may be positive or negative according to whether the two variables are of the
same sign or of opposite signs. It is equally easy to assure ourselves that the product
of an infinitely small variable by an infinitely large one has for its limit a quantity
that is completely indeterminate.

In order to present a final application of the principles which we have just estab-
lished, let us look for the values that must be attributed to variables x and y in order
that the value of the function

y
1
x

become indeterminate. If A denotes a number greater than 1 and if log is the char-
acteristic of logarithms in the system for which the base is A, we evidently have

y = Alog(y),

and consequently

y
1
x = A

log(y)
x .

Now, it is clear that the expression

A
log(y)

x
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converges towards an indeterminate limit whenever the ratio

log(y)
x

itself converges towards such a limit. This may arise in two different cases, namely:
1◦ when log(y) and x are two infinitely large quantities, that is to say when x and y
have for their respective limits 0 and 1; and 2◦ when log(y) and x are two infinitely
large quantities, that is to say when x has an infinite limit and y has [69] 0 or ∞

as its limit. In either case, it is worth observing that the indeterminate limit of the
expression

A
log(y)

x = y
1
x

is necessarily positive. It may even happen that this limit must remain contained
between the extreme values of 0 and 1, or else between 1 and ∞. Suppose, for ex-
ample, that each of the variables x and y converges towards the limit ∞. In this case,
because the limit of the ratio

log(y)
x

can be any positive quantity, the limit of y
1
x = A

log(y)
x must be an average quantity

between 1 and ∞. Moreover, this average is indeterminate as long as we do not
establish a particular relation between the infinitely large variables x and y. But if
we suppose that

y = f (x) ,

where f (x)25 denotes a function which increases indefinitely with the variable x,
then the average value in question, which is none other than the limit of

[ f (x)]
1
x ,

takes a determinate value, which we can always calculate with the aid of theorem II.
If, in place of the function y

1
x , we consider the following

yx,

we find that this last one becomes indeterminate: 1◦ when the variable y converges
towards the limit 1 and the variable x towards −∞ or +∞, and 2◦ when the variable
x has zero for its limit and y converges towards zero or positive infinity.

In calculation, we sometimes encounter singular expressions which cannot be
considered except as limits towards which functions of several variables converge,
as these same [70] variables become infinitely small or infinitely large, or even more
generally, converge towards fixed limits. Examples of such expressions are

25 This was incorrectly written as f (y) in [Cauchy 1897, p. 69], but was correctly given as f (x) in
[Cauchy 1821, p. 67]. (tr.)
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0×0,
0
0
, ∞×∞,

∞

∞
, 0×∞, 00, 1∞, . . . ,

among which we ought to consider the first two as the limits towards which the
product and the ratios of two infinitely small variables converge, the next two as the
limits of the product and of the ratio of two infinitely large positive variables, etc. In
particular, if we consider the singular expressions which the functions

x+ y, xy,
x
y
, yx and y

1
x

produce, we find that when the variables remain independent, the values of these
same expressions can be easily determined by that which precedes. The equations
which serve to determine these values are, respectively,

For the

functions

x+ y ∞+∞ = ∞, ∞−∞ = M((−∞,+∞));

xy
{

0×0 = 0,
∞×∞ =−∞×−∞ = ∞,

0×∞ = 0×−∞ = M((−∞,+∞)),
∞×−∞ =−∞;

x
y

{ 0
0 = M((−∞,+∞)),
∞

∞
= −∞

−∞
= M((0,∞)),

0
∞

= 0
−∞

= 0, ∞

0 = −∞

0 =±∞,
∞

−∞
= −∞

∞
= M((−∞,0));

yx
{

00 = ∞0 = M((0,∞)),
0−∞ = ∞∞ = ∞,

0∞ = ∞−∞ = 0,
1∞ = 1−∞ = M((0,∞));

y
1
x

{
0

1
0 = ∞

1
0 = 0 or ∞,

0
1
−∞ = ∞

1
∞ = M((1,∞)),

0
1
∞ = ∞

1
−∞ = M((0,1)),

1
1
0 = M((0,∞)).



Chapter 3
On symmetric functions and alternating
functions. The use of these functions for the
solution of equations of the first degree in any
number of unknowns. On homogeneous
functions.

3.1 On symmetric functions.

[71] A symmetric function of several quantities is one which conserves the same
value and the same sign after any exchange made among its quantities. Thus, for
example, each of the functions

x+ y, xy + yx, xyz, sinx+ siny+ sinz, . . .

is symmetric with respect to the variables which it contains, while

x− y, xy, . . .

are not symmetric functions of the variables x and y. Likewise,

b+ c, b2 + c2, bc, . . .

are symmetric functions of the two quantities b and c, and

b+ c+d, b2 + c2 +d2, bc+bd + cd and bcd

are symmetric functions of the three quantities b, c and d, etc.
Among the symmetric functions of several quantities b, c, . . ., g and h, we ought

to distinguish those which serve as the coefficients of the various powers of a in the
expansion of the product

(a−b)(a− c) . . .(a−g)(a−h) ,

and whose properties lead to a very elegant solution to several [72] equations of the
first degree among n variables x, y, z, . . ., u, v, when the equations are of the form

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 49
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 3,
c© Springer Science+Business Media, LLC 2009
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x+ y+ z+ . . .+ u+ v = k0,

ax+ by+ cz+ . . .+ gu+ hv = k1,
a2x+ b2y+ c2z+ . . .+ g2u+ h2v = k2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

an−1x+ bn−1y+ cn−1z+ . . .+ gn−1u+ hn−1v = kn−1.

(1)

Indeed, let

An−2 =−(b+ c+ . . .+g+h) ,
An−3 = bc+ . . .+bg+bh+ . . .+ cg+ ch+ . . .+gh,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
A0 =±bc . . .gh

be the symmetric functions in question, so that we have

an−1 +An−2an−2 + . . .+A1a+A0 = (a−b)(a− c)(a−d) . . . .

If, in this last formula, we replace a successively by b, by c, . . . , by g, and by h,
we have

bn−1 +An−2bn−2 + . . .+A1b+a0 = 0,

cn−1 +An−2cn−2 + . . .+A1c+a0 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

gn−1 +An−2gn−2 + . . .+A1g+a0 = 0,

hn−1 +An−2hn−2 + . . .+A1h+a0 = 0.

Then, if we add equations (1) term by term, after multiplying the first one by A0,
the second by A1, . . ., the next-to-last by An−2, and the last by one, we obtain the
following, (

an−1 +An−2an−2 + . . .+A1a+A0
)

x

= kn−1 +An−2kn−2 + . . .+A1k1 +A0k0,

and we conclude that

x =

 kn−1− (b+ c+ . . .+g+h)kn−2
+(bc+ . . .+bg+bh+ . . .+ cg+ ch+ . . .+gh)kn−3

− . . .±bc . . .gh · k0


(a−b)(a− c) . . .(a−g)(a−h)

.(2)

[73] By an analogous process, we can determine the values of the other unknowns
y, z, . . ., u, v.

When we substitute for the constants

k0, k1, k2, . . . , kn−1

in equations (1), the successive integer powers of a particular quantity k, namely

k0 = 1, k, k2, . . . , kn−1,
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the value found for x reduces to

x =
(k−b)(k− c) . . .(k−g)(k−h)
(a−b)(a− c) . . .(a−g)(a−h)

.(3)

3.2 On alternating functions.

An alternating function of several quantities is one which changes sign, but keeps
the same value next to the sign, when we interchange two of these quantities. Conse-
quently, by a series of such exchanges, the function becomes alternatingly positive
and negative. According to this definition,

x− y, xy2− x2y, log
x
y
, sinx− siny, . . .

are alternating functions of the two variables x and y,

(x− y)(x− z)(y− z)

is an alternating function of the three variables x, y and z, and so forth.
Among the alternating functions of several variables

x, y, z, . . . , u, v,

we ought to distinguish those which are rational and integer with respect to each of
these same variables. Suppose that such a function [74] is expanded and put into the
form of a polynomial. One of its terms, taken at random, has the form

kxpyqzr . . .usvt ,

where p, q, r, . . ., s, t denote integer numbers and k denotes any coefficient whatso-
ever. Moreover, because the function ought to change sign, but keep the same value
next to the sign after interchanging the variables x and y, it is necessary that there
correspond to the term in question another term of contrary sign,

−kxqypzr . . .usvt ,

derived from the first by virtue of this exchange. Thus the function is composed
of terms, alternately positive and negative, which, combined two by two, produce
binomials of the form

kxpyqzr . . .usvt − kxqypzr . . .usvt = k (xpyq− xqyp)zr . . .usvt .

In each binomial of this kind, p and q will necessarily be two integer numbers,
distinct from each other. Because the difference
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xpyq− xqyp

is evidently divisible by y−x, or what amounts to the same thing, by x−y, it follows
that each binomial, and consequently the sum of the binomials, or the given function,
is divisible by

±(y− x) .

Moreover, by the reasoning above, we can substitute any two other variables x and
z, or y and z, . . ., for the two variables x and y. Consequently, we definitively obtain
the following conclusions:

1◦ An alternating but integer function of several variables x, y, z, . . ., u, v, is
composed of terms alternately positive and negative, in each of which the various
variables all have different exponents; [75]

2◦ Such a function is divisible by the product of the differences
±(y− x) , ±(z− x) , . . . , ±(u− x) , ±(v− x) ,

±(z− y) , . . . , ±(u− y) , ±(v− y) ,
. . . , ±(u− z) , ±(v− z) ,

. . . . . . . . . , . . . . . . . . . ,
±(v−u) ,

(1)

each taken with whichever sign we please.
The product in question here, as we can easily recognize, is itself an alternating

function of the variables which we are considering. To prove this, it suffices to ob-
serve that this product changes sign, but keeps the same value next to the sign, after
interchanging two variables, x and y for example. But indeed, according to whether
we adopt for each difference the sign + or the sign −, this product is found to be
equal either to +ϕ or to −ϕ , the value of ϕ being determined by the equation

ϕ = (y− x)(z− x) . . .(u− x)(v− x)(2)
×(z− y) . . .(u− y)(v− y)× . . .× (v−u) .

Because it is evident that this value of ϕ changes only its sign by virtue of in-
terchanging the variables x and y, we can conclude that it will be the same for a
function equivalent either to +ϕ or to −ϕ .

In order to fix these ideas, imagine that we take each of the differences (1) with
the sign +. The product of all these differences will be the function ϕ determined by
equation (2), or what amounts to the same thing, by the following

ϕ = (y− x)× (z− x)(z− y)× . . .(3)
×(v− x)(v− y)(v− z) . . .(v−u) .

If additionally we let n be the number of variables x, y, z, . . ., u, v, then n−1 is evi-
dently the number of differences which contain a particular variable. Consequently,
in each term of the function ϕ expanded and put into the form of a polynomial, the
exponent of any variable [76] cannot surpass n−1. Finally, because in any particular
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term, the different variables ought to have different exponents, it is clear that these
exponents will be respectively equal to the numbers

0, 1, 2, 3, . . . , n−1.

Each term, disregarding the sign and the numerical coefficient, is thus equivalent to
the product of the various variables arranged in some order, and respectively raised
to powers 0, 1, 2, 3, . . ., n−1. We ought to add that each product of this kind is found
only once, sometimes with the sign +, sometimes with the sign −, in the expansion
of the function ϕ . For example, the product

x0y1z2 . . .un−2vn−1

cannot be formed except by the multiplication of the first letters of the binomial
factors which compose the right-hand side of equation (3).

With the aid of the principles that we have just established, it is easy to construct
in its entirety the expansion of the function ϕ and to demonstrate its various proper-
ties (on this subject see Note IV). We are now going to show how one is led, by the
consideration of such an expansion, to the solution of general equations of the first
degree of several variables.

Let 
a0x +b0y +c0z + . . .+g0u +h0v = k0,
a1x +b1y +c1z + . . .+g1u +h1v = k1,
a2x +b2y +c2z + . . .+g2u +h2v = k2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
an−1x+bn−1y+cn−1z+ . . .+gn−1u+hn−1v = kn−1

(4)

be n linear equations among the n variables or unknowns

x, y, z, . . . , u, v,

[77] and the constants

a0, b0, c0, . . . , g0, h0, k0,
a1, b1, c1, . . . , g1, h1, k1,
a2, b2, c2, . . . , g2, h2, k2,
. . . , . . . , . . . , . . . , . . . , . . . , . . . ,
an−1, bn−1, cn−1, . . . , gn−1, hn−1, kn−1,

chosen arbitrarily. Moreover, let P represent the result of replacing the variables

x, y, z, . . . , u, v

in the function ϕ by the letters

a, b, c, . . . , g, h,

considered as new quantities. Consequently we have
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P = (b−a)× (c−a)(c−b)× . . .(5)
×(h−a)(h−b)(h− c) . . .(h−g) .

The product P is the simplest alternating function of the quantities a, b, c, . . .,
g, h, and if we expand this function by algebraic multiplication of these binomial
factors, each term of the expansion will be equivalent, except for the sign, to the
product of these same quantites arranged in a certain order, and respectively raised
to the powers 0, 1, 2, 3, . . ., n−1. Given this, imagine that in each term we replace
the exponents with letters for their indices, by writing, for example,

a0b1c2 . . .gn−2hn−1

in place of the term
a0b1c2 . . .gn−2hn−1,

and denote by D the expansion of the product P. The quantity D, just like the product
P, evidently has the property of changing its sign whenever we interchange two [78]
of the given letters, for example, the letters a and b. From this, it is easy to conclude
that the value of D is reduced to zero if in all of its terms we write the letter b
in place of the letter a without writing at the same time a in place of b. It is the
same if everywhere we write one of the letters c, . . ., g, h in place of the letter a.
Consequently, suppose that in the polynomial D we denote the sum of all the terms
that have a0 as their common factor by A0a0, the sum of the terms which contain
the factor a1 by A1a1, . . ., and finally the sum of the terms that have the factor an−1
by An−1an−1, so that the value of D is given by the equation

D = A0a0 +A1a1 +A2a2 + . . .+An−1an−1.(6)

Then we find, by writing successively in the right-hand side of this equation the
letters b, c, . . ., g, h in place of the letter a,

0 = A0b0 +A1b1 +A2b2 + . . .+An−1bn−1,
0 = A0c0 +A1c1 +A2c2 + . . .+An−1cn−1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
0 = A0g0 +A1g1 +A2g2 + . . .+An−1gn−1,
0 = A0h0 +A1h1 +A2h2 + . . .+An−1hn−1.

(7)

Now suppose that we add equations (4) together term by term, after multiplying
the first by A0, the second by A1, the third by A2, . . ., the last by An−1. In this sum,
we see that the coefficients of the unknowns y, z, . . ., u, v disappear by virtue of
formulas (7), and we obtain definitively the equation

Dx = A0k0 +A1k1 +A2k2 + . . .+An−1kn−1,

from which we conclude

x =
A0k0 +A1k1 +A2k2 + . . .+An−1kn−1

D
.(8)
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Moreover, of the two quantities

D and A0k0 +A1k1 +A2k2 + . . .+An−1kn−1,

[79] the first is what arises from the expansion of the product

(b−a)× (c−a)(c−b)× . . .× (h−a)(h−b)(h− c) . . .(h−g) ,

when we replace the exponents of the letters in this expansion with the indices, and
the second is what becomes of the quantity D, equivalent to the right-hand side of
formula (6), when we substitute the letter k for the letter a. Consequently, we can
consider the value of x to be determined by the equation

x =
(b− k)× (c− k)(c−b)× . . .× (h− k)(h−b)(h− c) . . .(h−g)
(b−a)× (c−a)(c−b)× . . .× (h−a)(h−b)(h− c) . . .(h−g)

,(9)

provided that we agree to expand the two terms of the fraction that forms the right-
hand side and to replace in each expansion the exponents of the letters by their
indices. Taken literally, the value which equation (9) seems to give to the unknown
x is not exact and not capable of being made exact without the stated modifications.
This is what we call a symbolic value of this unknown.

The method which has led us to the symbolic value of x furnishes equally the
symbolic values of the other unknowns. To give an application of this method, sup-
pose that we wish to solve the linear equationsa0x+b0y+ c0z = k0,

a1x+b1y+ c1z = k1,
a2x+b2y+ c2z = k2.

(10)

Under this hypothesis, we find the symbolic value of the unknown x to be,1
x =

(b− k)(c− k)(c−b)
(b−a)(c−a)(c−b)

=
k0b1c2− k0b2c1 + k1b2c0− k1b0c2 + k2b0c1− k2b1c0

a0b1c2−a0b2c1 +a1b2c0−a1b0c2 +a2b0c1−a2b1c0 ,

(11)

[80] and consequently, the true value of the unknown is2

x =
k0b1c2− k0b2c1 + k1b2c0− k1b0c2 + k2b0c1− k2b1c0

a0b1c2−a0b2c1 +a1b2c0−a1b0c2 +a2b0c1−a2b1c0
.(12)

Note. — When, in equations (4), we replace the indices of the letters a, b, c, . . .,
g, h, k by the exponents, the symbolic value of x given by equation (9) evidently

1 In [Cauchy 1897, p. 79], there are typographical errors in the second line of (11), with c0 written
in place of c0 in two instances. These errors were not present in [Cauchy 1821, p. 81]. (tr.)
2 We recognize this as Cramer’s Rule, named for Gabriel Cramer (1704–1752); see [Cramer 1750].
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becomes the true value, and coincides, as we ought to expect, with that furnished by
formula (3) of § 1.

3.3 On homogeneous functions.

A function of several variables x, y, z, . . . is homogeneous when changing x to tx,
y to ty, z to tz, . . ., where t is a new variable independent of the others, makes this
function vary in the ratio of 1 to some fixed power of t. The exponent of this power
is called the degree of the homogeneous function. In other words,

f (x,y,z, . . .)

is a homogeneous function of degree a with respect to the variables x, y, z, . . ., if for
any t, we have

f (tx, ty, tz, . . .) = ta f (x,y,z, . . .) .(1)

Thus, for example,

x2 + xy+ y2,
√

xy and lnx− lny

are three homogeneous functions of the variables x and y, the first of the second de-
gree, the second of the first degree and the third of degree zero. An integer function
of the variables x, y, z, . . . composed of terms chosen so that the sum of the exponents
of the various [81] variables is the same in all the terms is evidently homogeneous.

If we let t = 1
x in formula (1), we conclude that

f (x,y,z, . . .) = xa f
(

1,
y
x
,

z
x
, . . .
)

.(2)

This last equation establishes a property of homogeneous functions that we can state
in the following manner:

Whenever a function of several variables x, y, z, . . . is homogeneous, it is equiva-
lent to a product of any one of the variables raised to a certain power by a function
of the ratios of these same variables combined in pairs.

We can add that this property applies exclusively to homogeneous functions.
And, indeed, suppose that f (x,y,z, . . .) is equivalent to the product of xa by a func-
tion of the ratios among the variables x, y, z, . . . combined in pairs. Because we can
express each of these ratios by means of those which have x for their denominators
by writing, for example, in place of z

y , ( z
x

)
(y

x

) ,
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it follows that the value of f (x,y,z, . . .) is given by an equation of the form

f (x,y,z, . . .) = xa
ϕ

(y
x
,

z
x
, . . .
)

.

This equation remains true, whatever the values of x, y, z, . . . may be, and if we
replace

x by tx, y by ty, z by tz, . . . ,

it becomes
f (tx, ty, tz, . . .) = taxa

ϕ

(y
x
,

z
x
, . . .
)

.

[82] Consequently, under the given hypothesis, we have,

f (tx, ty, tz, . . .) = ta f (x,y,z, . . .) ,

whatever t may be. In other words,

f (x,y,z, . . .)

will be a homogeneous function of degree a with respect to the variables x, y, z, . . ..





Chapter 4
Determination of integer functions, when a
certain number of particular values are known.
Applications.

4.1 Research on integer functions of a single variable for which a
certain number of particular values are known.

[83] To determine a function when a certain number of particular values are taken
to be known is what we call to interpolate. When it is a matter of a function of one
or two variables, this function can be considered as the ordinates of a curve or of a
surface, and the problem of interpolation consists of fixing the general value of this
ordinate given a certain number of particular values, that is to say, to make the curve
or the surface pass through a certain number of points. This question can be solved
in an infinity of ways, and in general the problem of interpolation is indeterminate.
However, the indeterminacy will cease if, to the knowledge of the particular values
of the desired function, we add the expressed condition that this function be integer,
and of a degree such that the number of its terms becomes precisely equal to the
number of particular values given.

To fix these ideas, suppose that we consider first the integer functions of a single
variable x. We establish easily in this regard the following propositions:

Theorem I. — If an integer function of the variable x vanishes for [84] a par-
ticular value of this variable, for example for x = x0, it is algebraically divisible by
x− x0.

Theorem II. — If an integer function of the variable x vanishes for each of the
values of x contained in the series

x0, x1, x2, . . . , xn−1,

where n denotes any integer, it will necessarily be divisible by the product

(x− x0)(x− x1)(x− x2) . . .(x− xn−1) .

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 59
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 4,
c© Springer Science+Business Media, LLC 2009
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Now let ϕ (x) and ψ (x) be two integer functions of the variable x, both of degree
n− 1, and which become equal to each other for each of the n particular values
of x contained in the series x0, x1, x2, . . ., xn−1. I say that these two functions are
identically equal, that is to say that we have,

ψ (x) = ϕ (x) ,

whatever x may be. Indeed, if this equality did not occur, we would find in the
difference

ψ (x) = ϕ (x) ,

an integer polynomial for which the degree does not surpass n− 1 but which van-
ishes for each of the values of x mentioned above, and is still divisible by the product

(x− x0)(x− x1)(x− x2) . . .(x− xn−1) ,

that is to say by a polynomial of degree n, which is absurd. We are assured a fortiori
of the absolute equality of the two functions ϕ (x) and ψ (x) if we know that they
become equal to each other for a number of values of x greater than n. We can thus
state the following theorem:

Theorem III. — If two integer functions of the variable x become [85] equal
for a number of values of this variable greater than the degree of each of these two
functions, they are identically equal, whatever x may be.

We thereby deduce as a corollary this other theorem:

Theorem IV. — Two integer functions of the variable x are identically equal
whenever they become equal for all integer values of that variable, or even for all
integer values which surpass a given limit.

Indeed, in this case the number of values of x for which the two functions become
equal is indefinite.

It follows from theorem III that an integer function u of degree n−1 is completely
determined if we know its particular values

u0, u1, u2, . . . , un−1

corresponding to the values

x0, x1, x2, . . . , xn−1

of the variable x. Under this hypothesis, we look for the general value of the function
u.1 If we suppose first that the particular values u0, u1, . . ., un−1 all reduce to zero

1 The interpolation technique that Cauchy is about to describe is known as Lagrange interpolation.
See, for example, [Burden and Faires 2001, pp. 107–118].
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with the exception, u0, then the function u ought to vanish for x = x1, for x = x2, . . .,
and finally for x = xn−1, and it is divisible by the product

(x− x1)(x− x2) . . .(x− xn−1) ,

and consequently it is of the form

u = k (x− x1)(x− x2) . . .(x− xn−1) ,

where k must be a constant quantity. Moreover, because u must reduce to u0 for
x = x0, we conclude that

u0 = k (x− x1)(x− x2) . . .(x− xn−1)

[86] and consequently

u = u0
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)
.

Likewise, if the particular values u0, u1, u2, . . ., un−1 all reduce to zero with the
exception of the second one, u1, we find that

u = u1
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, if they all reduce to zero with the exception of the last one, un−1, we find

u = un−1
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
.

In adding together these various values of u corresponding to the various hypotheses
that we have just made, we obtain for the sum a polynomial in x of degree n− 1
which evidently has the property that it reduces to u0 when x = x0, to u1 when
x = x1, . . ., and to un−1 when x = xn−1. Thus this polynomial is the general value of
u which solves the given question, so that this value is found to be determined by
the formula 

u = u0
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)

+ u1
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ un−1
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
.

(1)
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We could have deduced the same formula directly from the method which we em-
ployed above (Chap. III, § I) to solve linear equations of several variables in a par-
ticular case (on this subject, see Note V).

Denoting by a a constant quantity, if we replace in formula (1) the function u by
the function u− a, which evidently is [87] of the same degree, and the particular
values of u by the particular values of u−a, we obtain the equation2



u−a = (u0−a)
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)

+ (u1−a)
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ (un−1−a)
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
,

(2)

and by comparing this equation to formula (1), we find the following

1 =
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)

+
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
.

(3)

This last equation is an identity and remains true whatever x may be.
Equations (1) and (2) can both serve to solve the problem of interpolation for

integer functions, but in general it is advisable to prefer equation (2), considering
that we can make one of the terms of the right-hand side disappear by taking the
constant a to be equal to one of the quantities

u0, u1, u2, . . . , un−1.

Suppose, for example, that we are trying to make a straight line pass through two
given points. Denote by x0 and y0 the rectangular coordinates of the first point, by x1
and y1 the those of the second, and by y the ordinate variable of the straight line. By
replacing the letter u in formula (2) by the letter y, then making n = 1 and a = y0,
we find the equation of the line to be

y− y0 = (y1− y0)
x− x0

x1− x0
.(4)

2 In both [Cauchy 1821, p. 91] and [Cauchy 1897, p. 87], there is a typographical error in the last
line of formula (2), in which the denominator contains an x2 where it should be x1. (tr.)
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[88] On the other hand, suppose that we are trying to make a parabola whose axis
is parallel to the y axis pass through three given points. Let

x1 and y1, x2 and y2, and x3 and y3

be the rectangular coordinates of the three points. Also, let y be the ordinate variable
of the parabola. By replacing the letter u in formula (2) by the letter y, then making
n = 2 and a = y0, we find the equation of the parabola to be

y− y1 = (y0− y1)
(x− x1)(x− x2)

(x0− x1)(x0− x2)

+ (y2− y1)
(x− x0)(x− x1)

(x2− x0)(x2− x1)
,

(5)

or what amounts to the same thing,

y− y1 =
x− x1

x2− x0

[
(y0− y1)

x− x2

x1− x0
+(y2− y1)

x− x0

x2− x1

]
.(6)

When in equation (1) we take u = xm (m denoting an integer number less than n),
the particular values of u represented by

u0, u1, u2, . . . , un−1

evidently reduce to
xm

0 , xm
1 , xm

2 , . . . , xm
n−1.

Thus we have, for integer values of m which do not surpass n−1,3

xm = xm
0

(x− x1)(x− x2) . . .(x− xn−1)
(x0− x1)(x0− x2) . . .(x0− xn−1)

+ xm
1

(x− x0)(x− x2) . . .(x− xn−1)
(x1− x0)(x1− x2) . . .(x1− xn−1)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ xm
n−1

(x− x0)(x− x1) . . .(x− xn−2)
(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)

.

(7)

This last formula contains equation (3) as a particular case. Moreover, if we observe
that each power of x, and in particular [89] the power xn−1, ought necessarily to have
the same coefficient on both sides of formula (7), we find:

1◦ by supposing that m < n−1,

3 [Cauchy 1897, p. 88] has an unbalanced parenthesis in the last denominator of this formula. This
typographical error is not in [Cauchy 1821, p. 92]. (tr.)
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0 =
xm

0
(x0− x1)(x0− x2) . . .(x0− xn−1)

+
xm

1
(x1− x0)(x1− x2) . . .(x1− xn−1)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
xm

n−1

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
;

(8)

2◦ By supposing that m = n−1,

1 =
xn−1

0
(x0− x1)(x0− x2) . . .(x0− xn−1)

+
xn−1

1
(x1− x0)(x1− x2) . . .(x1− xn−1)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(xn−1)

n−1

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
.

(9)

It is worth remarking that formula (8) remains true in the case where we suppose
that m = 0 and then it becomes4

0 =
1

(x0− x1)(x0− x2) . . .(x0− xn−1)

+
1

(x1− x0)(x1− x2) . . .(x1− xn−1)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
1

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
.

(10)

4.2 Determination of integer functions of several variables, when
a certain number of particular values are assumed to be
known.

The methods by which we determine functions of one variable when a certain num-
ber of particular values are assumed to be [90] known can be easily extended, as we
are going to see, to functions of several variables.

To fix these ideas, let us first consider functions of two variables, x and y. Let
ϕ (x,y) and ψ (x,y) be two such functions, both of degree n−1 with respect to each
of the variables, and which become equal to each other whenever, by attributing to

4 This result is due to Euler [Euler 1769, vol. 2, § 1169]. See also [Sandifer 2007, pp. 133–137].
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the variable x one of the particular values

x0, x1, x2, . . . , xn−1

at the same time we attribute to the variable y one of the following

y0, y1, y2, . . . , yn−1.

Then ϕ (x0,y) and ψ (x0,y) are two functions of the single variable y, which ought
to be equal to each other for n particular values of this variable. Consequently (by
virtue of theorem III, § I), these two functions are constantly equal, whatever y may
be. Then we have identically

ϕ (x0,y) = ψ (x0,y) .

Likewise we find
ϕ (x1,y) = ψ (x1,y) ,
ϕ (x2,y) = ψ (x2,y) ,
. . . . . . . . . . . . . . . . . . . . . ,
ϕ (xn−1,y) = ψ (xn−1,y) .

Moreover, the left-hand sides of the preceding n equations are particular values
of the function ϕ (x,y) in the case where we consider just x as the variable, and
the right-hand sides represent the corresponding particular values of the function
ψ (x,y). The two functions

ϕ (x,y) and ψ (x,y) ,

when we attribute to y a constant value chosen arbitrarily, thus become equal for n
particular values of x, and because they are both of degree n−1 with respect to x, it
follows [91] that they remain equal, not only for any value attributed to the variable
y but also for any value of x. We are assured, a fortiori, of the absolute equality of
the two functions ϕ (x,y) and ψ (x,y) if we know that they become equal whenever
the values of x and y are respectively taken in two series each composed of more
than n different terms. Thus we can state the following proposition:

Theorem I. — If two integer functions of the variables x and y become equal
whenever the values of these two variables are respectively taken from two series
both of which contain a number of terms greater than the highest exponents of x and
y in these same functions, then they are identically equal.

We thereby deduce as a corollary this other theorem:

Theorem II. — Two integer functions of the variables x and y are identically
equal whenever they become equal for all integer values of these variables, or even
for all integer values which surpass a given limit.
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Indeed, in this case the number of values of x and y for which the two functions
become equal is indefinite.

It follows from theorem I that, if we suppose that the function ϕ (x,y) is integer
and of degree n− 1 with respect to each of the variables x and y, this function is
completely determined when we know the particular values which it receives when,
in taking for the values of x one of the quantities

x0, x1, x2, . . . , xn−1,

we take at the same time for the value of y one of the following

y0, y1, y2, . . . , yn−1.

Under the same hypothesis, the general value of the function can [92] be easily
deduced from formula (1) of the preceding section.5 Indeed, if we replace u by
ϕ (x,y) in this formula, we get

ϕ (x,y) =
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)
ϕ (x0,y)

+
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
ϕ (x1,y)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
ϕ (xn−1,y) ,

(1)

and we have, moreover, denoting by m one of the integer numbers 1, 2, 3, . . ., n−1,

ϕ (xm,y) =
(y− y1)(y− y2) . . .(y− yn−1)

(y0− y1)(y0− y2) . . .(y0− yn−1)
ϕ (xm,y0)

+
(y− y0)(y− y2) . . .(y− yn−1)

(y1− y0)(y1− y2) . . .(y1− yn−1)
ϕ (xm,y1)

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(y− y0)(y− y1) . . .(y− yn−2)

(yn−1− y0)(yn−1− y1) . . .(yn−1− yn−2)
ϕ (xm,yn−1) .

(2)

We draw the general value of ϕ (x,y) immediately from the two preceding equations.
For example, by supposing that n = 2, we find

5 Cauchy used the word paragraphe, which we will consistently translate as “section.” (tr.)
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ϕ (x,y) =
x− x1

x0− x1

y− y1

y0− y1
ϕ (x0,y0)

+
x− x0

x1− x0

y− y1

y0− y1
ϕ (x1,y0)

+
x− x1

x0− x1

y− y0

y1− y0
ϕ (x0,y1)

+
x− x0

x1− x0

y− y0

y1− y0
ϕ (x1,y1) .

(3)

If we consider functions of three or more variables, we obtain results entirely
similar to those which we have just found for functions of [93] only two variables.
We find, for example, in place of theorem II the following proposition:

Theorem III. — Two integer functions of several variables x, y, z, . . . are identi-
cally equal to each other whenever they become equal for all integer values of these
variables, or even for all integer variables which surpass a given limit.

4.3 Applications.

To apply the principles established in the preceding sections, let us consider in par-
ticular products formed by the multiplication of successive factors for which each
surpasses the following one by one, the first factor being one of the variables x, y, z,
. . .. By means of these kinds of products, we seek to express the very similar prod-
uct that we would obtain by taking for the first factor to be the sum of the given
variables, namely

x+ y+ z+ . . . .

If we reduce the number of variables to two, the problem at hand can be stated as
follows:

Problem I. — To express the product

(x+ y)(x+ y−1)(x+ y−2) . . .(x+ y−n+1) ,(1)

in which n denotes any integer number, by means of the following products

x(x−1)(x−2) . . .(x−n+1) and
y(y−1)(y−2) . . .(y−n+1)

and all such products which arise by changing the value of n.

Solution. — To solve the preceding question more easily, let us first suppose
that x and y are integer numbers greater than or equal to n. Then the product (1) is
nothing other than the numerator [94] of the fraction that expresses the number of
possible combinations of x+ y letters taken n at a time. This number is precisely
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(x+ y)(x+ y−1)(x+ y−2) . . .(x+ y−n+1)
1 ·2 ·3 . . .n

.

Given this, imagine that

a, b, c, . . . , p, q, r, . . .

are x + y letters, and that we divide them into two groups so that there are x letters,
a, b, c, . . ., in the first group and y letters, p, q, r, . . ., in the second group. Among
the combinations formed with these different letters, some contain only letters taken
from the first group. The number of combinations of this kind is

x(x−1)(x−2) . . .(x−n+1)
1 ·2 ·3 . . .n

.

Others contain n−1 letters taken from the first group and one letter taken from the
second. We easily determine the number of combinations of this second kind and
we see that it is equal to

x(x−1)(x−2) . . .(x−n+2)
1 ·2 ·3 . . .(n−1)

y
1
.

Likewise, we find that the number of combinations which contain n−2 letters taken
from the first group and two letters from the second group is

x(x−1)(x−2) . . .(x−n+3)
1 ·2 ·3 . . .(n−2)

y(y−1)
1 ·2

,

etc. Finally, the number of combinations which contain only letters taken from the
second group is

y(y−1)(y−2) . . .(y−n+1)
1 ·2 ·3 . . .n

.

The sum of the numbers of combinations of each kind ought [95] to produce the
total number of combinations of x + y given letters taken n at a time. We conclude
that6 

(x+ y)(x+ y−1) . . .(x+ y−n+1)
1 ·2 ·3 . . .n

=
x(x−1) . . .(x−n+1)

1 ·2 ·3 . . .n
+

x(x−1) . . .(x−n+2)
1 ·2 ·3 . . .(n−1)

y
1

+
x(x−1) . . .(x−n+3)

1 ·2 ·3 . . .(n−2)
y(y−1)

1 ·2
+ . . .

+
x
1

y(y−1) . . .(y−n+2)
1 ·2 ·3 . . .(n−1)

+
y(y−1) . . .(y−n+1)

1 ·2 ·3 . . .n
.

(2)

6 The numeral 3 was missing from the denominator in the third line of equation (2) in [Cauchy
1897, p. 95], but present in [Cauchy 1821, p. 100]. (tr.)
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The preceding equation, being thus proved in the case where the variables x and
y take integer values greater than n,7 remains true, by virtue of theorem II (§ II),
for all values of these variables, and the value of product (1) derived from the same
equation is 

(x+ y)(x+ y−1) . . .(x+ y−n+1)

= x(x−1) . . .(x−n+1)

+
n
1

x(x−1) . . .(x−n+2)y

+
n(n−1)

1 ·2
x(x−1) . . .(x−n+3)y(y−1)+ . . .

+
n
1

xy(y−1) . . .(y−n+2)

+y(y−1) . . .(y−n+1) .

(3)

Corollary I. — If we replace x by −x and y by −y, in equation (2) we obtain the
following:8

(x+ y)(x+ y+1) . . .(x+ y+n−1)
1 ·2 ·3 . . .n

=
x(x+1) . . .(x+n−1)

1 ·2 ·3 . . .n
+

x(x+1) . . .(x+n−2)
1 ·2 ·3 . . .(n−1)

y
1

+
x(x+1) . . .(x+n−3)

1 ·2 ·3 . . .(n−2)
y(y+1)

1 ·2
+ . . .

+
x
1

y(y+1) . . .(y+n−2)
1 ·2 ·3 . . .(n−1)

+
y(y+1) . . .(y+n−1)

1 ·2 ·3 . . .n
.

(4)

Corollary II. — If we replace x by x
2 and y in equation (2) [96] by y

2 , we find

(x+ y)(x+ y−2) . . .(x+ y−2n+2)
2 ·4 ·6 . . .(2n)

=
x(x−2) . . .(x−2n+2)

2 ·4 ·6 . . .(2n)
+

x(x−2) . . .(x−2n+4)
2 ·4 ·6 . . .(2n−2)

y
2

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
x
2

y(y−2) . . .(y−2n+4)
2 ·4 ·6 . . .(2n−2)

+
y(y−2) . . .(y−2n+2)

2 ·4 ·6 . . .(2n)
.

(5)

7 Cauchy has modified, perhaps inadvertently, the condition “greater than or equal to” stated at the
beginning of this solution.
8 We have restored parentheses to the second line of equation (4) that were missing in [Cauchy
1897, p. 95]. They had been present in [Cauchy 1821, p. 100]. (tr.)
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Corollary III. — By expanding both sides of equation (2) and keeping on each
side only the terms in which the sum of the exponents of the variables is equal to n,
we obtain the formula

(x+ y)n

1 ·2 ·3 . . .n
=

xn

1 ·2 ·3 . . .n
+

xn−1

1 ·2 ·3 . . .(n−1)
y
1

+
xn−2

1 ·2 ·3 . . .(n−2)
y2

1 ·2
+ . . .

+
x
1

yn−1

1 ·2 ·3 . . .(n−1)
+

yn

1 ·2 ·3 . . .n
.

(6)

The value of (x+ y)n taken from this last formula is precisely that given by the
Newton binomial.

The formulas that we have just derived can easily be extended to the case where
we consider more than two variables, and the method which has brought us to the
solution of problem I is equally applicable to the following question:

Problem II. — With x, y, z, . . . denoting any number of variables, to express the
product

(x+ y+ z+ . . .)(x+ y+ z+ . . .−1)(x+ y+ z+ . . .−2) . . .(x+ y+ z+ . . .−n+1)

as a function of the following ones

x(x−1)(x−2) . . .(x−n+1) ,
y(y−1)(y−2) . . .(y−n+1) ,
z(z−1)(z−2) . . .(z−n+1) ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and all such products which arise by changing the value of n.

[97] We begin by solving the problem in the case where x, y, z, . . . denote integer
numbers greater than n, and on the basis of this principle, the fraction

(x+ y+ z+ . . .)(x+ y+ z+ . . .−1)(x+ y+ z+ . . .−2) . . .(x+ y+ z+ . . .−n+1)
1 ·2 ·3 . . .n

is equal to the number of combinations that we can form with x + y+ z+ . . . letters
taken n at a time. Then we pass to the case where the variables x, y, z, . . . become
any quantities based on theorem III of § II. When we have thus proved the formula
which solves the given question, we deduce without trouble the value of the power

(x+ y+ z+ . . .)n .

We then solve the problem, indeed, by expanding both sides of the formula we
found, and keeping on each side only the terms in which the combined exponents of
the variables x, y, z, . . . form a sum equal to n.



Chapter 5
Determination of continuous functions of a
single variable that satisfy certain conditions.

5.1 Research on a continuous function formed so that if two such
functions are added or multiplied together, their sum or
product is the same function of the sum or product of the
same variables.

[98] When, instead of integer functions we imagine any functions, so that we leave
the form entirely arbitrary, we can no longer successfully determine them given a
certain number of particular values, however large that number might be, but we
can sometimes do so in the case where we assume certain general properties of
these functions. For example, a continuous function of x, represented by ϕ (x), can
be completely determined when it is required to satisfy, for all possible values of the
variables x and y, one of the equations

ϕ (x+ y) = ϕ (x)+ϕ (y) or(1)
ϕ (x+ y) = ϕ (x)×ϕ (y) ,(2)

as well as when, for all positive real values of the same variables, one of the follow-
ing equations:

ϕ (xy) = ϕ (x)+ϕ (y) or(3)
ϕ (xy) = ϕ (x)×ϕ (y) .(4)

The solution of these four equations presents four different problems, which we will
treat one after another.

[99] Problem I. — To determine the function ϕ (x) in such a manner that it
remains continuous between any two real limits of the variable x and so that for all
real values of the variables x and y, we have

ϕ (x+ y) = ϕ (x)+ϕ (y) .(1)

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 71
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 5,
c© Springer Science+Business Media, LLC 2009
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Solution. — If in equation (1) we successively replace y by y+ z, z by z+u, . . .,
we get

ϕ (x+ y+ z+u+ . . .) = ϕ (x)+ϕ (y)+ϕ (z)+ϕ (u)+ . . . ,

however many variables x, y, z, u, . . . there may be. Also, if we denote this number
of variables by m and a positive constant by α , and then we make

x = y = z = u = . . . = α,

then the formula which we have just found becomes

ϕ (mα) = mϕ (α) .

To extend this last equation to the case where the integer number m is replaced by a
fractional number m

n , or even by an arbitrary number µ , we set, in the first case,

β =
m
n

α,

where m and n denote integer numbers, and we conclude that

nβ = mα,

nϕ (β ) = mϕ (α) and

ϕ (β ) = ϕ
(m

n α
)

= m
n ϕ (α) .

Then, by supposing that the fraction m
n varies in such a way as to converge towards

any number µ , and passing to the limit, we find that

ϕ (µα) = µϕ (α) .

[100] If we now take α = 1, then we have, for all positive values of µ ,

ϕ (µ) = µϕ (1) ,(5)

and consequently, by making µ converge towards the limit zero,

ϕ (0) = 0.

Moreover, if in equation (1) we set x = µ and y =−µ , we conclude that

ϕ (−µ) = ϕ (0)−ϕ (µ) =−µϕ (1) .

Thus, equation (5) remains true when we change µ to −µ . In other words, we have,
for any values, positive or negative, of the variable x,

ϕ (x) = xϕ (1) .(6)
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It follows from formula (6) that any function ϕ (x) which remains continuous
between any limits of the variable and satisfies equation (1) is necessarily of the
form

ϕ (x) = ax,(7)

where a denotes a constant quantity. I add that the function ax enjoys the stated
properties whatever the value of the constant a may be. Indeed, between any limits
of the variable x, the product ax is a continuous function of that variable, and what’s
more, the assumption that ϕ (x) = ax changes equation (1) into this other equation,

a(x+ y) = ax+ay,

which is evidently always an identity. Thus formula (7) gives a solution to the pro-
posed question, whatever value is attributed to the constant a. Because we have the
ability to choose this constant arbitrarily, we call it an arbitrary constant.

Problem II. — To determine the function ϕ (x) in such a manner that it remains
continuous between any two real limits of the variable x and so that [101] for all
real values of the variables x and y, we have

ϕ (x+ y) = ϕ (x)ϕ (y) .(2)

Solution. — First, it is easy to assure ourselves that the function ϕ (x) required
to satisfy equation (2) will admit only positive values. Indeed, if we make y = x in
equation (2), we find that

ϕ (2x) = [ϕ (x)]2 ,

and then, writing 1
2 x in place of x, we conclude that

ϕ (x) = [ϕ ( 1
2 x)]2 .

Thus the function ϕ (x) is always equal to a square, and consequently it is always
positive. Given this, suppose that in equation (2) we successively replace y by y+ z,
z by z+u, . . .. We then get

ϕ (x+ y+ z+u+ . . .) = ϕ (x)ϕ (y)ϕ (z)ϕ (u) . . . ,

however many variables x, y, z, u, . . . there may be. Also, if we denote this number
of variables by m, and a positive constant by α , and then we make

x = y = z = u = . . . = α,

then the formula we have just found becomes

ϕ (mα) = [ϕ (α)]m .
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To extend this last formula to the case where the integer number m is replaced by
a fractional number m

n , or even by an arbitrary number µ , we set, in the first case,

β =
m
n

α,

where m and n denote two integer numbers, and we conclude that

nβ = mα,

[ϕ (β )]n = [ϕ (α)]m and

ϕ (β ) = ϕ
(m

n α
)

= [ϕ (α)]
m
n .

[102] Then, by supposing that the fraction m
n varies in such a way as to converge

towards any number µ and passing to the limit, we find that

ϕ (µα) = [ϕ (α)]µ .

Now if we take α = 1, we have for all positive values of µ

ϕ (µ) = [ϕ (1)]µ ,(8)

and consequently, by making µ converge towards the limit zero,

ϕ (0) = 1.

Moreover, if in equation (2) we set x = µ and y =−µ , we conclude that

ϕ (−µ) =
ϕ (0)
ϕ (µ)

= [ϕ (1)]−µ .

Thus, equation (8) remains true when we change µ to −µ . In other words, we have,
for any values, positive or negative, of the variable x,

ϕ (x) = [ϕ (1)]x .(9)

It follows from equation (9) that any function ϕ (x) that solves the second problem
is necessarily of the form

ϕ (x) = Ax,(10)

where A denotes a positive constant. I add that we can attribute to this constant any
value between the limits 0 and ∞. Indeed, for any positive value of A, the function
Ax remains continuous from x =−∞ to x = +∞, and the equation

Ax+y = AxAy

is an identity. The quantity A is thus an arbitrary constant that admits only positive
values.
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[103] Note. — We can get equation (9) very simply in the following manner.
If we take logarithms of both sides of equation (2) in any system, we find that

logϕ (x+ y) = logϕ (x)+ logϕ (y) ,

and we conclude (see problem I) that

logϕ (x) = x logϕ (1) ,

then, by passing again from logarithms to numbers,

ϕ (x) = [ϕ (1)]x .

Problem III. — To determine the function ϕ (x) in such a manner that it remains
continuous between any two positive limits of the variable x and so that for all
positive values of the variables x and y we have

ϕ (xy) = ϕ (x)+ϕ (y) .(3)

Solution. — It would be easy to apply a method similar to the one we used to
solve the first problem to the solution of problem III. However, we will arrive more
promptly at the solution we seek by putting equation (3) into a form analogous to
that of equation (1), as we are going to do.

If A denotes any number and log denotes the characteristic of logarithms in the
system for which the base is A, then for all positive values of the variables x and y
we have

x = Alogx and y = Alogy,

so that equation (3) becomes

ϕ

(
Alogx+logy

)
= ϕ

(
Alogx

)
+ϕ

(
Alogy

)
.

Because in this last formula the variable quantities logx and logy admit any values,
positive or negative, it follows [104] that we have, for all possible real values of x
and y,

ϕ
(
Ax+y)= ϕ (Ax)+ϕ (Ay) .

We conclude that [see problem I, eqn. (6)]

ϕ (Ax) = xϕ
(
A1)= xϕ (A) ,

and consequently
ϕ

(
Alogx

)
= ϕ (A) logx,

or what amounts to the same thing
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ϕ (x) = ϕ (A) logx.(11)

It follows from formula (11) that every function ϕ (x) that solves problem III is
necessarily of the form

ϕ (x) = a log(x),(12)

where a denotes a constant. Moreover, it is easy to assure ourselves: 1◦ that the
constant a remains entirely arbitrary; and 2◦ that by choosing the number A suitably,
which is itself arbitrary, we can reduce the constant a to one.

Problem IV. — To determine the function ϕ (x) in such a manner that it remains
continuous between any two positive limits of the variable x and so that for all
positive values of the variables x and y we have

ϕ (xy) = ϕ (x)ϕ (y) .(4)

Solution. — It would be easy to apply a method similar to that which we used
to solve the second problem to the solution of problem IV. However, we will ar-
rive more promptly at the solution we seek if we observe that, by denoting by log
the characteristic of logarithms in the system for which the base is A, we can put
equation (4) into the form

ϕ

(
Alogx+logy

)
= ϕ

(
Alogx

)
ϕ

(
Alogy

)
.

Because in this last equation the variable quantities logx [105] and logy admit any
values, positive or negative, it follows that we have, for all possible real values of
the variables x and y,

ϕ
(
Ax+y)= ϕ (Ax)ϕ (Ay) .

We conclude that [see problem II, eqn. (9)]

ϕ (Ax) = [ϕ (A)]x

and consequently
ϕ

(
Alogx

)
= [ϕ (A)]logx = xlogϕ(A),

or what amounts to the same thing,

ϕ (x) = xlogϕ(A).(13)

It follows from equation (13) that any function ϕ (x) that solves problem IV is
necessarily of the form

ϕ (x) = xa,(14)

where a denotes a constant. Moreover it is easy to assure ourselves that this constant
ought to remain entirely arbitrary.
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The four values of ϕ (x) which respectively satisfy equations (1), (2), (3) and (4),
namely

ax, Ax, a logx and xa,

have this much in common, that each of them contains an arbitrary constant, a or
A. Thus we ought to conclude that there is a great difference between the questions
where it is a matter of calculating the unknown values of certain quantities and the
questions in which we propose to discover the unknown nature of certain functions
that have given properties. Indeed, in the first case, the values of unknown quantities
are ultimately expressed by means of other known and determined quantities, while
in the second case the unknown functions can, as we have seen here, admit arbitrary
constants into their expression.

5.2 Research on a continuous function formed so that if we
multiply two such functions together and then double the
product, the result equals that function of the sum of the
variables added to the same function of the difference of the
variables.

[106] In each of the problems of the preceding section, the equation to be solved
contained, along with the unknown function ϕ (x), two other similar functions,
namely ϕ (y) and ϕ (x+ y) or ϕ (xy). Now we are going to propose a new prob-
lem of the same kind, but in which the equation of the condition that the function
ϕ (x) must satisfy contains four such functions in place of three. It consists of the
following:

Problem. — To determine the function ϕ (x) in such a manner that it remains
continuous between any two real limits of the variable x and so that for all real
values of the variables x and y we have

ϕ (y+ x)+ϕ (y− x) = 2ϕ (x)ϕ (y) .(1)

Solution. — If we make x = 0 in equation (1), we get1

ϕ (0) = 1.

The function ϕ (x) thus reduces to 1 for the particular value x = 0, and because we
suppose that it is continuous between any limits, it is clear that, in the neighborhood
of this particular value, it is only very slightly different from 1, and consequently is
positive. Thus, by denoting a very small number by α , we can choose this number
in such a way that the function ϕ (x) remains constantly positive between the limits

1 Cauchy does not mention the trivial solutions ϕ(x)≡ 0 and ϕ(x)≡ 1.
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x = 0 and x = α.

Given this, two things could happen: either the positive value of ϕ(α) will be con-
tained between the limits 0 and 1, or this value will be [107] greater than 1. We will
examine successively these two hypotheses.

Now suppose that ϕ (α) has a value contained between the limits 0 and 1. We
can represent this value by the cosine of a certain arc θ contained between the limits
0 and π

2 , and as a consequence we can set

ϕ (α) = cosθ .

Moreover, if equation (1) is put into the form

ϕ (y+ x) = 2ϕ (x)ϕ (y)−ϕ (y− x) ,

and we successively make
x = α and y = α,
x = α and y = 2α,
x = α and y = 3α,
. . . . . . . . . . . . ,

then we deduce the formulas

ϕ (2α) = 2cos2 θ −1 = cos2θ ,

ϕ (3α) = 2cosθ cos2θ − cosθ = cos3θ ,

ϕ (4α) = 2cosθ cos3θ − cos2θ = cos4θ ,

one after another and in general,

ϕ (mα) = 2cosθ cos(m−1)θ − cos(m−2)θ = cosmθ ,

where m denotes any integer number. I add that the formula

ϕ (mα) = cosmθ

remains true even if we replace the integer number m by a fraction or even by any
number µ . We will prove this easily as follows.

If we make x = 1
2 α and y = 1

2 α in equation (1), then we get[
ϕ

(
1
2

α

)]2

=
ϕ (0)+ϕ (α)

2
=

1+ cosθ

2
=
(

cos
1
2

θ

)2

.

Then, by taking the positive roots of both sides and [108] observing that the two
functions ϕ (x) and cosx remain positive, the first between the limits x = 0 and
x = α and the second between the limits x = 0 and x = θ , we find
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ϕ

(
1
2

α

)
= cos

1
2

θ .

Likewise, if we make

x =
1
4

α and y =
1
4

θ

in equation (1), then we get2[
ϕ

(
1
4

α

)]2

=
ϕ (0)+ϕ

( 1
2 α
)

2
=

1+ cos 1
2 θ

2
=
(

cos
1
4

θ

)2

.

Then, by extracting the positive roots of the first and last parts, we get

ϕ

(
1
4

α

)
= cos

1
4

θ .

By similar reasoning, we successively obtain the formulas

ϕ

(
1
8

α

)
= cos

1
8

θ ,

ϕ

(
1
16

α

)
= cos

1
16

θ ,

. . . . . . . . . . . . . . . . . . . . . ,

and in general

ϕ

(
1
2n α

)
= cos

1
2n θ ,

where n denotes any integer number. If we operate on the preceding expression for
ϕ
( 1

2n α
)

to deduce that for ϕ
( m

2n α
)

as we operated on the expression for ϕ (α) to
deduce that for ϕ (mα), then we find

ϕ

( m
2n α

)
= cos

m
2n θ .

Then, by supposing that the fraction m
2n varies in such a way as to approach [109]

indefinitely the number µ , and passing to the limit, we obtain the equation

ϕ (µα) = cos µθ .(2)

Moreover, if we make3

x = µα and y = 0

in formula (1), then we conclude that

2 In [Cauchy 1897, p. 108], the numerator of the second part contains the expression ϕ
( 1

2

)
α in

place of ϕ
( 1

2 α
)
. This error did not appear in [Cauchy 1821, p. 116]. (tr.)

3 In [Cauchy 1897, p. 109], this reads x = µa. It is correctly written x = µα in [Cauchy 1821,
p. 117]. (tr.)
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ϕ (−µα) = [2ϕ (0)−1]ϕ (µα) = cos µθ = cos(−µθ) .

Thus, equation (2) remains true when we replace µ by−µ . In other words, we have,
for any values, positive or negative, of the variable x,

ϕ (αx) = cosθx.(3)

If we change x to x
α

in this last formula, we get4

ϕ (x) = cos
θ

α
x = cos

(
− θ

α
x
)

.(4)

The preceding value of ϕ (x) corresponds to the case where the positive quantity
ϕ(α) remains contained between the limits 0 and 1.

Now let us suppose that this same quantity is greater than 1. It is easy to see
that under this second hypothesis we can find a positive value of r that satisfies the
equation

ϕ (α) =
1
2

(
r +

1
r

)
.

Indeed, it suffices to take

r = ϕ (α)+
{
[ϕ (α)]2−1

} 1
2
.

Given this, if we successively make

x = α and y = α,
x = α and y = 2α,
x = α and y = 3α,
. . . . . . . . . . . . ,

in equation (1), [110] then we deduce, one after another, the formulas

ϕ (2α) = 1
2

(
r + 1

r

)2−1 = 1
2

(
r2 + 1

r2

)
,

ϕ (3α) = 1
2

(
r + 1

r

)(
r2 + 1

r2

)
− 1

2

(
r + 1

r

)
= 1

2

(
r3 + 1

r3

)
,

ϕ (4α) = 1
2

(
r + 1

r

)(
r3 + 1

r3

)
− 1

2

(
r2 + 1

r2

)
= 1

2

(
r4 + 1

r4

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

In general,

ϕ (mα) =
1
2

(
r +

1
r

)(
rm−1 +

1
rm−1

)
− 1

2

(
rm−2 +

1
rm−2

)

4 The trivial solution ϕ(x)≡ 1 is included in equation (4) as the case θ = 0.
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=
1
2

(
rm +

1
rm

)
,

where m denotes any integer number. I add that the formula

ϕ (mα) =
1
2

(
rm +

1
rm

)
remains true even if we replace the integer number m by a fraction or even by any
number µ . We will prove this easily as follows.

If we make x = 1
2 α and y = 1

2 α in equation (1), we get[
ϕ

(
1
2

α

)]2

=
ϕ (0)+ϕ (α)

2
=

1+ 1
2

(
r + 1

r

)
2

=
1
4

(
r

1
2 + r−

1
2

)2
.

Then, by taking the positive roots of both sides and observing that the function ϕ (x)
remains positive between the limits x = 0 and x = α , we find

ϕ

(
1
2

α

)
=

1
2

(
r

1
2 + r−

1
2

)
.

Likewise, if we make

x =
1
4

α and y =
1
4

α

in equation (1), then we get5[
ϕ

(
1
4

α

)]2

=
ϕ (0)+ϕ

( 1
2 α
)

2

=
1+ 1

2

(
r

1
2 + r−

1
2

)
2

=
1
4

(
r

1
4 + r−

1
4

)2
.

[111] Then, by taking the positive roots of the first and the last parts, we get

ϕ

(
1
4

α

)
=

1
2

(
r

1
4 + r−

1
4

)
.

By similar reasoning, we successively obtain the formulas

ϕ

(
1
8

α

)
=

1
2

(
r

1
8 + r−

1
8

)
,

ϕ

(
1
16

α

)
=

1
2

(
r

1
16 + r−

1
16

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

5 The negative signs were missing from the exponents − 1
2 and − 1

4 in [Cauchy 1897, p. 110]. They
were present in [Cauchy 1821, p. 119]. (tr.)
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and in general

ϕ

(
1
2n α

)
=

1
2

(
r

1
2n + r−

1
2n
)

,

where n denotes any integer number. If we operate on the preceding expression for
ϕ
( 1

2n α
)

to deduce that for ϕ
( m

2n α
)

as we operated on the expression for ϕ (α) to
deduce that for6 ϕ (mα), then we find

ϕ

( m
2n α

)
=

1
2

(
r

m
2n + r−

m
2n
)

.

Then, by supposing that the fraction m
2n varies in such a way as to approach indefi-

nitely the number µ , and passing to the limit, we obtain the equation

ϕ (µα) =
1
2
(
rµ + r−µ

)
.(5)

Moreover, if we make
x = µα and y = 0

in formula (1), then we conclude that

ϕ (−µα) = [2ϕ (0)−1]ϕ (µα) =
1
2
(
r−µ + rµ

)
.

[112] Thus, equation (5) remains true when we replace µ by −µ . In other words,
we have, for all values, positive or negative, of the variable x,

ϕ (αx) =
1
2
(
rx + r−x) .(6)

If we change x to x
α

in this last formula, we get

ϕ (x) =
1
2

(
r

x
α + r−

x
α

)
.(7)

When we make± θ

α
= a in equation (4) and r±

1
α = A in equation (7), these equations

give, respectively, the following forms:

ϕ (x) = cosax and(8)

ϕ (x) =
1
2
(
Ax +A−x) .(9)

Thus, if we denote a constant quantity by a and a constant number by A, then any
function ϕ (x) that remains continuous between any limits of the variable and that
satisfies equation (1) is necessarily contained in one of the two forms that we have
just described. Moreover, it is easy to assure ourselves that the values of ϕ (x) given

6 This word “for” is the translation of the word “de,” which was present in [Cauchy 1821, p. 120],
but absent from [Cauchy 1897, p. 111]. (tr.)
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by equations (8) and (9) solve the proposed question, whatever values may be at-
tributed to the quantity a and the number A. This number and this quantity are two
arbitrary constants, of which one admits only positive quantities.

From what we have just said, the two functions7

cosax and
1
2
(
Ax +A−x)

have the common property of satisfying equation (1), and this establishes a remark-
able analogy between them. Both of these two [113] functions still reduce to one
for x = 0. But one essential difference between the first and the second is that the
numerical value of the first is constantly less than the limit 1, whenever it does not
reach this limit, while, under the same hypothesis, the numerical value of the second
is constantly above the limit 1.

7 Using modern notation, we observe that the second solution may be written as coshax, where
a = lnA. Lambert (1728–1777) was the first to note such parallels between the trigonometric and
hyperbolic functions in [Lambert 1768].





Chapter 6
On convergent and divergent series. Rules for
the convergence of series. The summation of
several convergent series.

6.1 General considerations on series.

[114]1 We call a series an indefinite sequence of quantities,

u0, u1, u2, u3, . . . ,

which follow from one to another according to a determined law. These quantities
themselves are the various terms of the series under consideration. Let

sn = u0 +u1 +u2 + . . .+un−1

be the sum of the first n terms, where n denotes any integer number. If, for ever
increasing values of n, the sum sn indefinitely approaches a certain limit s, the series
is said to be convergent, and the limit in question is called the sum of the series.
On the contrary, if the sum sn does not approach any fixed limit as n increases
indefinitely, the series is divergent, and does not have a sum. In either case, the term
which corresponds to the index n, that is un, is what we call the general term. For
the series to be completely determined, it is enough that we give this general term
as a function of the index n.

One of the simplest series is the geometric progression,

1, x, x2, x3, . . . ,

which has xn for its general term, that is to say the nth power of the quantity [115]
x. If we form the sum of the first n terms of this series, then we find

1+ x+ x2 + . . .+ xn−1 =
1

1− x
− xn

1− x
.

1 Both [Cauchy 1821, p. ix] and [Cauchy 1897, p. 473] use the title “On convergent and divergent
(real) series. . . . ” in the table of contents. (tr.)
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As the values of n increase, the numerical value of the fraction xn

1−x converges to-
wards the limit zero, or increases beyond all limits, according to whether we suppose
that the numerical value of x is less than or greater than 1. Under the first hypothesis,
we ought to conclude that the progression

1, x, x2, x3, . . .

is a convergent series which has 1
1−x as its sum, whereas, under the second hypoth-

esis, the same progression is a divergent series which does not have a sum.
Following the principles established above, in order that the series

u0, u1, u2, . . . , un, un+1, . . .(1)

be convergent, it is necessary and it suffices that increasing values of n make the
sum

sn = u0 +u1 +u2 + . . .+un−1

converge indefinitely towards a fixed limit s. In other words, it is necessary and it
suffices that, for infinitely large values of the number n, the sums

sn, sn+1, sn+2, . . .

differ from the limit s, and consequently from one another, by infinitely small quan-
tities. Moreover, the successive differences between the first sum sn and each of the
following sums are determined, respectively, by the equations

sn+1− sn = un,

sn+2− sn = un +un+1,

sn+3− sn = un +un+1 +un+2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hence, in order for series (1) to be convergent, it is first of all necessary [116]
that the general term un decrease indefinitely as n increases. But this condition
does not suffice, and it is also necessary that, for increasing values of n, the
different sums,

un +un+1,

un +un+1 +un+2,

. . . . . . . . . . . . . . . . . . ,

that is to say, the sums of as many of the quantities

un, un+1, un+2, . . . ,
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as we may wish, beginning with the first one, eventually constantly assume nu-
merical values less than any assignable limit. Conversely, whenever these various
conditions are fulfilled, the convergence of the series is guaranteed.2

Let us take, for example, the geometric progression

1, x, x2, x3, . . . .(2)

If the numerical value of x is greater than 1, that of the general term xn increases
indefinitely with n, and this remark alone suffices to establish the divergence of the
series. The series is still divergent if we let x =±1, because the numerical value of
the general term xn, which is 1, does not decrease indefinitely for increasing values
of n. However, if the numerical value of x is less than 1, then the sums of any number
of terms of the series, beginning with xn, namely:

xn,

xn + xn+1 = xn 1− x2

1− x
,

xn + xn+1 + xn+2 = xn 1− x3

1− x
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

are all contained between the limits

xn and
xn

1− x
,

[117] each of which becomes infinitely small for infinitely large values of n. Conse-
quently, the series is convergent, as we already knew.

As a second example, let us take the numerical series

1,
1
2
,

1
3
,

1
4
, . . . ,

1
n
,

1
n+1

, . . . .(3)

The general term of this series, namely 1
n+1 , decreases indefinitely as n increases.

Nevertheless, the series is not convergent, because the sum of the terms from 1
n+1

up to 1
2n inclusive, namely

1
n+1

+
1

n+2
+ . . .+

1
2n−1

+
1

2n
,

is always greater than the product

n
1

2n
=

1
2
,

2 This is the Cauchy Convergence Criterion. It is still one of the few necessary and sufficient
conditions for convergence of series.
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whatever the value of n. As a consequence, this sum does not decrease indefinitely
with increasing values of n, as would be the case if the series were convergent. Let
us add that, if we denote the sum of the first n terms of series (3) by sn and the
highest power of 2 bounded by n+1 by 2m, then we have

sn = 1+
1
2

+
1
3

+ . . .+
1

n+1

> 1+
1
2

+
(

1
3

+
1
4

)
+
(

1
5

+
1
6

+
1
7

+
1
8

)
+ . . .

+
(

1
2m−1 +1

+
1

2m−1 +2
+ . . .+

1
2m

)
,

and, a fortiori,

sn > 1+
1
2

+
1
2

+
1
2

+ . . .+
1
2

= 1+
m
2

.

We conclude from this that the sum sn increases indefinitely with the integer number
m, and consequently with n, which is a new proof of the divergence of the series.3

[118] Let us further consider the numerical series

1,
1
1
,

1
1 ·2

,
1

1 ·2 ·3
, . . . ,

1
1 ·2 ·3 . . .n

, . . . .(4)

The terms of this series with index greater than n, namely

1
1 ·2 ·3 . . .n

,
1

1 ·2 ·3 . . .n(n+1)
,

1
1 ·2 ·3 . . .n(n+1)(n+2)

, . . . ,

are, respectively, less than the corresponding terms of the geometric progression

1
1 ·2 ·3 . . .n

,
1

1 ·2 ·3 . . .n
1
n
,

1
1 ·2 ·3 . . .n

1
n2 , . . . .

As a consequence, the sum of however many of the initial terms as we may wish is
always less than the sum of the corresponding terms of the geometric progression,
which is a convergent series, and so a fortiori,4 it is less than the sum of this series,
which is to say

1
1 ·2 ·3 . . .n

1
1− 1

n

=
1

1 ·2 ·3 . . .(n−1)
1

n−1
.

Because this last sum decreases indefinitely as n increases, it follows that series (4)
is itself convergent. It is conventional to denote the sum of this series by the letter e.
By adding together the first n terms, we obtain an approximate value of the number
e,

3 Cauchy may not be claiming originality for this “new” proof. It was first given by Oresme (see,
for example, [Dunham 1990, pp. 202–203]), but Cauchy was probably not aware of it.
4 This is an implicit use of the Comparison Test. Cauchy never states this test explicitly.
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1+
1
1

+
1

1 ·2
+

1
1 ·2 ·3

+ . . .+
1

1 ·2 ·3 . . .(n−1)
.

According to what we have just said, the error made will be smaller than the product
of the nth term by 1

n−1 . Therefore, for example, if we let n = 11, we find as the
approximate value of e

e = 2.7182818 . . . ,(5)

and the error made in this case is less than the product [119] of the fraction
1

1·2·3·4·5·6·7·8·9·10 by 1
10 , that is 1

36,288,000 , so that it does not affect the seventh dec-
imal place.

The number e, determined as we have just said, is often used in the summation
of series and in the infinitesimal Calculus. Logarithms taken in the system with this
number as its base are called Napierian, for Napier, the inventor of logarithms, or
hyperbolic, because they measure the various parts of the area between the equilat-
eral hyperbola and its asymptotes.5

In general, we denote the sum of a convergent series by the sum of the first terms,
followed by an ellipsis. Thus, when the series

u0, u1, u2, u3, . . .

is convergent, the sum of this series is denoted

u0 +u1 +u2 +u3 + . . . .

By virtue of this convention, the value of the number e is determined by the equation

e = 1+
1
1

+
1

1 ·2
+

1
1 ·2 ·3

+
1

1 ·2 ·3 ·4
+ . . . ,(6)

and, if one considers the geometric progression

1, x, x2, x3, . . . ,

we have, for numerical values of x less than 1,

1+ x+ x2 + x3 + . . . =
1

1− x
.(7)

Denoting the sum of the convergent series

u0, u1, u2, u3, . . .

by s and the sum of the first n terms by sn, we have

s = u0 +u1 +u2 + . . .+un−1 +un +un+1 + . . .

= sn +un +un+1 + . . . ,

5 I.e., the area under the curve y = 1
x .
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and, as a consequence,
s− sn = un +un+1 + . . . .

[120] From this last equation, it follows that the quantities

un, un+1, un+2, . . .

form a new convergent series, the sum of which is equal to s− sn. If we represent
this sum by rn, we have

s = sn + rn,

and rn is called the remainder of series (1) beginning from the nth term.
Suppose the terms of series (1) involve some variable x. If the series is conver-

gent and its various terms are continuous functions of x in a neighborhood of some
particular value of this variable, then

sn, rn and s

are also three functions of the variable x, the first of which is obviously continu-
ous with repect to x in a neighborhood of the particular value in question. Given
this, let us consider the increments in these three functions when we increase x by
an infinitely small quantity α . For all possible values of n, the increment in sn is
an infinitely small quantity. The increment of rn, as well as rn itself, becomes in-
finitely small for very large values of n. Consequently, the increment in the function
s must be infinitely small.6 From this remark, we immediately deduce the following
proposition:

Theorem I. — When the various terms of series (1) are functions of the same
variable x, continuous with respect to this variable in the neighborhood of a partic-
ular value for which the series converges, the sum s of the series is also a continuous
function of x in the neighborhood of this particular value.7

By virtue of this theorem, the sum of series (2) must be a continuous function
of the variable x between the limits x = −1 and x = 1, [121] as we may verify by
considering the values of s given by the equation

s =
1

1− x
.

6.2 On series for which all the terms are positive.

Whenever all the terms of the series
6 This passage is quoted in [Lützen 2003, p. 168].
7 This theorem as stated is incorrect. If we impose the additional condition of uniform convergence
on the functions sn, then it does hold. This theorem is controversial. Some have argued that Cauchy
really had uniform convergence in mind. See [Lützen 2003, pp. 168–169] for further discussion.
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u0, u1, u2, . . . , un, . . .(1)

are positive, we may usually decide whether it is convergent or divergent by using
the following theorem:

Theorem I.8 — Consider the limit or limits towards which the expression (un)
1
n

converges as n increases indefinitely, and let k denote the largest of these limits, or
in other words, the limit of the largest values of the expression in question. Series
(1) converges whenever k < 1 and diverges whenever k > 1.

Proof. — First of all, suppose that k < 1 and choose an arbitrary third number U
between the two numbers 1 and k, so that we have

k < U < 1.

As n increases beyond assignable limit, the largest values of (un)
1
n cannot approach

indefinitely the limit k without eventually being constantly less than U . Conse-
quently, it is possible to assign an integer value to n large enough so that when n
is greater than or equal to this value, we constantly have9

(un)
1
n < U, or un < Un.

It follows that the terms of the series

u0, u1, u2, . . . , un+1, un+2, . . .

[122] are eventually always smaller than the corresponding terms of the geometric
progression

1, U, U2, . . . , Un, Un+1, Un+2, . . . .

As this progression is convergent (because U < 1) we may, by the previous remark,
conclude a fortiori the convergence of series (1).

On the other hand, suppose that k > 1 and again pick a third number U between
the two numbers 1 and k, so that we have

k > U > 1.

As n increases without limit, the largest values of (un)
1
n in approaching k indefinitely

eventually become greater than U . We may therefore satisfy the condition

(un)
1
n > U

or, what amounts to the same thing, the following condition

8 This theorem is now known as the Root Test. It is cited as the definition of upper and lower limits
in [DSB Cauchy, p. 136].
9 In [Cauchy 1897, p. 121], the subscript is missing in the term (un)

1
n . It is present in [Cauchy

1821, p. 133]. (tr.)
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un > Un,

for values of n as large as we might wish. As a consequence, we find in the series

u0, u1, u2, . . . , un, un+1, un+2, . . .

an indefinite number of terms greater than the corresponding terms of the geometric
progression

1, U, U2, . . . , Un, Un+1, Un+2, . . . .

As this progression is divergent (because U > 1) and, as a consequence its various
terms increase to infinity, the remark that we have just made suffices to establish the
divergence of series (1).

In a great number of cases we may determine the values of the quantity k with the
assistance of theorem IV (Chap. II, § III). Indeed, [123] by virtue of this theorem,
any time the ratio un+1

un
converges towards a fixed limit, that limit is precisely the

value of k. We may therefore state the following proposition:

Theorem II.10 — If, for increasing values of n, the ratio

un+1

un

converges towards a fixed limit k, series (1) converges whenever k < 1 and diverges
whenever k > 1.

For example, if we consider the series

1,
1
1
,

1
1 ·2

,
1

1 ·2 ·3
, . . . ,

1
1 ·2 ·3 . . .n

, . . . ,

then we find

un+1

un
=

1 ·2 ·3 . . .n
1 ·2 ·3 . . .n(n+1)

=
1

n+1
, so k =

1
∞

= 0,

and consequently the series is convergent, as we already knew.
The first of the two theorems that we have just established leaves no doubt about

the convergence or divergence of a series whose terms are positive, except in the
particular case where the quantity k becomes equal to one. In this particular case,
it is not always easy to answer the question of convergence. However, we will now
prove two new propositions, which frequently help us to decide the issue.

Theorem III.11 — Whenever each term of series (1) is smaller than the one
preceding it, that series and the following one

10 This is the Ratio Test; see [DSB Cauchy, p. 136].
11 This is known as the Cauchy Condensation Test.
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u0, 2u1, 4u3, 8u7, 16u15, . . .(2)

are either both convergent or both divergent.

Proof. — First of all, suppose that series (1) is convergent and [124] let s denote
its sum. Then

u0 = u0,

2u1 = 2u1,

4u3 < 2u2 +2u3,

8u7 < 2u4 +2u5 +2u6 +2u7,

. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and consequently, the sum of as many of the terms of series (2) as we may wish is
smaller than

u0 +2u1 +2u2 +2u3 +2u4 + . . . = 2s−u0.

It follows that series (2) converges.
On the other hand, suppose that series (1) diverges. The sum of its terms, taken

in great number, eventually surpasses any assignable limit. Because we have

u0 = u0,

2u1 > u1 +u2,

4u3 > u3 +u4 +u5 +u6,

8u7 > u7 +u8 +u9 +u10 +u11 +u12 +u13 +u14,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

we must conclude that the sum of the quantities

u0, 2u1, 4u3, 8u7, . . . ,

taken in great number, is itself eventually greater than any given quantity. Series (2)
is therefore divergent, conforming to the stated theorem.

Corollary. — Let µ be any quantity. If series (1) is

1,
1

2µ
,

1
3µ

,
1

4µ
, . . . ,(3)

then series (2) becomes
1, 21−µ , 41−µ , 81−µ , . . . .

[125] This last series is a geometric progression, convergent whenever we have µ >
1 and divergent in the opposite case. As a consequence, series (3) is itself convergent
if µ is a number greater than 1, and divergent if µ = 1 or µ < 1. For example, of the
three series
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1,
1
22 ,

1
32 ,

1
42 , . . . ,(4)

1,
1
2
,

1
3
,

1
4
, . . . ,(5)

1,
1

2
1
2
,

1

3
1
2
,

1

4
1
2
, . . . ,(6)

the first is convergent and the other two divergent.

Theorem IV.12 — Suppose that log denotes the characteristic of the logarithm
in any system and that the ratio

log(un)
log
( 1

n

)
converges towards a finite limit h for increasing values of n. Series (1) is convergent
if h > 1 and divergent if h < 1.

Proof. — First of all, suppose h > 1 and choose any third quantity a between the
two quantities 1 and h, so that we have

h > a > 1.

The ratio log(un)
log( 1

n )
, or its equivalent

log
(

1
un

)
log(n)

,

eventually, for very large values of n, is constantly greater than a. In other words, if
n increases beyond [126] a certain limit, we always have

log
(

1
un

)
log(n)

> a,

or what amounts to the same thing,

log
(

1
un

)
> a log(n),

and, as a consequence,
1
un

> na, so un <
1
na .

It follows that the terms of series (1) eventually are constantly smaller than the
corresponding terms of the following series

12 This is the Logarithmic Convergence Test.
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1,
1
2a ,

1
3a ,

1
4a , . . . ,

1
na ,

1
(n+1)a , . . . .

As this last series is convergent (because a > 1), we may, by the previous remark,
conclude a fortiori the convergence of series (1).

On the other hand, suppose that h < 1, and again pick a third quantity a between
1 and h, so that we have

h < a < 1.

Eventually, for very large values of n, we constantly have

log
(

1
un

)
log(n)

< a,

or what amounts to the same thing,

log
(

1
un

)
< a log(n),

and, as a consequence,
1
un

< na, so un >
1
na .

It follows that the terms of series (1) eventually are constantly [127] greater than the
corresponding terms of the following series

1,
1
2a ,

1
3a ,

1
4a , . . . ,

1
na ,

1
(n+1)a , . . . .

As this last series is convergent (because a < 1), we may, by the remark we have
just made, conclude a fortiori the divergence of series (1).

Given two convergent series, the terms of which are positive, we may, by adding
or multiplying these same terms, form a new series, the sum of which results from
the addition or the multiplication of the sums of the first two. On this subject, we
establish the two following theorems:

Theorem V. — Let {
u0, u1, u2, . . . , un, . . . ,
v0, v1, v2, . . . , vn, . . .

(7)

be two convergent series composed only of positive terms, having s and s′, respec-
tively, as sums. Then

u0 + v0, u1 + v1, u2 + v2, . . . , un + vn, . . .(8)

is a new convergent series, which has s+ s′ as its sum.

Proof. — If we let
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sn = u0 +u1 +u2 + . . .+un−1 and
s′n = v0 + v1 + v2 + . . .+ vn−1,

then sn and s′n converge, for increasing values of n, towards the limits s and s′,
respectively. As a consequence, sn + s′n, that is the sum of the first n terms of series
(8), converges towards the limit s+s′, which suffices to establish the stated theorem.

Theorem VI. — Under the same hypotheses as the previous theorem,{
u0v0, u0v1 +u1v0, u0v2 +u1v1 +u2v0, . . .
. . . , u0vn +u1vn−1 + . . .+un−1v1 +unv0, . . .

(9)

is a new convergent series, which has ss′ as its sum.

[128] Proof. — Once again, let sn and s′n be the sums of the first n terms of the
two series (7), and additionally denote the sum of the first n terms of series (9) by
s′′n . If we denote by m the greatest integer included in n−1

2 , that is to say n−1
2 when n

is odd and n−2
2 otherwise, we clearly have13

u0v0 +(u0v1 +u1v0)+ . . .+(u0vn−1 +u1vn−2 + . . .+un−2v1 +un−1v0)
< (u0 +u1 + . . .+un−1)(v0 + v1 + . . .+ vn−1)

and
> (u0 +u1 + . . .+um)(v0 + v1 + . . .+ vm).

In other words,
s′′n < sns′n and > sm+1s′m+1.

Now suppose that we make n increase beyond all limit. The number

m =
n− 3

2 ±
1
2

2

itself increases indefinitely, and the two sums sn and sm+1 converge towards the
limit s, while s′n and s′m+1 converge towards the limit s′. As a consequence, the two
products sns′n and sm+1s′m+1, as well as the sum s′′n contained between these two
products, converge towards the limit ss′, which suffices to establish theorem VI.14

6.3 On series which contain positive terms and negative terms.

Suppose that the series

13 The left-hand side of this inequality contained some subscripting errors in [Cauchy 1821,
p. 141], which were not included in the Errata of that edition. These were corrected in [Cauchy
1897, p. 128].
14 This is another implicit application of the Squeeze Theorem.
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u0, u1, u2, . . . , un, . . .(1)

is composed of terms that are sometimes positive and sometimes negative, and let

ρ0, ρ1, ρ2, . . . , ρn, . . .(2)

[129] be, respectively, the numerical values of these same terms, so that we have

u0 =±ρ0, u1 =±ρ1, u2 =±ρ2, . . . , un =±ρn, . . . .

The numerical value of the sum

u0 +u1 +u2 + . . .+un−1

will never surpass15

ρ0 +ρ1 +ρ2 + . . .+ρn−1,

so it follows that the convergence of series (2) always entails that of series (1).16

We ought to add that series (1) is divergent if some terms of series (2) eventually
increase beyond all assignable limit. This latter case occurs whenever the greatest
values of (ρn)

1
n converge towards a limit greater than 1, for increasing values of n.

On the other hand, whenever this limit is less than 1, series (2) is always convergent.
As a consequence, we may state the following theorem:

Theorem I.17 — Let ρn be the numerical value of the general term un of series
(1), and let k denote the limit towards which the largest values of the expression
(ρn)

1
n converge as n increases indefinitely. Series (1) is convergent if we have k < 1

and divergent if we have k > 1.

Whenever the fraction ρn+1
ρn

, that is, the numerical value of the ratio un+1
un

, con-
verges towards a fixed limit, then by virtue of theorem IV (Chap. II, § III), this limit
is the desired value of k. This remark brings us to the proposition which I will now
state:

Theorem II.18 — If the numerical value of the ratio

un+1

un

converges towards a fixed limit k for increasing values of n, then series 1 is conver-
gent whenever we have k < 1 and divergent whenever we have k > 1.

[130] For example, if we consider the series

15 Here Cauchy makes an implicit use of the generalized triangle inequality.
16 Cauchy does not define absolute convergence, but has essentially shown here that absolute con-
vergence implies convergence.
17 This is another application of the Root Test.
18 This is another application of the Ratio Test.
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1, −1
1
, +

1
1 ·2

, − 1
1 ·2 ·3

, + . . . ,

we find that
un+1

un
=− 1

n+1
, so that k =

1
∞

= 0,

from which it follows that the series is convergent.
The first of the two theorems we have just established leaves no doubt about the

convergence or divergence of a particular series, except in the particular case where
the quantity denoted by k becomes equal to one. In this particular case, we may often
establish the convergence of the given series either by verifying that the numerical
values of the various terms form a convergent series or by means of the following
theorem:

Theorem III.19 — If the numerical value of the general term un in series (1)
decreases constantly and indefinitely for increasing values of n, and if further the
different terms are alternately positive and negative, then the series converges.

For example, consider the series

1, −1
2
, +

1
3
, −1

4
, + . . .± 1

n
, ∓ 1

n+1
, . . . .(3)

The sum of the terms whose index is greater than n, if we suppose them to be m in
number, is

±
(

1
n+1

− 1
n+2

+
1

n+3
− 1

n+4
+ . . .± 1

n+m

)
.

Now the numerical value of this sum, namely

1
n+1

− 1
n+2

+
1

n+3
− 1

n+4
+ . . .± 1

n+m

=
1

n+1
−
(

1
n+2

− 1
n+3

)
−
(

1
n+4

− 1
n+5

)
− . . .

=
(

1
n+1

− 1
n+2

)
+
(

1
n+3

− 1
n+4

)
+
(

1
n+5

− 1
n+6

)
+ . . . ,

[131] because it is obviously contained between

1
n+1

and
1

n+1
− 1

n+2
,

decreases indefinitely for increasing values of n, whatever the value of m, which
suffices to establish the convergence of the given series. The same arguments may

19 This is the Alternating Series Test.
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obviously be applied to any series of this kind. I will cite, for example, the following

1, − 1
2µ

, +
1

3µ
, − 1

4µ
, . . . ,(4)

which remains convergent for all positive values of µ , by virtue of theorem III.
If we suppress the − sign preceding each term of even index in series (4), we

obtain series (3) of section II, which is divergent whenever we have µ = 1 or µ <
1. As a consequence, to transform a convergent series into a divergent series, or
vice versa, it sometimes suffices to change the sign of certain terms. Moreover, this
remark applies exclusively to series for which the quantity denoted by k in theorem
II reduces to 1.

Given a convergent series, the terms of which are positive, we can only augment
the convergence by diminishing the numerical values of the same terms and chang-
ing the signs of some of them. It is worth noting that we produce this double effect
if we multiply each term by a sine or by a cosine, and this observation suffices to
establish the following proposition:

Theorem IV.20 — When the series

ρ0, ρ1, ρ2, . . . , ρn, . . . ,(2)

made up entirely of positive terms, is convergent, then each of the following{
ρ0 cosθ0, ρ1 cosθ1, ρ2 cosθ2, . . . , ρn cosθn, . . . ,
ρ0 sinθ0, ρ1 sinθ1, ρ2 sinθ2, . . . , ρn sinθn, . . .

(5)

[132] is also convergent, whatever the values of the arcs θ0, θ1, θ2, . . ., θn, . . ..

Corollary. — If we suppose in general that

θn = nθ ,

where θ denotes an arbitrary arc, then the two series in (5) become, respectively,{
ρ0, ρ1 cosθ , ρ2 cos2θ , . . . , ρn cosnθ , . . . ,

ρ1 sinθ , ρ2 sin2θ , . . . , ρn sinnθ , . . . .
(6)

These last two series will therefore always be convergent whenever series (2) is
convergent.

If we consider two series at the same time, both of which include positive terms
and negative terms, we easily prove theorems V and VI of §II about them, as we
will now see.

Theorem V. — Let

20 This is another implicit application of the Comparison Test and Cauchy’s notion of absolute
convergence.
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u0, u1, u2, . . . , un, . . . ,
v0, v1, v2, . . . , vn, . . .

(7)

be two convergent series having s and s′, respectively, as sums. Then

u0 + v0, u1 + v1, u2 + v2, . . . , un + vn, . . .(8)

is a new convergent series, having s+ s′ as its sum.

Proof. — If we let

sn = u0 +u1 +u2 + . . .+un−1 and
s′n = v0 + v1 + v2 + . . .+ vn−1,

then, for increasing values of n, sn and s′n converge towards the limits s and s′,
respectively. As a consequence, sn + s′n, that is the sum of the first n terms of series
(8), converges towards the limit s+s′, which suffices to establish the stated theorem.

Theorem VI.21 — Under the same hypotheses as the previous [133] theorem, if
each of series (7) remains convergent when we replace its various terms with their
numerical values, then

u0v0,
u0v1 +u1v0,
u0v2 +u1v1 +u2v0,
. . . . . . . . . . . . . . . . . . ,
u0vn +u1vn−1 + . . .+un−1v1 +unv0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(9)

is a new convergent series having ss′ as its sum.

Proof. — Once again, let sn and s′n be the sums of the first n terms of the two
series (7), and additionally denote the sum of the first n terms of series (9) by s′′n .
Then we have

sns′n− s′′n = un−1vn−1 +(un−1vn−2 +un−2vn−1)+ . . .

+(un−1v1 +un−2v2 + . . .+u2vn−2 +u1vn−1) .

Furthermore, theorem VI was proved in the second section in the case where series
(7) consists only of positive terms. It is a consequence of this hypothesis that each
the quantities sns′n and s′′n converges towards the limit ss′, for increasing values of n.
Consequently, the difference sns′n− s′′n , or what amounts to the same thing, the sum

un−1vn−1 + (un−1vn−2 +un−2vn−1)+ . . .

+ (un−1v1 +un−2v2 + . . .+u2vn−2 +u1vn−1) ,

21 This is sometimes known as Mertens’ Theorem.
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converges towards the limit zero.
Now, if some of the terms of series (7) are positive and the others are negative,

suppose that we denote the numerical values of the various terms by{
ρ0, ρ1, ρ2, . . . , ρn, . . . ,
ρ ′0, ρ ′1, ρ ′2, . . . , ρ ′n, . . .

(10)

respectively. Suppose further, as in the statement of the theorem, that series (10),
composed [134] of these same numerical values, are both convergent. By virtue of
the remark we have just made, the sum

ρn−1ρ ′n−1 + (ρn−1ρ ′n−2 +ρn−1ρ ′n−1)+ . . .
+ (ρn−1ρ ′1 +ρn−2ρ ′2 + . . .+ρ2ρ ′n−2 +ρ1ρ ′n−1)

converges towards the limit zero for increasing values of n. Because the numerical
value of that sum is evidently greater than that of the following

un−1vn−1 + (un−1vn−2 +un−2vn−1)+ . . .
+ (un−1v1 +un−2v2 + . . .+u2vn−2 +u1vn−1),

it follows that this latter, or what amounts to the same thing, the difference sns′n− s′′n
itself converges towards the limit zero. Consequently, ss′, which is the limit of the
product sns′n, is also that of s′′n . In other words, series (9) is convergent and has as its
sum the product ss′.

Scholium. — The previous theorem could not remain true if series (7), assumed
to be convergent, ceased to be so after the reduction of each term to its numerical
value. Suppose, for example, that we take both of series (7) to be

1, − 1

2
1
2
, +

1

3
1
2
, − 1

4
1
2
,+

1

5
1
2
, − . . . .(11)

Series (9) becomes 

1,

−
(

1√
2
+ 1√

2

)
,

+
(

1√
3
+ 1√

2·2 + 1√
3

)
,

−
(

1√
4
+ 1√

3·2 + 1√
2·3 + 1√

4

)
,

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(12)

[135] This last series is divergent because its general term, namely

±

(
1√
n

+
1√

(n−1)2
+

1√
(n−2)3

+ . . .+
1√

2(n−1)
+

1√
n

)
,

has a numerical value clearly greater than
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n[ n
2

( n
2 +1

)] 1
2

=
(

4n
n+2

) 1
2

when n is even, and greater than

n[( n+1
2

)2
] 1

2
=

2n
n+1

when n is odd. That is, in every possible case, it has a numerical value greater than 1.
Nevertheless, series (11) is convergent. However, we ought to observe that it ceases
to be convergent when we replace each term with its numerical value, because it
then changes to series (6) of § II.

6.4 On series ordered according to the ascending integer powers
of a single variable.

Let
a0, a1x, a2x2, . . . , anxn, . . .(1)

be a series ordered according to the ascending integer powers of the variable x,22

where
a0, a1, a2, . . . , an, . . .(2)

denote constant coefficients, positive or negative. Furthermore, let A be the quantity
that corresponds to the quantity k of the previous section (see § III, theorem II),
with respect to series (2).23 The same quantity, when calculated for series (1), is the
numerical value of the product

Ax.

[136] As a consequence, series (1) is convergent if this numerical value is less than
1, which is to say in other words, if the numerical value of the variable x is less than
1
A .24 On the other hand, series (1) is divergent if the numerical value of x is greater
than 1

A . We may therefore state the following proposition:

Theorem I. — Let A be the limit towards which the nth root of the largest nu-
merical values of an converge, for increasing values of n. Series (1) is convergent
for all values of x contained between the limits

22 Such series had not yet been given the modern name power series.
23 Theorem II of § III is the Ratio Test, so Cauchy is saying that A = lim an+1

an
, when this limit

exists. However, his statements of theorems I and II below and the discussion in between suggest
that he means A = limsup n

√
|an|.

24 This number 1
A had not yet been given the modern name radius of convergence.
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x =− 1
A

and x = +
1
A

,

and divergent for all values of x situated outside of these same limits.

Whenever the numerical value of the ratio an+1
an

converges towards a fixed limit,
this limit is the desired value of A (by virtue of theorem IV, Chap. II, § III). This
remark brings us to a new proposition that I will write:

Theorem II. — If the numerical value of the ratio

an+1

an

converges towards the limit A for increasing values of n, series (1) is convergent for
all values of x contained between the limits

x =− 1
A

and x = +
1
A

,

and divergent for all values of x situated outside of these same limits.

Corollary I. — For an example, take the series

1, 2x, 3x2, 4x3, . . . , (n+1)xn, . . . .(3)

Because under this hypothesis we find that

an+1

an
=

n+2
n+1

= 1+
1

n+1

[137] and as a consequence,
A = 1,

we thereby conclude that series (3) is convergent for all values of x contained be-
tween the limits

x =−1 and x = +1,

and divergent for all values of x situated outside of these limits.

Corollary II. — For a second example, take the series

x
1
,

x2

2
,

x3

3
, . . . ,

xn

n
, . . . ,(4)

in which the constant term is understood to be zero. Under this hypothesis, we find
that

an+1

an
=

n
n+1

=
1

1+ 1
n
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and as a consequence, A = 1. Series (4) is therefore again convergent or divergent
according to whether the numerical value of x is less or greater than 1.

Corollary III. — If we take the following for series (1)

1,
µ

1
x,

µ(µ −1)
1 ·2

x2, . . . ,
µ(µ −1)(µ −2) . . .(µ −n+1)

1 ·2 ·3 . . .n
xn, . . . ,(5)

where µ denotes any quantity, then we find that

an+1

an
=

µ −n
n+1

=−
1− µ

n

1+ 1
n

and as a consequence,

A = lim
1− µ

n

1+ 1
n

=
1− 1

∞

1+ 1
∞

= 1.

We thereby conclude that series (5) is, like series (3) and (4), convergent [138] or
divergent, according to whether we assign a numerical value less or greater than 1
to the variable x.

Corollary IV. — Now consider the series

1,
x
1
,

x2

1 ·2
,

x3

1 ·2 ·3
, . . . ,

xn

1 ·2 ·3 . . .n
, . . . .(6)

Because in this case we have
an+1

an
=

1
n+1

and, as a consequence

A =
1
∞

= 0,

we thereby conclude that the series is convergent between the limits

x =−1
0

=−∞ and x = +
1
0

= +∞,

that is, for all possible real values of the variable x.

Corollary V. — Finally, consider the series

1, 1 · x, 1 ·2 · x2, 1 ·2 ·3 · x3, . . . , 1 ·2 ·3 . . .n · xn, . . . .(7)

In applying theorem II to this series, we find

an+1

an
= n+1 and A = ∞

and consequently, we have
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1
A

= 0.

We thereby conclude that series (7) is always divergent, except when we suppose
that x = 0, in which case it reduces to its first term 1.

By examining the results which we have just obtained, we recognize immediately
that, among series ordered according to increasing integer powers of the variable x,
some are either [139] convergent or divergent according to the value assigned to this
variable, while others are always convergent, no matter x might be, and others are
always divergent, except for x = 0. We may add that theorem I leaves no uncertainty
about the convergence of such a series, except in the case where the numerical value
of x becomes equal to the positive constant given by 1

A , that is, when we suppose

x =± 1
A

.

In this particular case, the series is sometimes convergent, sometimes divergent, and
the convergence sometimes depends on the sign of the variable x. For example, if in
series (4), for which A = 1, we successively let

x = 1 and x =−1,

we obtain the following

(8) 1, 1
2 , 1

3 , 1
4 , . . . , 1

n , . . . ,

(9) −1, + 1
2 , − 1

3 , + 1
4 , . . . , ± 1

n , . . . ,

of which the first is divergent (see the corollary to theorem III in § II) and the second
is convergent, as follows from theorem III (§ III).

It is also essential to remark that, as follows from theorem I, whenever a series
ordered according to the ascending integer powers of a variable x is convergent for
a numerical value of x different from zero, it remains convergent if we diminish that
numerical value, or even let it decrease indefinitely.

Whenever two series ordered according to the ascending integer powers of the
variable x are convergent for the same value of the variable, we may apply theorems
V and VI of § III to them. [140] This remark suffices to establish two propositions,
which I will state:

Theorem III. — Suppose that the two series{
a0, a1x, a2x2, . . . , anxn, . . . ,
b0, b1x, b2x2, . . . , bnxn, . . .

(10)

are both convergent when we assign a particular value to the variable x, and have s
and s′, repectively, as their sums. Then

a0 +b0, (a1 +b1)x, (a2 +b2)x2, . . . , (an +bn)xn, . . .(11)
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is a new convergent series, having s+ s′ as its sum.

Corollary. — We easily extend this theorem to as many series as we might wish.
For example, if the three series

a0, a1x, a2x2, . . . ,
b0, b1x, b2x2, . . . ,
c0, c1x, c2x2, . . .

are convergent for the same value assigned to the variable x, and if we denote their
respective sums by s, s′ and s′′, then

a0 +b0 + c0, (a1 +b1 + c1)x, (a2 +b2 + c2)x2, . . .

is a new convergent series, which has s+ s′+ s′′ as its sum.

Theorem IV. — Under the same hypotheses as the previous theorem, if each of
series (10) remains convergent when we replace its various terms with their numer-
ical values, then{

a0b0, (a0b1 +a1b0)x, (a0b2 +a1b1 +a2b0)x2, . . . ,
. . . , (a0bn +a1bn−1 + . . .+an−1b1 +anb0)xn, . . .

(12)

is a new convergent series, having ss′ as its sum.

[141] Corollary I. — The previous theorem is found contained in the formula{
(a0 +a1x+a2x2 + . . .(b0 +b1x+b2x2 + . . .

= a0b0 +(a0b1 +a1b0)x+(a0b2 +a1b1 +a2b0)x2 + . . . ,
(13)

which remains true in the case where each of series (10) remains convergent when
we replace its various terms with their numerical values. Under this hypothesis,
formula (13) may be used to expand the product of the sums of the two series into a
new series of the same form.

Corollary II. — We may multiply together three or more series similar to (10),
each of which remains convergent when we replace its various terms with their nu-
merical values, by repeating the operation indicated in equation (13) several times.
The product thus obtained is the sum of a new convergent series, ordered according
to the increasing integer powers of the variable x.

Corollary III. — In the two preceding corollaries, suppose that all the series
whose sums we multiply are equal. Then the product we obtain is the integer power
of the sum of each of these, and this last sum is also represented by the sum of a
series of the same kind. For example, if we let a0 = b0, a1 = b1, a2 = b2, . . ., in
equation (13) we get
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(a0 +a1x+a2x2 + . . .)2 = a2
0 +2a0a1x+(2a0a2 +a2

1)x
2 + . . . .(14)

Corollary IV. — If we take

µ(µ −1)(µ −2) . . .(µ −n+1)
1 ·2 ·3 . . .n

xn

and
µ ′(µ ′−1)(µ ′−2) . . .(µ ′−n+1)

1 ·2 ·3 . . .n
xn

as the general terms of series (10), where µ and µ ′ denote any two quantities, and if
the variable x is contained between the limits x =−1 and x = +1, then each of series
(10) [142] is convergent, even if we replace the various terms with their numerical
values, and the general term of series (12) is[

µ(µ −1) . . .(µ −n+1)
1 ·2 ·3 . . .n

+
µ(µ −1) . . .(µ −n+2)

1 ·2 ·3 . . .(n−1)
µ ′

1
+ . . .

+
µ

1
µ ′(µ ′−1) . . .(µ ′−n+2)

1 ·2 ·3 . . .(n−1)
+

µ ′(µ ′−1) . . .(µ ′−n+1)
1 ·2 ·3 . . .n

]
xn

=
(µ + µ ′)(µ + µ ′−1)(µ + µ ′−2) . . .(µ + µ ′−n+1)

1 ·2 ·3 . . .n
xn.

Given this, if we let ϕ(µ) denote the sum of the first of series (10) under the hy-
pothesis that we have just made, that is if we suppose

ϕ(µ) = 1+
µ

1
x+

µ(µ −1)
1 ·2

x2 + . . . ,(15)

then under the same hypothesis the sums of series (10) and (12) are denoted ϕ(µ),
ϕ(µ ′) and ϕ(µ + µ ′), respectively, so that equation (13) becomes

ϕ(µ)ϕ(µ
′) = ϕ(µ + µ

′).(16)

Whenever we replace the series

b0, b1x, b2x2, . . .

in equation (13) with a polynomial composed of a finite number of terms, we obtain
a formula that never fails to be exact, as long as the series

a0, a1x, a2x2, . . .

remains convergent. We will prove this directly by establishing the following theo-
rem:

Theorem V. — If series (1) is convergent and if we multiply the sum of this series
by the polynomial

kxm + lxm−1 + . . .+ px+q,(17)
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in which m denotes an integer number, the product we obtain is the [143] sum of a
new convergent series of the same form, the general term of which is

(qan + pan−1 + . . .+ lan−m+1 + kan−m)xm,

as long as, among the first terms, those quantities

an−1, an−2, . . . , an−m+1, an−m

that have negative indices are considered to be zero. In other words, we have25



(
kxm + lxm−1 + . . .+ px+q

)(
a0 +a1x+a2x2 + . . .

)
= qa0 +(qa1 + pa0)x+ . . .

+(qam + pam−1 + . . .+ la1 + ka0)xm

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+(qan + pan−1 + . . .+ lan−m+1 + kan−m)xn + . . . .

(18)

Proof. — To multiply the sum of series (1) by the polynomial (17), it suffices to
multiply it successively by the different terms of the polynomial. Thus, we have(

kxm + lxm−1 + . . .+ px+q
)(

a0 +a1x+a2x2 + . . .
)

= q
(
a0 +a1x+a2x2 + . . .

)
+ px

(
a0 +a1x+a2x2 + . . .

)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+lxm−1
(
a0 +a1x+a2x2 + . . .

)
+ kxm

(
a0 +a1x+a2x2 + . . .

)
.

Because for any integer value of n we also have

q
(
a0 +a1x+a2x2 + . . .+an−1xn−1

)
= qa0 +qa1x+qa2x2 + . . .+qan−1xn−1,

we conclude that, by making n increase indefinitely and passing to the limit,

q
(
a0 +a1x+a2x2 + . . .

)
= qa0 +qa1x+qa2x2 + . . . .

Similarly, we find

px
(
a0 +a1x+a2x2 + . . .

)
= pa0x+ pa1x2 + pa2x3 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

lxm−1
(
a0 +a1x+a2x2 + . . .

)
= la0xm−1 + la1xm + la2xm+1 + . . . ,

kxm
(
a0 +a1x+a2x2 + . . .

)
= ka0xm + ka1xm+1 + ka2xm+2 + . . . .

25 The factor xn on the last line of (18) is incorrectly written as xn in [Cauchy 1897, p. 143]. It is
correct in [Cauchy 1821, p. 160]. (tr.)
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[144] If we add these last equations and form the sum of the right-hand sides, then
by gathering together the coefficients of the same powers of x, we obtain precisely
formula (18).

Imagine now that we vary the value of x in series (1) by insensible degrees.
As long as the series remains convergent, that is as long as the value of x remains
contained between the limits

− 1
A

and +
1
A

,

the sum of the series is (by virtue of theorem I, § I) a continuous function of the
variable x. Let ϕ(x) be this continuous function. The equation

ϕ(x) = a0 +a1x+a2x2 + . . .

remains true for all values of x contained between the limits − 1
A and + 1

A , which we
indicate by writing these limits beside the series, as we see here:

ϕ(x) = a0 +a1x+a2x2 + . . .

(
x =− 1

A
, x = +

1
A

)
.(19)

When the series is assumed to be known, we may sometimes deduce from it
the value of the function ϕ(x) in a finite form, and it is this that we call summing
the series. However, more often the function ϕ(x) is given, and we propose return
from this function to the series, or in other words, to expand26 the function into
a convergent series ordered according to increasing integer powers of x. On this
matter, it is easy to establish the proposition that I will state:

Theorem VI. — A continuous function of the variable x can be expanded in only
one way as a convergent series ordered according to the increasing integer powers
of this variable.

Proof. — Indeed, suppose that we have expanded the function ϕ(x) by two [145]
different methods, and let

a0, a1x, a2x2, . . . , anxn, . . . ,
b0, b1x, b2x2, . . . , bnxn, . . .

be the two expansions, that is two series, each convergent for values of x other than
zero, and each having the function ϕ(x) as its sum, as long as it remains convergent.
Because these two series are constantly convergent for very small numerical values
of x, for such values they have

a0 +a1x+a2x2 + . . . = b0 +b1x+b2x2 + . . . .

By making x vanish in the previous equation, we get

26 Literally to “develop” (développer) (tr.).
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a0 = b0.

In general, it follows that we may reduce that equation to

a1x+a2x2 + . . . = b1x+b2x2 + . . . ,

or what amounts to the same thing, to

x(a1 +a2x+ . . .) = x(b1 +b2x+ . . .) .

If we multiply both sides of this last equation by 1
x , we obtain the following

a1 +a2x+ . . . = b1 +b2x+ . . . ,

which must also remain true for very small numerical values of the variable x. By
letting x = 0, we may conclude from this that

a1 = b1.

By continuing in the same way, we may show that the constants a0, a1, a2, . . ., are
equal to the constants b0, b1, b2, . . . , respectively. From this it follows that the two
expansions of the function ϕ(x) are identical.

The differential Calculus gives very expeditious methods for expanding functions
into series. We will describe these methods later on. [146] For now we will limit
ourselves to expanding the function (1+ x)µ , in which µ denotes any quantity, and
using this to derive expansions of two other functions, which follow easily from the
first, namely:

Ax and log(1+ x),

where A denotes a positive constant and log denotes the characteristic of the log-
arithm in a system chosen at will. As a consequence, we will solve the following
three problems, one after another:

Problem I. — When possible, to expand the function

(1+ x)µ

into a convergent series ordered according to increasing integer powers of the vari-
able x.

Solution. — First of all, suppose that µ = m, where m denotes any integer num-
ber. By the formula of Newton, we have

(1+ x)m = 1+
m
1

x+
m(m−1)

1 ·2
x2 + . . . .

The series whose sum constitutes the right-hand side of this formula is always com-
posed of a finite number of terms. However, if we replace the integer number m by
any quantity µ , the new series that we obtain, namely



6.4 On series ordered according to the ascending integer powers of a single variable. 111

1,
µ

1
x,

µ(µ −1)
1 ·2

x2, . . . ,(5)

is generally composed of an indefinite number of terms and is convergent only for
numerical values of x less than 1. Under this hypothesis, let ϕ(µ) be the sum of the
new series, so that we have

ϕ(µ) = 1+
µ

1
x+

µ(µ −1)
1 ·2

x2 + . . . (x =−1, x = +1).(15)

By virtue of theorem I (§ I), ϕ(µ) is a continuous function of the [147] variable µ ,
between arbitrary limits of this variable, and we have (see theorem III, Corollary
IV)

ϕ(µ)ϕ(µ
′) = ϕ(µ + µ

′).(16)

Because this last equation is entirely similar to equation (2) of chapter V (§ I), it is
solved in the same manner, and we conclude thereby that

ϕ(µ) = [ϕ(1)]µ = (1+ x)µ .

If we substitute the value of ϕ(µ) determined in this way into formula (15), we find
that for all values of x contained between the limits x =−1 and x = +1,

(1+ x)µ = 1+
µ

1
x+

µ(µ −1)
1 ·2

x2 + . . . (x =−1, x = +1).(20)

Whenever the numerical value of x is greater than 1, series (5) is no longer con-
vergent and ceases to have a sum, so that equation (20) no longer remains true.
Under the same hypothesis, as we shall prove later with the aid of the infinitesimal
Calculus, it is impossible to expand the function (1 + x)µ into a convergent series
ordered according to the ascending powers of the variable x.

Corollary I. — If we replace µ by 1
α

and x by αx in equation (20), where α

denotes an infinitely small quantity, then for all values of αx contained between the
limits −1 and +1, or what amounts to the same thing, for all values of x contained
between the limits − 1

α
and + 1

α
, we have

(1+αx)
1
α = 1+ x

1 + x2

1·2 (1−α)+ x3

1·2·3 (1−α)(1−2α)+ . . .(
x =− 1

α
, x = + 1

α

)
.

This last equation ought to remain true, no matter how small the numerical value
of α may be. If we denote as usual by the abbreviation lim placed in front of an
expression that includes the variable α the [148] limit towards which this expression
converges as the numerical value of α decreases indefinitely, then in passing to the
limit, we find

lim(1+αx)
1
α = 1+

x
1

+
x2

1 ·2
+

x3

1 ·2 ·3
+ . . . (x =−∞, x = +∞) .(21)
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It remains to seek the limit of (1+αx)
1
α . First, from the previous formula we get

lim(1+α)
1
α = 1+

1
1

+
1

1 ·2
+

1
1 ·2 ·3

+ . . . ,

or in other words,
lim(1+α)

1
α = e,(22)

where e denotes the base of Napierian logarithms [see § I, eq. (6)]. We conclude
immediately that

lim(1+αx)
1

αx = e,

and as a consequence,

lim(1+αx)
1
α = lim

[
(1+αx)

1
αx

]x
= ex.

Now if we substitute the value of lim(1 + α)
1
α into equation (21), then we obtain

the following:

ex = 1+
x
1

+
x2

1 ·2
+

x3

1 ·2 ·3
+ . . . (x =−∞, x = +∞) .(23)

We may derive equation (23) directly by observing that the series

1,
x
1
,

x2

1 ·2
,

x3

1 ·2 ·3
, . . .(6)

is convergent for all possible values of the variable x and then seeking that function
of x which represents the sum of this same [149] series. Indeed, let ϕ(x) be the sum
of series (6), which has

xn

1 ·2 ·3 . . .n
as its general term. Then ϕ(y) is the sum of the series whose general term is

yn

1 ·2 ·3 . . .n
.

By virtue of theorem VI, § III, the product of these two sums is the sum of a new
series that has

xn

1 ·2 ·3 . . .n
+

xn−1

1 ·2 ·3 . . .(n−1)
y
1

+ . . .

+
x
1

yn−1

1.2.3 . . .(n−1)
+

xn

1 ·2 ·3 . . .n
=

(x+ y)n

1 ·2 ·3 . . .n

as its general term. This product is therefore equal to ϕ(x+ y), and consequently, if
we let
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ϕ(x) = 1+
x
1

+
x2

1 ·2
+

x3

1 ·2 ·3
+ . . . ,

then the function ϕ(x) satisfies the equation

ϕ(x)ϕ(y) = ϕ(x+ y).

Solving this equation, we find

ϕ(x) = [ϕ(1)]x =
(

1+
1
1

+
1

1 ·2
+

1
1 ·2 ·3

+ . . .

)x

.

That is
ϕ(x) = ex.

Corollary II. — If we divide both sides of (20) by µ after subtracting 1 from both
sides, the equation that we obtain may be written as follows:

(1+ x)µ −1
µ

= x− x2

2
(1−µ)+

x3

3
(1−µ)

(
1− 1

2
µ

)
− . . .

(x =−1, x = +1).

[150] If we let µ converge towards the limit zero in this last equation we find, by
passing to the limit, that27

lim
(1+ x)µ −1

µ
= x− x

2
+

x3

3
+ . . . .(24)

Furthermore, when ln denotes the characteristic of Napierian logarithm, taken in the
system whose base is e, then we evidently have

1+ x = eln(1+x)

and

(1+ x)µ = eµ ln(a+x) = 1+
µ ln(a+ x)

1
+

µ2 [ln(1+ x)]2

1 ·2
+ . . . .

We conclude that

(1+ x)µ −1
µ

= ln(1+ x)+
µ

2
[ln(1+ x)]2 + . . . .

Consequently

lim
(1+ x)µ −1

µ
= ln(1+ x).(25)

Given this, formula (24) becomes

27 Cauchy indeed uses a + sign following x3

3 in [Cauchy 1821, p. 169, Cauchy 1897, p. 150]. Note
the contrast with equation (26). (tr.)
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ln(1+ x) = x− x2

2
+

x3

3
− . . . (x =−1, x = +1).(26)

The preceding equation remains true as long as the numerical value of x remains
smaller than 1. In this case, the series

x, −x2

2
, +

x3

3
, . . . , ±xn

n
, . . .(27)

is convergent, as is series (4), which differs from it only in the signs of the terms
of odd order.28 Because these same series are divergent when we suppose that the
numerical value of x is greater than 1, equation (26) ceases to hold under this hy-
pothesis.

In the particular case where we take x = 1, series (27) reduces to series (3) of
the third section, which is convergent, [151] as we have shown. Thus, equation (26)
ought to remain true, so that we have

ln(2) = 1− 1
2

+
1
3
− 1

4
+ . . . .(28)

On the other hand, if we let x =−1, then series (27) is divergent and has no sum.
We may further note that, if after substituting−x for x in formula (26), we change

the signs on both sides of the equation, we obtain the following

ln
(

1
1− x

)
= x+

x2

2
+

x3

3
+ . . . (x =−1, x = +1).(29)

Problem II. — To expand the function

Ax,

where A denotes an arbitrary number, into a convergent series ordered according to
increasing integer powers of the variable x.

Solution. — We continue to let the characteristic ln denote the Napierian loga-
rithm taken in the system whose base is e. From the the definition of this logarithm,
we have

A = eln(A),

and we thereby conclude that
Ax = ex ln(A).(30)

Consequently, using equation (23), we have

28 This use of “odd order” (rang impair) in both [Cauchy 1821, p. 170] and [Cauchy 1897, p. 150]
may be an error. On the other hand, for Cauchy, the rang may mean the position of a term in
a series, starting with order zero. So in series (27), terms of odd order may be the ones of even
degree. However, this does not seem to have been the case in series (4) of this section [Cauchy
1821, p. 153, Cauchy 1897, p. 137].
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x ln(A)

1
+

x2 [ln(A)]2

1 ·2
+

x3 [ln(A)]3

1 ·2 ·3
+ . . .

(x =−∞, x = +∞).
(31)

This last formula remains true for all possible real values of the variable x.

Problem III. — Letting the characteristic log denote the logarithm taken [152]
in the system whose base is A, to expand the function

log(1+ x),

where possible, into a convergent series ordered according to increasing integer
powers of the variable x.

Solution. — Still denoting the characteristic of the Napierian logarithm by ln, by
virtue of well-known properties of the logarithm, we have

log(1+ x) =
log(1+ x)

log(A)
=

ln(1+ x)
ln(A)

.

Consequently, making use of equation (26), we find that for all values of x contained
between the limits −1 and +1,

log(1+ x) =
1

ln(A)

(
x− x2

2
+

x3

3
− . . .

)
(x =−1, x = +1).(32)

This last formula remains true even in the case where we take x = 1, but it ceases to
hold whenever we have x =−1 or x2 > 1.





Chapter 7
On imaginary expressions and their moduli.

7.1 General considerations on imaginary expressions.

[153] In analysis, we call a symbolic expression or symbol any combination of al-
gebraic signs that do not mean anything by themselves or to which we attribute a
value different from that which they ought naturally to have. Likewise, we call sym-
bolic equations all those that, taking the letters and the interpretations according to
the generally established conventions, are inexact or do not make sense, but from
which we can deduce exact results by modifying and altering either the equations
themselves or the symbols which comprise them, according to fixed rules. The use
of symbolic expressions or equations is often a means of simplifying calculations
and of writing in a short form results that appear quite complicated. We have already
seen this in the second section of the third chapter where formula (9) gives a very
simple symbolic value to the unknown x satisfying equations (4).1 Among those
symbolic expressions or equations which are of some importance in analysis, we
should distinguish above all those which we call imaginary. We are going to show
how we can put them to good use.

We know that the sine and the cosine of the arc a + b are given as functions of
the sines and cosines of the arcs a and b by the formulas{

cos(a+b) = cosacosb− sinasinb,

sin(a+b) = sinacosb+ sinbcosa.
(1)

[154] Now, without taking the trouble to remember these formulas, we have a very
simple means of recovering them at will. Indeed, it suffices to consider the following
remark.

Suppose that we multiply together the two symbolic expressions

1 Formula (9) [Cauchy 1821, p. 80, Cauchy 1897, p. 79] is Cramer’s rule. Equations (4) [Cauchy
1821, p. 77, Cauchy 1897, p. 76] comprise a system of n linear equations in n unknowns.

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 117
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 7,
c© Springer Science+Business Media, LLC 2009
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cosa+
√
−1sina and

cosb+
√
−1sinb,

by applying the known rules of algebraic multiplication as if
√
−1 were a real quan-

tity the square of which is equal to −1. The resulting product is composed of two
parts, one entirely real and the other having a factor of

√
−1. The real part gives the

value of cos(a + b) while the coefficient of
√
−1 gives the value of sin(a + b). To

establish this remark, we write the formula{
cos(a+b)+

√
−1sin(a+b)

=
(
cosa+

√
−1sina

)(
cosb+

√
−1sinb

)
.

(2)

The three expressions that make up the preceding equation, namely

cosa +
√
−1sina,

cosb +
√
−1sinb and

cos(a+b) +
√
−1sin(a+b),

are three symbolic expressions that cannot be interpreted according to the generally
established conventions, and they do not represent anything real. For this reason,
they are called imaginary expressions. Equation (2) itself, taken literally, is inexact
and it does not make sense. To get exact results, first we must expand its right-hand
side by algebraic multiplication, and this reduces the expression to{

cos(a+b)+
√
−1sin(a+b)

= cosacosb− sinasinb+
√
−1(sinacosb+ sinbcosa) .

(3)

Secondly, we must equate the real part [155] of the left-hand side of equation (3)
with the real part of the right-hand side, and then the coefficient of

√
−1 on the

left-hand side with the coefficient of
√
−1 on the right. Thus we are brought back to

equations (1), both of which we ought to consider as implicitly contained in formula
(2).

In general, we call an imaginary expression any symbolic expression of the form

α +β
√
−1,

where α and β denote real quantities. We say that two imaginary expressions

α +β
√
−1 and γ +δ

√
−1

are equal to each other when there is equality between corresponding parts: 1◦ be-
tween the real parts α and γ ,2 and 2◦ between the coefficients of

√
−1, namely β

and δ . We indicate equality between two imaginary expressions in the same way

2 This is incorrectly written as “real parts, α and β” in [Cauchy 1897, p. 155]. It was correct in
[Cauchy 1821, p. 176]. (tr.)
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that we indicate it between two real quantities, by the symbol =, and this results in
what we call an imaginary equation. Given this, any imaginary equation is just the
symbolic representation of two equations involving real quantities. For example, the
symbolic equation

α +β
√
−1 = γ +δ

√
−1

is just equivalent to the two real equations

α = γ and β = δ .

In the imaginary expression

α +β
√
−1,

when the coefficient β of
√
−1 vanishes, the term β

√
−1 is understood to be zero,

and the expression itself reduces to the real quantity α . By virtue of this convention,
imaginary expressions include the real quantities as special cases.

Imaginary expressions may be subjected to the same operations of Algebra as
real quantities. In particular, if we perform addition, subtraction or multiplication
[156] of two imaginary expressions, they operate according to the established rules
for real quantities, and we obtain as a result a new imaginary expression that we
call the sum, the difference or the product of the given expressions, and the ordinary
notations are used to indicate that sum, difference or product. For example, if we
are given two imaginary expressions,

α +β
√
−1 and γ +δ

√
−1,

we find (
α +β

√
−1
)

+
(

γ +δ
√
−1
)

= α + γ +(β +δ )
√
−1,(4) (

α +β
√
−1
)
−
(

γ +δ
√
−1
)

= α − γ +(β −δ )
√
−1,(5) (

α +β
√
−1
)
×
(

γ +δ
√
−1
)

= αγ −βδ +(αδ +βγ)
√
−1.(6)

It is worth remarking that the product of two or more imaginary expressions, like
that of two or more real binomials, remains the same regardless of the order in which
we multiply the different factors.3

To divide a first imaginary expression by a second is to find an imaginary expres-
sion which, when multiplied by the second, reproduces the first. The result of this
operation is the quotient of the two given expressions. To indicate this, we use the
ordinary symbol for division. So, for example,

α +β
√
−1

γ +δ
√
−1

3 Although [Servois 1814] introduced the word “commutative” to describe this property, Cauchy
has not adopted it here.
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represents the quotient of the two imaginary expressions

α +β
√
−1 and γ +δ

√
−1.

To raise an imaginary expression to the power m (where m denotes an integer
number) is to form the product of m factors equal to that expression. We write the
mth power of α +β

√
−1 with the notation(

α +β
√
−1
)m

.

[157] To extract the nth root of the imaginary expression α +β
√
−1, or in other

words to raise this expression to the power 1
n (where n denotes any integer number),

is to form a new imaginary expression whose nth power reproduces α +β
√
−1. This

problem has several solutions (see § IV), and as a result, the imaginary expression
α + β

√
−1 has several roots of degree n. When we do not wish to distinguish any

one of these roots, we use the notation

n
√√

α +β
√
−1,

or the following, ((
α +β

√
−1
)) 1

n
.

In the particular case where β vanishes, α + β
√
−1 reduces to a real quantity α ,

and among the values of the expression√√
α = ((a))

1
n

we may find one or two real roots, as we will see below.
In addition to the integer powers and the corresponding roots of imaginary ex-

pressions, we must often consider what we call their fractional and negative powers.
On this subject, we ought to make the following remarks.

To raise the imaginary expression α +β
√
−1 to a fractional power m

n , supposing
that the fraction m

n is reduced to its lowest terms, we must: 1◦ extract the nth root of
the given expression; and 2◦ raise this root to the integer power m. As this problem
can be solved in several ways (see below, § IV), we denote indistinctly any one of
the powers m

n by the notation ((
α +β

√
−1
))m

n
.

[158] In the particular case where β is zero, one or two of these powers can be real.
To raise the imaginary expression α +β

√
−1 to a negative power, −m or − 1

n or
−m

n is to divide 1 by the power m or 1
n or m

n of the same expression. The problem
has a unique solution in the first case, and several solutions in the two others. We
denote the power −m with the simple notation
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α +β

√
−1
)−m

,

while the two notations ((
α +β

√
−1
))− 1

n

and ((
α +β

√
−1
))−m

n

represent, in the first case, any of the powers − 1
n , and in the second case, any of the

powers −m
n .

We say that two imaginary expressions are conjugate4 to each other when the two
expressions differ only in the signs of the coefficient of

√
−1. The sum of two such

expressions is always real, as is their product. Indeed, the two conjugate imaginary
expressions

α +β
√
−1 and α −β

√
−1

have as their sum 2α and as their product α2 +β 2. The last part of this observation
brings us to a theorem about numbers, which is stated here:

Theorem I.5 — If we multiply together two integer numbers that are each the
sum of two squares, then the product is always a sum of two squares.

Proof. — Let the integer numbers be

α
2 +β

2 and α
′2 +β

′2,

[159] where α2, β 2, α ′2 and β ′2 denote perfect squares. We evidently have the two
equations

(α +β
√
−1)(α ′+β

′√−1) = αα
′−ββ

′+(αβ
′+α

′
β )
√
−1

and
(α −β

√
−1)(α ′−β

′√−1) = αα
′−ββ

′− (αβ
′+α

′
β )
√
−1

and, by multiplying these term by term, we obtain the following(
α

2 +β
2)(a′2 +β

′2)=
(
αα

′−ββ
′)2 +

(
αβ

′+α
′
β
)2

.(7)

If we interchange the letters α ′ and β ′ in this last expression, we get(
α

2 +β
2)(a′2 +β

′2)=
(
αβ

′−α
′
β
)2 +

(
αα

′+ββ
′)2

.(8)

4 According to [Smith 1958, vol. 2, p. 267], this is the first use of the term “conjugate” in this
sense.
5 This fact of number theory is sometimes called Lagrange’s Theorem, though it is not originally
due to Lagrange. See, for example, [Euler 1758].
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Thus, in general we have two ways to decompose into two squares the product
of two integer numbers each of which is the sum of two squares. Thus, for example,
one draws from equations (7) and (8)(

22 +1
)(

32 +22)= 42 +72 = 12 +82.

We see from these examples that the use of imaginary expressions can be of great
use, not only in ordinary Algebra but also in the Theory of numbers.

Sometimes we represent an imaginary expression by a single letter. It is an arti-
fice which augments the resources of Analysis and we will make use of it in what
follows.

7.2 On the moduli of imaginary expressions and on reduced
expressions.

A remarkable property of any imaginary expression

α +β
√
−1

is that it can be put into the form

ρ

(
cosθ +

√
−1sinθ

)
,

[160] where ρ denotes a positive quantity and θ a real arc. Indeed, if we write the
symbolic equation

α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,(1)

or what amounts to the same thing, the two real equations{
α = ρ cosθ and
β = ρ sinθ ,

(2)

and we get
α

2 +β
2 = ρ

2 (cos2
θ + sin2

θ
)

= ρ
2 and

ρ =
√

α2 +β 2.(3)

Having thus determined the value of the number ρ , all that remains to verify com-
pletely equations (2) is to find an arc θ such that its cosine and sine are, respectively,

cosθ = α√
α2+β 2

and

sinθ = β√
α2+β 2

.
(4)
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This last problem is always solvable because each of the quantities α√
α2+β 2

and
β√

α2+β 2
has a numerical value less than 1 and the sum of their squares is equal to 1.

Moreover, it has infinitely many different solutions because, having calculated one
suitable value of the arc θ , we can increase or decrease this arc by any number of
circumferences without changing the value of the sine or the cosine.

When the imaginary expression α +β
√
−1 is put into the form

ρ

(
cosθ +

√
−1sinθ

)
,

the positive quantity ρ is called the modulus6 of this imaginary expression. What
remains after the suppression of the modulus, that is [161] to say the factor

cosθ +
√
−1sinθ ,

is called the reduced expression. Because we take the quantities α and β to be
known, we get only one unique value for the modulus ρ as determined by equation
(3), and as a result, the modulus remains the same for any two imaginary expressions
that are equal. Thus we can state the following theorem:

Theorem I. — The equality of two imaginary expressions always entails the
equality of their moduli, and as a consequence, the equality of their reduced expres-
sions.

If we compare two conjugate imaginary expressions to each other, we find that
their moduli are equal. The square of their common modulus is simply their product.

When the second term β vanishes in the imaginary expression α + β
√
−1, this

expression reduces to a real quantity α . Under the same hypothesis, we get from
equations (3) and (4): 1◦ when α is positive, that

ρ =
√

α2,

cosθ = 1 and sinθ = 0,

and so
θ =±2kπ,

where k denotes any integer number; and 2◦ when α is negative, that

ρ =
√

α2,

cosθ =−1 and sinθ = 0,

and so
θ =±(2k +1)π.

6 According to [Smith 1958, vol. 2, p. 267], this is the first use of the term “modulus” in this sense.
However, [Grattan-Guinness 1990, vol. 2, p. 170] cites an earlier use in [Cauchy 1817].
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Thus the modulus of a real quantity α is simply its numerical value
√

α2 and the
reduced expression that corresponds to such a quantity is always +1 or −1, namely

+1 = cos(±2kπ)+
√
−1sin(±2kπ) ,

[162] whenever α is a positive quantity, and

−1 = cos
(
±2k +1π

)
+
√
−1sin

(
±2k +1π

)
,

whenever α is a negative quantity.
Any imaginary expression that has modulus zero itself reduces to zero because

its two terms vanish. Conversely, because the cosine and the sine of an arc are never
zero at the same time, it follows that an imaginary expression cannot be reduced to
zero unless its modulus vanishes.

Any imaginary expression which has 1 as its modulus is necessarily a reduced
expression. Thus, for example,

cosa+
√
−1sina, cosa−

√
−1sina,

−cosa−
√
−1sina and − cosa+

√
−1sina

are four reduced expressions forming two conjugate pairs. In fact, to get these four
expressions from the formula

cosθ +
√
−1sinθ ,

it is enough to take successively

θ =±2kπ +a, θ =±2kπ −a,

θ =±(2k +1)π +a and θ =±(2k +1)π −a,

where k denotes any integer number.
Calculations involving imaginary expressions can be simplified by considering

reduced expressions. It is important to take note of their properties. These properties
are contained in the theorems that I am about to state.

Theorem II. — To multiply together two reduced expressions

cosθ +
√
−1sinθ and cosθ

′+
√
−1sinθ

′,

it suffices to add the corresponding arcs θ and θ ′.

[163] Proof. — Indeed, we have{(
cosθ +

√
−1sinθ

)(
cosθ ′+

√
−1sinθ ′

)
= cos(θ +θ ′)+

√
−1sin(θ +θ ′) .

(5)
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Corollary. — If we make θ ′ =−θ in the previous theorem, we find, as we might
expect, (

cosθ +
√
−1sinθ

)(
cosθ −

√
−1sinθ

)
= 1.(6)

Theorem III. — To multiply together several reduced expressions,

cosθ +
√
−1sinθ , cosθ

′+
√
−1sinθ

′, cosθ
′′+

√
−1sinθ

′′, . . . ,

it suffices to add the corresponding arcs, θ , θ ′, θ ′′, . . ..

Proof. — Indeed, we have successively,7

(cosθ +
√
−1sinθ)(cosθ ′+

√
−1sinθ ′)

= cos(θ +θ ′)+
√
−1sin(θ +θ ′),

(cosθ +
√
−1sinθ)(cosθ ′+

√
−1sinθ ′)(cosθ ′′+

√
−1sinθ ′′)

=
[
cos(θ +θ ′)+

√
−1sin(θ +θ ′)

]
(cosθ ′′+

√
−1sinθ ′′)

= cos(θ +θ ′+θ ′′)+
√
−1sin(θ +θ ′+θ ′′),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and, continuing in the same way, we find in general that whatever the number of
arcs, θ , θ ′, θ ′′, . . . may be,(

cosθ +
√
−1sinθ

)(
cosθ ′+

√
−1sinθ ′

)(
cosθ ′′+

√
−1sinθ ′′

)
. . .

= cos(θ +θ ′+θ ′′+ . . .)+
√
−1sin(θ +θ ′+θ ′′+ . . .) .

(7)

Corollary. — If we expand the left-hand side of equation (7) by ordinary multi-
plication,8 the expansion will consist of two parts, one real and the other having a
factor

√
−1. Given this, the real part will take on the value

cos
(
θ +θ

′+θ
′′+ . . .

)
,

[164] and the coefficient of
√
−1 in the second part will have the value

sin
(
θ +θ

′+θ
′′+ . . .

)
.

For example, suppose that we are considering only three arcs, θ , θ ′ and θ ′′. Then
equation (7) becomes(

cosθ +
√
−1sinθ

)(
cosθ ′+

√
−1sinθ ′

)(
cosθ ′′+

√
−1sinθ ′′

)
= cos(θ +θ ′+θ ′′)+

√
−1sin(θ +θ ′+θ ′′)

7 In the fourth line of this calculation, then term cos(θ + θ ′) was missing the right parenthesis in
[Cauchy 1897, p. 163]. [Cauchy 1821, p. 187] was parenthesized properly. (tr.)
8 Cauchy calls this multiplication immédiate. It is not clear how this is different from what he calls
“algebraic multiplication.”
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and, after expanding the left-hand side of this last equation by algebraic multiplica-
tion, we conclude that

cos
(
θ +θ

′+θ
′′) = cosθ cosθ

′ cosθ
′′− cosθ sinθ

′ sinθ
′′

−sinθ cosθ
′ sinθ

′′− sinθ sinθ
′ cosθ

′′

and9

sin
(
θ +θ

′+θ
′′) = sinθ cosθ

′ cosθ
′′+ cosθ sinθ

′ cosθ
′′

+cosθ cosθ
′ sinθ

′′− sinθ sinθ
′ sinθ

′′.

Theorem IV. — To divide the reduced expression

cosθ +
√
−1sinθ

by the following
cosθ

′+
√
−1sinθ

′,

it suffices to subtract the arc θ ′ that corresponds to the second expression from the
arc θ corresponding to the first.

Proof. — Let x be the quotient we are seeking, so that

x =
cosθ +

√
−1sinθ

cosθ ′+
√
−1sinθ ′

.

This quotient ought to be a new imaginary expression chosen so that when it is
multiplied by cosθ ′ +

√
−1sinθ ′ it reproduces cosθ +

√
−1sinθ . In other words,

x ought to satisfy the equation(
cosθ

′+
√
−1sinθ

′
)

x = cosθ +
√
−1sinθ .

To solve this equation for x, it suffices to multiply both sides by

cosθ
′−

√
−1sinθ

′.

[165] In this way we reduce the coefficient of x to 1 (see theorem II, corollary I),
and we find that

x =
(

cosθ +
√
−1sinθ

)(
cosθ

′−
√
−1sinθ

′
)

=
(

cosθ +
√
−1sinθ

)[
cos
(
−θ

′)+√
−1sin

(
−θ

′)]
= cos

(
θ −θ

′)+√
−1sin

(
θ −θ

′) .
9 The minus sign preceding the final term in the next equation is a plus sign in [Cauchy 1897,
p. 164]. This error was not present in [Cauchy 1821, p. 188]. (tr.)
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Thus, we definitely have

cosθ +
√
−1sinθ

cosθ ′+
√
−1sinθ ′

= cos
(
θ −θ

′)+√
−1sin

(
θ −θ

′) .(8)

Corollary. — If we take θ = 0 in equation (8), we have

1
cosθ ′+

√
−1sinθ ′

= cosθ
′−

√
−1sinθ

′.(9)

Theorem V.10 — To raise the imaginary expression

cosθ +
√
−1sinθ

to the power m (where m denotes any integer number), it suffices to multiply the arc
θ in this expression by the number m.

Proof. — Indeed, because the arcs θ , θ ′, θ ′′, . . . could be arbitrary in formula (7),
if we suppose that they are all equal to θ , and that there are m of them, we find(

cosθ +
√
−1sinθ

)m
= cosmθ +

√
−1sinmθ .(10)

Corollary. — If in equation (10) we take successively θ = z and then θ = −z,
we get the following two equations:{(

cosz+
√
−1sinz

)m = cosmz+
√
−1sinmz and(

cosz−
√
−1sinz

)m = cosmz−
√
−1sinmz.

(11)

Because they are always the product of m equal factors, the left-hand sides of each
of these last equations can be expanded by ordinary multiplication of these factor, or
what amounts to the same thing, by the [166] formula of Newton.11 After expanding
the equation, if we equate corresponding parts in each equation: 1◦ the real parts and
2◦ the coefficients of

√
−1, we conclude

cosmz = cosm z− m(m−1)
1·2 cosm−2 zsin2 z

+m(m−1)(m−2)(m−3)
1·2·3·4 cosm−4 zsin4 z− . . . ,

sinmz = m
1 coszm−1 sinz

−m(m−1)(m−2)
1·2·3 cosm−3 zsin3 z+ . . . .

(12)

10 This theorem is known as de Moivre’s Theorem, although it seems de Moivre did not give the
result in this form; see [Kline 1990, vol. 2, p. 409]. Euler treated this material in more detail in
[Euler 1748, vol. 1, ch. VIII, § 132 ff].
11 That is, Newton’s binomial formula.
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Supposing m = 2, for example, we find

cos2z = cos2 z− sin2 z and
sin2z = 2sinzcosz.

Supposing m = 3,

cos3z = cos3 z−3coszsin2 z and
sin3z = 3cos2 zsinz− sin3 z,

and so on.

Theorem VI. — To raise the imaginary expression

cosθ +
√
−1sinθ

to the power −m, (where m denotes any integer number), it suffices to multiply the
arc θ in this expression by the degree −m.

Proof. — Indeed, from the definition we have given of negative powers (see § I),
we get (

cosθ +
√
−1sinθ

)−m
=

1(
cosθ +

√
−1sinθ

)m

=
1

cosmθ +
√
−1sinmθ

.

Consequently, using formula (9) we get(
cosθ +

√
−1sinθ

)−m
= cosmθ −

√
−1sinmθ ,(13)

[167] or what amounts to the same thing,(
cosθ +

√
−1sinθ

)−m
= cos(−mθ)+

√
−1sin(−mθ) .(14)

After establishing the principal properties of reduced expressions, as we have
just done, it becomes easy to multiply or divide two or more imaginary expressions
if we know their moduli, as well as to raise any imaginary expression to a power m
or −m, (where m denotes an integer number). Indeed, we can easily perform these
different operations with the aid of the following theorems:

Theorem VII. — To obtain the product of two or more imaginary expressions, it
suffices to multiply the product of the reduced expressions to which they correspond
by the product of the moduli.
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Proof. — The stated theorem follows immediately from the principle that the
product of several factors, real or imaginary, remains the same regardless of the
order in which one multiplies them. Indeed, let

ρ
(
cosθ +

√
−1sinθ

)
, ρ ′

(
cosθ ′+

√
−1sinθ ′

)
,

ρ ′′
(
cosθ ′′+

√
−1sinθ ′′

)
, . . .

be several imaginary expressions, where ρ , ρ ′, ρ ′′, . . . denote their moduli. When
we want to multiply these expressions together, where each expression is the prod-
uct of a modulus and a reduced expression, we can, by virtue of the principle just
mentioned, form one part as the product of the moduli, and the other as the product
of all the reduced expressions, then multiply together these two products. In this
way, we find that the final result is

ρρ
′
ρ
′′ . . .

[
cos
(
θ +θ

′+θ
′′+ . . .

)
+
√
−1sin

(
θ +θ

′+θ
′′+ . . .

)]
.(15)

Corollary I. — The product of several imaginary expressions is a new imaginary
expression which has as its modulus the product of the moduli of all the others.

Corollary II. — Because an imaginary expression can never vanish [168] unless
its modulus vanishes, and because in order to make the product of several moduli
vanish, it is necessary that one of them reduces to zero, it is clear that one may draw
from theorem VII the following conclusion:

The product of two or more imaginary expressions cannot vanish except when
one of the factors reduces to zero.

Theorem VIII. — To obtain the quotient of two imaginary expressions, it suffices
to multiply the quotient of their corresponding reduced expressions by the quotient
of their moduli.

Proof. — Suppose that it is a matter of dividing the imaginary expression

ρ

(
cosθ +

√
−1sinθ

)
,

where the modulus is ρ , by the following

ρ
′
(

cosθ
′+

√
−1sinθ

′
)

,

where the modulus is ρ ′. If we denote by x the desired quotient, then x must be a
new imaginary expression satisfying the equation

ρ
′
(

cosθ
′+

√
−1sinθ

′
)

x = ρ

(
cosθ +

√
−1sinθ

)
.

To solve this equation for the value of x, we multiply both sides by the product of
the two factors
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1
ρ ′

and cosθ
′+

√
−1sinθ

′.

In this way we find, writing ρ

ρ ′ in place of ρ
1
ρ ′ , that

x =
ρ

ρ ′

[
cos
(
θ −θ

′)+√
−1sin

(
θ −θ

′)] .
Thus, in the final analysis we have

ρ
(
cosθ +

√
−1sinθ

)
ρ ′
(
cosθ ′+

√
−1sinθ ′

) =
ρ

ρ ′

[
cos
(
θ −θ

′)+√
−1sin

(
θ −θ

′)] .(16)

[169] Because, by virtue of theorem IV,

cos
(
θ −θ

′)+√
−1sin

(
θ −θ

′)
is precisely the quotient of the two reduced expressions

cosθ +
√
−1sinθ and cosθ

′+
√
−1sinθ

′,

it is clear that, having established formula (16), we ought to consider theorem VIII
as being proved.

Corollary. — If we take θ = 0 in equation (16),12 we have

1
ρ ′
(
cosθ ′+

√
−1sinθ ′

) =
1
ρ ′

(
cosθ

′−
√
−1sinθ

′
)

.(17)

Theorem IX. — To obtain the mth power of an imaginary expression (where m
denotes any integer number), it suffices to multiply the mth power of the correspond-
ing reduced expression by the mth power of the modulus.

Proof. — Indeed, if in theorem VII we take the imaginary expressions

ρ
(
cosθ +

√
−1sinθ

)
,

ρ ′
(
cosθ ′+

√
−1sinθ ′

)
,

ρ ′′
(
cosθ ′′+

√
−1sinθ ′′

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

all to be equal to each other and to be m in number, their product will be equivalent
to the mth power of the first one, that is to say, equal to[

ρ

(
cosθ +

√
−1sinθ

)]m
.

Under this hypothesis expression (15) becomes

12 Apparently Cauchy means to take ρ = 1 as well as θ = 0.
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ρ
m
(

cosmθ +
√
−1sinmθ

)
.

Ultimately, we have[
ρ

(
cosθ +

√
−1sinθ

)]m
= ρ

m
(

cosmθ +
√
−1sinmθ

)
.(18)

[170] The reduced expression

cosmθ +
√
−1sinmθ

is equal (by virtue of theorem V) to(
cosθ +

√
−1sinθ

)m
.

Thus, having established formula (18), it follows that we ought to consider theorem
IX to be proved.

Theorem X. — To raise an imaginary expression to the power −m (where m
denotes an integer number), it suffices to form the same powers of the modulus and
of the reduced expression, then to multiply the two parts together.

Proof. — Suppose that it is a matter of raising the following imaginary expression
to the power −m

ρ

(
cosθ +

√
−1sinθ

)
,

where the modulus is ρ . By virtue of the definition of negative powers, we have[
ρ

(
cosθ +

√
−1sinθ

)]−m
=

1[
ρ
(
cosθ +

√
−1sinθ

)]m
=

1
ρ
(
cosmθ +

√
−1sinmθ

) .
Consequently, making use of formula (17), we find[

ρ

(
cosθ +

√
−1sinθ

)]−m
=

1
ρm

(
cosmθ −

√
−1sinmθ

)
or what amounts to the same thing,[

ρ

(
cosθ +

√
−1sinθ

)]−m
= ρ

−m
(

cosmθ −
√
−1sinmθ

)
.(19)

This last formula, together with equation (13), gives the complete proof of theorem
X.
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7.3 On the real and imaginary roots of the two quantities +1 and
−1 and on their fractional powers.

[171] Suppose that m and n denote two relatively prime integer numbers. If we use
the notations adopted in § I, the nth roots of unity, or what amounts to the same
thing, the powers of degree 1

n , are the various values of the expression

n
√√

1 = ((1))
1
n ,

and likewise, the fractional positive or negative powers of unity of degree m
n or −m

n
are the various values of

((1))
m
n or ((1))−

m
n .

Thus we conclude that to determine these roots and powers it suffices to solve the
following three problems, one after another.

Problem I. — To find the various real and imaginary values of the expression

((1))
1
n .

Solution. — Let x be one of these values, and in order to present it in a general
form that includes the real quantities and the imaginary quantities at the same time,
suppose that

x = r
(

cos t +
√
−1sin t

)
,

where r denotes a positive quantity and t denotes a real arc. Because of the definition
of the expression ((1))

1
n , we have that

xn = 1,(1)

or what amounts to the same thing,

rn
(

cosnt +
√
−1sinnt

)
= 1.

[172] We can draw from this last equation (with the aid of theorem I, § II)

rn = 1 and

cosnt +
√
−1sinnt = 1,

and so,
r = 1,

cosnt = 1, sinnt = 0, nt =±2kπ and

t =±2kπ

n
,
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where k represents any integer number. The quantities r and t being thereby deter-
mined, the various values that satisfy equation (1) are evidently contained in the
formula

x = cos
2kπ

n
±
√
−1sin

2kπ

n
.(2)

In other words, the various values of ((1))
1
n are given by the equation

((1))
1
n = cos

2kπ

n
±
√
−1sin

2kπ

n
.(3)

Now let h be the integer number closest to the ratio k
n . The difference between

the numbers h and k
n will be at most equal to 1

2 , so that we have

k
n

= h± k′

n
,

where k′
n denotes a fraction equal to or less than 1

2 , and as a consequence k′ is a
integer number less than, or at most equal to n

2 . From this we conclude

2kπ

n = 2hπ ± 2k′π
n and

cos 2kπ

n ±
√
−1sin 2kπ

n = cos 2k′π
n ±

√
−1sin 2k′π

n .

Consequently, all the values of ((1))
1
n are contained in the formula

cos
2k′π

n
±
√
−1sin

2k′π
n

,

[173] if we suppose that k′ is contained between the limits 0 and n
2 , or what amounts

to the same thing, if we suppose that k is contained between the same limits in
formula (3).

Corollary I. — When n is even, the various values that the integer number k can
assume without going outside the limits 0 and n

2 are, respectively,

0, 1, 2, . . . ,
n−2

2
and

n
2
.

In general, for each of these values of k, formula (3) gives two conjugate imaginary
values of the expression ((1))

1
n , that is to say, two conjugate imaginary roots of unity

of degree n. However, for k = 0 we find but a single real root, +1, and for k = n
2

another real root, −1. In summary, when n is even, the expression

((1))
1
n

admits two real values, namely
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+1 and −1,

along with n−2 imaginary values, conjugate in pairs, namely
cos 2π

n +
√
−1sin 2π

n , cos 2π

n −
√
−1sin 2π

n ,

cos 4π

n +
√
−1sin 4π

n , cos 4π

n −
√
−1sin 4π

n ,
. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . ,

cos (n−2)π
n +

√
−1sin (n−2)π

n , cos (n−2)π
n −

√
−1sin (n−2)π

n .

(4)

The total number of these values, real and imaginary, is equal to n.
Suppose, for example, that n = 2. We find that there exist two values of the ex-

pression
((1))

1
2 ,

[174] or what amounts to the same thing, two values of x that satisfy the equation

x2 = 1,

and that these values, both real, are, respectively,

+1 and −1.

Now suppose that n = 4. We find that there are four values of the expression

((1))
1
4 ,

or what amounts to the same thing, four values of x that satisfy the equation

x4 = 1.

Among these four values, two of them are real, namely

+1 and −1.

The other two are imaginary and are, respectively, equal to

cos
π

2
+
√
−1sin

π

2
= +

√
−1,

and to
cos

π

2
−
√
−1sin

π

2
=−

√
−1.

Corollary II. — When n is odd, the various values that the integer number k can
assume without going outside the limits 0 and n

2 are, respectively,

0, 1, 2, . . . ,
n−1

2
.
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In general, for each of these values of k, formula (3) gives two conjugate imagi-
nary values of the expression ((1))

1
n , that is to say two conjugate imaginary roots of

unity of degree n. However, for k = 0 we find but a single real root, namely +1. In
summary, when n is odd, the expression

((1))
1
n

[175] admits the single real value
+1,

along with n−1 imaginary values, conjugate in pairs, namely
cos 2π

n +
√
−1sin 2π

n , cos 2π

n −
√
−1sin 2π

n ,

cos 4π

n +
√
−1sin 4π

n , cos 4π

n −
√
−1sin 4π

n ,
. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . ,

cos (n−1)π
n +

√
−1sin (n−1)π

n , cos (n−1)π
n −

√
−1sin (n−1)π

n .

(5)

The total number of these values, real and imaginary, is equal to n.
Suppose, for example, that n = 3. We find that there exist three values of the

expression
((1))

1
3 ,

or what amounts to the same thing, three values of x that satisfy the equation

x3 = 1,

and these values, of which one is real, are, respectively,

+1,

cos 2π

3 +
√
−1sin 2π

3 and cos 2π

3 −
√
−1sin 2π

3 .

Moreover, as we know, the side of the hexagon is equal to its radius and the supple-
ment of the arc subtended by this side has as its measure 2π

3 , so we can easily obtain
the equations

cos
2π

3
=−1

2
and sin

2π

3
= +

3
1
2

2
.

By virtue of these equations, the imaginary values of the expression ((1))
1
3 reduce

to

−1
2

+
3

1
2

2

√
−1 and − 1

2
− 3

1
2

2

√
−1.

[176] Corollary III. — If n is any integer number, the number of values, real and
imaginary, of the expression ((1))

1
n , or what amounts to the same thing, the number

of values of x that satisfy the equation xn = 1, is always equal to n.
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Problem II. — To find the various values, real and imaginary, of the expression

((1))
m
n .

Solution. — The numbers m and n are assumed to be relatively prime. Because
of the definition of the expression ((1))

m
n , we have that

((1))
m
n =

[
((1))

1
n

]m
.

Substituting the general value for ((1))
1
n found in equation (3), we get

((1))
m
n =

[
cos

2kπ

n
±
√
−1sin

2kπ

n

]m

and so
((1))

m
n = cos

m ·2kπ

n
±
√
−1sin

m ·2kπ

n
.(6)

To deduce all of the values of ((1))
m
n from this last formula, one needs only to give

k the integer values between 0 and n
2 successively. Let k′ and k′′ be two such values,

assumed to be unequal. I say that the cosines

cos
m ·2k′π

n
and cos

m ·2k′′π
n

are necessarily different from each other. Indeed, these cosines cannot be equal ex-
cept in the case where the arcs to which they correspond are related to each other by
an equation of the form

m ·2k′π
n

=±2hπ ± m ·2k′′π
n

,

[177]where h denotes an integer number. Now from this equation we get

h =
m(±k′± k′′)

n
.

Thus, because m is relatively prime to n, it is necessary that ±k′± k′′ be divisible
by n, which cannot happen because the numbers k′ and k′′ are unequal and each of
them cannot exceed 1

2 n, so their sum and their differences are necessarily less than
n. Thus, two different values of k contained between the limits 0 and 1

2 n give two
different values of

cos
m ·2kπ

n
.

From this remark, we easily conclude that the values, real or imaginary, of the ex-
pression ((1))

m
n given by equation (6) are the same in number as the real and imag-
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inary roots of ((1))
1
n determined by equation (3). Moreover, because we evidently

have (
cos m·2kπ

n ±
√
−1sin m·2kπ

n

)n

= cos(m ·2kπ)±
√
−1sin(m ·2kπ) = 1,

it follows that every value of ((1))
m
n is a real or imaginary expression, the nth power

of which equals 1, and thus is a value of ((1))
1
n . These observations lead to the

formula
((1))

m
n = ((1))

1
n(7)

in which the sign = indicates only that each of the values on the left-hand side is
always equal to one of the values on the right-hand side.13

Problem III. — To find the various values, real and imaginary, of the expression

((1))−
m
n .

Solution. — From the definition of negative powers, we have that

((1))−
m
n =

1

((1))
m
n
.

[178] Substituting the general value for ((1))
m
n found in equation (6), and consider-

ing formula (9) of the preceding section, we get

((1))−
m
n = cos

m ·2kπ

n
∓
√
−1sin

m ·2kπ

n
.(8)

It follows from this last equation that the various values of ((1))−
m
n are the same as

those of ((1))
m
n and consequently are equal to those of ((1))

1
n . Thus we have

((1))−
m
n = ((1))

1
n ,(9)

where the sign = ought to be interpreted as in equation (7).

Corollary. — If we make m = 1 in formula (9), it gives

((1))−
1
n = ((1))

1
n .(10)

Now suppose that we seek roots and fractional powers, not of unity, but of the
quantity −1. The nth roots of this quantity, or what amounts to the same thing, its
powers of degree 1

n , are the various values of the expression

13 This is a remarkable proof. The modern reader might have trouble even stating the conclusion
without recourse to such notions as “set,” “subset,” “one-to-one” and “cardinality,” none of which
were available to Cauchy.
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n
√√

−1 = ((−1))
1
n ,

and likewise the fractional powers of −1, positive or negative, of degree m
n or −m

n
are the various values of

((1))
m
n or ((1))−

m
n .

As a consequence, to determine these roots and powers, it suffices to solve, one after
another, the three problems that I will pose.

Problem IV. — To find the various real and imaginary powers of the expression

((−1))
1
n .

[179] Solution. — Let

x = r
(

cos t +
√
−1sin t

)
be one of these values, where r denotes a positive quantity and t denotes a real arc.
From the definition itself of the expression ((−1))

1
n we have

xn =−1,(11)

or what amounts to the same thing,

rn
(

cosnt +
√
−1sinnt

)
=−1.

We conclude from this last equation (with the aid of theorem I, § II),

rn = 1 and

cosnt +
√
−1sinnt =−1.

It follows that

r = 1,

cosnt =−1, sinnt = 0, nt =±(2k +1)π and

t =± (2k +1)π

n
,

where k represents any integer number. The quantities r and t being thereby deter-
mined, the various values of x that satisfy equation (11) are evidently contained in
the formula

x = cos
(2k +1)π

n
±
√
−1sin

(2k +1)π

n
.(12)

In other words, the various values of ((−1))
1
n are given by the equation
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((−1))
1
n = cos

(2k +1)π

n
±
√
−1sin

(2k +1)π

n
.(13)

Now let h be the integer number closest to the ratio 2k+1
2n . The difference between

the two numbers h and 2k+1
n is obviously a fraction with an odd numerator, less than

or at most [180] equal to 1
2 . Thus it follows that we have

2k +1
2n

= h± 2k′+1
2n

,

where 2k′+1 denotes an odd number less than or equal to n. We then conclude that

(2k +1)π

n
= 2hπ ± (2k′+1)π

n
and

cos (2k+1)π
n ±

√
−1sin (2k+1)π

n = cos (2k′+1)π

n ±
√
−1sin (2k′+1)π

n .

Consequently, if we suppose that 2k′ + 1 is contained between the limits 0 and n,
then all the values of ((−1))

1
n are contained in the formula

cos
(2k′+1)π

n
±
√
−1sin

(2k′+1)π

n
,

or what amounts to the same thing, the values are contained in formula (13), if we
suppose that 2k +1 is contained between the same limits.

Corollary I. — When n is even, the various values that 2k+1 can assume without
going outside the limits 0 and n are, respectively,

1, 3, 5, . . . , n−1.

For each of these values of 2k +1, formula (13) always gives two conjugate imagi-
nary values of the expression ((−1))

1
n . Consequently, in the case we are considering

here, this expression does not admit any real values, but only n imaginary values,
conjugate in pairs, namely

cos π

n +
√
−1sin π

n , cos π

n −
√
−1sin π

n ,

cos 3π

n +
√
−1sin 3π

n , cos 3π

n −
√
−1sin 3π

n ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,

cos (n−1)π
n +

√
−1sin (n−1)π

n , cos (n−1)π
n −

√
−1sin (n−1)π

n .

(14)

[181] Suppose for example that n = 2. We find that there are two values of the
expression ((−1))

1
2 , or what amounts to the same thing, two values of x that satisfy

the equation
x2 =−1,

and that these values, both imaginary, are, respectively,
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cos π

2 +
√
−1sin π

2 = +
√
−1 and

cos π

2 −
√
−1sin π

2 =−
√
−1.

Now suppose that n = 4. We see that there are four values of the expression
((−1))

1
4 , or in other words, four values of x that satisfy the equation

x4 =−1,

and that these four values are contained in the two formulas

cos π

4 ±
√
−1sin π

4 and

cos 3π

4 ±
√
−1sin 3π

4 ,

or what amounts to the same thing, in the single formula

±cos
π

4
±
√
−1sin

π

4
.

Moreover, because we have

cos
π

4
= sin

π

4
=

1√
2
,

we finally find that

((−1))
1
4 =± 1

2
1
2
± 1

2
1
2

√
−1.

Corollary II. — When n is odd, the various values that 2k+1 can assume without
going outside the limits 0 and n are, respectively,

1, 3, 5, . . . , n−2 and n.

[182] In general, for each of these values of 2k+1, formula (13) gives two conjugate
imaginary values of the expression ((−1))

1
n , that is to say two conjugate imaginary

roots of −1 of degree n. However, for 2k + 1 = n, we find but a single real root,
namely −1. In summary, when n is odd, the expression ((−1))

1
n admits only the one

real value,
−1,

along with n−1 imaginary roots, conjugate in pairs, namely
cos π

n +
√
−1sin π

n , cos π

n −
√
−1sin π

n ,

cos 3π

n +
√
−1sin 3π

n , cos 3π

n −
√
−1sin 3π

n ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,

cos (n−2)π
n +

√
−1sin (n−2)π

n , cos (n−2)π
n −

√
−1sin (n−2)π

n .

(15)
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The total number of these values, real and imaginary, is equal to n.
Suppose, for example, that n = 3. We find that there exist three values of the

expression ((−1))
1
3 , or what amounts to the same thing, values of x that satisfy the

equation
x3 =−1,

and these values, of which one is real, are, respectively,

−1,

cos π

3 +
√
−1sin π

3 = 1
2 + 3

1
2

2

√
−1 and

cos π

3 +
√
−1sin π

3 = 1
2 −

3
1
2

2

√
−1.

Corollary III. — If n is any integer number, the number of values, real and imag-
inary, of the expression ((−1))

1
n , or what amounts to the same thing, the number of

values of x that satisfy the equation xn =−1, is always equal to n.

[183] Problem V. — To find the various values, real and imaginary, of the ex-
pression

((−1))
m
n .

Solution. — The numbers m and n are assumed to be relatively prime. Because
of the definition of the expression ((−1))

m
n , we have that

((−1))
m
n =

[
((−1))

1
n

]m
.

Substituting the general value for ((−1))
1
n found in equation (13), we get

((−1))
m
n = cos

m(2k +1)π

n
±
√
−1sin

m(2k +1)π

n
.(16)

To deduce all of the values of ((−1))
m
n from this last formula, one needs only suc-

cessively to give to 2k + 1 all the odd, integer values between 0 and n. Let 2k′ + 1
and 2k′′+1 be two such values, assumed to be unequal. I say that the cosines

cos
m(2k′+1)π

n
and cos

m(2k′′+1)π

n

are necessarily different from each other. Indeed, these cosines cannot be equal ex-
cept in the case where the arcs to which they correspond are related to each other by
an equation of the form

m(2k′+1)π

n
=±2hπ ± m(2k′′+1)π

n
,

where h denotes an integer number. Now from this equation we get
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h =
m
[
±(2k′+1)±(2k′′+1)

2

]
n

.

Thus, because m is relatively prime to n, it is necessary that the integer number

±(2k′+1)± (2k′′+1)
2

[184] be divisible by n, which cannot happen because the numbers 2k′+1 and 2k′′+
1 are unequal and each of them cannot exceed n, so their half-sum, and a fortiori
their half-difference, is necessarily less than n. Thus, two different values of 2k +1
between 0 and n give two different values of

cos
m(2k +1)π

n
.

From this remark we easily conclude that the values, real or imaginary, of the ex-
pression ((−1))

m
n given by equation (16) are n in number, like those of ((1))

1
n and of

((−1))
1
n . Moreover, because we evidently have[

cos m(2k+1)π
n ±

√
−1sin m(2k+1)π

n

]n

= cosm(2k +1)π ±
√
−1sinm(2k +1)π = (−1)m =±1,

it follows that every value of ((−1))
m
n is a real or imaginary expression, the nth

power of which equals ±1, and thus is a value of ((1))
1
n or of ((−1))

1
n . This remark

leads to the equation
((−1))

m
n = ((1))

1
n(17)

every time that (−1)m = 1, that is to say, whenever m is an even number, and it leads
to

((−1))
m
n = ((−1))

1
n(18)

whenever (−1)m =−1, that is to say, whenever m is an odd number. Let us add that
we could combine equations (17) and (18) into a single formula by writing

((−1))
m
n = (((−1)m))

1
n .(19)

[185] Problem VI. — To find the various values, real and imaginary, of the
expression

((−1))−
m
n .

Solution. — From the definition of negative powers, we have that

((−1))−
m
n =

1

((−1))
m
n
.
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Substituting the general value for ((−1))−
m
n found in equation (16), and considering

formula (9) of the preceding section, we get

((−1))−
m
n = cos

m(2k +1)π

n
∓
√
−1sin

m(2k +1)π

n
.(20)

It follows from this last equation that the various values of ((−1))−
m
n are the same

as those of ((1))
m
n . As a consequence we get

((−1))−
m
n = ((1))

1
n if m is even(21)

and
((−1))−

m
n = ((−1))

1
n if m is odd.(22)

In place of the two preceding formulas, we could content ourselves by writing in-
stead

((−1))−
m
n = (((−1)m))

1
n .(23)

Corollary. — If we make m = 1 in formula (23), it gives

((−1))−
1
n = ((−1))

1
n .(24)

To complete this section, we remark that equations (3), (6), (8), (13), (16) and
(20), with the aid of which we have determined the values of the expressions

((1))
1
n , ((1))

m
n , ((1))−

m
n ,

((−1))
1
n , ((−1))

m
n , ((−1))−

m
n ,

[186] can be replaced by two formulas. Indeed, if we denote by a a quantity, positive
or negative, but with a fractional numerical value, the value of ((1))a determined by
equation (3), (6) or (8) is evidently

((1))a = cos2kaπ ±
√
−1sin2kaπ,(25)

while the value of ((−1))a determined by equation (13), (16) or (20) is

((−1))a = cos(2k +1)aπ ±
√
−1sin(2k +1)aπ.(26)

In the two preceding formulas, we may take any integer number whatsoever for
k.

7.4 On the roots of imaginary expressions, and on their
fractional and irrational powers.

Let
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α +β
√
−1

be any imaginary expression. We can always find (see § II) a positive value of ρ and
infinitely many real values of θ that satisfy the equation

α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
.(1)

Given this, imagine that we denote two relatively prime integer numbers by m and
n. If we use the notations adopted in § I, the nth roots of the expression α +β

√
−1,

or what amounts to the same thing, its powers of degree 1
n , are the various values

of14

n
√√

α +β
√
−1 =

((
α +β

√
−1
)) 1

n

and likewise, the fractional powers of α +β
√
−1, positive or negative, of degree m

n
or −m

n , are the various values of((
α +β

√
−1
))m

n
or

((
α +β

√
−1
))−m

n
.

[187] As a consequence, to determine these roots and these powers, it suffices to
solve, one after another, the following three problems:

Problem I. — To find the various values of the expression((
α +β

√
−1
)) 1

n
.

Solution. — Let
x = r

(
cos t +

√
−1sin t

)
be one of these values, where r denotes a positive quantity and t a real arc. From the

definition itself of the expression
((

α +β
√
−1
)) 1

n , we have

xn = α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,(2)

or what amounts to the same thing,

rn
(

cosnt +
√
−1sinnt

)
= ρ

(
cosθ +

√
−1sinθ

)
.

With the aid of theorem I, § II, we conclude from this last equation

rn = ρ and

cosnt +
√
−1sinnt = cosθ +

√
−1sinθ

14 The n was omitted from the radical sign in [Cauchy 1897, p. 186]. This error was not present in
[Cauchy 1821, p. 218]. (tr.)
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and it follows that

r = ρ
1
n ,

cosnt = cosθ , sinnt = sinθ , nt = θ ±2kπ and

t =
θ ±2kπ

n
,

where k represents any integer number. The quantities r and t are thus determined,
and so the various values of x that satisfy equation (1) are evidently given by the
formula

x=ρ
1
n

(
cos

θ ±2kπ

n
+
√
−1sin

θ ±2kπ

n

)
=ρ

1
n

(
cos

θ

n
+
√
−1sin

θ

n

)(
cos

2kπ

n
±
√
−1sin

2kπ

n

)
,

or what amounts to the same thing, by the following:

x = ρ
1
n

(
cos

θ

n
±
√
−1sin

θ

n

)
((1))

1
n .(3)

[188] In other words, the expression
((

α +β
√
−1
)) 1

n , as well as ((1))
1
n , gives n

different values, determined by the equation((
α +β

√
−1
)) 1

n = ρ
1
n

(
cos

θ

n
±
√
−1sin

θ

n

)
((1))

1
n .(4)

Corollary I. — Suppose that n = 2. We find that there exist two values of the
expression ((

α +β
√
−1
)) 1

2
,

or what amounts to the same thing, two values of x that satisfy the equation

x2 = α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

and that these two values are contained in the formula

±ρ
1
2

(
cos

θ

2
+
√
−1sin

θ

2

)
.

Corollary II. — Suppose now that n = 3. We find that there exist three values of
the expression ((

α +β
√
−1
)) 1

3
,

or what amounts to the same thing, three values of x that satisfy the equation
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x3 = α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

and that these three15 values are, respectively,

ρ
1
3
(
cos θ

3 +
√
−1sin θ

3

)
,

ρ
1
3
(
cos θ

3 +
√
−1sin θ

3

)(
cos 2π

3 +
√
−1sin 2π

3

)
= ρ

1
2
(
cos θ+2π

3 +
√
−1sin θ+2π

3

)
and

ρ
1
3
(
cos θ

3 +
√
−1sin θ

3

)(
cos 2π

3 −
√
−1sin 2π

3

)
= ρ

1
3
(
cos θ−2π

3 +
√
−1sin θ−2π

3

)
.

[189] Corollary III. — Suppose finally that n = 4. We find that there are four
values of the expression ((

α +β
√
−1
)) 1

4
,

or what amounts to the same thing, four values of x that satisfy the equation

x4 = α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

and that these four values are contained in the two formulas

±ρ
1
4
(
cos θ

4 + sin θ

4

)
and

±ρ
1
4
(
sin θ

4 − cos θ

4

)
.

Problem II. — To find the various values of the expression((
α +β

√
−1
))m

n
.

Solution. — The numbers m and n are assumed to be relatively prime. Because
of the definition itself of the expression

((
α +β

√
−1
))m

n , we have

((
α +β

√
−1
))m

n =
[((

α +β
√
−1
)) 1

n
]m

.

Substituting the general value for
((

α +β
√
−1
)) 1

n found in equation (4), we get((
α +β

√
−1
))m

n = ρ
m
n

(
cos

mθ

n
+
√
−1sin

mθ

n

)
((1))

m
n .(5)

15 [Cauchy 1897, p. 188] read “two values” instead of “three values” here. Also in [Cauchy 1897,
p. 188], the first of these three values, displayed on the following line, had

√
−1sin 3

θ
instead of√

−1sin θ

3 . Neither error was present in [Cauchy 1821, p. 220]. (tr.)
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Corollary I. — If in equation (5) we substitute for ((1))
m
n its value given by

formula (6) (§ III), we obtain the following:((
α +β

√
−1
))m

n = ρ
m
n

[
cos m(θ±2kπ)

n +
√
−1sin m(θ±2kπ)

n

]
.(6)

Problem III. — To find the various values of the expression((
α +β

√
−1
))−m

n
.

[190] Solution. — From the definition itself of negative powers, we have((
α +β

√
−1
))−m

n =
1((

α +β
√
−1
))m

n
.

Substituting the value for
((

α +β
√
−1
))m

n found in equation (6), and considering
formula (17) of § II, we get((

α +β
√
−1
))−m

n

= ρ−
m
n

[
cos m(θ±2kπ)

n −
√
−1sin m(θ±2kπ)

n

]
= ρ−

m
n
(
cos mθ

n −
√
−1sin mθ

n

)(
cos m·2kπ

n ∓
√
−1sin m·2kπ

n

)
,

or in other words,((
α +β

√
−1
))−m

n = ρ
−m

n

(
cos

mθ

n
−
√
−1sin

mθ

n

)
((1))−

m
n .(7)

Corollary I. — If we make m = 1, then equation (7) gives((
α +β

√
−1
))− 1

n = ρ
− 1

n

(
cos

θ

n
−
√
−1sin

θ

n

)
((1))−

1
n .(8)

Having determined, as we have just done, the various values of the four expres-
sions ((

α +β
√
−1
)) 1

n ,
((

α +β
√
−1
))m

n ,((
α +β

√
−1
))− 1

n and
((

α +β
√
−1
))−m

n ,

we see without trouble that equations (4), (5), (8) and (7), with the aid of which
these values are determined, can be replaced by a single formula. If we let a be a
quantity, positive or negative, with a numerical value that is fractional,16 the formula
in question is

16 Here, as in Chapter V, Cauchy carefully treats the case where a is rational before extending his
results to irrational values of a.
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α +β

√
−1
))a

= ρ
a
(

cosaθ +
√
−1sinaθ

)
((1))a .(9)

[191] In the above calculations, ρ always denotes the modulus of the imaginary
expression α +β

√
−1, that is to say the positive quantity

√
α2 +β 2, and θ denotes

one of the arcs that satisfy equation (1), or what amounts to the same thing, equations
(4) of § II, namely 

cosθ = α√
α2+β 2

and

sinθ = β√
α2+β 2

.
(10)

By dividing these two formulas, we conclude

tanθ =
β

α
.(11)

Consequently, if we let ζ be the smallest arc, ignoring the sign, which has β

α
as its

tangent, in other words, if we make

ζ = arctan
β

α
,(12)

then we find
tanθ = tanζ .(13)

Given this, it becomes easy to introduce the arc ζ , whose value is completely deter-
mined, in place of the arc θ in the various formulas given above. Indeed, we arrive
at this through the following considerations.

Because the arcs θ and ζ have the same tangent, they also have the same sine
and the same cosine, ignoring the sign. Furthermore, because equation (13) can be
put into the form

sinθ

cosθ
=

sinζ

cosζ
,

it is clear that, in order to satisfy that equation, we must either have both

cosθ = cosζ and sinθ = sinζ(14)

or else both
cosθ =−cosζ and sinθ =−sinζ .(15)

[192] Moreover, because the value of cosθ determined by the first of equations (10)
is evidently of the same sign as α , whereas the arc ζ , being contained between
the limits −π

2 and +π

2 , always has a positive cosine, it follows that equations (14)
hold if α is positive, and equations (15) hold if α is negative. Now let us see how
formulas (1) and (9) reduce under these two hypotheses.

First, if we suppose that α is positive, equations (10) can be replaced by equa-
tions (14), and we derive infinitely many values of θ , among which we ought to
distinguish the following one:
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θ = ζ .(16)

When we use this value, formulas (1) and (9) become, respectively,

α +β
√
−1 = ρ

(
cosζ +

√
−1sinζ

)
and(17) ((

α +β
√
−1
))a

= ρ
a
(

cosaζ +
√
−1sinaζ

)
((1))a .(18)

Second, if we suppose that α is negative, then equations (10) can be replaced by
equations (15), from which we derive, among other values of θ ,

θ = ζ +π.(19)

Consequently, under this hypothesis, we can substitute the following for formulas
(1) and (9):

α +β
√
−1 =−ρ

(
cosζ +

√
−1sinζ

)
and(20) 

((
α +β

√
−1
))a

= ρa
[
cos(aζ +aπ)+

√
−1sin(aζ +aπ)

]
((1))a

= ρa
(
cosaζ +

√
−1sinaζ

)(
cosaπ +

√
−1sinaπ

)
((1))a .

(21)

In particular, if we make α +β
√
−1 =−1, that is to say α =−1 and [193] β = 0,

then we find that
ζ = arctan

0
−1

= 0,

and formula (21) becomes

((−1))a =
(

cosaπ +
√
−1sinaπ

)
((1))a .(22)

As a result, under the given hypothesis, we have in general((
α +β

√
−1
))a

= ρ
a
(

cosaζ +
√
−1sinaζ

)
((−1))a .(23)

By combining formulas (17), (18), (20) and (23) with equations (25) and (26) of
§ III, we finally obtain the following conclusions.

Let α +β
√
−1 be any imaginary expression, let a be a quantity, positive or nega-

tive, with a numerical value that is fractional, and let k be an integer number chosen
arbitrarily. Moreover, if we make

ρ =
√

α2 +β 2 and ζ = arctan
β

α
,(24)

then for positive values of α we have
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α +β

√
−1 = ρ

(
cosζ +

√
−1sinζ

)
,((

α +β
√
−1
))a = ρa

(
cosaζ +

√
−1sinaζ

)
((1))a ,

((1))a = cos2kaπ ±
√
−1sin2kaπ,

(25)

and for negative values of α ,
α +β

√
−1 =−ρ

(
cosζ +

√
−1sinζ

)
,((

α +β
√
−1
))a = ρa

(
cosaζ +

√
−1sinaζ

)
((−1))a ,

((−1))a = cos
(
2k +1aπ

)
±
√
−1sin

(
2k +1aπ

)
.

(26)

We ought to add that if we denote the denominator of the simplest fraction that
represents the numerical value of a by n, then n is precisely the number of distinct
values of each of the expressions

((1))a , ((−1))a and
((

α +β
√
−1
))a

,

and that to deduce these same values from formulas (25) and (26), it [194] suffices
to substitute successively in place of 2k and 2k + 1 all the integer numbers within
the limits 0 and n.

If the numerical value of a becomes irrational, then each of the reduced expres-
sions

cos2kaπ ±
√
−1sin2kaπ and

cos
(
2k +1aπ

)
±
√
−1sin

(
2k +1aπ

)
has an indefinite number of values corresponding to the various integer values of k.
Consequently, in the calculations we could no longer use the notations

((1))a , ((−1))a and
((

α +β
√
−1
))a

unless we consider each of them as representing an infinity of imaginary expres-
sions, each different from the others. To avoid this inconvenience, we will never use
these notations except in the case where the numerical value of a is fractional.

Among the various values of ((1))a, there is always one that is real and positive,
namely +1, which we indicate by (1)a, if we are using the single parentheses, or by
1a if we leave them out entirely. If we substitute this particular value of ((1))a into
the second of equations (25), we get one corresponding value of((

α +β
√
−1
))a

,

which analogy leads us to indicate, with the aid of simple parentheses, by the nota-
tion (

α +β
√
−1
)a

.
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This is what we will do from now on. As a consequence, by supposing that α is
positive and that the quantities ρ and ζ are determined by equations (24), we have(

α +β
√
−1
)a

= ρ
a
(

cosaζ +
√
−1sinaζ

)
.(27)

Because this last equation holds whenever the numerical value of a is integer or
fractional, analogy again leads us to consider it to be true in the case where this
numerical value [195] becomes irrational. Consequently, we agree to denote the
product ρa

(
cosaζ +

√
−1sinaζ

)
by(
α +β

√
−1
)a

in the case where α is positive, whatever real value is given to the quantity a. In
other words, if we denote by ζ an arc contained between the limits −π

2 and +π

2 ,
whatever a is, we have,[

ρ

(
cosζ +

√
−1sinζ

)]a
= ρ

a
(

cosaζ +
√
−1sinaζ

)
.

If we take ρ = 1 in the preceding equation, it becomes17(
cosζ +

√
−1sinζ

)a
= cosaζ +

√
−1sinaζ .(28)

This last formula is entirely similar to equations (10) and (14) of § II, with the only
difference being that it applies only for values of ζ between the limits −π

2 and +π

2 ,
while the other equations apply for any values of θ .

When the quantity α becomes negative, even if we suppose that suppose that the
numerical value of a is fractional, then it is no longer clear that it is the value of the
expression

((
α +β

√
−1
))a that we may distinguish from the others by using the

notation (
α +β

√
−1
)a

.

However, because −α is a positive quantity, it is easy to establish the formula(
−α −β

√
−1
)a

= ρ
a
(

cosaζ +
√
−1sinaζ

)
(29)

for any value of a.
We finish this section by making the observation that, in the case where the nu-

merical value of a is fractional, formulas (27) and (29) reduce equations (18) and
(23) to those that follow:((

α +β
√
−1
))a

=
(

α +β
√
−1
)

((1))a and(30)

17 In his first published proof that eiθ = cosθ + isinθ [Euler 1748, §132–134 and §138], Eu-
ler made this leap from the rational to the irrational without a second thought. Compare this to
Cauchy’s remarks on page iii of his Introduction.
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α +β

√
−1
))a

=
(
−α −β

√
−1
)

((1))a ,(31)

[196] where equation (30) holds only for positive values of the quantity α , and
equation (31) holds for negative values of the same quantity.

7.5 Applications of the principles established in the preceding
sections.

We are going to apply the principles established in the preceding sections to the
solution of three problems about sines and cosines.

Problem I. — To transform sinmz and cosmz (where m denotes any integer
number) into a polynomial ordered according to the ascending integer powers of
sinz, or at least into a product formed by the multiplication of such a polynomial
and cosz.

Solution. — When we substitute the even powers of cosz for the integer powers
of 1− sin2 z in equations (12) of § II, these equations become, for even values of m,

cosmz =
(
1− sin2 z

)m
2 − m(m−1)

1·2
(
1− sin2 z

)m−2
2 sin2 z

+m(m−1)(m−2)(m−3)
1·2·3·4

(
1− sin2 z

)m−4
2 sin4 z− . . . and

sinmz = cosz
[

m
1

(
1− sin2 z

)m−2
2 sinz

−m(m−1)(m−2)
1·2·3

(
1− sin2 z

)m−4
2 sin3 z+ . . .

]
,

and, for odd values of m,

cosmz = cosz
[(

1− sin2 z
)m−1

2 − m(m−1)
1·2

(
1− sin2 z

)m−3
2 sin2 z

+m(m−1)(m−2)(m−3)
1·2·3·4

(
1− sin2 z

)m−5
2 sin4 z− . . .

]
and

sinmz = m
1

(
1− sin2 z

)m−1
2 sinz

−m(m−1)(m−2)
1·2·3

(
1− sin2 z

)m−3
2 sin3 z+ . . . .

[197] If we expand the right-hand sides of the four preceding formulas, or at least
the coefficients of cosz on the right-hand sides, into polynomials ordered according
to the ascending integer powers of sinz, we find that for even values of m,
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cosmz = 1− m
1

(m−1
2 + 1

2

)
sin2 z

+m(m−2)
1·3

[
(m−1)(m−3)

2·4 + m−1
2

3
2 + 3·1

2·4

]
sin4 z− . . . and

sinmz = cosz
{

m
1 sinz− m(m−2)

1·3
(m−1

2 + 3
2

)
sin3 z

+m(m−2)(m−4)
1·3·5

[
(m−1)(m−3)

2·4 + m−1
2

5
2 + 5·3

2·4

]
sin5 z− . . .

}
,

(1)

and for odd values of m,

cosmz = cosz
{

1− m−1
1

(m
2 + 1

2

)
sin2 z

+ (m−1)(m−3)
1·3

[
m(m−2)

2·4 + m
2

3
2 + 3·1

2·4

]
sin4 z . . .

}
and

sinmz = m
1 sinz− m(m−1)

1·3
(m−2

2 + 3
2

)
sin3 z

+m(m−1)(m−3)
1·3·5

[
(m−2)(m−4)

2·4 + m−2
2

5
2 + 5·3

2·4

]
sin5 z− . . . .

(2)

Equations (1) and (2) evidently contain the solution to the given question. It only
remains to present them in a simpler form. To do that, it suffices to observe that the
coefficient of each integer power of sinz generally contains a sum of fractions into
which equation (5) of Chapter IV (§ III) permits us to substitute a unique fraction.
As a consequence of this reduction, the expansions of cosmz and sinmz become, for
even values of m,{

cosmz = 1− m·m
1·2 sin2 z+ (m+2)m·m(m−2)

1·2·3·4 sin4 z

− (m+4)(m+2)m·m(m−2)(m−4)
1·2·3·4·5·6 sin6 z+ . . .

(3)

[198] and 
sinmz = cosz

[
m
1 sinz− (m+2)m(m−2)

1·2·3 sin3 z

+ (m+4)(m+2)m(m−2)(m−4)
1·2·3·4·5 sin5 z− . . .

]
,

(4)

and for odd values of m,
cosmz = cosz

[
1− (m+1)(m−1)

1·2 sin2 z

+ (m+3)(m+1)(m−1)(m−3)
1·2·3·4 sin4 z− . . .

](5)

and {
sinmz = m

1 sinz− (m+1)m(m−1)
1·2·3 sin3 z

+ (m+3)(m+1)m(m−1)(m−3)
1·2·3·4·5 sin5 z− . . . .

(6)

Corollary I. — If in equation (3) we successively make

m = 2, m = 4, m = 6, . . . ,
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we obtain the following:
cos2z = 1− 2sin2 z,
cos4z = 1− 8sin2 z+ 8sin4 z,
cos6z = 1−18sin2 z+48sin4 z−32sin6 z,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(7)

Corollary II. — If in equation (6) we successively make

m = 1, m = 3, m = 5, . . . ,

we get: 
sin z = sinz,
sin3z = 3sinz− 4sin3 z,
sin5z = 5sinz−20sin3 z+16sin5 z,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(8)

Problem II. — To transform sinmz and cosmz (where m denotes any integer
number) into a polynomial ordered according to the ascending integer powers [199]
of cosz, or at least into a product formed by the multiplication of such a polynomial
and sinz.

Solution. — To obtain the formulas that solve the given problem, it suffices to
replace z with π

2 − z in equations (3), (4), (5) and (6), and to observe moreover that
for even values of m, we have

cos
(mπ

2
−mz

)
= (−1)

m
2 cosmz and

sin
(mπ

2
−mz

)
= (−1)

m
2 +1 sinmz,

and for odd values of m,

cos
(mπ

2
−mz

)
= (−1)

m−1
2 sinmz and

sin
(mπ

2
−mz

)
= (−1)

m−1
2 sinmz.

In this way we find that if m is an even number{
(−1)

m
2 cosmz =1− m·m

2 cos2 z+ (m+2)m·m(m−2)
1·2·3·4 cos4 z

− (m+4)(m+2)m·m(m−2)(m−4)
1·2·3·4·5·6 cos6 z+ . . . ,

(9)

and 
(−1)

m
2 +1 sinmz = sinz

[
m
1 cosz− (m+2)m(m−2)

1·2·3 cos3 z

+ (m+4)(m+2)m(m−2)(m−4)
1·2·3·4·5 cos5 z− . . .

]
,

(10)
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and if m is an odd number,
(−1)

m−1
2 sinmz = sinz

[
1− (m+1)(m−1)

1·2 cos2 z

+ (m+3)(m+1)(m−1)(m−3)
1·2·3·4 cos4 z− . . .

]
,

(11)

and {
(−1)

m−1
2 cosmz = m

1 cosz− (m+1)m(m−1)
1·2·3 cos3 z

+ (m+3)(m+1)m(m−1)(m−3)
1·2·3·4·5 cos5 z− . . . .

(12)

[200] Corollary I. — If in formula (9) we successively make

m = 2, m = 4, m = 6, . . . ,

we obtain the following:
−cos2z = 1−2cos2 z,

cos4z = 1−8cos2 z+8cos4 z,

−cos6z = 1−18cos2 z+48cos4 z−32cos6 z,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(13)

Corollary II. — If in equation (12) we successively make

m = 1, m = 3, m = 5, . . . ,

we conclude that 
cos z = cosz,

−cos3z = 3cosz−4cos3 z,

cos5z = 5cosz−20cos3 z+16cos5 z,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(14)

Problem III. — To express the integer powers of sinz and of cosz as a linear
function of the sines and cosines of the arcs z, 2z, 3z, . . ..

Solution. — We solve this problem easily by considering the properties of two
conjugate imaginary expressions,

cosz+
√
−1sinz and cosz−

√
−1sinz.

If we denote the first of these by u and the second by v, we have

2cosz = u+ v and 2
√
−1sinz = u− v.
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By raising both sides of each of the two preceding equations to the integer power m,
then dividing each by 2 or by 2

√
−1, then making the reductions indicated by the

formulas
uv = 1,

un + vn

2
= cosnz and

un− vn

2
√
−1

= sinnz,

where the last two equations apply for any integer value [201] of n, we find that if
m represents an even number, then

2m+1 cosm z = cosmz +m
1 cos

(
m−2 · z

)
+m(m−1)

1·2 cos
(
m−4 · z

)
+ . . .

+ 1
2

m(m−1)...(m
2 +1)

1·2·3... m
2

,

(15)

and 
(−1)

m
2 2m−1 sinm z = cosmz− m

1 cos
(
m−2 · z

)
+m(m−1)

1·2 cos
(
m−4 · z

)
− . . .

± 1
2

m(m−1)...(m
2 +1)

1·2·3... m
2

,

(16)

and if m represents an odd number, then
2m−1 cosm z = cosmz− m

1 cos
(
m−2 · z

)
+m(m−1)

1·2 cos
(
m−4 · z

)
+ . . .

+m(m−1)... m+3
2

1·2·3... m−1
2

cosz,

(17)

and 
(−1)

m−1
2 2m−1 sinm z = sinmz− m

1 sin
(
m−2 · z

)
+m(m−1)

1·2 sin
(
m−4 · z

)
− . . .

±m(m−1)... m+3
2

1·2·3... m−1
2

sinz.

(18)

Corollary I. — If in formula (15) we successively make

m = 2, m = 4, m = 6, . . . ,

[202] we conclude
2cos2 z = cos2z+1,

8cos4 z = cos4z+4cos2z+3,

32cos6 z = cos6z+6cos4z+15cos2z+10,

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(19)
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We would arrive at the same equations if we sought to deduce the successive values
of

cos2 z, cos4 z, cos6 z, . . .

from formulas (13) as linear functions of

cos2z, cos4z, cos6z, . . . .

Corollary II. — If in formula (16) we successively make

m = 2, m = 4, m = 6, . . . ,

we obtain the equations
−2sin2 z = cos2z−1,

8sin4 z = cos4z−4cos2z+3,

−32sin6 z = cos6z−6cos4z+15cos2z−10,

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(20)

which we could equally well deduce from formulas (7) by eliminating the quantities

sin2 z, sin4 z, sin6 z, . . . .

Corollary III. — If in formula (17) we successively make

m = 1, m = 3, m = 5, . . . ,

we conclude 
cosz = cosz,

4cos3 z = cos3z+3cosz,

16cos5 z = cos5z+5cos3z+10cosz,

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

(21)

[203] We would arrive at the same equations if we sought to deduce the successive
values of

cosz, cos3 z, cos5 z, . . .

from formulas (14) as linear functions of

cosz, cos3z, cos5z, . . . .

Corollary IV. — If in formula (18) we successively take

m = 1, m = 3, m = 5, . . . ,

we obtain the equations
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sinz = sinz,

−4sin3 z = sin3z−3sinz,

16sin5 z = sin5z−5sin3z+10sinz,

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(22)

which we could equally well deduce from formulas (8) by eliminating the quantities

sinz, sin3 z, sin5 z, . . . .



Chapter 8
On imaginary functions and variables.

8.1 General considerations on imaginary functions and
variables.

[204] When we suppose that one or both of the two real quantities u and v are
variables, then the expression

u+ v
√
−1

is called an imaginary variable. If also the variable u converges towards the limit U
and the variable v towards the limit V , then

U +V
√
−1

is the limit towards which the imaginary expression

u+ v
√
−1

converges.
When the constants or variables contained in a given function, having been con-

sidered real are later supposed to be imaginary, the notation that was used to express
the function cannot be retained in the calculation except by virtue of new conven-
tions able to determine the sense of this notation under the new hypotheses. Thus,
for example, by virtue of the conventions established in the preceding Chapter, the
values of the notations

a+ x, a− x, ax and
a
x

are completely determined in the case where the constant a and [205] the variable
x become imaginary. Suppose, in order to clarify these ideas, that the constant a
remains real, and the variable x has the imaginary value

α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 159
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where α and β denote two real quantities which can be replaced by the modulus ρ

and the real arc θ . We conclude from Chapter VII (§§ I and II) that the four notations

a+ x, a− x, ax and
a
x

denote, respectively, the four imaginary expressions

a+ρ cosθ +ρ sinθ
√
−1,

a−ρ cosθ −ρ sinθ
√
−1,

aρ cosθ +aρ sinθ
√
−1 and

a
ρ

cosθ − a
ρ

sinθ
√
−1,

or in other words, the following quantities:

a+α +β
√
−1, a−α −β

√
−1, aα +aβ

√
−1

and
aα

α2 +β 2 −
aβ

α2 +β 2

√
−1.

In general, by means of the principles established in Chapter VII, we can clarify
without difficulty the values of algebraic expressions in which several imaginary
variables or constants are related to each other by the signs of addition, subtraction,
multiplication or division. We see without trouble that these expressions retain all
the properties as imaginary variables and constants that they have when they are
real. For example, if we denote by

x, y, z, . . . , u, v, w, . . .

several variables, either real or imaginary, we have, in every [206] possible case

x+ y+ z+ . . .− (u+ v+w+ . . .)
= x+ y+ z+ . . .−u− v−w− . . . ,

xy = yx,

u(x+ y+ z+ . . .) = ux+uy+uz+ . . . ,

x+ y+ z+ . . .

u
=

x
u

+
y
u

+
z
u

+ . . . ,

x
u
× y

v
× z

w
× . . . =

xyz . . .

uvw . . .
,

x(u
v

) =
vx
u

=
v
u
× x,

. . . . . . . . . . . . . . . . . . . . .

(1)

Now consider the notation
xa,
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in the case where the constant a remains real and the variable x takes the imaginary
value

α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
.

If we take for the value of a a quantity for which the numerical value is an integer
number m, in this same notation, namely

xa = x±m,

we have, for any real values of α and β , a precise meaning. It is given by the imag-
inary expression

ρ
m cosmθ +ρ

m sinmθ
√
−1,

if a = +m, and the following

ρ
−m cosmθ −ρ

−m sinmθ
√
−1,

if a = −m (see Chapter VII, § II, equations (18) and (19)). But any time that the
constant a takes a fractional [207] or irrational numerical value, the notation

xa

no longer has a precise and determined value, at least when the real part α of the
imaginary expression x is not positive. If in this particular case we make

ζ = arctan
β

α
,

then the arc ζ is contained between the limits −π

2 and +π

2 , and writing x in place of
α +β

√
−1 in § IV of Chapter VII (equations (17) and (27)), we find

x = ρ
(
cosζ +

√
−1sinζ

)
and

xa = ρa
(
cosaζ +

√
−1sinaζ

)
,

so that the notation xa denotes the imaginary expression

ρ
a cosaζ +ρ

a sinaζ
√
−1.

It follows also from the conventions and the principles established above (Chap. VII,
§§ III and IV) that, for a fractional value of the constant a, the notation

((x))a

represents all at once many imaginary expressions, the values of which are given by
the two formulas

((x))a = xa ((1))a and ((1))a = cos2kaπ ±
√
−1sin2kaπ,
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when the real part α of the imaginary expression x is positive, and by the two for-
mulas

((x))a = (−x)a ((−1))a and

((−1))a = cos(2k +1)aπ ±
√
−1sin(2k +1)aπ,

when the quantity α becomes negative (on this subject, see § IV of Chapter VII,
equations (25) and (26)). The same notation can no longer be employed in the case
where the numerical value of a becomes irrational.

[208] Expressions of the form
xa

retain the same properties for real and for imaginary values of the variable as long
as the numerical value of the exponent is an integer number. But otherwise these
properties do not hold except under certain conditions. For example, let

x = α +β
√
−1, y = α

′+β
′√−1, z = α

′′+β
′′√−1, . . .

be several imaginary expressions, which would be reduced to real quantities if β ,
β ′, β ′′ vanish. Moreover, denote by a, b, c, . . . any real quantities with numerical
values that are fractional or irrational, and by m, m′, m′′, . . . several integer numbers.
By virtue of the principles established in Chapter VII, we always have

xmxm′
xm′′

. . . = xm+m′+m′′+...,

x−mx−m′
x−m′′

. . . = x−m−m′−m′′−...,

x±mx±m′
x±m′′

. . . = x±m±m′±m′′±...,

(2)

where each of the numbers m, m′, m′′, . . . is given the same sign on both sides of the
equation. Also {

xm ym zm . . . = (xyz . . .)m ,

x−my−mz−m . . . = (xyz . . .)−m(3)

and  (xm)m′
= (x−m)−m′

= xmm′
,

(xm)−m′
= (x−m)m′

= x−mm′
.

(4)

On the other hand, we find that of the three formulas

xaxbxc . . . = xa+b+c+...,(5)
xayaza . . . = (xyz . . .)a and(6)

(xa)b = xab,(7)

the first remains always true only if the real part α [209] of the imaginary expression
x is positive. The second remains true when α , α ′, α ′′ , . . . are positive and the sum

arctan
β

α
+ arctan

β ′

α ′ + arctan
β ′′

α ′′ + . . .
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remains contained between the limits −π

2 and +π

2 . The last remains true when α is
positive and the product

aarctan
β

α

is contained between the same limits.
The conventions adopted in Chapter VII do not yet suffice to determine precisely

the meanings of the notations

Ax, logx, sinx, cosx, arcsinx and arccosx,

in the case where the variable x becomes imaginary. The simplest means of arriving
at such precise meanings is by considering imaginary series. We will revisit this
subject in Chapter IX.

From what has been said above, any algebraic notation that includes imaginary
constants along with the variables x, y, z, . . ., assumed to be real, cannot be used in
calculation except in the case where, by virtue of established conventions, it has a
determined imaginary expression as its value. Such an expression, in which the real
part and the coefficient of

√
−1 are necessarily real functions of the variables x, y,

z, . . ., is called an imaginary function of these same variables. Thus, for example, if
we denote by ϕ (x) and χ (x) two real functions of x, an imaginary function of this
variable is

ϕ (x)+ χ (x)
√
−1.

Sometimes we indicate such a function with the aid of a single symbol ϖ , and we
write

ϖ (x) = ϕ (x)+ χ (x)
√
−1.

[210] Similarly, if we denote two real functions of the variables x, y, z, . . . by
ϕ (x,y,z, . . .) and χ (x,y,z, . . .), then

ϖ (x,y,z, . . .) = ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1

is an imaginary function of these several variables.
The imaginary function

ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1

is called algebraic or exponential or logarithmic or circular, etc., and, in the first
case, is called rational or irrational, integer or fractional, etc., whenever both of the
real functions ϕ (x,y,z, . . .) and χ (x,y,z, . . .) enjoy the properties associated with
the name in question. Thus, in particular, the general form of a linear imaginary
function of the variables x, y, z, . . . is

(a+bx+ cy+dz+ . . .)+
(
a′+b′x+ c′y+d′z+ . . .

)√
−1

or what amounts to the same thing,
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a+a′

√
−1
)

+
(

b+b′
√
−1
)

x+
(

c+ c′
√
−1
)

y+
(

d +d′
√
−1
)

z+ . . . ,

where a, b, c, d, . . ., a′, b′, c′, d′, . . . denote real constants.
Again, we ought to distinguish among imaginary functions, as we do among real

functions, the ones we call explicit, and which are immediately expressed by means
of the variables, as opposed to those which we call implicit, for which the values
are determined by certain equations but which cannot be known explicitly until the
equations have been solved. Let

ϖ (x) or ϖ (x,y,z, . . .)

be an implicit imaginary function determined by a single equation. We can repre-
sent this function by u + v

√
−1, where u and v denote two real quantities. If in the

imaginary equation which must [211] be satisfied, we write

u+ v
√
−1

instead of ϖ (x) or ϖ (x,y,z, . . .), then after expanding both sides of the equation and
equating both the real parts and the coefficients of

√
−1, we get two real equations

between the unknown functions u and v. When we can solve these last equations,
the solutions determine the explicit values of u and v, and consequently we get the
explicit value of the imaginary expression

u+ v
√
−1.

For an imaginary function of a single variable to be completely determined, it is
necessary and it suffices that for each particular value attributed to the variable, we
can deduce the corresponding value of the function.1 Sometimes, for each value of
the variable, the given function obtains several values, different from one another.
Conforming to the conventions that we have already established, we ordinarily de-
note these multiple values of an imaginary function with the notation of doubled
signs or doubled parentheses. Thus, for example,

n
√√

cosz+
√
−1sinz

or ((
cosz+

√
−1sinz

)) 1
n

indicates any one of the roots of degree n of the imaginary expression

cosz+
√
−1sinz.

1 This is tantalizingly close to the modern definition of function, but deceptively so. Cauchy is
still thinking of functions given by a formula, either implicitly or explicitly, and here he is merely
distinguishing explicit functions and those implicit functions that are single-valued for a particular
value of x.
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8.2 On infinitely small imaginary expressions and on the
continuity of imaginary functions.

An imaginary expression is called infinitely small when it converges to the limit
zero, which implies that in the given expression, the real part and the coefficient
of
√
−1 converge at the same [212] time towards this limit. Given this, represent a

variable imaginary expression by

α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

where α and β denote two real quantities for which we can substitute the modu-
lus ρ and the real arc θ . Because this expression is infinitely small, it is evidently
necessary and sufficient2 that its modulus

ρ =
√

α2 +β 2

itself be infinitely small.
An imaginary function of the real variable x is called continuous between two

given limits of this variable when between these limits, an infinitely small increase
in the variable always produces an infinitely small increase in the function itself. As
a result, the imaginary function

ϕ (x)+ χ (x)
√
−1

is continuous between two limits of x if the real functions ϕ (x) and χ (x) are con-
tinuous between these limits.

We say that an imaginary function of the variable x is a continuous function of
that variable in the neighborhood of a particular value of x whenever it remains
continuous between two limits which contain that value, even if they are very close
to each other.

Finally, when an imaginary function of the variable x ceases to be continuous in
the neighborhood of a particular value of this variable, we say that it then becomes
discontinuous, and that there is a solution of continuity for this particular value.

On the basis of the concepts which we have just established relative to the con-
tinuity of imaginary functions, we easily recognize that theorems I, II and III of
Chapter II (§ II) remain true even in the case where we replace the real functions

f (x) and f (x,y,z, . . .)

[213] with the imaginary functions

ϕ (x)+ χ (x)
√
−1 and ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)

√
−1.

2 Up to here, Cauchy has used the expression “it is necessary and it suffices.” Here for the first time
he writes the more familiar “necessary and sufficient” (nécessaire et suffisant).
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As a consequence, we can state the following propositions.

Theorem I. — If the real variables x, y, z, . . . have for limits the fixed and deter-
mined quantities X, Y , Z, . . ., and if the imaginary function

ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1

is continuous with respect to each of the variables x, y, z, . . . in the neighborhood of
the system of particular values

x = X , y = Y, z = Z, . . . ,

then ϕ(x,y,z, . . .)+ χ(x,y,z, . . .)
√
−1 has as its limit

ϕ (X ,Y,Z, . . .)+ χ (X ,Y,Z, . . .)
√
−1,

or more briefly, if we write

ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1 = ϖ (x,y,z, . . .) ,

then ϖ (x,y,z, . . .) has as its limit

ϖ (X ,Y,Z, . . .) .

Theorem II. — Let x, y, z, . . . denote several real functions of the variable t
which are continuous with respect to this variable in the neighborhood of the real
value t = T . Furthermore, let X, Y , Z, . . . be the particular values of x, y, z, . . .
corresponding to t = T . Suppose that in the neighborhood of these particular values,
the imaginary function

ϖ (x,y,z, . . .) = ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1

is simultaneously continuous with respect to x, with respect to y, with respect to z,
etc. Then ϖ (x,y,z, . . .), considered as an imaginary function of t, is also continuous
with respect to t in the neighborhood of the particular value t = T .

In the preceding theorem, if we reduce the variables x, y, z, . . . to a single variable,
we get the following statement:

[214] Theorem III. — Suppose that in the expression

ϖ(x) = ϕ(x)+ χ(x)
√
−1

the variable x is a real function of another variable t. Imagine further that the vari-
able x is a continuous function of t in the neighborhood of the particular value t = T
and that ϖ (x) is a continuous function of x in the neighborhood of the particular
value x = X corresponding to t = T . The imaginary expression ϖ (x), considered as
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a function of t, is also continuous with respect to this variable in the neighborhood
of the particular value t = T .

8.3 On imaginary functions that are symmetric, alternating or
homogeneous.

In extending the definitions that we gave (Chapter III) of symmetric, alternating or
homogeneous functions of several variables x, y, z, . . . to imaginary functions, we
recognize immediately that

ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)
√
−1

is symmetric, alternating or homogeneous of degree a with respect to the variables
x, y, z, . . . when the real functions

ϕ (x,y,z, . . .) and χ (x,y,z, . . .)

are both symmetric, homogeneous or alternating of degree a with respect to these
same variables.

8.4 On imaginary integer functions of one or several variables.

By virtue of what has been said above (§ I),

ϕ (x)+ χ (x)
√
−1

and
ϕ (x,y,z, . . .)+ χ (x,y,z, . . .)

√
−1

[215] are two imaginary integer functions, the first of the variable x and the second
of the variables x, y, z, . . ., when

ϕ (x) and χ (x) , ϕ (x,y,z, . . .) and χ (x,y,z, . . .)

are real integer functions of the same variables. Consequently, if ϖ (x) represents an
imaginary integer function of the variable x, then the value of ϖ (x) is determined
by an equation of the form

ϖ (x) = ϕ (x)+ χ (x)
√
−1

= a0 +a1x+a2x2 + . . .+
(
b0 +b1x+b2x2 + . . .

)√
−1,

where a0, a1, a2, . . ., b0, b1, b2, . . . denote real constants. We conclude from this
equation, by combining the coefficients of similar powers of x, that
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ϖ (x) =
(

a0 +b0
√
−1
)

+
(

a1 +b1
√
−1
)

x(1)

+
(

a2 +b2
√
−1
)

x2 + . . . .

For the function ϖ (x) determined by the previous formula to vanish with x, it is
necessary that we have

a0 +b0
√
−1 = 0,

that is to say a0 = 0 and b0 = 0, in which case the value of ϖ (x) reduces to

ϖ (x) =
(

a1 +b1
√
−1
)

x+
(

a2 +b2
√
−1
)

x2 + . . .

= x
[
a1 +b1

√
−1+

(
a2 +b2

√
−1
)

x+ . . .
]
.

Thus, any imaginary integer function of the variable x that vanishes with that vari-
able is the product of the factor x by a second function of the same kind, or in other
words, is divisible by x. On the basis of this remark, we easily extend theorems I and
II of Chapter IV (§ I) to the case where the integer functions which are mentioned
there are also imaginary. I will add that these two theorems remain true even if we
replace the particular real values given to the variable x, such as

x0, x1, x2, . . .

[216] with the imaginary values3

aα0 +β0
√
−1, α1 +β1

√
−1, α2 +β2

√
−1, . . . .

To prove this assertion, it suffices to establish the two following propositions:

Theorem I. — If an imaginary integer function of the variable x vanishes for a
particular value of that variable, for example, for

x = α0 +β0
√
−1,

then this function is algebraically divisible by

x−α0−β0
√
−1.

Proof. — Indeed, let

ϖ (x) = ϕ (x)+ χ (x)
√
−1

be the imaginary function under consideration. If we let

x = α0 +β0
√
−1+ z,

3 This word was changed to variables in [Cauchy 1897, p. 216] from the correct word valeurs in
[Cauchy 1821, p. 255]. (tr.)
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where z denotes a new variable, then by substituting this, we evidently obtain as a
result an imaginary integer function of z, namely

ϖ

(
α0 +β0

√
−1+ z

)
.

Because this function of z ought to vanish for z = 0, we conclude that

ϖ (x) = ϖ

(
α0 +β0

√
−1+ z

)
is divisible by

z = x−α0−β0
√
−1.

Corollary I. — The preceding proposition remains true even in the case where
the function χ (x) vanishes, that is to say in the case where ϖ (x) reduces to a real
function ϕ (x).

Corollary II. — The preceding theorem also remains true when we [217] suppose
that β = 0, and consequently when the particular value assigned to the variable x is
real.

Theorem II. — If an imaginary integer function of the variable x vanishes for
each of the particular values of x contained in the sequence

α0 +β0
√
−1, α1 +β1

√
−1, α2 +β2

√
−1, . . . , αn−1 +βn−1

√
−1,

where n denotes any integer number, this function is equivalent to the product of the
factors

x−α0−β0
√
−1, x−α1−β1

√
−1, x−α2−β2

√
−1, . . . ,

. . . , x−αn−1−βn−1
√
−1

by a new imaginary integer function of the variable x.

Proof. — Let
ϖ (x) = ϕ (x)+ χ (x)

√
−1

be the given function. Because it should vanish for

x = α0 +β0
√
−1,

by virtue of theorem I it is algebraically divisible by

x−α0−β0
√
−1.

As a consequence, we have

ϖ (x) =
(

x−α0−β0
√
−1
)

Q0,(2)
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where Q0 denotes a new imaginary integer function of the variable x. The function
ϖ (x) also ought to vanish when we suppose that

x = α1 +β1
√
−1,

so this assumption necessarily reduces the right-hand side of equation (2) to zero,
and consequently it reduces to zero one of the two factors which compose it (see
Chapter VII, § II, theorem VII, corollary II). [218] Furthermore, because the first
factor

x−α0−β0
√
−1

cannot become zero for
x = α1 +β1

√
−1

as long as the particular values

α0 +β0
√
−1 and α1 +β1

√
−1

are distinct from each other, it is clear that by assigning the second of these two
values of x, we ought to reduce to zero the integer function Q0, and consequently
this integer function is algebraically divisible by

x−α1−β1
√
−1.

Thus we have
Q0 =

(
x−α1−β1

√
−1
)

Q1,

where Q1 denotes a new imaginary integer function of the variable x. Consequently
equation (2) can be put into the form

ϖ (x) =
(

x−α0−β0
√
−1
)(

x−α1−β1
√
−1
)

Q1.(3)

By reasoning again in this way we find: 1◦ that the function ϖ (x) ought to vanish
by virtue of the assumption that

x = α2 +β2
√
−1,

so this assumption necessarily reduces the right-hand side of equation (3) to zero,
and consequently it reduces to zero one of its three factors; 2◦ that the factor which
reduces to zero cannot be any other than the integer function Q1, as long as the three
particular values of x,

α0 +β0
√
−1, α1 +β1

√
−1, α2 +β2

√
−1,

are distinct from one another; and 3◦ that because the integer function Q1 ought to
vanish for

x = α2 +β2
√
−1,
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[219] it is algebraically divisible by

x−α2−β2
√
−1.

Consequently, we have
Q1 = (x−α2−β2)Q2

and it follows that

ϖ (x) = (x−α0−β0
√
−1)(x−α1−β1

√
−1)(x−α2−β2

√
−1)Q2,(4)

where Q2 again denotes an integer imaginary function of the variable x. Continuing
in the same way, we eventually recognize that, in the case where the integer function
ϖ (x) vanishes for n different values of x, respectively denoted by

α0 +β0
√
−1, α1 +β1

√
−1, α2 +β2

√
−1, . . . , αn−1 +βn−1

√
−1,

then we necessarily have{
ϖ (x) =

(
x−α0−β0

√
−1
)(

x−α1−β1
√
−1
)

×
(
x−α2−β2

√
−1
)
. . .
(
x−αn−1−βn−1

√
−1
)

Q,
(5)

where Q denotes a new integer function of the variable x.
It is almost unnecessary to observe that the preceding theorem remains true when

we suppose that
χ (x) = 0,

or else
β0 = 0, β1 = 0, β2 = 0, . . . , βn−1 = 0,

that is to say when the function ϖ (x) or the particular values assigned to the variable
x become real.

With the aid of the principles established in this section, we can prove without
difficulty that in Chapter IV (§ I), theorems III and IV, along with formula (1), can
be extended to the case where the functions and the variables, at the same time as the
particular values attributed to those functions and variables, become imaginary. We
can prove as well that propositions I, II and III, along with formulas (1) and (2) in
§ II of Chapter IV, and formulas (2), (3), (4), (5) and (6) of § III in the same Chapter,
remain true whatever the real or imaginary values [220] of the variables, functions
and constants may be. Thus, for example, we see, in particular, that equation (6) of
§ III, namely

(x+ y)n

1 ·2 ·3 . . .n
=

xn

1 ·2 ·3 . . .n
+

xn−1

1 ·2 ·3 . . .(n−1)
y
1

+ . . .

+
x
1

yn−1

1 ·2 ·3 . . .(n−1)
+

yn

1 ·2 ·3 . . .n
,

(6)

holds for any imaginary values of the variables x and y.
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8.5 Determination of continuous imaginary functions of a single
variable that satisfy certain conditions.

Let
ϖ (x) = ϕ (x)+

√
−1 χ (x)

be a continuous imaginary function of the variable x, where ϕ(x) and χ(x) are two
real continuous functions. The imaginary function ϖ(x) is completely determined
if for all the possible real values of the variables x and y, it is required to satisfy one
of the equations

ϖ (x+ y) = ϖ (x)+ϖ (y) or(1)
ϖ (x+ y) = ϖ (x)×ϖ (y) ,(2)

or else, for all real positive values of the same variables, one of the following equa-
tions:

ϖ (xy) = ϖ (x)+ϖ (y) or(3)
ϖ (xy) = ϖ (x)×ϖ (y) .(4)

We will solve these four equations successively, which will provide us with four
problems analogous to those we have already treated in § I of Chapter V.

Problem I. — To determine the imaginary function ϖ (x) in such a manner that
it remains continuous between any two real limits of the variable [221] x and so that
for all real values of the variables x and y, we have

ϖ (x+ y) = ϖ (x)+ϖ (y) .(1)

Solution. — If, with the aid of the formula

ϖ (x) = ϕ (x)+ χ (x)
√
−1,

we replace the imaginary function ϖ in equation (1) with the real functions ϕ and
χ , this equation becomes

ϕ (x+ y)+ χ (x+ y)
√
−1 = ϕ (x)+ χ (x)

√
−1+ϕ (y)+ χ (y)

√
−1,

then by equating the real parts and the coefficients of
√
−1 on both sides, we con-

clude

ϕ (x+ y) = ϕ (x)+ϕ (y) and
χ (x+ y) = χ (x)+ χ (y) .

From these last formulas (see Chapter V, § I, problem I), we get
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ϕ (x) = xϕ (1) and
χ (x) = xχ (1) .

Consequently
ϖ (x) = x

[
ϕ (1)+ χ (1)

√
−1
]
,(5)

or what amounts to the same thing,

ϖ (x) = xϖ (1) .(6)

It follows from equation (5) that any value of ϖ (x) that satisfies the given ques-
tion is necessarily of the form

ϖ (x) =
(

a+b
√
−1
)

x,(7)

where a and b denote two constant quantities. Moreover, it is easy to assure our-
selves that any such value of ϖ(x) satisfies equation (1), whatever the values of a
and b. These quantities are thus two arbitrary constants.

[222] We could remark that to obtain the preceding value of ϖ (x), it suffices to
replace the arbitrary real constant a in the value of ϕ (x) given by equation (7) of
Chapter V (§ I) by the arbitrary but imaginary constant

a+b
√
−1.

Problem II. — To determine the imaginary function ϖ (x) in such a manner that
it remains continuous between any two real limits of the variable x and so that for
all real values of the variables x and y, we have

ϖ (x+ y) = ϖ (x)ϖ (y) .(2)

Solution.4 — If we make x = 0 in equation (2), we get

ϖ (0) = 1,

or, because of the formula

ϖ (x) = ϕ (x)+ χ (x)
√
−1,

we get what amounts to the same thing,

ϕ (0)+ χ (0)
√
−1 = 1.

Consequently,

4 Note that this solution is very different from Cauchy’s solution to the corresponding problem II
in Chapter V, § I. By contrast, problem I in this section followed as an easy corollary of problem I
of Chapter V, § I.
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ϕ (0) = 1 and χ (0) = 0.

The function ϕ (x) reduces to 1 for the particular value 0 assigned to the variable
x, and because it is assumed to be continuous between any limits, it is clear that
in the neighborhood of this particular value, it is only very slightly different from
1, and consequently it is positive. Thus, if α denotes a very small number, we can
choose this number in such a way that the function ϕ (x) remains constantly positive
between the limits

x = 0 and x = α.

With this condition satisfied, because the quantity ϕ(α) is itself positive, if we take

ρ =
√

ϕ (α)2 + χ (α)2 and ζ = arctan
χ (α)
ϕ (α)

,

we conclude that

ϖ (α) = ϕ (α)+ χ (α)
√
−1 = ρ

(
cosζ +

√
−1sinζ

)
.

[223] Now imagine that in equation (2) we successively replace y by y + z, then
z by z+u, . . .. We conclude that

ϖ (x+ y+ z+ . . .) = ϖ (x)ϖ (y)ϖ (z) . . . ,

however many variables, x, y, z, . . ., there may be. If we also denote by m the number
of variables, and if we make

x = y = z = . . . = α,

then the equation we have just found becomes

ϖ (mα) = [ϖ (α)]m = ρ
m
(

cosmζ +
√
−1sinmζ

)
.

I add that the formula

ϖ (mα) = ρ
m
(

cosmζ +
√
−1sinmζ

)
remains true if we replace the integer number m by a fraction, or even by an arbitrary
number µ . We will prove this easily in what follows.

If in equation (2) we make

x =
1
2

α and y =
1
2

α,

then we conclude[
ϖ

(
1
2

α

)]2

= ϖ (α) = ρ

[
cosζ +

√
−1sinζ

]
.
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Then, by taking square roots of both sides in such a way that the real parts are
positive, and by observing that the two functions ϕ (x) and cosx remain positive, the
first between the limits x = 0 and x = α , and the second between the limits x = 0
and x = ζ , we find that

ϖ

(
1
2

α

)
= ϕ

(
1
2

α

)
+ χ

(
1
2

α

)√
−1 = ρ

1
2

(
cos

ζ

2
+
√
−1sin

ζ

2

)
.

Likewise, if in equation (2) we make

x =
1
4

α and y =
1
4

α,

[224] then we conclude[
ϖ

(
1
4

α

)]2

= ϖ

(
1
2

α

)
= ρ

1
2

(
cos

ζ

2
+
√
−1sin

ζ

2

)
.

Then, by taking square roots of both sides so as to obtain positive real parts, we find

ϖ

(
1
4

α

)
= ρ

1
4

(
cos

ζ

4
+
√
−1sin

ζ

4

)
.

By similar reasoning, we can establish successively the formulas

ϖ

(
1
8

α

)
= ρ

1
8

(
cos

ζ

8
+
√
−1sin

ζ

8

)
,

ϖ

(
1

16
α

)
= ρ

1
16

(
cos

ζ

16
+
√
−1sin

ζ

16

)
,

. . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and in general, where n denotes any integer number,

ϖ

(
1
2n α

)
= ρ

1
2n

[
cos
(

1
2n ζ

)
+
√
−1sin

(
1
2n ζ

)]
.

If we operate on the preceding value of ϖ
( 1

2n α
)

to derive the value of ϖ
( m

2n α
)

the
same way we operate on the value of ϖ (α) to derive that of ϖ (mα), we find that

ϖ

( m
2n α

)
= ρ

m
2n
[
cos
( m

2n ζ

)
+
√
−1sin

( m
2n ζ

)]
,

or what amounts to the same thing,

ϕ

( m
2nα

)
+ χ

( m
2nα

)√
−1 = ρ

m
2n
[
cos
( m

2n ζ

)
+
√
−1sin

( m
2n ζ

)]
.

Consequently,
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ϕ

( m
2n α

)
= ρ

m
2n cos

( m
2n ζ

)
and

χ

( m
2n α

)
= ρ

m
2n sin

( m
2n ζ

)
.

[225] Then, by supposing that the fraction m
2n varies in such a way as to approach

indefinitely the number µ and passing to the limit, we get the equations

ϕ (µα) = ρ
µ cos µζ and χ (µα) = ρ

µ sin µζ ,

from which we conclude that

ϖ (µα) = ρ
µ

(
cos µζ +

√
−1sin µζ

)
.(8)

Moreover, if in equation (2) we set

x = µα and y =−µα,

we get

ϖ (−µα) =
ϖ (0)

ϖ (µα)
= ρ

−µ

[
cos(−µζ )+

√
−1sin(−µζ )

]
.

Thus, formula (8) remains true when we replace µ by −µ . In other words, for all
real values of the variable x, both positive and negative, we have

ϖ (αx) = ρ
x
[
cosζ x+

√
−1sinζ x

]
= [ϖ (α)]x .(9)

In this last formula, if we write x
α

instead of x, it becomes

ϖ (x) = ρ
x
α

[
cos
(

ζ

α
x
)

+
√
−1sin

(
ζ

α
x
)]

= [ϖ (α)]
x
α .(10)

If, for brevity, we make

ρ
1
α = A and

ζ

α
= b,(11)

we find
ϖ(x) = Ax

(
cosbx+

√
−1sinbx

)
.(12)

Thus any value of ϖ (x) that satisfies the given question is necessarily of the form

Ax
(

cosbx+
√
−1sinbx

)
,

where A and b denote two real quantities, of which the first must be [226] positive.
Moreover, it is easy to assure ourselves that such a value of ϖ (x) satisfies equation
(2), whatever the values of the number A and the quantity b may be. This number
and this quantity are thus arbitrary constants.
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Corollary. — In the particular case where the function ϕ (x) remains positive
between the limits x = 0 and x = 1, we can, instead of supposing that α is very
small, set α = 1. Then we conclude immediately from equations (9) and (10) that

ϖ (x) = [ϖ (1)]x .(13)

Problem III. — To determine the imaginary function ϖ (x) in such a manner
that it remains continuous between any two positive limits of the variable x and so
that for all positive values of the variables x and y,

ϖ (xy) = ϖ (x)+ϖ (y) .(3)

Solution. — If, with the aid of the formula

ϖ (x) = ϕ (x)+ χ (x)
√
−1,

we replace the imaginary function ϖ in equation (3) by the real functions ϕ and χ ,
then we equate the real parts and the coefficients of

√
−1 on both sides, we find

ϕ (xy) = ϕ (x)+ϕ (y) and
χ (xy) = χ (x)+ χ (y) .

Moreover, if A denotes any number and log denotes the characteristic of loga-
rithms in the system for which the base is A, we get from the preceding equations
(see Chapter V, § I, problem III)

ϕ (x) = ϕ (A) log(x) and
χ (x) = χ (A) log(x) .

We conclude that
ϖ (x) =

[
ϕ (A)+ χ (A)

√
−1
]

log(x) ,(14)

[227] or what amounts to the same thing,

ϖ (x) = ϖ (A) log(x) .(15)

It follows from formula (14) that any value of ϖ (x) that satisfies the given question
is necessarily of the form

ϖ (x) =
(

a+b
√
−1
)

log(x) ,(16)

where a and b denote constant quantities. Moreover, it is easy to assure ourselves
that such a value of ϖ (x) satisfies equation (3), whatever the quantities a and b may
be. Thus these quantities are two arbitrary constants.

We could remark that to obtain the preceding value of ϖ (x), it suffices to replace
the arbitrary real constant a in the value of ϕ (x) given by equation (12) of Chapter
V (§ I) by the arbitrary but imaginary constant
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a+b
√
−1.

Note. — We could arrive very simply at equation (15) in the following manner.
By virtue of the identities

x = Alogx and y = Alogy,

equation (3) becomes

ϖ

(
Alogx+logy

)
= ϖ

(
Alogx

)
+ϖ

(
Alogy

)
.

Because in this last formula the variable quantities logx and logy take on all real
values, both positive and negative, as a result we have, for all possible real values of
the variables x and y,

ϖ
(
Ax+y)= ϖ (Ax)+ϖ (Ay) .

We conclude [see problem I, equation (6)] that

ϖ (Ax) = xϖ
(
A1)= xϖ (A) ,

and consequently
ϖ

(
Alogx

)
= ϖ (A) logx,

[228] or what amounts to the same thing,

ϖ(x) = ϖ (A) logx.

Problem IV. — To determine the imaginary function ϖ(x) in such a manner that
it remains continuous between any two positive limits of the variable x and so that
for all positive values of the variables x and y, we have

ϖ (xy) = ϖ(x)ϖ (y) .(4)

Solution. — It would be easy to apply a method similar to that which we used
to solve the second problem to the solution of this problem. However, we will ar-
rive more promptly at the solution we seek if we observe that, by denoting by log
the characteristic of logarithms in the system for which the base is A, we can put
equation (4) into the form

ϖ

(
Alogx+logy

)
= ϖ

(
Alogx

)
ϖ

(
Alogy

)
.

Because in this last equation the variable quantities logx and logy admit any real
values, positive and negative, it follows that we have, for all possible real values of
the variables x and y,

ϖ
(
Ax+y)= ϖ (Ax)ϖ (Ay) .
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If α represents a very small number and if we replace ϖ(x) with ϖ (Ax) in equation
(10) of the second problem, we conclude that

ϖ (Ax) = [ϖ (Aα)]
x
α .

Consequently, we find that

ϖ

(
Alogx

)
= [ϖ (Aα)]

logx
α ,

or what amounts to the same thing,

ϖ(x) = [ϖ (Aα)]
logx

α .(17)

It is essential to observe that the imaginary function ϖ (Ax), and consequently its
real part ϕ (Ax), reduce to 1 for x = 0, [229] or in other words, that the imaginary
function ϖ(x) and its real part ϕ(x) reduce to 1 for x = 1. We can prove this directly
by taking

x = A0 = 1

in equation (4). As for the number α , it need only be small enough that the real
part of the imaginary function ϖ (Ax) remain constantly positive between the limits
x = 0 and x = α . When this condition is satisfied, the real part of the imaginary
expression

ϖ (Aα) = ϕ (Aα)+ χ (Aα)
√
−1

is itself positive. Consequently, if we make

ρ =
√

[ϕ (Aα)]2 +[χ (Aα)]2 and ζ = arctan
χ (Aα)
ϕ (Aα)

,

we have
ϖ (Aα) = ρ

(
cosζ +

√
−1sinζ

)
.

Given this, equation (17) becomes
ϖ(x) = ρ

logx
α

[
cos
(

ζ

α
logx

)
+
√
−1sin

(
ζ

α
logx

)]
= x

logρ

α

[
cos
(

ζ

α
logx

)
+
√
−1sin

(
ζ

α
logx

)]
.

(18)

By virtue of this last equation, any value of ϖ(x) that satisfies the given question is
necessarily of the form

ϖ(x) = xa
[
cos(b logx)+

√
−1sin(b logx)

]
,(19)

where a and b denote two constant quantities. Moreover, it is easy to assure our-
selves that these two constant quantities ought to remain entirely arbitrary.





Chapter 9
On convergent and divergent imaginary series.
Summation of some convergent imaginary series.
Notations used to represent imaginary functions
that we find by evaluating the sum of such series.

9.1 General considerations on imaginary series.

[230] Let

p0, p1, p2, . . . , pn, . . . and(1)
q0, q1, q2, . . . , qn, . . .(2)

be two real series. The sequence of imaginary expressions

p0 +q0
√
−1, p1 +q1

√
−1, p2 +q2

√
−1, . . . , pn +qn

√
−1, . . .(3)

forms what we call an imaginary series. Moreover, let
sn =

(
p0 +q0

√
−1
)
+
(

p1 +q1
√
−1
)
+ . . .

+
(

pn−1 +qn−1
√
−1
)

= (p0 + p1 + . . .+ pn−1)+(q0 +q1 + . . .+qn−1)
√
−1

(4)

be the sum of the first n terms of this series. Depending on whether or not sn con-
verges towards a fixed limit for increasing values of n, we say that series (3) is
convergent and that it has this limit as its sum, or else that it is divergent and it does
not have a sum. The first case evidently occurs if the two sums

p0 + p1 + . . .+ pn−1 and
q0 +q1 + . . .+qn−1

themselves converge towards [231] fixed limits, for increasing values of n, and the
second in the opposite case. In other words, series (3) is always convergent at the
same time as the real series (1) and (2) are convergent. If even one of these series is
divergent, then series (3) is divergent as well.

In every possible case, the term of series (3) that corresponds to the index n,
namely

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 181
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 9,
c© Springer Science+Business Media, LLC 2009
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pn +qn
√
−1,

is called its general term.
The simplest of these imaginary series is the one we get by attributing an imagi-

nary value to the variable x in the geometric progression

1, x, x2, . . . , xn, . . . .

Imagine, to clarify these ideas, that we make

x = z
(

cosθ +
√
−1sinθ

)
,

where z denotes a new real variable and θ a real arc. The geometric progression in
question becomes{

1, z
(
cosθ +

√
−1sinθ

)
, z2

(
cos2θ +

√
−1sin2θ

)
, . . .

. . . , zn
(
cosnθ +

√
−1sinnθ

)
, . . . .

(5)

To obtain the equation that determines the sum of the first n terms of the preceding
series, it suffices to replace x by z

(
cosθ +

√
−1sinθ

)
in the formula

1+ x+ x2 + . . .+ xn−1 =
1

1− x
− xn

1− x
.

In this way, we find that
1+ z

(
cosθ +

√
−1sinθ

)
+ z2

(
cos2θ +

√
−1sin2θ

)
+ . . .

+zn−1
[
cos(n−1)θ +

√
−1sin(n−1)θ

]
=

1
1− z

(
cosθ +

√
−1sinθ

) − zn−1

1− z
(
cosθ +

√
−1sinθ

) .(6)

For increasing values of n, the modulus of the imaginary [232] expression

zn
(
cosnθ +

√
−1sinnθ

)
1− zcosθ − zsinθ

√
−1

,

namely
±zn

(1−2zcosθ + z2)
1
2
,

converges towards the limit zero or grows beyond all limits, depending on whether
we suppose that the numerical value of z is less than or greater than 1. Thus we
ought to conclude from equation (6) that under the first hypothesis, series (5) is a
convergent series that has

1
1− zcosθ − zsinθ

√
−1
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for its sum, and under the second hypothesis, it is a divergent series that does not
have a sum.

We indicate the sum of an imaginary series the same way we do for a real series,
by the sum of its first terms followed by an ellipsis . . ..

Given this, if we denote the sum of series (3) by s, assuming it is convergent, and
if we make n grow indefinitely in formula (4), we find by passing to the limit that{

s =
(

p0 +q0
√
−1
)
+
(

p1 +q1
√
−1
)
+
(

p2 +q2
√
−1
)
+ . . .

= (p0 + p1 + p2 + . . .)+(q0 +q1 +q2 + . . .)
√
−1.

(7)

In the same way, when we suppose that the numerical value of z is less than 1 and
we make n grow beyond any assignable limit, we get from equation (6),

1+ z
(
cosθ +

√
−1sinθ

)
+ z2

(
cos2θ +

√
−1sin2θ

)
+ . . .

=
1

1− zcosθ − zsinθ
√
−1

=
1− zcosθ + zsinθ

√
−1

1−2zcosθ + z2 .
(8)

By virtue of formula (7), the first part of equation (8) can [233] be written in the
following form:(

1+ zcosθ + z2 cos2θ + . . .
)
+
(
zsinθ + z2 sin2θ + . . .

)√
−1.

Thus, for numerical values of z less than 1, we have
(
1+ zcosθ + z2 cos2θ + . . .

)
+
(
zsinθ + z2 sin2θ + . . .

)√
−1

=
1− zcosθ

1−2zcosθ + z2 +
zsinθ

√
−1

1−2zcosθ + z2

√
−1.

(9)

Thus we conclude that1
1+ zcosθ + z2 cos2θ + z3 cos3θ + . . . =

1− zcosθ

1−2zcosθ + z2 ,

zsinθ + z2 sin2θ + z3 sin3θ + . . . =
zsinθ

1−2zcosθ + z2

(10)

(z =−1, z = +1) .

Thus the substitution of an imaginary value for x in the geometric progression

1, x, x2, . . . , xn, . . .

is enough to lead to the summation of the two series{
1, zcosθ , z2 cos2θ , . . . , zn cosnθ , . . .

zsinθ , z2 sin2θ , . . . , zn sinnθ , . . .
(11)

1 Euler summed a similar series by similar means in [Euler 1774].
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whenever the variable z remains contained between the limits

z =−1 and z = +1,

that is to say, whenever the two series are convergent.
The left-hand sides of equations (10) are (by virtue of theorem I, Chapter VI, § I)

continuous functions of the variable z in the neighborhood of any particular value
contained between the limits

z =−1 and z = +1,

and so the left-hand side of equation (9) is itself a continuous function of z in the
neighborhood of the same value. Now, this left-hand side is nothing but the sum
of series (5), of which the different [234] terms remain continuous functions of z
between any limits whatsoever. By generalizing the remark that we have just made,
we obtain the following proposition:

Theorem I. — When the different terms of series (3) are functions of the same
variable z and are continuous with respect to this variable in the neighborhood of a
particular value for which this series is convergent, the sum s of this series is also a
continuous function of z in the neighborhood of this particular value.2

Proof. — Indeed, in the neighborhood of the particular value attributed to the
variable z, series (3) cannot be convergent and have continuous functions of z for
its different terms unless the real series (1) and (2) both enjoy the same properties.
Now under this hypothesis, because both of the sums

p0 + p1 + p2 + . . . and
q0 +q1 +q2 + . . .

are continuous functions of the variable z (by virtue of theorem I, Chapter VI, § I) it
follows that the sum of series (3), namely

s = (p0 + p1 + p2 + . . .)+(q0 +q1 +q2 + . . .)
√
−1

is also a continuous function of this variable.
Now suppose that we denote by

ρ0, ρ1, ρ2, . . .

the moduli of the various terms of series (3), and by

cosθ0 +
√
−1sinθ0, cosθ1 +

√
−1sinθ1, cosθ2 +

√
−1sinθ2, . . .

the corresponding reduced expressions, so that in general we have

2 This theorem as stated is incorrect. Cauchy’s proof depends on his incorrect theorem I of Chapter
VI, § I. See the footnote on p. 90.
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ρn =
(

p2
n +q2

n
) 1

2 and

pn +qn
√
−1 = ρn

(
cosθn +

√
−1sinθn

)
.

[235] Series (3) becomes 

ρ0
(
cosθ0 +

√
−1sinθ0

)
,

ρ1
(
cosθ1 +

√
−1sinθ1

)
,

ρ2
(
cosθ2 +

√
−1sinθ2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . ,

ρn
(
cosθn +

√
−1sinθn

)
,

. . . . . . . . . . . . . . . . . . . . . . . . ,

(12)

and we can ordinarily decide if this series is convergent or divergent with the aid of
the theorem I am about to state.

Theorem II.3 — To find the limit or limits towards which the expression (ρn)
1
n

converges as n grows indefinitely. Series (3) converges or diverges according to
whether the largest of these limits is less than or greater than 1.

Proof. — First consider the case where the largest values of the expression (ρn)
1
n

converge towards a limit less than 1 as n grows indefinitely. In this case, because the
series

ρ0, ρ1, ρ2, . . . , ρn, . . .(13)

is convergent (Chapter VI, § II, theorem I), the two series{
ρ0 cosθ0, ρ1 cosθ1, ρ2 cosθ2, . . . , ρn cosθn, . . . ,
ρ0 sinθ0, ρ1 sinθ1, ρ2 sinθ2, . . . , ρn sinθn, . . .

(14)

are convergent as well (Chapter VI, § III, theorem IV), and the convergence of these
last series entails that of series (12), which is nothing but series (3) presented in a
different form.

In the second place, suppose that for increasing values of n, the largest values
of (ρn)

1
n converge towards a limit greater than 1. Under this hypothesis and using

reasoning similar to that which we used in Chapter VI (§ II, theorem I), we prove
that the largest values of the modulus

ρn =
(

p2
n +q2

n
) 1

2

[236] increase with n beyond all limits, which cannot be true unless the largest
values of the two quantities pn and qn, or at least one of them, likewise grows indef-
initely. Now as these two quantities are the general terms of series (1) and (2), we

3 This is the Root Test adapted to complex numbers.
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must conclude that at least one of these two series must be divergent, which suffices
to assure the divergence of series (3).

Scholium I. — The theorem that we have just established leaves no doubt about
the convergence or divergence of an imaginary series except in the particular case
where the limit of the largest values of (ρn)

1
n becomes equal to 1. In this particular

case, it is not always easy to decide the issue. Nevertheless, we can affirm that
if series (13) is convergent, then series (14) and consequently series (12) are as
well. The converse is not true, and it can turn out that although series (12) remains
convergent, series (13) is divergent. Thus, for example, if we take

ρn =
1

n+1
and θn =

(
n+

1
2

)
π,

then we get for series (12) and (13) the two following ones:
√
−1, − 1

2

√
−1, + 1

3

√
−1, − 1

4

√
−1, . . . ,

1, 1
2 , 1

3 , 1
4 , . . . ,

where the second is divergent, while the first remains convergent and has for its sum
√
−1 ln2,

where ln denotes the characteristic of Napierian logarithms.

Scholium II. — Whenever the ratio

ρn+1

ρn

indefinitely approaches a fixed limit for increasing values of n, this limit is the same
[237] as the limit towards which the largest values of the expression (ρn)

1
n converge.

Theorem V of § III (Chapter VI) is evidently applicable to imaginary series as
well as to real series. As for theorem VI of the same section, when it is a question
of imaginary series, we ought to replace it with the following:

Theorem III. — Let{
u0, u1, u2, . . . , un, . . . ,

v0, v1, v2, . . . , vn, . . .
(15)

be two convergent imaginary series that have s and s′, respectively, as their sums. If
each of these series remains convergent when we reduce its terms to their respective
moduli, then {

u0v0, u0v1 +u1v0, u0v2 +u1v1 +u2v0, . . . ,

. . . , u0vn +u1vn−1 + . . .+un−1v1 +unv0, . . .
(16)
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is a new convergent imaginary series that has ss′ as its sum.

Proof. – Denote, respectively, by sn and s′n the sums of the first n terms of the two
series (15), and by s′′n the sum of the first n terms of series (16). We find that

sns′n− s′′n = un−1vn−1 +(un−1vn−2 +un−2vn−1)+ . . .

+(un−1v1 +un−2v2 + . . .+unvn−2 +u1vn−1) .

Again denote by ρn and ρ ′n the moduli of the imaginary expressions un and vn, so
that these expressions are determined by equations of the form

un = ρn
(
cosθn +

√
−1sinθn

)
and

vn = ρ ′n
(
cosθ ′n +

√
−1sinθ ′n

)
.

Because the real series

ρ0, ρ1, ρ2, . . . , ρn, . . . and

ρ ′0, ρ ′1, ρ ′2, . . . , ρ ′n, . . .

[238] are convergent by hypothesis, we conclude, as in Chapter VI (§ III, theorem
VI) that the sum

ρn−1ρ ′n−1 +
(
ρn−1ρ ′n−2 +ρn−2ρ ′n−1

)
+ . . .

+
(
ρn−1ρ ′1 +ρn−2ρ ′2 + . . .+ρ2ρ ′n−2 +ρ1ρ ′n−1

)
converges towards the limit zero for increasing values of n. It is the same, a fortiori,
for the two sums

ρn−1ρ ′n−1 cos
(
θn−1 +θ ′n−1

)
+
[
ρn−1ρ ′n−2 cos

(
θn−1 +θ ′n−2

)
+ρn−2ρ ′n−1 cos

(
θn−2 +θ ′n−1

)]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+[ρn−1ρ ′1 cos(θn−1 +θ ′1)+ρn−2ρ ′2 cos(θn−2 +θ ′2)+ . . .

+ρ2ρ ′n−2 cos
(
θ2 +θ ′n−2

)
+ρ1ρ ′n−1 cos

(
θ1 +θ ′n−1

)]
and

ρn−1ρ ′n−1 sin
(
θn−1 +θ ′n−1

)
+
[
ρn−1ρ ′n−2 sin

(
θn−1 +θ ′n−2

)
+ρn−2ρ ′n−1 sin

(
θn−2 +θ ′n−1

)]
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+[ρn−1ρ ′1 sin(θn−1 +θ ′1)+ρn−2ρ ′2 sin(θn−2 +θ ′2)+ . . .

+ρ2ρ ′n−2 sin
(
θ2 +θ ′n−2

)
+ρ1ρ ′n−1 sin

(
θ1 +θ ′n−1

)]
,

where the first series evidently represents the real part of the imaginary expression

sns′n− s′′n ,
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while the second series represents the coefficient of
√
−1 in this expression. Con-

sequently, sns′n− s′′n also converges towards the limit zero for increasing values of n.
Because sns′n indefinitely approaches the limit ss′, it is certainly necessary that the
expression s′′n , that is to say the sum of the first n terms of series (16), itself indefi-
nitely approaches this last limit. It follows that: 1◦ series (16) is convergent; and 2◦

that this convergent series has as its sum ss′.

9.2 On imaginary series ordered according to the ascending
integer powers of a single variable.

[239] Let x be an imaginary variable. Any imaginary series ordered according to the
ascending integer powers of the variable x is of the form

a0 +b0
√
−1,

(
a1 +b1

√
−1
)

x,
(
a2 +b2

√
−1
)

x2, . . . ,

. . . ,
(
an +bn

√
−1
)

xn, . . . ,

where a0, a1, a2, . . ., an, . . . and b0, b1, b2, . . ., bn, . . . denote two sequences of
constant quantities. In the case where the constants in the second sequence vanish,
the preceding series reduces to

a0, a1x, a2x2, . . . , anxn, . . . .(1)

In this section, we consider in particular series of this last kind. If, for simplicity, we
put

x = z
(

cosθ +
√
−1sinθ

)
,(2)

where z denotes a real variable and θ denotes a real arc, then series (1) becomes{
a0, a1z(cosθ +

√
−1sinθ), a2z2(cos2θ +

√
−1sin2θ), . . . ,

. . . , anzn(cosnθ +
√
−1sinnθ), . . . .

(3)

Now, as in Chapter VI (§ IV), let A be the largest of the limits towards which the
nth root of the numerical value of an converges as n increases indefinitely. Under the
same hypothesis, the largest of the limits towards which the nth root of the modulus
of the imaginary expression

anxn = anzn
(

cosnθ +
√
−1sinnθ

)
converges is equivalent to the numerical value of the product

Az.
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Consequently (see above, § I, theorem II), series (3) is [240] convergent or divergent
according to whether the product Az has a value less than or greater than 1. We
deduce the following proposition immediately from this remark:

Theorem I. — Series (3) is convergent for all values of z contained between the
limits

z =− 1
A

and z = +
1
A

,

and divergent for all values of z located outside these same limits. In other words,
series (1) is convergent or divergent depending on whether the modulus of the imag-
inary expression x is less than or greater than 1

A .

Scholium. — When the numerical value of the ratio an+1
an

converges to a fixed limit
for increasing values of n, this limit is precisely the value of the positive quantity
denoted by A.

Corollary I. — In comparing the preceding theorem to theorem I of Chapter
VI (§ IV), we recognize that if series (1) is convergent for a certain real value of the
variable x, it remains convergent for every imaginary value that has this real value as
its modulus, up to sign. Consequently, if series (1) is convergent for all real values of
the variable x, it remains convergent for whatever imaginary value we may attribute
to this variable.

Corollary II. — To apply theorem I and the preceding corollary, consider the
following four series:

(4) 1, x, x2, . . . , xn, . . . ,

(5) 1, µ

1 x, µ(µ−1)
1·2 x2, . . . , µ(µ−1)...(µ−n+1)

1·2·3...n xn, . . . ,

(6) 1,
x
1
,

x2

1 ·2
, . . . ,

xn

1 ·2 ·3 . . .n
, . . . ,

(7) x, −x2

2
, . . . , ±xn

n
, . . . ,

[241] where in the second series µ denotes any quantity whatsoever. Of these four
series, the first two, as well as the last, remain convergent for all real values of x
contained between the limits

x =−1 and x = +1,

and the third remains convergent for all real values of the variable x. However, in-
stead of giving x a real value, if we suppose that

x = z
(

cosθ +
√
−1sinθ

)
,
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then instead of these four series, we get the following ones:{
1, z(cosθ +

√
−1sinθ), z2(cos2θ +

√
−1sin2θ), . . . ,

. . . , zn(cosnθ +
√
−1sinnθ), . . . ;

(8) 
1, µ

1 z(cosθ +
√
−1sinθ),

µ(µ−1)
1·2 z2(cos2θ +

√
−1sin2θ), . . . ,

µ(µ−1)...(µ−n+1)
1·2·3...n zn(cosnθ +

√
−1sinnθ), . . . ;

(9)


1,

z(cosθ +
√
−1sinθ)

1
,

z2(cos2θ +
√
−1sin2θ)

1 ·2
, . . . ,

. . . ,
zn(cosnθ +

√
−1sinnθ)

1 ·2 ·3 . . .n
, . . . ; and

(10)


z(cosθ +

√
−1sinθ)

1
, − z2(cos2θ +

√
−1sin2θ)

2
, . . . ,

. . . , ± zn(cosnθ +
√
−1sinnθ)

n
, . . . ,

(11)

where the first two and the last one remain convergent for all values of z contained
between the limits

z =−1 and z = +1,

while the remaining one is always convergent, whatever the real value of z may be.
Having fixed the limits between which z must be contained in order to render

series (3) convergent, we make the remark that, by virtue [242] of the principles
established in the preceding section, theorems III, IV and V of Chapter VI (§ IV),
with their corollaries, can be extended to the case where the variable x becomes
imaginary. We need only assume that in the statement of theorem IV, each of the
series

a0, a1x, a2x2, . . . and

b0, b1x, b2x2, . . .

remains convergent when we reduce the terms not just to their numerical values but
to their respective moduli. Given this, if we denote by ϖ (µ) what the right-hand
side of equation (15) (Chapter VI § IV) becomes when we give to x the imaginary
value

z
(

cosθ +
√
−1sinθ

)
,

or in other words, if we make

ϖ(µ) = 1 +
µ

1
z
(

cosθ +
√
−1sinθ

)
(12)

+
µ(µ −1)

1 ·2
z2
(

cos2θ +
√
−1sin2θ

)
+ . . . ,

we find, in place of formula (16) (Chapter VI, § IV), the following:
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ϖ (µ)ϖ
(
µ
′)= ϖ

(
µ + µ

′) .(13)

It is essential to remark that this last formula remains true only for values of z con-
tained between the limits z = −1 and z = +1, and that between these limits, the
imaginary function ϖ (µ), that is to say the sum of series (9), is at the same time
continuous with respect to z and with respect to µ (see above, § I, theorem I).

Imagine for the time being that instead of series (9) we consider more generally
series (3), and that in this last series we make the value of z vary by insensible
degrees. As long as series (3) is convergent, that is to say as long as the value of z
remains contained between the limits

− 1
A

and +
1
A

,

the sum of the series is a continuous imaginary function of the [243] variable z. Let
ϖ (z) be this continuous function. The equation

ϖ (z) = a0 +a1z
(

cosθ +
√
−1sinθ

)
+a2z2

(
cos2θ +

√
−1sin2θ

)
+ . . .

remains true for all values of z contained between the limits − 1
A and + 1

A , which we
indicate by writing these limits beside the series,4 as we see here:{

ϖ (z) = a0 +a1z
(
cosθ +

√
−1sinθ

)
+a2z2

(
cos2θ +

√
−1sin2θ

)
+ . . .(

z =− 1
A , z = + 1

A

)
.

(14)

We ought to observe that the preceding equation is always equivalent to two real
equations. Indeed, if we set

ϖ (z) = ϕ (z)+ χ (z)
√
−1,(15)

where ϕ (z) and χ (z) denote two real functions, we get from equation (14) that{
ϕ (z) = a0+ a1zcosθ +a2z2 cos2θ + . . . ,

χ (z) = a1zsinθ +a2z2 sin2θ + . . .(
z =− 1

A , z = + 1
A

)
.

(16)

When series (3) is given, we can sometimes deduce the value of the function
ϖ (x) in a finite form, and to do this is called summing the series. In § I, we have
already resolved this question for series (8). We will now try to resolve it for series
(9), (10) and (11), and as a consequence, we will treat the three problems that follow,
one after another.

4 In [Cauchy 1821, p. 290 ff], the limits really are written beside the series. However, in [Cauchy
1897, p. 243 ff], they are written below. (tr.)
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Problem I. — To find the sum of the series

1, µ

1 z(cosθ +
√
−1sinθ), µ(µ−1)

1·2 z2(cos2θ +
√
−1sin2θ), . . . ,(9)

in the case where we attribute to the variable z a value contained between the limits

z =−1 and z = +1.

[244] Solution. — Let ϖ (µ) be the sum being sought. Let µ ′ denote a real quan-
tity different from µ . We find

ϖ (µ)ϖ
(
µ
′)= ϖ

(
µ + µ

′) .(13)

The preceding equation, being similar to equation (2) of Chapter VIII (§ V), is
solved in the same manner, and we thus conclude that

ϖ (µ) = rµ

(
cos µt +

√
−1sin µt

)
,

where the modulus r and the angle t are two quantities constant with respect to
µ , but which necessarily depend on z and θ . Thus, between the limits z = −1 and
z = +1, we have{

1+ µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

= rµ
(
cos µt +

√
−1sin µt

)
.

(17)

To determine the unknown values of r and t, we set µ = 1 in equation (17), and then
we get

1+ zcosθ + zsinθ
√
−1 = r cos t + r sin t

√
−1,

or what amounts to the same thing,

1+ zcosθ = r cos t

zsinθ = r sin t.

Consequently we find

r =
(
1+2zcosθ + z2) 1

2 .

Then, by observing that cos t = 1+zcosθ

r remains postive for every numerical value
of z less than 1, and denoting by k any integer number, we also find

t = arctan
zsinθ

1+ zcosθ
±2kπ.

Given this, if for brevity we make

s = arctan
zsinθ

1+ zcosθ
,(18)
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[245] then equation (17) becomes1 + µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

=
(
1+2zcosθ + z2

) 1
2 µ (cos µt +

√
−1sin µt

)
(z =−1, z = +1) ,

(19)

where the value of t is determined by the formula

t = s±2kπ,(20)

in which the integer number k depends only on the quantities z and θ .
We remark now that, between the limits z =−1 and z = +1, the left-hand side of

equation (19) is a continuous function of z that varies with z by insensible degrees,
whatever the value of µ . The right-hand side of the equation thus ought to enjoy the
same property. In other words, the quantities(

1+2zcosθ + z2
) µ

2 cos µt, and(
1+2zcosθ + z2

) µ

2 sin µt,

and consequently
cos µt and sin µt

ought to vary with z by insensible degrees for all possible values of µ . Now, this
condition cannot be satisfied except in the case where t itself varies with z by insen-
sible degrees. Indeed, if an infinitely small increase in z produces a finite increase in
t in such a way as to change t into t +a, where a denotes a finite quantity, the sines
and cosines of the two arcs

µt and µ (t +a)

could not remain sensibly equal, except when the numerical value of the product µa
is very close to a multiple of the [246] circumference, which cannot be true except
for particular values of the coefficient µ , and not generally for any finite values of
this coefficient. Thus we must conclude that the arc t = s± 2kπ is a continuous
function of z. Because the first of the two quantities s and k, determined by equation
(18), varies with z in a continuous way between the limits z =−1 and z = +1, while
the second, which must always be an integer, admits only finite variations that are
multiples of 1, it is clear that to satisfy the stated condition, the quantity s must be
the only one to vary and the quantity k must remain constant. Thus this last quantity
is independent of z, and to know its value in all possible cases, it suffices to find it by
supposing that z = 0. Because under this hypothesis, we have s = 0 and t = s±2kπ ,
we get

1 = cos(2kµπ)±
√
−1sin(2kµπ)

from equation (19), whatever the value of µ may be. Consequently
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k = 0.

Given this, in general, formula (20) gives

t = s,

and equation (19) is found to reduce to1 + µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

=
(
1+2zcosθ + z2

) 1
2 µ (cos µs+

√
−1sin µs

)
(z =−1, z = +1) .

(21)

Moreover, if we consider formula (27) of Chapter VII (§ IV), we easily recognize
that the right-hand side of equation (21) can be represented by the notation[

1+ z
(

cosθ +
√
−1sinθ

)]µ

.

Thus, always supposing that the value of z is contained between the [247] limits +1
and −1, we have{

1 + µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

=
[
1+ z

(
cosθ +

√
−1sinθ

)]µ

(z =−1, z = +1) .

(22)

In other words, equation (20) of Chapter VI (§ IV), namely

1+
µ

1
x+

µ (µ −1)
1 ·2

x2 + . . . = (1+ x)µ ,

remains true not only if we attribute to the variable x real values contained between
the limits −1 and +1 but also if we let

x = z
(

cosθ +
√
−1sinθ

)
,

the numerical value of z being less than 1.

Corollary I. — Formula (21), as with all imaginary equations, is equivalent to
two real equations, which we obtain by equating on both sides the real parts and the
coefficients of

√
−1. In this way we find1+ µ

1 zcosθ + µ(µ−1)
1·2 z2 cos2θ + . . . =

(
1+2zcosθ + z2

) 1
2 µ cos µs,

µ

1 zsinθ + µ(µ−1)
1·2 z2 sin2θ + . . . =

(
1+2zcosθ + z2

) 1
2 µ sin µs

(z =−1, z = +1) ,

(23)
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where the value of s is still determined by equation (18).

Corollary II. — If in formulas (22) and (23) we set µ = −1, and if we then
replace z by −z, we get equations (8) and (10) of § I.

Corollary III. — If we set θ = π

2 , or what amounts to the same thing,

cosθ = 0 and sinθ = 1,

[248] the value of s given by formula (18) becomes

s = arctanz,

and remains contained between the limits −π

4 and +π

4 for any numerical value of z
less than 1. Under the same hypothesis, we evidently have

z = tans = sins
coss and(

1+2zcosθ + z2
) µ

2 = (secs)µ = 1
(coss)µ ,

and we get from equations (23), but only for values between the given limits, that

cos µs = cosµ s− µ(µ−1)
1·2 cosµ−2 ssin2 s

+ µ(µ−1)(µ−2)(µ−3)
1·2·3·4 cosµ−4 sin4 s− . . . ,

sin µs = µ

1 cosµ−1 ssins

− µ(µ−1)(µ−2)
1·2·3 cosµ−3 ssin3 s+ . . .(

s =−π

4 , s = +π

4

)
.

(24)

Consequently, if in formulas (12) of Chapter VII (§ II), we replace the integer num-
ber m by any quantity µ , these formulas, which held for all possible real values of
the arc z, are not generally true except for numerical values of this arc less than π

4 .

Problem II. — To find the sum of the series

1,
z
1

(
cosθ +

√
−1sinθ

)
,

z2

1 ·2

(
cos2θ +

√
−1sin2θ

)
, . . . ,(10)

whatever the numerical value of z might be.

Solution. — If in equations (18) and (21), we replace z by αz and µ by 1
α

, where
α denotes an infinitely small quantity, we find that [249] for all values of αz con-
tained between the limits −1 and +1, or what amounts to the same thing, for all
values of z contained between the limits − 1

α
and + 1

α
,
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1+ z
1

(
cosθ +

√
−1sinθ

)
+ z2

1·2
(
cos2θ +

√
−1sin2θ

)
(1−α)

+ z3

1·2·3
(
cos3θ +

√
−1sin3θ

)
(1−α)(1−2α)+ . . .

=
(
1+2αzcosθ +α2z2

) 1
2α
(
cos s

α
+
√
−1sin s

α

)(
z =− 1

α
, z = + 1

α

)
,

(25)

where the arc s is determined by the formula

s = arctan
αzsinθ

1+αzcosθ
.(26)

Now if we let the numerical value of α in equation (25) decrease indefinitely, then
by passing to the limit we find

1+ z
1

(
cosθ +

√
−1sinθ

)
+ z2

1·2
(
cos2θ +

√
−1sin2θ

)
+ z3

1·2·3
(
cos3θ +

√
−1sin3θ

)
+ . . .

= lim
[(

1+2αzcosθ +α2z2
) 1

2α
(
cos s

α
+
√
−1sin s

α

)]
(z =−∞, z = +∞) .

(27)

It remains to find the limit of the product(
1+2αzcosθ +α

2z2) 1
2α

(
cos

s
α

+
√
−1sin

s
α

)
,

and consequently, the limits of each of the quantities(
1+2αzcosθ +α

2z2) 1
2α and

s
α

.

Now, in the first place, if we make

2αzcosθ +α
2z2 = β ,

[250] we conclude that5

(
1+2αzcosθ +α

2z2) 1
2α = (1+β )

zcosθ+ αz2
2

β

and consequently

5 In [Cauchy 1897, p. 250] the numerator of the exponent on the right-hand side reads scosθ + αs2

2 .
In [Cauchy 1821, p. 299] the numerator is given correctly, with z in place of s. (tr.)
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lim
(
1+2αzcosθ +α

2z2) 1
2α =

[
lim(1+β )

1
β

]lim
(

zcosθ+ αz2
2

)

= ezcosθ .

Moreover, because the value of s given by equation (26) is infinitely small, the ratio

s
tans

=
1

sins
s

coss

has 1 as its limit. Also, we get from equation (26) that

tans
α

=
zsinθ

1+αzcosθ
and

s
α

=
s

tans
zsinθ

1+αzcosθ
.

Thus we find, by passing to the limit, that

lim
( s

α

)
= zsinθ .

Given this, it is clear that the right-hand side of equation (25) has as its limit the
imaginary expression

ezcosθ

[
cos(zsinθ)+

√
−1sin(zsinθ)

]
,

so that formula (27) becomes{
1+ z

1

(
cosθ +

√
−1sinθ

)
+ z2

1·2
(
cos2θ +

√
−1sin2θ

)
+ . . .

= ezcosθ
[
cos(zsinθ)+

√
−1sin(zsinθ)

]
(z =−∞, z = +∞) .

(28)

The value of the real variable z is completely arbitrary because it can be chosen at
will between the extreme values z =−∞ and z = +∞.

[251] Corollary I. — If, in comparing the two sides of equation (28), we equate:
1◦ the real parts; and 2◦ the coefficients of

√
−1, we obtain the two real equations{

1+ z
1 cosθ + z2

1·2 cos2θ + . . . = ezcosθ cos(zsinθ) ,
z
1 sinθ + z2

1·2 sin2θ + . . . = ezcosθ sin(zsinθ)

(z =−∞, z = +∞) .

(29)

Corollary II. — If we suppose that θ = π

2 , or what amounts to the same thing

cosθ = 0 and sinθ = 1,
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then equations (29) become{
1− z2

1·2 + z4

1·2·3·4 − . . . = cosz,
z
1 −

z3

1·2·3 + . . . = sinz
(30)

(z =−∞, z = +∞) .

These last equations, as well as equations (29), remain true for any real values of z,
and it follows that the functions sinz and cosz can always be expanded into series
ordered by the ascending powers of the variables they contain. As this proposition
is noteworthy, I will prove it here directly.

Because the series

1,
x
1
,

x2

1 ·2
, . . .

is convergent for all possible real values of the variable x, it remains convergent (by
virtue of theorem I, corollary I) for all imaginary values of the same variable. If we
multiply the sum of this series by the sum of [252] the similar series

1,
y
1
,

y2

1 ·2
, . . . ,

and we take into consideration both theorem II of § I and formula (6) of Chapter
VIII (§ IV), we find that for all possible values, real and imaginary, attributed to x
and y, 

(
1+ x

1 + x2

1·2 + . . .
)(

1+ y
1 + y2

1·2 + . . .
)

= 1+ x+y
1 + (x+y)2

1·2 + . . . .

(31)

In the preceding equation, when we replace x by x
√
−1 and y by y

√
−1, we obtain

the following 

(
1+ x

√
−1

1 − x2

1·2 −
x3√−1
1·2·3 + . . .

)
×
(

1+ y
√
−1
1 − y2

1·2 −
y3√−1
1·2·3 + . . .

)
= 1+ (x+y)

√
−1

1 − (x+y)2

1·2 − . . . ,

(32)

in which we may, if we wish, assume that the variables x and y are real. Under this
hypothesis, take

ϖ (x) = 1+
x
√
−1

1
− x2

1 ·2
− x3√−1

1 ·2 ·3
+ . . . .

Equation (32) becomes
ϖ (x)ϖ (y) = ϖ (x+ y) ,

and we conclude that (see Chapter VIII, § V, equation (12))
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ϖ (x) = Ax
(

cosbx+
√
−1sinbx

)
,

or what amounts to the same thing,{
1+ x

√
−1

1 − x2

1·2 −
x3√−1
1·2·3 + x4

1·2·3·4 + . . .

= Ax
(
cosbx+

√
−1sinbx

)(33)

(x =−∞, x = +∞) ,

[253] where the letters A and b denote two unknown constants, the first one of which
is necessarily positive. Consequently, we have{

1− x2

1·2 + x4

1·2·3·4 − . . . = Ax cosbx,
x
1 −

x3

1·2·3 + . . . = Ax sinbx
(34)

(x =−∞, x = +∞) .

To determine the unknown constants A and b, it suffices to observe: 1◦ that formulas
(34) must remain true when we change x to −x, and that to fulfill this condition it is
necessary to suppose that

Ax = A−x,

and consequently
A = 1;

and 2◦ to observe that if we divide both sides of the second of formulas (34) by x,
and then we let the variable x converge towards the limit zero, then the left-hand
side converges towards the limit 1, and the right-hand side, namely

Ax sinbx
x

= Ax sinbx
bx

×b,

converges towards the limit b. From this it follows that

b = 1.

Given this, formulas (33) and (34) become, respectively,{
1+ x

√
−1

1 − x2

1·2 −
x3√−1
1·2·3 + x4

1·2·3·4 + . . .

= cosx+
√
−1sinx

(35)

(x =−∞, x = +∞)

and6

6 The denominator of the x2 term is incorrectly given as 1 instead of 1 ·2 in [Cauchy 1821, p. 304,
Cauchy 1897, p. 253]. (tr.)
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1− x2

1·2 + x4

1·2·3·4 − . . . = cosx,
x
1 −

x3

1·2·3 + . . . = sinx
(36)

(x =−∞, x = +∞) .

[254] If in these last two formulas we replace the variable x with the variable z, we
rediscover formulas (30).

It is essential to observe that when we suppose that x = zsinθ , equation (35)
gives the expansion of

cos(zsinθ)+
√
−1sin(zsinθ)

according to the ascending powers of z. If we multiply this expansion by that of

ezcosθ ,

and take into consideration formula (31), which remains true for all values, real and
imaginary, of the variables it contains, then we get precisely equation (28).

Problem III. — To find the sum of the series{
z
1

(
cosθ +

√
−1sinθ

)
− z2

2

(
cos2θ +

√
−1sin2θ

)
+ z3

3

(
cos3θ +

√
−1sin3θ

)
− . . .

(11)

in the case where we attribute to the variable z a value contained between the limits

z =−1 and z = +1.

Solution. — If we use the notation ln for the characteristic of the Napierian log-
arithms, then we have(

1+2zcosθ + z2) 1
2 µ

= e
1
2 µ ln(1+2zcosθ+z2),

and consequently equation (21) can be put into the form

1+ µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

= e
1
2 µ ln(1+2zcosθ+z2) (cos µs+

√
−1sin µs

)
(z =−1, z = +1) ,

[255] where the value of s is still given by formula (18). If we expand the two fac-
tors of the right-hand side of the preceding equation into convergent series ordered
according to the ascending powers of µ , then, if we form the product of these two
expansions with the aid of formula (31), we find
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1+ µ

1 z
(
cosθ +

√
−1sinθ

)
+ µ(µ−1)

1·2 z2
(
cos2θ +

√
−1sin2θ

)
+ . . .

= 1+ µ

1

[ 1
2 ln
(
1+2zcosθ + z2

)
+ s

√
−1
]

+ µ2

1·2
[ 1

2 ln
(
1+2zcosθ + z2

)
+ s

√
−1
]2 + . . .

(z =−1, z = +1) .

Finally, after subtracting 1 from both sides, then dividing them by µ , if we let µ

converge towards the limit zero, we obtain the equation{
z
1

(
cosθ +

√
−1sinθ

)
− z2

2

(
cos2θ +

√
−1sin2θ

)
+ . . .

= 1
2 ln
(
1+2zcosθ + z2

)
+ s

√
−1

(37)

(z =−1, z = +1) .

Corollary I. — If in the two sides of equation (37), we equate: 1◦ the real parts;
and 2◦ the coefficients of

√
−1, then if we substitute for s its value determined by

formula (18), we obtain the two real equations{
z
1 cosθ − z2

2 cos2θ + z3

3 cos3θ − . . . = 1
2 ln
(
1+2zcosθ + z2

)
,

z
1 sinθ − z2

2 sin2θ + z3

3 sin3θ − . . . = arctan zsinθ

1+zcosθ

(38)

(z =−1, z = +1) .

[256] Corollary II. — If we suppose that θ = π

2 , or what amounts to the same
thing,

cosθ = 0 and sinθ = 1,

the second of equations (38) becomes

z− z3

3
+

z5

5
− . . . = arctanz (z =−1, z = +1) .(39)

The series that forms the left-hand side of this last equation is convergent, not only
for any numerical value of z less than 1, but also when we suppose that z = 1 (see
Chapter VI, § III, theorem III), and as a result the equation remains true in this last
hypothesis. Moreover, because we have

arctan(1) =
π

4
,

we conclude that
1− 1

3
+

1
5
− . . . =

π

4
.(40)

Formula (40)7 can be used to calculate an approximation of the value of π , that is to
say the ratio if the circumference to the diameter.

7 This series was originally discovered independently by James Gregory (1638–1675) and Got-
tfried Wilhelm von Leibniz (1646–1716).
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9.3 Notations used to represent various imaginary functions
which arise from the summation of convergent series.
Properties of these same functions.

Consider the six notations

Ax, sinx, cosx,

logx, arcsinx and arccosx.

As we know, if we give the variable x a real value, these six notations represent as
many real functions of x, which, taken two by two, are inverses of each other, that is
to say [257] given by inverse operations, provided, however, that, where A denotes
a number, log expresses the characteristic of the logarithms in the system for which
the base is A. It remains to clarify the sense of these same notations in the case
where the variable x becomes imaginary. We will do this here, starting with the first
three.

We have proved that in the case where the variable x is taken to be real, the three
functions represented by

Ax, sinx and cosx

can always be expanded into series ordered according to the ascending integer pow-
ers of this variable. Indeed, under this hypothesis we have

Ax = 1+ x lnA
1 + x2(lnA)2

1·2 + x3(lnA)3

1·2·3 + . . . ,

cosx = 1− x2

1·2 + x4

1·2·3·4 − . . . ,

sinx = x
1 −

x3

1·2·3 + . . . ,

(1)

where the characteristic ln denotes a Napierian logarithm. Moreover (by virtue of
theorem I, corollary I, § II), the above series remain convergent for all values, real
and imaginary, of the variable x, so we agree to extend equations (1) to all possible
cases and to consider them as clarifying the meanings of the three notations

Ax, sinx and cosx,

even when the variable becomes imaginary.
Now we observe that if we make

A = e

in the first of equations (1), where e denotes the base of the Napierian logarithms,
then we find that

ex = 1+
x
1

+
x2

1 ·2
+ . . . .(2)

[258] Then in place of x, we can successively write x lnA, x
√
−1 and −x

√
−1 to get
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ex lnA = 1+ x lnA

1 + x2(lnA)2

1·2 + x3(lnA)3

1·2·3 + . . . ,

ex
√
−1 = 1+ x

1

√
−1− x2

1·2 −
x3

1·2·3
√
−1+ . . . ,

e−x
√
−1 = 1− x

1

√
−1− x2

1·2 + x3

1·2·3
√
−1+ . . . .

(3)

As a consequence we have8
ex lnA = Ax,

ex
√
−1 = cosx+

√
−1sinx,

e−x
√
−1 = cosx−

√
−1sinx,

(4)

where the variable x may be either real or imaginary. Moreover, whatever x and y
may be, equation (31) (§ II) gives

exey = ex+y.(5)

Given this, it becomes easy to find in finite form the values of Ax, sinx and cosx
corresponding to the imaginary values of the variable x. Indeed, if we suppose that

x = α +β
√
−1,(6)

where α and β represent real quantities, then we conclude from the first two of
equations (4) together with equation (5) that{

Ax = ex lnA = e(α+β
√
−1) lnA = eα lnAeβ ln(A)

√
−1

= Aα
(
cosβ lnA+

√
−1sinβ lnA

)
.

(7)

From the last two of equations (4), we conclude that
cosx =

ex
√
−1 + e−x

√
−1

2
,

sinx =
ex
√
−1− e−x

√
−1

2
√
−1

.

(8)

Then, by substituting the value α +β
√
−1 for x and expanding the [259] right-hand

sides, we get 
cosx = eβ +e−β

2 cosα − eβ−e−β

2 sinα
√
−1,

sinx = eβ +e−β

2 sinα + eβ−e−β

2 cosα
√
−1

= cos
(

π

2 −α −β
√
−1
)
.

(9)

And so, under the given hypotheses, the three notations

8 The second of formulas (4) is Euler’s Identity, extended to complex numbers.



204 9 On convergent and divergent imaginary series.

Ax, sinx and cosx,

respectively, denote the three imaginary expressions

Aα
(
cos lnA+

√
−1sin lnA

)
,

eβ +e−β

2 sinα + eβ−e−β

2 cosα
√
−1 and

eβ +e−β

2 cosα − eβ−e−β

2 sinα
√
−1.

Under the same hypothesis, if we make

A = e

then equation (7) gives the following value

eα

(
cosβ +

√
−1sinβ

)
for the notation

ex.

Now that we have determined the values of the three functions

Ax, sinx and cosx

in the case where the variable x becomes imaginary, we still have to look for which
definitions to give in the same case for the inverse functions

logx, arcsinx and arccosx,

[260] or more generally, what meaning to give to the notations

log((x)) , arcsin((x)) and arccos((x)) .

We continue to suppose that

x = α +β
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,

where α and β denote two real quantities which can be replaced by the modulus ρ

and the real arc θ . Every imaginary expression u+
√
−1v that satisfies the equation

Au+v
√
−1 = α +β

√
−1 = x(10)

is what we call an imaginary logarithm of x taken in the system where the base
is A. As we will see below, equation (10) gives several values of u + v

√
−1, even

in the case where β is zero. It follows that any expression, imaginary or real, has
several imaginary logarithms. Whenever we wish to designate indistinctly any one
of these logarithms (among which we ought to include the real one, if there is one),
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we use the characteristic log or ln followed by double parentheses, taking care to
state the base of the system in the narrative. We prefer to use the characteristic ln
when it is a question of Napierian logarithms taken in the system for which the base
is e. By virtue of these conventions, the various logarithms of the real and imaginary
quantities

1, −1, α +β
√
−1 and x

are respectively denoted, in the system for which the base is A by

log((1)) , log((−1)) , log
((

α +β
√
−1
))

and log((x)) ,

and in the Napierian system for which the base is e by

ln((1)) , ln((−1)) , ln
((

α +β
√
−1
))

and ln((x)) .

Given this, to determine these various logarithms it suffices to solve the following
problems.9

[261] Problem I. — To find the various values, real and imaginary, of the ex-
pression

ln((1)) .

Solution. — Let u+v
√
−1 be one of these values, where u and v denote two real

quantities. From the definition itself of the expression ln((1)), we have

eu+v
√
−1 = 1,(11)

or what amounts to the same thing,

eu
(

cosv+
√
−1sinv

)
= 1.

From this last equation we get

eu = 1 and

cosv+
√
−1sinv = 1,

and consequently

u = 0,

cosv = 1, sinv = 0 and v =±2kπ,

where k represents any integer number. With the quantities u and v determined in
this way, the various values of u + v

√
−1 satisfying equation (11) are evidently

contained in the formula

9 Euler was the first to resolve these problems; see [Euler 1751].
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u+ v
√
−1 =±2kπ

√
−1.

In other words, the various values of ln((1)) are given by the equation

ln((1)) =±2kπ
√
−1.(12)

Only one of these values is real, namely the one that we obtain by setting k = 0,
which reduces the value itself to zero. To represent this real value, we commonly
use the simple notation

ln(1) or ln1.

There are evidently an infinite number of imaginary values of ln((1)).

[262] Problem II. — To find the various values of the expression

ln((−1)) .

Solution. — Let u+v
√
−1 be one of these values, where u and v denote two real

quantities. From the definition itself of the expression ln((−1)), we have

eu+v
√
−1 =−1,(13)

or what amounts to the same thing,

eu
(

cosv+
√
−1sinv

)
=−1.

From this last equation we get

eu = 1 and

cosv+
√
−1sinv =−1,

and consequently

u = 0,

cosv =−1, sinv = 0 and v =±(2k +1)π,

where k represents any integer number. With the quantities u and v determined in
this way, the various values of u + v

√
−1 satisfying equation (13) are evidently

contained in the formula

u+ v
√
−1 =±(2k +1)π

√
−1.

In other words, the various values of ln((−1)) are given by the equation

ln((−1)) =±(2k +1)π
√
−1.(14)

Consequently, there are infinitely many such values and they are all imaginary.
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Problem III. — To find the various values of the expression

ln
((

α +β
√
−1
))

.

Solution. — Let u+v
√
−1 be one of these values. From the [263] definition itself

of the expression ln
((

α +β
√
−1
))

we have

eu+v
√
−1 = α +β

√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,(15)

or what amounts to the same thing,

eu
(

cosv+
√
−1sinv

)
= ρ

(
cosθ +

√
−1sinθ

)
,

where ρ denotes the modulus of α +β
√
−1. From the preceding equation, we get

eu = ρ and

cosv+
√
−1sinv = cosθ +

√
−1sinθ ,

and consequently,

u = ln(ρ) ,

cosv = cosθ , sinv = sinθ and v = θ ±2kπ,

where k represents any integer number. With the quantities u and v determined in
this way, the various values of u+ v

√
−1 are contained in the formula

u+ v
√
−1 = ln(ρ)+θ

√
−1±2kπ

√
−1.

In other words, the various values of

ln
((

α +β
√
−1
))

are given by the equation

ln
((

α +β
√
−1
))

= ln(ρ)+θ
√
−1+ ln((1)) .(16)

It is worth observing that in this last equation, the value of ρ is completely deter-
mined and is equal to √

α2 +β 2,

while θ can be any arc which has α√
α2+β 2

as its cosine and β√
α2+β 2

as its sine.

[264] Corollary I. — If we make
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ζ = arctan
β

α
(17)

for greater convenience, then it is easy to substutute the arc ζ in place of the arc θ

in formula (16). Indeed, we may suppose that

θ = ζ

if α is positive, and
θ = ζ +π

if α is negative. In the first case, we find that

ln
((

α +β
√
−1
))

= ln(ρ)+ζ
√
−1+ ln((1)) ,(18)

and in the second case that

ln
((

α +β
√
−1
))

= ln(ρ)+ζ
√
−1+π

√
−1+ ln((1)) .(19)

In particular, if in this last equation we make

α +β
√
−1 =−1,

that is to say
α =−1 and β = 0,

and consequently
ρ = 1 and ζ = 0,

we obtain
ln((−1)) = π

√
−1+ ln((1)) .(20)

In general, it follows that for negative values of α we have

ln
((

α +β
√
−1
))

= ln(ρ)+ζ
√
−1+ ln((−1)) .(21)

Now suppose that we substitute the values

(
α

2 +β
2) 1

2 and arctan
β

α

for ρ and ζ in formulas (18) and (21). We find for the various values of

ln
((

α +β
√
−1
))

:

[265] 1◦ if α is positive, that

ln
((

α +β
√
−1
))

=
1
2

ln
(
α

2 +β
2)+(arctan

β

α

)√
−1+ ln((1)) ;(22)
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and 2◦ if α is negative, that

ln
((

α +β
√
−1
))

=
1
2

ln
(
α

2 +β
2)+(arctan

β

α

)√
−1+ ln((−1)) .(23)

Corollary II. — If we suppose that β = 0 in equations (22) and (23), then for
positive values of α we have

ln((α)) = ln(α)+ ln((1)) = ln(α)±2kπ
√
−1,(24)

and for negative values of α we have

ln((α)) = ln(−α)+ ln((−1)) = ln(−α)± (2k +1)π
√
−1,(25)

where k as always is an integer number. It follows from these last formulas that a
real quantity α has an infinity of imaginary logarithms, among which, in the case
where α is positive, we find just one real logarithm. We obtain this real logarithm,
denoted by the simple notation ln(α) or lnα , by setting k = 0 in equation (24).

Scholium I. — Among the various values of ln((1)), as we have just remarked,
there is one that is equal to zero, and which we indicate by the notation ln(1) or
ln1, making use of the simple parentheses or suppressing them altogether. If we
substitute this particular value in equation (22), we obtain a corresponding value

ln
((

α +β
√
−1
))

,

which analogy leads us to indicate, with the aid of simple parentheses, by the nota-
tion

ln
(

α +β
√
−1
)

.

We will do so from now on. Consequently, supposing that α is positive, we have

ln
(

α +β
√
−1
)

=
1
2

ln
(
α

2 +β
2)+(arctan

β

α

)√
−1.(26)

[266] On the other hand, if α becomes negative, then −α is positive and we find
that

ln
(
−α −β

√
−1
)

=
1
2

ln
(
α

2 +β
2)+(arctan

−β

−α

)√
−1,

or what amounts to the same thing,

ln
(
−α −β

√
−1
)

=
1
2

ln
(
α

2 +β
2)+(arctan

β

α

)√
−1.(27)

By making use of the preceding notations, we can reduce equations (22) and (23) to
the following
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ln
((

α +β
√
−1
))

= ln
(

α +β
√
−1
)

+ ln((1)) and(28)

ln
((

α +β
√
−1
))

= ln
(
−α −β

√
−1
)

+ ln((−1)) ,(29)

where the first equation applies for positive values of α , while the second applies
for negative values of that quantity. In other words, depending on whether the real
part of an imaginary expression x is positive or negative, we have

ln((x)) = ln(x)+ ln((1))(30)

or else
ln((x)) = ln(−x)+ ln((−1)) .(31)

To summarize what we have just said, we see that the notation

ln(x)

has a precise meaning determined by equation (26) only in the first case, where the
real part of the imaginary expression x is positive, while in all possible cases the
notation

ln((x))

has infinitely many values determined by one of equations (28) or (29).

[267] Problem IV. — To find the various values of the expression

log
((

α +β
√
−1
))

,

where the characteristic log indicates a logarithm taken in the system where the
base is A.

Solution. — Let u+v
√
−1 still denote one of the values of the expression we are

considering. From the definition itself of this expression, we have

Au+v
√
−1 = α +β

√
−1,(32)

or what amounts to the same thing,

e(u+v
√
−1) lnA = α +β

√
−1,

where ln is the characteristic of the Napierian logarithms. Then we conclude that(
u+ v

√
−1
)

lnA = ln
((

α +β
√
−1
))

,

and consequently

u+ v
√
−1 =

ln
((

α +β
√
−1
))

lnA
,
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or in other words,

log
((

α +β
√
−1
))

=
ln
((

α +β
√
−1
))

lnA
.(33)

This last equation remains true in the case where β vanishes, that is to say when the
imaginary expression α +β

√
−1 reduces to a real quantity.

Scholium. — If we suppose that the quantity α is positive, then the particular
value of ln

((
α +β

√
−1
))

represented by ln
(
α +β

√
−1
)

corresponds to a partic-
ular value of log

((
α +β

√
−1
))

, which analogy leads us to indicate with the aid of
simple parentheses by the notation

log
(

α +β
√
−1
)

.

[268] Given this, for positive values of α we have
log
(
α +β

√
−1
)

=
ln
(
α +β

√
−1
)

lnA

= 1
2 log

(
α2 +β 2

)
+

arctan β

α

lnA

√
−1.

(34)

Moreover, if in equation (33) we substitute for ln
((

α +β
√
−1
))

its value given suc-
cessively in formulas (28) and (29), we find that for positive values of the quantity
α ,  log

((
α +β

√
−1
))

=
ln
(
α +β

√
−1
)

lnA
+

ln((1))
lnA

= log
(
α +β

√
−1
)
+ log((1)) ,

(35)

and for negative values of the same quantity,10 log
((

α +β
√
−1
))

=
ln
(
−α −β

√
−1
)

lnA
+

ln((−1))
lnA

= log
(
−α −β

√
−1
)
+ log((−1)) .

(36)

In other words, according to whether the real part of an imaginary expression x is
positive or negative, we have, respectively,

log((x)) = logx+ log((1)) = log(x)± 2kπ
√
−1

lnA
(37)

or else

log((x)) = log(−x)+ log((−1)) = log(−x)± (2k +1)π
√
−1

lnA
,(38)

10 In [Cauchy 1821, p. 323, Cauchy 1897, p. 268], single parentheses were used on the left-hand
side of equation (36). (tr.)
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where k denotes any integer number. We can add that of the two preceding formulas,
the first remains true for all positive real values of x and the second for all negative
real values of the same variable.

After having calculated the various logarithms of the imaginary expression

x = α +β
√
−1,

we propose to find the imaginary arcs for which the cosine is equal to x. If we denote
any one of these arcs by

arccos((x)) = u+ v
√
−1,

[269] then to determine u+ v
√
−1, we have the equation

cos
(

u+ v
√
−1
)

= α +β
√
−1,

or what amounts to the same thing,

ev + e−v

2
cosu− ev− e−v

2
sinu

√
−1 = α +β

√
−1.(39)

This separates into two other equations, namely

ev + e−v

2
cosu = α and

ev− e−v

2
sinu =−β .(40)

For these last two equations, we can substitute the equivalent system of two for-
mulas

ev =
α

cosu
− β

sinu
and e−v =

α

cosu
+

β

sinu
.(41)

Moreover, if we eliminate v from formulas (41), it follows that

α2

cos2 u
− β 2

sin2 u
= 1 and

sin4 u−
(
1−α2−β 2

)
sin2 u−β 2 = 0.

Then, by observing that sin2 u is necessarily a positive quantity, we have

sin2 u =
1−α2−β 2

2
+

√(
1−α2−β 2

2

)2

+β 2.

Consequently we have

cos2 u =
1+α2 +β 2

2
−

√(
1+α2 +β 2

2

)2

−α2
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=
α2

1+α2+β 2

2 +

√(
1+α2+β 2

2

)2
−α2

,

and because (by virtue of the first of equations (40)) cosu and α [270] must have
the same sign, we have, by extracting square roots,

cosu =
α[

1+α2+β 2

2 +

√(
1+α2+β 2

2

)2
−α2

] 1
2
.(42)

Given this, if for convenience we make
U = arccos α 1+α2+β2

2 +

√(
1+α2+β2

2

)2
−α2

 1
2

and

V = ln
(

α

cosU − β

sinU

)
,

(43)

we conclude from equations (41) and (42) that

u =±U ±2kπ and v =±V,(44)

where k denotes any integer number and the two letters U and V must have the same
sign. Thus, we finally have

arccos((x)) =±2kπ ±
(

U +V
√
−1
)

.(45)

Among the various values of arccos((x)) given by the preceding equation, the sim-
plest is the one obtained by setting k = 0 in the first term of the right-hand side, and
giving a + sign to the other term. We denote this particular value with the aid of
simple parentheses, and consequently we write

arccos(x) = U +V
√
−1,

or even, by suppressing the parentheses entirely,

arccosx = U +V
√
−1.(46)

In the particular case where β is zero, the quantity α remains contained between
the limits −1 and +1, and formula (46) reduces, as we [271] should expect, to the
identity

arccosα = arccosα.

On the other hand, if we note that ±2kπ represents any of the arcs that have 1 for
their cosines, we recognize that equation (45) can be put into the form
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arccos((x)) =±arccosx+ arccos((1)) .(47)

Yet, it is essential to remark that in the case where we suppose that β = 0 and the
numerical value of α is greater than 1, the expression

arccosα

always takes an imaginary value. This imaginary value is given by the equation

arccosα = ln(α)
√
−1(48)

if α is positive, and by

arccosα = π + ln(−α)
√
−1 =

[
ln(−α)−π

√
−1
]√

−1(49)

if α is negative.
Now consider the imaginary arcs for which the sine is x = α + β

√
−1. If we

denote any one of these arcs by

arcsin((x)) = u+ v
√
−1,

then by taking into consideration the second of equations (9), we find

x = sin
(

u+ v
√
−1
)

= cos
(

π

2
−u− v

√
−1
)

,

and we conclude

arcsin((x)) = u+ v
√
−1 =

π

2
arccos((x)) .(50)

In the previous formula, if we substitute the various values of arccos((x)), one of
which is distinguished by the notation arccos(x) or arccosx, we obtain the various
values of arcsin((x)), one of which [272] is distinguished by the notation arcsin(x)
or arcsinx, and determined by the equation

arcsinx =
π

2
− arccosx.(51)

With the aid of the principles that we have just established, it is easy to recognize
the most essential properties that are enjoyed by those functions of the imaginary
variable x represented by the notations

Ax, cosx, sinx,

logx, arccosx and arcsinx.

To obtain these properties, it suffices to extend the formulas that these functions
satisfy in the case where the variable x is real to the case where the variable becomes
imaginary. This extension is ordinarily carried out without difficulty for each of the
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three functions
Ax, cosx and sinx.

Thus, for example, if A, B, C, . . . denote several numbers, we can easily prove that
the equations {

AxAyAz . . . = Ax+y+z+...,

AxBxCx . . . = (ABC . . .)x(52)

and {
cos(x+ y) = cosxcosy− sinxsiny,

sin(x+ y) = sinxcosy+ sinycosx
(53)

remain equally true for any values, real or imaginary, of the variables x, y, z, . . .. But
if we consider formulas that involve the inverse functions

logx, arccosx or arcsinx,

we usually find that these formulas, extended to the case where the variables become
imaginary, remain true only with considerable restrictions, and only for certain val-
ues of the variables that they involve. For example, if we make

x = α +β
√
−1, y = α

′+β
′√−1, z = α

′′+β
′′√−1, . . . ,

[273] and if we denote by µ any real quantity, we recognize that the formula

log(x)+ log(y)+ log(z)+ . . . = log(xyz . . .)(54)

remains true only in the case where α , α ′, α ′′, . . . are positive and the sum

arctan
β

α
+ arctan

β ′

α ′ + arctan
β ′′

α ′′ + . . .

remains contained between the limits −π

2 and +π

2 . The formula

log(xµ) = µ log(x)(55)

remains true only in the case where α is positive and the product

µ arctan
β

α

remains contained between the same limits.





Chapter 10
On real or imaginary roots of algebraic
equations for which the left-hand side is a
rational and integer function of one variable.
The solution of equations of this kind by algebra
or trigonometry.

10.1 We can satisfy any equation for which the left-hand side is a
rational and integer function of the variable x by real or
imaginary values of that variable. Decomposition of
polynomials into factors of the first and second degree.
Geometric representation of real factors of the second
degree.

[274] Consider an algebraic equation for which the left-hand side is a rational and
integer function of the variable x. Such an equation can be put into the form

a0xn +a1xn−1 +a2xn−2 + . . .+an−1x+an = 0,(1)

where n represents the degree of this equation and a0, a1, a2, . . ., an−1, an, are
constant coefficients, real or imaginary. A root of this equation is any expression,
real or imaginary, that when substituted in place of the unknown value x, makes the
left-hand side equal to zero. First, to clarify the ideas, suppose that the constants
a0, a1, a2, . . ., an, reduce to real quantities. Then if two real values of x substituted
into the left-hand side of equation (1) give two results containing zero between them,
that is to say, results with opposite signs, we conclude from Chapter II (§ II, theorem
IV)1 that equation (1) admits one or more real roots contained between these two
values. It follows that any equation of odd degree has at least one real root. Indeed,
if n is an odd number, the left-hand side [275] of equation (1) changes signs, with
its first term a0xn, whenever, by giving the variable x very large numerical values,
we make this variable pass from positive to negative (see theorem VIII of Chapter
II, § I).

When n is an even number, the quantity xn remains positive as long as the variable
x is real. Thus, for very large numerical values of x, the left-hand side of equation

1 This is the Intermediate Value Theorem, which was proven intuitively in Chapter II, and will be
proven rigorously in Note III.

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 217
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 10,
c© Springer Science+Business Media, LLC 2009
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(1) will eventually always be the same sign as a0. If, under the same hypothesis, an
and a0 are of opposite signs, the left-hand side evidently changes signs as it passes
from a very large numerical value of x to a very small one, while remaining either
always positive or always negative. Then equation (1) has at least two real roots, one
positive and the other negative.

When n is an even number and a0 and an have the same sign, it can happen that
the left-hand side of equation (1) remains of the same sign as a0 for all real values
of x, without ever vanishing. This is what happens, for example, for each of the
binomial equations

x2 +1 = 0, x4 +1 = 0, x6 +1 = 0, . . . .

In such a case, equation (1) no longer has real roots, but we satisfy the equation by
taking for x an imaginary expression

u+ v
√
−1,

where u and v denote two finite real quantities. This proposition and the ones that
we have just established are found contained in the following theorem:

Theorem I. — Whatever the values, real or imaginary, of the constants a0, a1,
. . ., an−1, an may be, the equation

a0xn +a1xn−1 +a2xn−2 + . . .+an−1x+an = 0,(1)

in which n denotes an integer number greater than or equal to 1, always has real or
imaginary roots.

[276] Proof. — For brevity, denote the left-hand side of equation (1) by f (x).
Then f (x) is a function, real or imaginary, but always integer, of the variable x.
Because any real expression u is contained as a particular case of some imaginary
expression u+ v

√
−1, to establish the stated theorem it suffices to prove in general

that we can satisfy the equation
f (x) = 0(1)

by taking
x = u+ v

√
−1,

then giving the new variables u and v real values. Now, if we substitute the preceding
value of x in the function f (x), the result is of the form

ϕ (u,v)+
√
−1χ (u,v) ,

where ϕ(u,v) and χ(u,v) denote two real integer functions of the variables u and v.
Given this, equation (1) becomes

ϕ (u,v)+
√
−1χ (u,v) = 0.
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To satisfy this equation, it suffices to satisfy the two real equations{
ϕ (u,v) = 0 and

χ (u,v) = 0,
(2)

or what amounts to the same thing, the single equation

[ϕ (u,v)]2 +[χ (u,v)]2 = 0.(3)

Thus, if for convenience we set

F (u,v) = [ϕ (u,v)]2 +[χ (u,v)]2 ,(4)

it remains only to show that we can find real values of u and v that make the function

F (u,v)

vanish. We can easily do this with the aid of the following considerations.
[277] First, to determine the general value of the function F (u,v), we represent

each of the real or imaginary constants a0, a1, . . ., an−1, an, as well as the imag-
inary variable u + v

√
−1, by the product of a modulus and a reduced expression.

Consequently, we write

a0 = ρ0
(
cosθ0 +

√
−1sinθ0

)
,

a1 = ρ1
(
cosθ1 +

√
−1sinθ1

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

an−1 = ρn−1
(
cosθn−1 +

√
−1sinθn−1

)
,

an = ρn
(
cosθn +

√
−1sinθn

)
(5)

and
u+ v

√
−1 = r

(
cos t +

√
−1sin t

)
.(6)

Consequently we have

f
(
u+ v

√
−1
)

= ρ0rn
[
cos(nt +θ0)+

√
−1sin(nt +θ0)

]
+ρ1rn−1

[
cos
(
n−1 · t +θ1

)
+
√
−1sin

(
n−1 · t +θ1

)]
+ . . .+ρn−1r

[
cos(t +θn−1)+

√
−1sin(t +θn−1)

]
+ρn

(
cosθ0 +

√
−1sinθ0

)
.

(7)

From this we deduce that
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ϕ (u,v) = ρ0rn cos(nt +θ0)

+ρ1rn−1 cos
(
n−1 · t +θ1

)
+ . . .

. . .+ρn−1r cos(t +θn−1)+ρn cosθn,

χ (u,v) = ρ0rn sin(nt +θ0)

+ρ1rn−1 sin
(
n−1 · t +θ1

)
+ . . .

. . .+ρn−1r sin(t +θn−1)+ρn sinθn

(8)

and 

F (u,v) = [ρ0rn cos(nt +θ0)

+ρ1rn−1 cos
(
n−1 · t +θ1

)
+ . . .

. . .+ρn−1r cos(t +θn−1)+ρn cosθn]
2

+[ρ0rn sin(nt +θ0)

+ρ1rn−1 sin
(
n−1 · t +θ1

)
+ . . .

. . .+ρn−1r sin(t +θn−1)+ρn sinθn]
2

= r2n
[

ρ2
0 +

2ρ0ρ1 cos(t +θ0−θ1)
r

+
ρ2

1 +2ρ0ρ2 cos(2t +θ0−θ2)
r2 + . . .

]
.

(9)

[278] It follows from this last formula that the function F (u,v), which is evi-
dently always positive, is the product of two factors, of which one, namely

r2n =
(
u2 + v2)n

,

grows indefinitely if we give one or both of the variables u and v larger and larger
numerical values, while under the same hypothesis, the other factor converges to-
wards the limit ρ2

0 , that is to say towards a finite limit different from zero. Thus we
conclude that the function F (u,v) cannot retain a finite value except when both of
the two quantities u and v receive values of this kind, and it becomes infinitely large
when either of the two quantities grows indefinitely. Moreover, equation (4) gives an
integer function for F (u,v), and consequently a continuous function of the variables
u and v. Thus, it is clear that F (u,v) varies with u and v by insensible degrees and
cannot drop below zero, and so it attains, one or several times, a certain lower limit
below which it never descends. Denote this limit by A, and by u0 and v0 one of the
systems of finite values of u and v for which F (u,v) reduces to A. Consequently, we
have identically

F (u0,v0) = A.(10)

The difference F (u,v)−F (u0,v0) can never fall below zero. As a consequence, if
we make

u = u0 +αh and v = v0 +αk(11)
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where α denotes an infinitely small quantity and h and k denote two finite quantities,
then the expression

F (u0 +αh,v0 +αk)−F (u0,v0)

is never negative. On the basis of this principle, it is easy to determine the value of
the constant A, as we shall see.

In the imaginary expression f
(
u+ v

√
−1
)
, if we substitute for u and v their val-

ues given in formulas (11), this expression becomes [279] an imaginary and integer
function of the product

α

(
h+ k

√
−1
)

,

and it can be expanded according to the ascending integer powers of this product. If
we denote the imaginary coefficients of these powers by

R
(
cosT +

√
−1sinT

)
,

R1
(
cosT1 +

√
−1sinT1

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . ,

Rn
(
cosTn +

√
−1sinTn

)
,

some of which may be reduced to zero, and if we make, for convenience

h+ k
√
−1 = ρ

(
cosθ +

√
−1sinθ

)
,(12)

we obtain the equation

f
[
u0 + v0

√
−1+α

(
h+ k

√
−1
)]

= R
(
cosT +

√
−1sinT

)
+αR1ρ

[
cos(T1 +θ)+

√
−1sin(T1 +θ)

]
+ . . .

. . .+αnRnρn
[
cos(Tn +nθ)+

√
−1sin(Tn +nθ)

]
,

(13)

in which the terms on the right-hand side, and thus the moduli

R1, R2, . . . , Rn,

do not all vanish at the same time. Moreover, because we have{
f
[
u0 +αh+(v0 +αk)

√
−1
]

= ϕ (u0 +αh,v0 +αk)+
√
−1χ (u0 +αh,v0 +αk) ,

(14)

we conclude from equation (13) that
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ϕ (u0 +αh,v0 +αk)

= RcosT +αR1ρ cos(T1 +θ)+ . . .+αnRnρn cos(Tn +nθ) ,

χ (u0 +αh,v0 +αk)

= RsinT +αR1ρ sin(T1 +θ)+ . . .+αnRnρn sin(Tn +nθ) ,

(15)

[280] and as a consequence,
F (u0 +αh,v0 +αk)

= [RcosT +αR1ρ cos(T1 +θ)+αnRnρn cos(Tn +nθ)]2

+[RsinT +αR1ρ sin(T1 +θ)+αnRnρn sin(Tn +nθ)]2 .

(16)

If we set α = 0 in this last formula, we get

F (u0,v0) = R2.

Moreover, R2 = A and so R = A
1
2 . If we now expand the right-hand side of equation

(16) according to the descending powers of R and then replace R by A
1
2 , this equation

becomes

F (u0 +αh,v0 +αk)

= A+2A
1
2 αρ [R1 cos(T1−T +θ)+ . . .

. . . +αn−1ρn−1Rn cos(Tn−T +nθ)
]

+α2ρ2
{[

R1 cos(T1 +θ)+ . . .+αn−1ρn−1Rn cos(Tn +nθ)
]2

+
[
R1 sin(T1 +θ)+ . . .+αn−1ρn−1Rn sin(Tn +nθ)

]2}
.

(17)

If we move the quantity A = F (u0,v0) to the left-hand side, we finally find that

F (u0 +αh,v0 +αk)−F (u0,v0)

= 2A
1
2 αρ [R1 cos(T1−T +θ)+ . . .

. . . +αn−1ρn−1Rn cos(Tn−T +nθ)
]

+α2ρ2
{[

R1 cos(T1 +θ)+ . . .+αn−1ρn−1Rn cos(Tn +nθ)
]2

+
[
R1 sin(T1 +θ)+ . . .+αn−1ρn−1Rn sin(Tn +nθ)

]2}
.

(18)

Given this, because the difference

F (u0 +αh,v0 +αk)−F (u0,v0)

ought never fall below the limit zero, it is absolutely necessary that, for very small
numerical values of α , the right-hand side of the preceding equation, and hence the
first term of the right-hand side, that is to say, the term which contains the small-
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est power of α , can never become negative. Now, denoting by Rm the first of the
quantities

R1, R2, . . . , Rn

[281] which has a value different from zero, we find that the term in question is,

2A
1
2 α

m
ρ

mRm cos(Tm−T +mθ) ,

if A is not zero, and
α

2m
ρ

2mR2
m

otherwise. Moreover, the value of the arc θ is entirely indeterminate, so we can
choose it in such a way as to give the factor

cos(Tm−T +mθ) ,

and hence the product

2A
1
2 α

m
ρ

mRm cos(Tm−T +mθ) ,

whichever sign we wish. Thus it is clear that only the second hypothesis remains
admissible. Thus we necessarily have

A = 0,(19)

which reduces equation (10) to

F (u0,v0) = 0.(20)

It follows that the function F (u,v) vanishes if we attribute to the variables u and v
the real values u0 and v0, and consequently that the equation

f (x) = 0(1)

is satisfied by taking
x = u0 + v0

√
−1.

In other words, u0 + v0
√
−1 is a root of the equation

a0xn +a1xn−1 + . . .+an−1x+an = 0.(1)

The preceding proof of theorem I, while different in several points from that
given by M. Legendre (Théorie des Nombres, 1st Part, § XIV),2 is based on the
same principles.

[282] Corollary. — The polynomial

2 See [Legendre 1808].
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f (x) = a0xn +a1xn−1 + . . .+an−1x+an,

which vanishes, as we have just said, for

x = u0 + v0
√
−1,

is algebraically divisible by the factor

x−u0− v0
√
−1,

by virtue of theorem I (Chapter VII, § IV). Because the quotient is just a new poly-
nomial of degree n− 1 with respect to x, it is again necessarily divisible by a new
factor of the same form as the previous one, that is to say, of first degree with respect
to x. Denote this new factor by

x−u1− v1
√
−1.

The polynomial f (x) is equivalent to the product of the two factors

x−u0− v0
√
−1 and x−u1− v1

√
−1

and a third polynomial of degree n− 2. We can prove that this third polynomial is
divisible by a third factor similar to the two others, and by continuing to operate in
the same manner, we eventually obtain n linear factors of the polynomial f (x). Let
these factors be

x−u0− v0
√
−1, x−u1− v1

√
−1, . . . , x−un−1− vn−1

√
−1,

respectively. By dividing the polynomial f (x) by their product, we find the quotient
to be a constant, evidently equal to the coefficient a0, of the greatest power of x in
f (x). Consequently we have

f (x) = a0

(
x−u0− v0

√
−1
)(

x−u1− v1
√
−1
)

. . .(21)

. . .
(

x−un−1− vn−1
√
−1
)

.

This last equation contains a theorem that we may state as follows:

[283] Theorem II.3 — Whatever the values, real or imaginary, of the constants
a0, a1, . . ., an−1, an may be, the polynomial

a0xn +a1xn−1 + . . .+an−1x+an = f (x)

is equivalent to the product of the constant a0 by n linear factors of the form

x−α −β
√
−1.

3 This is the Fundamental Theorem of Algebra.
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To determine the factors in question here is called to decompose the polynomial
f (x) into its linear factors. There is only one way to carry out this decomposition.
To demonstrate this, suppose that there were two different ways of forming the two
equations4 

f (x) = a0
(
x−u0− v0

√
−1
)(

x−u1− v1
√
−1
)
. . .

. . .
(
x− un−1 − vn−1

√
−1
)

and

f (x) = a0
(
x−α0−β0

√
−1
)(

x−α1−β1
√
−1
)
. . .

. . .
(
x−αn−1−βn−1

√
−1
)
.

(22)

We get that 

(
x−α0−β0

√
−1
)(

x−α1−β1
√
−1
)
. . .

. . .
(
x−αn−1−βn−1

√
−1
)

=
(
x−u0− v0

√
−1
)(

x−u1− v1
√
−1
)
. . .

. . .
(
x−un−1− vn−1

√
−1
)
.

(23)

Because the right-hand side of the preceding formula vanishes when we give the
variable x the particular value u0 + v0

√
−1, it is necessary that, for this value of x,

the left-hand side, and hence one of its factors (see Chapter VII, § II, theorem VII,
corollary II), reduces to zero. Let

x−α0−β0
√
−1

be that factor. We have identically

α0 +β0
√
−1 = u0 + v0

√
−1,

and consequently,
x−α0−β0

√
−1 = x−u0− v0

√
−1.

[284] Given this, formula (23) can be replaced by the following:(
x−α1−β1

√
−1
)
. . .
(
x−αn−1−βn−1

√
−1
)

=
(
x−u1− v1

√
−1
)
. . .
(
x−un−1− vn−1

√
−1
)
.

Because the right-hand side of this vanishes when we suppose that

x = u1 + v1
√
−1,

one of the factors of the left-hand side, for example,

x−α1−β1
√
−1,

4 In [Cauchy 1897, p. 283], the last term of the second line of (22) has an−1 in place of αn−1. The
equation is given correctly in [Cauchy 1821, p. 341]. (tr.)
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must to vanish under the same hypotheses, and this entails two new identity equa-
tions of the form

α1 +β1
√
−1 = u1 + v1

√
−1 and

x−α1−β1
√
−1 = x−u1− v1

√
−1.

By repeating the same reasoning several times, we prove that the different linear
factors that comprise the right-hand sides of equations (22) are absolutely the same
as each other. It is essential to add that each imaginary factor of the form

x−α −β
√
−1

is changed into a real factor x−α any time that the quantity β is reduced to zero.
Because, as we have just said, the left-hand side of equation (1) is decompos-

able into linear factors in just one way, it cannot vanish except when one of these
factors vanishes. Thus if we successively make them equal to zero, we obtain all
the possible values of x that satisfy equation (1), that is to say, all the roots of this
equation. The number of these roots, like the number of linear factors, is equal to
n. Moreover, each real factor of the form x−α corresponds to one real root α , and
each imaginary factor of the form

x−α −β
√
−1

[285] corresponds to an imaginary root

α +β
√
−1.

These remarks suffice to establish the following proposition:

Theorem III. — Whatever the values, real or imaginary, of the constants a0, a1,
. . ., an−1, an may be, the equation

a0xn +a1xn−1 + . . .+an−1x+an = 0(1)

always has n roots, real or imaginary, and it will never have a greater number.

It can happen that several of the roots of equation (1) are equal to each other.
In this case, the number of different values of the variable that satisfy this equa-
tion necessarily becomes less than n. Thus, for example, because the second-degree
equation

x2−2ax+a2 = 0,

has two equal roots, it cannot be satisfied except by a single value of x, namely

x = a.

Whenever the constants a0, a1, . . ., an−1, an are all real, the imaginary expression

α +β
√
−1
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evidently cannot be a root of equation (1) except when the conjugate expression

α −β
√
−1

is also a root of the same equation. Consequently, under this hypothesis, the imagi-
nary linear factors of the polynomial that form the left-hand side of equation (1) are
pairwise conjugate and of the form5

x−α −β
√
−1 and x−α +β

√
−1.

The product of two such factors is always a real polynomial of the second degree,
namely

(x−α)2 +β
2,

[286] and so we deduce the following theorem immediately from the observation
that we have just made:

Theorem IV. — When a0, a1, . . ., an−1, an denote real constants, the polynomial

a0xn +a1xn−1 + . . .+an−1x+an(24)

is decomposable into real factors of the first and second degree.

In the preceding, we have presented the imaginary roots of equation (1) in the
form

α ±β
√
−1.

Then for polynomial (24), a real factor of the second degree corresponding to two
conjugate imaginary roots

α +β
√
−1 and α −β

√
−1

is of the form
(x−α)2 +β

2.

For convenience, if we make

α ±β
√
−1 = ρ

(
cosθ ±

√
−1sinθ

)
,

(where ρ denotes a positive quantity and θ denotes an angle that we can assume
is contained between the limits 0 and π), then the same real factor of the second
degree becomes

(x−ρ cosθ)2 +(ρ sinθ)2 = x2−2ρ cosθ +ρ
2.

5 In [Cauchy 1897, p. 285], the second of the factors below is given as x−α +
√
−1. The coeffe-

icient β is correctly included in [Cauchy 1821, p. 344]. (tr.)
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It is easy to construct this last expression geometrically in the case where we give the
variable x a real value. Indeed, if we trace a triangle in which one angle is equal to θ

and the two adjacent sides are first the numerical value of x and second the modulus
ρ , then the square of the third side is (from a well-known theorem of Trigonometry)6

the value of the trinomial
x2−2ρxcosθ +ρ

2,

[287] whenever the value of the variable x is positive. If the value of x becomes neg-
ative, it suffices to replace the given angle θ in the construction by its supplement.

The third side of the triangle in question cannot vanish unless the two other sides
fall on the same straight line and their extremities coincide, and this requires: 1◦ that
the angle θ reduces to zero or to π; and 2◦ that the numerical value of x is equal to
ρ . Consequently, the factor

x2−2ρ cosθ +ρ
2

cannot become zero for a real value of x, at least when we do not suppose that

cosθ = 1 or cosθ =−1,

and the only value of x that makes this factor vanish is, in the first case,

x = ρ,

and in the second,
x =−ρ.

We arrive directly at the same conclusion by observing that the equation

x2−2ρ cosθ +ρ
2

has two roots,

ρ

(
cosθ +

√
−1sinθ

)
and ρ

(
cosθ −

√
−1sinθ

)
,

which cannot cease to be imaginary without becoming equal, and that the only val-
ues of θ capable of producing this effect are those which satisfy the formula

sinθ = 0.

From this we get
cosθ =±1,

and consequently
x =±ρ

for the common value of the two roots.

6 This is the Law of Cosines.
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Up to now, we have been limited to determining the number [288] of roots of
equation (1), along with the form of these roots and of their corresponding factors.
In the following sections, we will review some particular cases in which we are
able to solve similar equations without being required to imagine their coefficients
converted into numbers, and to express the roots of these coefficients as algebraic
or trigonometric functions of the coefficients. On this matter, we observe here that
in every algebraic equation for which the left-hand side is a rational and integer
function of the variable x, we can reduce the coefficient of the highest power of x to
1 by division, and the coefficient of the next-highest power of x to zero by a change
of variable. Indeed, if a0 is not equal to 1 in the equation

a0xn +a1xn−1 + . . .+an−1x+an = 0,

it suffices to divide the equation by a0 to reduce the coefficient of xn to 1. If an
equation has been put into the form

xn +a1xn−1 + . . .+an−1x+an = 0

and a1 is not zero, then it suffices to set

x = z− a1

n

to obtain a transformation into z of degree n which no longer has the second term,
that is to say, a transformation in which the coefficient of zn−1 vanishes.

10.2 Algebraic or trigonometric solution of binomial equations
and of some trinomial equations. The theorems of de
Moivre and of Cotes.

Consider the binomial equation

xn + p = 0,(1)

where p denotes a constant quantity. We get that

xn =−p

[289] or, if ρ denotes the numerical value of p, then

xn =±ρ.

Thus we have to solve the equation

xn = ρ,(2)
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if −p is positive, and the following,

xn =−ρ,(3)

if −p is negative. We satisfy the first one by taking

x = ((ρ))
1
n = ρ

1
n ((1))

1
n ,(4)

and the second one by taking

x = ((−ρ))
1
n = ρ

1
n ((−1))

1
n .(5)

As for the various values of each of the two expressions ((1))
1
n and ((−1))

1
n , there

are always n of them (see Chapter VII, § III), and they are deduced from these two
formulas:  ((1))

1
n = cos 2kπ

n ±
√
−1sin 2kπ

n and

((−1))
1
n = cos (2k+1)π

n ±
√
−1sin (2k+1)π

n ,
(6)

in which it suffices to give k successively all the integer values which do not surpass
n
2 . When n is an even number, the first of equations (6) gives two real values of

((1))
1
n , namely +1 and −1, the first of which corresponds to k = 0 and the second to

k = n
2 . Under the same hypothesis, all of the values of ((−1))

1
n are imaginary. When

n is an odd number, the expression ((1))
1
n has a single real value, +1, corresponding

to k = 0, and the expression [290] ((−1))
1
n has a single real value,−1, corresponding

to k = n−1
2 . Consequently, when n is an even number equation (1) either admits two

real roots or it admits none at all, and in the contrary case the same equation admits
a single real root. Moreover, we recognize immediately by inspection of formulas
(6) that the imaginary roots form conjugate pairs, as we ought to expect.

Now consider the trinomial equation

x2n + pxn +q = 0,(7)

where p and q denote two constant quantities chosen at will. We get

x2n + pxn =−q,

and consequently (
xn +

p
2

)2
=

p2

4
−q.(8)

If p2

4 − q is positive, the preceding equation will lead to one of the two following
ones:

xn + p
2 = +

√
p2

4 −q or

xn + p
2 =−

√
p2

4 −q,
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so that xn admits two real values contained in the formula7

xn =− p
2
±
√

p2

4
−q.(9)

When the number n reduces to 1, formula (9) immediately gives the two real roots
of the trinomial equation of the second degree

x2 + px+q.(10)

When n is not equal to 1, then by substituting the formula under consideration into
equation [291] (7), we have only to solve two binomial equations similar to those
we have treated above.

Now suppose that the quantity p2

4 −q is negative. Then equation (8) leads to one
of the two following ones:

xn + p
2 = +

√
q− p2

4

√
−1 or

xn + p
2 =−

√
q− p2

4

√
−1.

Consequently, xn admits two imaginary values contained in the formula

xn =− p
2
±
√

q− p2

4

√
−1.(11)

If the number n reduces to 1, these values will be the imaginary roots of equation
(10). However, if we suppose that n > 1, it still remains to deduce the values of
x from the known values of xn. Under this hypothesis, denote by ρ the modulus
of the imaginary expression that serves as the right-hand side of formula (11). We
evidently have

ρ = q
1
2 .(12)

Moreover, for convenience make

ζ = arctan

√
q− p2

4

− p
2

.(13)

When p is negative, the two values of xn given by formula (11) become

xn = ρ

(
cosζ ±

√
−1sinζ

)
,(14)

and thus we conclude that

7 Readers in North America may not be aware that in Europe the most commonly taught version

of the quadratic formula gives the roots of a monic quadratic x2 + px + q as − p
2 ±

√
p2

4 −q. To
Cauchy’s readers, the version in formula (9) would have been very familiar.
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x = ρ
1
n

(
cos

ζ

n
±
√
−1sin

ζ

n

)
((1))

1
n .(15)

[292] On the other hand, if p is positive we find that

xn =−ρ

(
cosζ ±

√
−1sinζ

)
,(16)

and consequently

x = ρ
1
n

(
cos

ζ

n
±
√
−1sin

ζ

n

)
((−1))

1
n .(17)

In the particular case where we have

p2

4
−q = 0,

ζ becomes zero, so that equations (15) and (17) take the form of equations (4) and
(5).

If for brevity we denote ρ
1
n by r, then by supposing that the quantity p is negative,

we get from equations (12) and (13) that

p =−2rn cosζ , q = r2n and

x2n + pxn +q = x2n−2rnxn cosζ + r2n.

Under the same hypothesis, formula (15) gives

x = r
(

cos ζ

n ±
√
−1sin ζ

n

)(
cos 2kπ

n ±
√
−1sin 2kπ

n

)
= r
(

cos ζ±2kπ

n ± sin ζ±2kπ

n

)
,

where k represents a whole number. Thus we conclude that the trinomial

x2n−2rnxn cosζ + r2n

is decomposable into real factors of the second degree of the form

x2−2rxcos
ζ ±2kπ

n
+ r2.

On the other hand, if we suppose that the quantity p is positive, the trinomial

x2n + pxn +q

becomes
x2n +2rnxn cosζ + r2n,

[293] and its real factors of the second degree are of the form
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x2−2rxcos
ζ ± (2k +1)π

n
+ r2.

Under both hypotheses, whenever we give real values to the variable x, we can
construct the real factors of the second degree geometrically by the method indicated
above (see § I). If we take the numerical value of the variable x as the common
base of all the triangles that correspond to the different factors, and in each triangle
we always join to the same end of this base the known side represented by r, we
find that the vertices of these various triangles coincide with points that divide the
circumference of a circle of radius of r into equal parts. Consequently, if we multiply
together the squares of the lines taken from the second extremity of the base to the
points in question, the product of these squares will be the value of the trinomial

x2n + pxn +q = x2n±2rnxn cosζ + r2n.

In the particular case where ζ = 0, the product of the lines themselves represents the
numerical value of the binomial

xn± rn,

which corresponds to the positive square root of the trinomial

x2n±2rnxn + r2n.

Of the two propositions that we have just stated, the first is the theorem of de Moivre
and the second that of Cotes.

10.3 Algebraic or trigonometric solution of equations of the
third and fourth degree.

Consider the general equation of the third degree. By making the second term of
this equation vanish, we can always [294] reduce it to the form

x3 + px+q = 0,(1)

where p and q denote two constant quantities. Moreover, if we set

x = u+ v,

where u and v are two new variables, we conclude that

x3 = (u+ v)3 = u3 + v3 +3uvx,

or
x3−3uvx−

(
u3 + v3)= 0.(2)
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To make equation (2) identical to the given equation, it suffices to subject the un-
knowns u and v to the two conditions

u3 + v3 =−q(3)

and
uv =− p

3
.(4)

Thus we find that the solution of equation (1) is reduced to the simultaneous solution
of equations (3) and (4).

First, let us seek the values of u3 and v3. If we make

u3 = z1 and v3 = z2,(5)

then we have, by virtue of equations (3) and (4), that

z1 + z2 =−q and z1z2 =− p3

27
,

and consequently, by naming a new variable z,

(z− z1)(z− z2) = z2 +qz− p3

27
.

As a result, z1 and z2 are the two roots of the equation

z2 +qz− p3

27
= 0.(6)

Knowing these two roots, we deduce from formulas (5) the three values of u and of
v that correspond, two by two, [295] in a way that satisfies formula (4). Let U be
any one of the three values of u, and let V be the corresponding value of v, so that
we have

UV =− p
3
.

Moreover, denote the imaginary expression

cos
2π

3
+
√
−1sin

2π

3

by α . Then the three values of the expression ((1))
1
3 are, respectively,

α0 = 1,

α = cos 2π

3 +
√
−1sin 2π

3 =− 1
2 + 3

1
2

2

√
−1 and

α2 = cos 2π

3 −
√
−1sin 2π

3 =− 1
2 −

3
1
2

2

√
−1,
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and the three values of u, evidently contained in the general formula ((1))
1
3 U , must

be
U, αU and α

2U.

We find that the corresponding values of v are

V,
V
α

and
V
α2 ,

or what amounts to the same thing,

V, α
2V and αV.

Consequently, if we name the three roots of equation (1) x0, x1 and x2, we have
x0 = U +V,

x1 = αU +α2V and

x2 = α2U +αV.

(7)

It is essential to observe that because U , αU and α2U are the three values of [296]
u = ((z1))

1
3 , and that because V , α2V and αV are the corresponding values of v =

− p

3((z1))
1
3

, the roots x0, x1 and x2 determined by equations (7) are, respectively, equal

to the three values of x given by the formula8

x = ((z1))
1
3 − p

3((z1))
1
3
.(8)

Whenever equation (6) has all real roots, formulas (5) give a system of real values
of u and v that correspond in a way that satisfies equation (4). If we take these same
values for U and V , we recognize immediately that of the three roots x0, x1 and x2,
the first is necessarily real and the two others may be real or imaginary, according
to whether the quantity

q2

4
+

p3

27
is zero or positive, that is to say according to whether equation (6) has roots that are
equal or unequal. In the first case, we find that

x0 = 2U and x1 = x2 =−U.

Whenever the roots of equation (6) become imaginary, we can present them in the
form

z1 = ρ

(
cosθ +

√
−1sinθ

)
and z2 = ρ

(
cosθ −

√
−1sinθ

)
,

8 Cauchy neglects to remind us here that it is necessary to use the same particular value of ((z1))
1
3

in each term of the right-hand side.
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where the modulus ρ is determined by the equation

ρ
2 =− p3

27
.

Because under this hypothesis we have

((z1))
1
3 = ρ

1
3

(
cos

θ

3
+
√
−1sin

θ

3

)
((1))

1
3 ,

we find that formula (8) reduces to
x = ρ

1
3

[(
cos θ

3 +
√
−1sin θ

3

)
((1))

1
3

+
(
cos θ

3 −
√
−1sin θ

3

) 1

((1))
1
3

]
.

(9)

[297] Moreover, by taking for U the imaginary expression

ρ
1
3

(
cos

θ

3
+
√
−1sin

θ

3

)
,

we conclude from equations (7) that
x0 = 2ρ

1
3 cos θ

3 ,

x1 = 2ρ
1
3 cos θ+2π

3 and

x2 = 2ρ
1
3 cos θ−2π

3 .

(10)

These last three values of x are all real and coincide with those which are given by
formula (9).

In the preceding calculations, equation (6), the solution of which leads to that of
equation (1), is what we call the reduced equation. Its roots z1 and z2 are necessarily
equivalent to certain functions of the required roots x0, x1 and x2. To determine these
functions, it suffices to observe that, by virtue of formulas (5), we have

z1 = U3 and z2 = V 3,

where U and V denote particular values of u and v. Moreover, from equations (7)
we get that
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3U = x0 +αx2 +α2x1

= α
(
x2 +αx1 +α2x0

)
= α2

(
x1 +αx0 +α2x2

)
and

3V = x0 +αx1 +α2x2

= α
(
x1 +αx2 +α2x0

)
= α2

(
x2 +αx0 +α2x1

)
.

Consequently we find that

27z1 =
(
x0 +αx2 +α2x1

)3

=
(
x2 +αx1 +α2x0

)3

=
(
x1 +αx0 +α2x2

)3 and

27z2 =
(
x0 +αx1 +α2x2

)3

=
(
x1 +αx2 +α2x0

)3

=
(
x2 +αx0 +α2x1

)3
.

(11)

It follows that z1 and z2 are, respectively, equal (except for a numerical coefficient)
to the only two distinct values which arise as the cube of the linear function

x0 +αx1 +α
2x2,

[298] when we interchange the roots, x0, x1 and x2 of this function in every manner
possible. The numerical coefficient is evidently 1

27 , or the cube of the fraction 1
3 .9

Now consider the general equation of the fourth degree. By making the second
term disappear, we can reduce it to the form

x4 + px2 +qx+ r = 0,(12)

where p, q and r denote constant quantities. Moreover, if we set

x = u+ v+w,

where u, v and w are three new variables, we then conclude that

x2 = u2 + v2 +w2 +2(uv+uw+ vw) ,

and consequently,[
x2−

(
u2 + v2 +w2)]2 = 4

(
u2v2 +u2w2 + v2w2)+8uvw · x,

or what amounts to the same thing,

9 What Cauchy has derived in this first part of § III is sometimes called the Cardano Formula for
the cubic.
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x4−2

(
u2 + v2 +w2

)
x2−8uvw · x

+
(
u2 + v2 +w2

)2−4
(
u2v2 +u2w2 + v2w2

)
= 0.

(13)

To make this last equation identical to the given one, it suffices to subject the un-
knowns u, v and w to the conditions

4
(
u2 + v2 +w2

)
= −2p,

8uvw = −q and

16
(
u2v2 +u2w2 + v2w2

)
= p2−4r.

(14)

Thus we find that the solution of equation (12) reduces to the simultaneous solution
of equations (14).

First, we seek the values of 4u2, 4v2 and 4w2. If we make

4u2 = z1, 4v2 = z2 and 4w2 = z3,(15)

[299] we have, by virtue of formulas (14),

z1 + z2 + z3 =−2p, z1z2 + z1z3 + z2z3 = p2−4r and z1z2z3 = q2.

Consequently, letting z be a new variable, we have

(z− z1)(z− z2)(z− z3) = z3 +2pz2 +
(

p2−4r
)

z−q2.

It follows that z1, z2 and z3 are the three roots of the equation

z3 +2pz2 +
(

p2−4r
)

z−q2 = 0,(16)

and because these three roots must satisfy the formula z1z2z3 = q2, we can be sure
that at least one of the roots will be positive and that the other two will be either both
positive, both negative or both imaginary. When we have determined these roots, the
first two of equations (15) give two equal values for each of the variables u and v,
up to sign. Let

u =±U and v =±V

be the values, real or imaginary, in question, and let W be a real quantity or an
imaginary expression determined by the equation

8UVW =−q.

If we suppose that in the second of formulas (14)

u = +U and v = +V

or else
u =−U and v =−V,
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we get
w = +W.

On the other hand, if we make

u = +U and v =−V

or else10

u =−U and v = +V,

we find11

w =−W.

In this way, we obtain for the variables u, v and w four systems [300] of values that
satisfy equations (14). If we represent by x0, x1, x2 and x3 the four values corre-
sponding to the unknown

x = u+ v+w,

then we have 
x0 = U +V +W,

x1 =−U −V +W,

x2 = U −V −W and

x3 =−U +V −W.

(17)

It is easy to recognize that if equation (16) has three positive roots, then these four
values of x are all real; if equation (16) has two distinct negative roots, then they are
all imaginary; while if equation (16) has two equal negative roots or two imaginary
roots, then two values will be real and two will be imaginary.

By the method that we have just described, the solution of equation (12) is re-
duced to that of equation (16). This last equation, which we call the reduced equa-
tion, necessarily has for its roots certain functions of the roots of the given equation.
If we wish to determine these functions, that is to say, to express z1, z2 and z3 in
terms of x0, x1, x2 and x3, it suffices to observe that because U , V and W are partic-
ular values of u, v and w, we have, by virtue of formulas (15), that

z1 = 4U2, z2 = 4V 2 and z3 = 4W 2.

Moreover, we get from equations (17) that

4U = x0− x1 + x2− x3,

4V = x0− x1 + x3− x2 and

4W = x0− x2 + x1− x3.

As a consequence, we find

10 In [Cauchy 1897, p. 299], this is written u = −U and w = +V . It is v = +V in [Cauchy 1821,
p. 362]. (tr.)
11 In [Cauchy 1897, p. 299], this is written u =−W . It is w =−W in [Cauchy 1821, p. 362]. (tr.)
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4z1 = (x0− x1 + x2− x3)

2 = (x1− x0 + x3− x2)
2 ,

4z2 = (x0− x1 + x3− x2)
2 = (x1− x0 + x2− x3)

2 and

4z3 = (x0− x2 + x1− x3)
2 = (x2− x0 + x3− x1)

2 .

(18)

[301] It follows that z1, z2 and z3 are, if we ignore the numerical coefficient 1
4 =( 1

2

)2
, respectively equal to the three distinct values that are given by the square of

the linear function
x0− x1 + x2− x3,

when we interchange the roots x0, x1, x2 and x3 in this function in all possible ways.
This same linear function can thus be written as follows:

x0 +(−1)x1 +(−1)2 x2 +(−1)3 x3,

which is evidently a particular case of the general formula

x0 +αx1 +α
2x2 +α

3x3,

when we denote by α one of the values of the expression ((1))
1
4 .



Chapter 11
Decomposition of rational fractions.

11.1 Decomposition of a rational fraction into two other
fractions of the same kind.

[302] Let f (x) and F(x) be two integer functions of the variable x. Then

f (x)
F (x)

is what we call a rational function. If we denote the degree of the denominator F(x)
by m, then the equation

F (x) = 0(1)

admits m roots, real or imaginary, equal or not equal to each other. Supposing them
to be distinct, if we represent them by

x0, x1, x2, . . . , xm−1,

then the linear factors of the polynomial F(x) are, respectively,

x− x0, x− x1, x− x2, . . . , x− xm−1.

Given this, make
F (x) = (x− x0)ϕ (x)(2)

and
f (x0)
ϕ (x0)

= A.(3)

[303] Because ϕ (x0) is not zero, the constant A is finite and the difference

f (x)
ϕ (x)

−A =
f (x)−Aϕ (x)

ϕ (x)

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 241
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 11,
c© Springer Science+Business Media, LLC 2009



242 11 Decomposition of rational fractions.

vanishes for x = x0. Consequently, the same is true of the polynomial

f (x)−Aϕ (x)

and this polynomial is algebraically divisible by x− x0. Thus we have

f (x)−Aϕ (x) = (x− x0)χ (x)

or
f (x) = Aϕ (x)+(x− x0)χ (x) ,(4)

where χ (x) denotes a new integer function of the variable x. If we divide the two
sides of this last equation by F(x) and take into account formula (2), we conclude
that

f (x)
F (x)

=
A

x− x0
+

χ (x)
ϕ (x)

.(5)

Thus, if we separate the polynomial F(x) into two factors, one of which is linear,
we can decompose the rational fraction f (x)

F(x) into two others which have as their
respective denominators the two factors in question, and for which the simpler one
has a constant numerator.

Imagine now that we separate the function F(x) into two factors where the first,
instead of being linear, corresponds to several roots of the equation F(x) = 0. For
example, take for the first factor the factor of second degree

(x− x0)(x− x1) .

As a consequence, we have

F (x) = (x− x0)(x− x1)ϕ (x) .(6)

The fraction f (x)
ϕ(x) still has a finite value, not only for x = x0, but also for x = x1. If

we denote by u a polynomial [304] which, under both hypotheses is equal to f (x)
ϕ(x) ,

we find (Chapter IV, § I)

u =
f (x0)
ϕ (x0)

x− x1

x0− x1
+

f (x1)
ϕ (x1)

x− x0

x1− x0
.(7)

Because the polynomial u is determined, as we have just said, the equation

f (x)
ϕ (x)

−u = 0

or
f (x)−uϕ (x) = 0

includes x0 and x1 among its roots and consequently the polynomial
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f (x)−uϕ (x)

is divisible by the product
(x− x0)(x− x1) .

Thus we have
f (x)−uϕ (x) = (x− x0)(x− x1)χ (x) ,

or
f (x) = uϕ (x)+(x− x0)(x− x1)χ (x) ,(8)

where χ(x) denotes a new integer function of the variable x. If we divide the last
equation by F(x) and take into account formula (6), we conclude

f (x)
F (x)

=
u

(x− x0)(x− x1)
+

χ (x)
ϕ (x)

.(9)

Likewise, we could prove that it suffices to set

F (x) = (x− x0)(x− x1)(x− x2)ϕ(x)(10)

and 

u =
f (x0)
ϕ (x0)

(x− x1)(x− x2)
(x0− x1)(x0− x2)

+
f (x1)
ϕ (x1)

(x− x0)(x− x2)
(x1− x0)(x1− x2)

+
f (x2)
ϕ (x2)

(x− x0)(x− x1)
(x2− x0)(x2− x1)

(11)

[305] to obtain an equation of the form

f (x)
F (x)

=
u

(x− x0)(x− x1)(x− x2)
+

χ (x)
ϕ (x)

,(12)

etc.
Thus, in general, whenever the equation F(x) = 0 does not have equal roots, if

we separate the polynomial F(x) into two factors of which the first is the product
of several linear factors, then the rational fraction f (x)

F(x) is decomposable into two
other fractions of the same kind which have as their respective denominators the
two factors mentioned above, and of which the first has a numerator of a degree less
than that of its denominator.

I move on to the case where we suppose that the equation F(x) = 0 has equal
roots. Under this second hypothesis, let

a, b, c, . . .

be the various roots of this same equation, and denote by m′ the number of roots
equal to a, by m′′ the number of roots equal to b, by m′′′ the number of roots equal
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to c, etc. The function F(x) is equal to the product

(x−a)m′
(x−b)m′′

(x− c)m′′′
. . .

or to this product multiplied by a constant coefficient, and we have

m′+m′′+m′′′+ . . . = m.

Given this, make
F (x) = (x−a)m′

ϕ (x)(13)

and
f (a)
ϕ (a)

= A.(14)

Because ϕ(a) is not zero, the constant A remains finite and the difference

f (x)
ϕ (x)

−A

[306] vanishes for x = a. Thus we conclude that the polynomial

f (x)−Aϕ (x)

is divisible by x−a, and consequently we have

f (x) = Aϕ (x)+(x−a)χ (x) ,(15)

where χ(x) denotes a new integer function of the variable x. Finally, if we divide
both sides of equation (15) by F(x) and take into consideration formula (13), we
find

f (x)
F (x)

=
A

(x−a)m′ +
χ (x)

(x−a)m′−1
ϕ (x)

.(16)

By reasoning in the same way, we could prove that it suffices to take

F (x) = (x−a)m′
(x−b)m′′

ϕ (x)(17)

and

u =
f (a)
ϕ (a)

x−b
a−b

+
f (b)
ϕ (b)

x−a
b−a

(18)

to obtain an equation of the form

f (x)
F (x)

=
u

(x−a)m′
(x−b)m′′ +

χ (x)

(x−a)m′−1 (x−b)m′′−1
ϕ (x)

,(19)

etc.
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11.2 Decomposition of a rational fraction for which the
denominator is the product of several unequal factors into
simple fractions which have for their respective
denominators these same linear factors and have constant
numerators.

Let
f (x)
F (x)

be the rational fraction under consideration, m be the degree of the function F(x)
and

x0, x1, x2, . . . , xm−1

[307] the roots, assumed to be unequal, of the equation

F (x) = 0.(1)

If k denotes a constant coefficient, we have

F (x) = k (x− x0)(x− x1) . . .(x− xm−1) ,(2)

and by virtue of the principles established in the preceding section, the rational
fraction f (x)

F(x) can be decomposed into two others, of which the first is of the form

A0

x− x0
,

where A0 represents a constant, while the second has as its denominator

F (x)
x− x0

= k (x− x1)(x− x2) . . .(x− xm−1) .

By decomposing this second rational fraction by the same method, we obtain:
1◦ A new simple fraction of the form

A1

x− x1
; and

2◦ A fraction which has as its denominator

k (x− x2) . . .(x− xm−1) .

By continuing in this way, we make all the linear factors contained in the polynomial

F (x) = k (x− x0)(x− x1) . . .(x− xm−1)
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successively disappear. Consequently, we finally reduce the polynomial to the con-
stant k. Thus, when by a series of such partial decompositions like those we have
just indicated, we have extracted from the fraction f (x)

F(x) a series of simple fractions
[308] of the form

A0

x− x0
,

A1

x− x1
,

A2

x− x2
, . . . ,

Am−1

x− xm−1
,

where the remainder is just a rational fraction with a constant denominator, that is
to say an integer function of the variable x. Denoting this integer function by R, we
find

f (x)
F (x)

= R+
A0

x− x0
+

A1

x− x1
+

A2

x− x2
+ . . .+

Am−1

x− xm−1
.(3)

Now it remains to find the values of the constants

A0, A1, A2, . . . , Am−1.

These values are deduced without difficulty by the method of decomposition indi-
cated in § I. However, we arrive more directly at their determination with the aid of
the following considerations:

If we multiply the two sides of equation (3) by F(x), we get
f (x) = RF(x) +A0

F (x)
x− x0

+A1
F (x)
x− x1

+A2
F (x)
x− x2

+ . . .+Am−1
F (x)

x− xm−1
.

(4)

If we make
x = x0 + z

in both sides of this last formula, then the sum

RF (x)+A1
F (x)
x− x1

+A2
F (x)
x− x2

+ . . .+Am−1
F (x)

x− xm−1
,

which is evidently a polynomial in x divisible by x− x0, takes the form

zZ,

where Z denotes an integer function of z. It follows that we have

f (x0 + z) = A0
F (x0 + z)

z
+ zZ.(5)

[309] Now suppose that the substitution of x + z in place of x in the function F(x)
gives generally

F (x+ z) = F (x)+ zF1 (x)+ z2F2 (x)+ . . . .(6)
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We then deduce that

F (x0 + z) = zF1 (x0)+ z2F2 (x0)+ . . . ,

and equation (5) becomes

(x0 + z) = A0 [F1 (x0)+ zF2 (x0)+ . . .]+ zZ.

When we make z = 0 in this last equation, it reduces to

f (x0) = A0F1 (x0) ,

and we conclude that

A0 =
f (x0)

F1 (x0)
.(7)

By an entirely similar calculation, we find that

A1 =
f (x1)

F1 (x1)
,

A2 =
f (x2)

F1 (x2)
,

. . . . . . . . . . . . . . . . . . ,

Am−1 =
f (xm−1)

F1 (xm−1)
.

(8)

The values that we have just obtained for

A0, A1, A2, . . . , Am−1

are evidently independent of the method used for the decomposition of the rational
fraction f (x)

F(x) . From this it follows that this fraction can be decomposed in only one
way into simple fractions which have as denominators linear factors of the polyno-
mial F(x) with constant numerators.

It is easy to see how equation (7) and formula (3) of the preceding section [310]
agree with each other. Indeed, F1 (x0) is what the polynomial

F1 (x0)+ zF2 (x0)+ . . . =
F (x0 + z)

z
=

F (x)
x− x0

becomes when we make z = 0 or x = x0. Consequently, if we set

F (x) = (x− x0)ϕ (x) ,(9)

we have
F1 (x0) = ϕ (x0)

and



248 11 Decomposition of rational fractions.

A0 =
f (x0)
ϕ (x0)

.(10)

To show an application of the formulas established above, suppose that it is a
question of decomposing the rational fraction

xn

xm−1

into simple fractions, where n denotes an integer number less than m. In this partic-
ular case, we have

f (x) = xn, F (x) = xm−1 and k = 1.

If we represent an integer number which does not surpass m
2 by h, then the various

roots of the equation F(x) = 0, all unequal to each other, are contained in the formula

cos
2hπ

m
±
√
−1sin

2hπ

m
.

Let a be one of these roots. We seek the numerator A of the simple fraction that has
x−a as its denominator. This numerator is

A =
f (a)

F1 (a)
=

an

F1 (a)
,

where the value of F1(a) is determined by the equation

F (a)+ zF1 (a)+ . . . = F (a+ z) = (a+ z)m−1

= am−1+mam−1z+ . . . ,

[311] and as a consequence is equal to mam−1. Thus we find that

A =
an

mam−1 =
1
m

an+1−m.

Moreover, because we have(
cos

2hπ

m
±
√
−1sin

2hπ

m

)n+1−m

= cos
2h(n+1)π

m
±
√
−1sin

2h(n+1)π

m
,

and taking
(n+1)π

m
= θ(11)

for brevity, we conclude from the preceding, that
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xn

xm−1
=

1
m

(
1

x−1
+

cos2θ +
√
−1sin2θ

x− cos 2π

m −
√
−1sin 2π

m

+
cos2θ −

√
−1sin2θ

x− cos 2π

m +
√
−1sin 2π

m

+
cos4θ +

√
−1sin4θ

x− cos 4π

m −
√
−1sin 4π

m

+
cos4θ −

√
−1sin4θ

x− cos 4π

m +
√
−1sin 4π

m

+ . . .

)
.

(12)

By reasoning in the same manner, we find that

xn

xm +1
=− 1

m

(
1

x−1
+

cosθ +
√
−1sinθ

x− cos π

m −
√
−1sin π

m

+
cosθ −

√
−1sinθ

x− cos π

m +
√
−1sin π

m

+
cos3θ +

√
−1sin3θ

x− cos 3π

m −
√
−1sin 3π

m

+
cos3θ −

√
−1sin3θ

x− cos 3π

m +
√
−1sin 3π

m

+ . . .

)
.

(13)

It is essential to observe that, in equation (12) for even values of m and in [312]
equation (13) for odd values of m, the last of the simple fractions contained in the
right-hand side of the equation is

cosmθ

x+1
=

cos(n+1)π

x+1
=

(−1)n+1

x+1
.

Thus, for example, we have

1
x2−1

=
1
2

(
1

x−1
− 1

x+1

)
,(14)

x
x2−1

=
1
2

(
1

x−1
+

1
x+1

)
,(15)

1
x3 +1

= −1
3

(
cos π

3 +
√
−1sin π

3

x− cos π

3 −
√
−1sin π

3
(16)

+
cos π

3 −
√
−1sin π

3

x− cos π

3 +
√
−1sin π

3
− 1

x+1

)
,

. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We could also remark that if in the right-hand sides of equations of (12) and (13) we
combine by addition two simple fractions corresponding to conjugate linear factors
of the binomial xm±1, then the sum is a new fraction which has as denominator a
real factor of the second degree and for its numerator a real linear function of the
variable x. For example, by taking n = 0 and m = 3, we find

1
x3 +1

=− 1
3

(
2xcos π

3 −2
x2−2xcos π

3 +1
− 1

x+1

)
=

1
3

(
2− x

x2− x+1
+

1
x+1

)
.

(17)

It is easy to generalize this remark as follows.
Because the integer functions f (x) and F(x) are real, suppose that we denote two

conjugate imaginary roots of equation (1) by

α +β
√
−1 and α −β

√
−1

and take [313] A and B to be two real quantities that satisfy the formula

f
(
α +β

√
−1
)

F1
(
α +β

√
−1
) = A−B

√
−1,(18)

where F1(x) still represents the coefficient of z in the expansion of F(x + z). We
necessarily have

f
(
α −β

√
−1
)

F1
(
α −β

√
−1
) = A+B

√
−1.(19)

As a consequence, if we decompose the rational fraction f (x)
F(x) , then the two simple

fractions corresponding to the conjugate linear factors

x−α −β
√
−1 and x−α +β

√
−1

are, respectively,

A−B
√
−1

x−α −β
√
−1

and
A+B

√
−1

x−α +β
√
−1

.(20)

By adding these two fractions we obtain the following:

2A(x−α)+2Bβ

(x−α)2 +β 2
.(21)

This last formula, which has as its numerator a real linear function of the variable
x and as its denominator a real factor of the second degree of the polynomial F(x),
does not differ from the fraction
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u
(x− x0)(x− x1)

,

which in formula (9) of section I contains in the case where we suppose

x0 = α +β
√
−1 and x1 = α −β

√
−1.

11.3 Decomposition of a given rational fraction into other
simpler ones which have for their respective denominators
the linear factors of the first rational fraction, or of the
powers of these same factors, and constants as their
numerators.

[314] Let
f (x)
F (x)

be the rational fraction under consideration, m be the degree of the polynomial F(x),
and

a, b, c, . . .

the various roots of the equation

F (x) = 0.(1)

Denote by k a constant coefficient and by m′, m′′, m′′′, . . . several integer numbers
for which the sum is equal to m. Then we have

F (x) = k (x−a)m′
(x−b)m′′

(x− c)m′′′
. . . .(2)

Given this, if we make use of the method explained in section I, we decompose the
rational fraction f (x)

F(x) into two others for which the first one is of the form

A

(x−a)m′ ,

while the second has as its denominator

F (x)
x−a

= k (x−a)m′−1 (x−b)m′′
(x− c)m′′′

. . . .

By decomposing this second rational fraction by the same method, we obtain: 1◦ a
new simple fraction

A1

(x−a)m′−1 ,
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[315] in which A1 represents a constant; and 2◦ a fraction which has as its denomi-
nator

k (x−a)m′−2 (x−b)m′′
(x− c)m′′′

. . . .

By continuing like this, we successively make the different linear factors composing
the power (x−a)m′

of the polynomial F(x) disappear. When we have extracted from
f (x)
F(x) a sequence of simple fractions of the form

A

(x−a)m′ ,
A1

(x−a)m′−1 ,
A2

(x−a)m′−2 , . . . ,
Am′−1

x−a
,

what remains is a new rational fraction for which the denominator is reduced to

k (x−b)m′′
(x− c)m′′′

. . . .

If we extract a second sequence of simple fractions of the form

B

(x−b)m′′ ,
B1

(x−b)m′′−1 ,
B2

(x−b)m′′−2 , . . . ,
Bm′′−1

x−b

from what remains, we obtain a second remainder for which the denominator is

k (x− c)m′′′
. . . .

Finally, if we extend these operations until the polynomial F(x) is reduced to the
constant k, the last of all the remainders is a rational function with a constant denom-
inator, that is to say an integer function of the variable x. Call this integer function
R. Finally, we have as the value of f (x)

F(x) decomposed into simple fractions

f (x)
F (x)

= R +
A

(x−a)m′ +
A1

(x−a)m′−1 + . . .+
Am′−1

x−a

+
B

(x−b)m′′ +
B1

(x−b)m′′−1 + . . .+
Bm′′−1

x−b

+
C

(x− c)m′′′ +
C1

(x− c)m′′′−1 + . . .+
Cm′′′−1

x− c

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(3)

[316] where A, A1, . . ., Am′−1; B, B1, . . ., Bm′′−1; C, C1, . . ., Cm′′′−1; . . . denote con-
stants which we can easily deduce from the principles described in section I, or
calculate directly with the aid of the following considerations.

For convenience, make
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R+
B

(x−b)m′′ +
B1

(x−b)m′′−1 + . . .+
Bm′′−1

x−b

+
C

(x− c)m′′′ +
C1

(x− c)m′′′−1 + . . .+
Cm′′′−1

x− c

+ . . . . . . . . . . . . . . . . . . . . . . . .

=
Q

(x−b)m′′
(x− c)m′′′

. . .
,

(4)

where Q is a new integer function of the variable x. Equation (3) then becomes

f (x)
F (x)

=
A

(x−a)m′ +
A1

(x−a)m′−1 + . . .+
Am′−1

x−a

+
Q

(x−b)m′′
(x− c)m′′′

. . .
.

If we multiply both sides of this last formula by

F (x) = k (x−a)m′
(x−b)m′′

(x− c)m′′′
. . .

we then conclude that
f (x) = [A+A1 (x−a)+ . . .

. . . +Am′−1(x−a)m′−1
] F (x)

(x−a)m′ + kQ(x−a)m′
.

(5)

Consequently, by making
x = a+ z,

we find that

f (a+ z) =
(

A+A1z+ . . .+Am′−1zm′+1
) F (a+ z)

zm′ +Zzm′
,(6)

where Z denotes the value of the polynomial kQ expressed as a function of z. Now
suppose that the substitution of x + z in place of x in the functions f (x) and F(x)
gives in general

f (x+ z) = f (x) +z f1 (x)+ z2 f2 (x)+ . . . ,

F (x+ z) = F (x) +zF1 (x)+ z2F2 (x)+ . . .

+zm′
Fm′ (x)+ zm′+1Fm′+1 (x)+ . . . .

(7)

[317] By taking x = a+ z and observing that the expansion of the function

F (x) = F (a+ z)
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ought to be divisible by (x−a)m′
= zm′

, we have that{
f (a+ z) = f (a)+ z f1 (x)+ z2 f2 (x)+ . . . ,

F (a+ z) =
[
Fm′ (a)+ zFm′+1 (a)+ z2Fm′+2 (a)+ . . .

]
zm′(8)

and
F (a) = 0, F1 (a) = 0, . . . , Fm′−1 (a) = 0.(9)

Given this, formula (6) is found to reduce to
f (a)+ z f1 (a)+ z2 f2 (a)+ . . .

=
(
A+A1z+A2z2 + . . .

)
×
[
Fm′ (a)+ zFm′+1 (a)+ z2Fm′+2 (a)+ . . .

]
+ zm′′

Z.

(10)

By equating the coefficients of similar powers of z on the two sides of the equation,
we derive from this that

f (a) = AFm′ (a) ,

f1 (a) = A1Fm′ (a)+AFm′+1 (a) ,

f2 (a) = A2Fm′ (a)+A1Fm′+1 (a)+AFm′+2 (a) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(11)

By an entirely similar calculation we find
f (b) = BFm′′ (b) , f1 (b) = B1Fm′′ (b)+BFm′′+1 (b) , f2 (b) = . . . ,

f (c) = CFm′′′ (c) , f1 (c) = C1Fm′′′ (c)+CFm′′′+1 (c) , f2 (c) = . . . ,
. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . .

(12)

These various equations suffice to determine completely the values of the constants
A, A1, A2, . . ., B, B1, B2, . . ., C, C1, C2, . . .. They give, for example,

A =
f (a)

Fm′ (a)
,

A1 =
f1 (a)−AFm′+1 (a)

Fm′ (a)
,

A2 =
f2 (a)−A1Fm′+1 (a)−AFm′+2 (a)

Fm′ (a)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(13)

[318] Because the constants thus determined are evidently independent of the
method used for the decomposition of the rational fraction f (x)

F(x) , it follows that this
fraction is decomposable into simple fractions of the form of those on the right-hand
side of equation (3) in only one way.
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It is easy to see that the first of equations (13) agrees with formula (14) of section
I. Indeed, the quantity Fm′ (a) is what becomes of the polynomial

Fm′ (a)+ zFm′+1 (a)+ z2Fm′+2 (a)+ . . . =
F (a+ z)

zm′ =
F (x)

(x−a)m′

when we make z = 0 or x = a. Consequently, if we set

F (x) = (x−a)m′
ϕ (x) ,(14)

we have
Fm′ (a) = ϕ (a)

and

A =
f (a)
ϕ (a)

.(15)

In the case where the functions f (x) and F(x) are both real and the equation
F(x) = 0 admits m′ roots equal to α + β

√
−1, the same equation also admits m′

roots equal and conjugate to the first ones, and consequently represented by

α −β
√
−1.

Under this hypothesis, if after the decomposition of the rational fraction

f (x)
F (x)

,

we combine in pairs the simple fractions which have as their denominators(
x−α −β

√
−1
)m′

and
(
x−α +β

√
−1
)m′

,(
x−α −β

√
−1
)m′−1 and

(
x−α +β

√
−1
)m′−1

,
. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . ,

[319] and finally

x−α −β
√
−1 and x−α +β

√
−1,

the different sums obtained are the real and rational fractions which have as their
respective denominators [

(x−α)2 +β 2
]m′

,[
(x−α)2 +β 2

]m′−1
,

. . . . . . . . . . . . . . . . . . ,

(x−α)2 +β 2,
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and by which the system can be replaced by a sequence of other fractions which,
with the same denominators, have as their numerators real linear functions of the
variable x. Finally, it is easy to calculate directly this new sequence of fractions by
beginning with those which correspond to the highest powers of (x−α)2 +β 2. For
example, let us seek the one which has as its denominator[

(x−α)2 +β
2
]m′

=
(

x−α −β
√
−1
)m′ (

x−α +β
√
−1
)m′

.

From the principles established in section I, the fraction is

u[
(x−α)2 +β 2

]m′ ,(16)

provided that we make
u =

1
2β
√
−1

[
f
(
α +β

√
−1
)

ϕ
(
α +β

√
−1
) (x−α +β

√
−1
)

−
f
(
α −β

√
−1
)

ϕ
(
α −β

√
−1
) (x−α −β

√
−1
)](17)

and

ϕ (x) =
F (x)[

(x−α)2 +β 2
]m′ .(18)

We add that if we successively set

x = α +β
√
−1+ z and x = α −β

√
−1+ z

in the preceding formula, [320] we conclude, taking into account the second of
equations (8), that

ϕ
(
α +β

√
−1+ z

)
=

Fm′
(
α +β

√
−1
)
+ zFm′+1

(
α +β

√
−1
)
+ . . .(

2β
√
−1+ z

)m′ ,

ϕ
(
α −β

√
−1+ z

)
=

Fm′
(
α −β

√
−1
)
+ zFm′+1

(
α −β

√
−1
)
+ . . .(

−2β
√
−1+ z

)m′ ,

and consequently
ϕ
(
α +β

√
−1
)

=
Fm′
(
α +β

√
−1
)(

2β
√
−1
)m′ and

ϕ
(
α −β

√
−1
)

= (−1)m′ Fm′
(
α −β

√
−1
)(

2β
√
−1
)m′ .

(19)



Chapter 12
On recurrent series.

12.1 General considerations on recurrent series.

[321] A series
a0, a1x, a2x2, . . . , anxn, . . . ,(1)

ordered according to the ascending integer powers of the variable x, is called recur-
rent when in this series, starting after a given term, the coefficient of any power of
the variable is expressed as a linear function of a fixed number of the coefficients of
lesser powers, and consequently it suffices to run back1 to the values of these last
coefficients to deduce the one we are seeking. Thus, for example, the series

1, 2x, 3x2, . . . , (n+1)xn, . . .(2)

is recurrent, considering that if we make

an = n+1,

we always have, for values of n greater than 1,

an = 2an−1−an−2.(3)

In general, series (1) is recurrent if, for all values of n greater than a certain limit,
the coefficients

an, an−1, an−2, . . . , an−m

of several consecutive powers of x are found related to each other [322] by an equa-
tion of the first degree. Let

kan−m + lan−m+1 + . . .+ pan−1 +qan = 0(4)

1 Cauchy uses the French verb recourir here. He seems to be commenting on the etymology of
“recurrent” (récurrent in French), which has its origins in the Latin verb currere, “to run.”

R.E. Bradley, C.E. Sandifer, Cauchy’s Cours d’analyse, Sources and Studies 257
in the History of Mathematics and Physical Sciences, DOI 10.1007/978-1-4419-0549-9 12,
c© Springer Science+Business Media, LLC 2009
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be the equation in question, where k, l, . . ., p and q denote determined constants.
The sequence of these constants forms what we call the recurrence relation2 of the
series, the recurrence for which the constants themselves are the different terms.

In series (1), assumed to be recurrent, the variable x and its coefficients a0, a1, a2,
. . ., an, can be either real quantities or imaginary expressions. Given this, represent
the modulus of the expression an by ρn, and consequently the numerical value of
this expression whenever it is real. We conclude immediately from the principles
established in Chapters VI and IX that series (1) is either convergent or divergent
depending on whether the modulus or the numerical value of x is less than or greater
than the smallest of the limits towards which the expression (ρn)

− 1
n converges, when

n grows indefinitely.

12.2 Expansion of rational fractions into recurrent series.

Any time that a rational fraction can be expanded into a convergent series ordered
according to ascending integer powers of the variable, that series is recurrent, as we
will see.

First consider the rational fraction

A
(x−a)m ,(1)

in which a and A denote two constants, real or imaginary, and m an integer number.
It can be put into the form

(−1)m A
am

(
1− x

a

)−m
,

[323] and it is expandable, as well as the expression(
1− x

a

)−m
,

into a convergent series ordered according to the ascending integer powers of the
variable x if the numerical value of the ratio x

a in the real case, or the modulus of the
same ratio in the imaginary case, is a quantity contained between the limits 0 and 1.
This condition is satisfied if the modulus of the variable x, a modulus which reduces
to the numerical value of the same variable when it becomes real,3 is less than the
modulus of the constant a, and we have, under this hypothesis,

2 Cauchy uses the term échelle de relation, literally “scale [or ladder] of relation.” (tr.)
3 Cauchy writes imaginaire here in [Cauchy 1821, p. 391, Cauchy 1897, p. 323].
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(
1− x

a

)−m = 1+
m
1

x
a

+
m(m+1)

1 ·2
x2

a2 + . . .

=
1 ·2 ·3 . . .(m−1)
1 ·2 ·3 . . .(m−1)

+
2 ·3 ·4 . . .m

1 ·2 ·3 . . .(m−1)
x
a

+
3 ·4 ·5 . . .(m+1)
1 ·2 ·3 . . .(m−1)

x2

a2 + . . . .

(2)

Consequently, we find

A
(x−a)m = (−1)m

(
A
am +

m
1

Ax
am+1 +

m(m+1)
1 ·2

Ax2

am+2 + . . .

)
.(3)

If for brevity we make 

(−1)m A
am = a0,

(−1)m m
1

A
am+1 = a1,

(−1)m m(m+1)
1 ·2

A
am+2 = a2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(4)

we obtain the equation

A
(x−a)m = a0 +a1x+a2x2 + . . .+anxn + . . . .(5)

[324] Now imagine that we multiply both sides of the preceding equation by (a−
x)m. We find that4

(−1)m A =
[
am− m

1 am−1x+ m(m−1)
1·2 am−2x2− . . .± xm

]
×
(
a0 +a1x+a2x2 + . . .

)
= am(a0+a1x+a2x2+...+am xm+am+1xm+1+...)

−m
1 am−1(a0x+a1x2+...+am−1xm+am xm+1+...)

+m(m−1)
1·2 am−2(a0x2+...+am−2xm+am−1xm+1+...)

− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

±(a0xm+a1 xm+1+···),

(6)

or what amounts to the same thing,

4 Cauchy writes a + before the ellipses in the first line of this equation in [Cauchy 1821, p. 392,
Cauchy 1897, p. 324].
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(−1)m A = ama0 +
(
ama1− m

1 am−1a0
)

x

+
[
ama2− m

1 am−1a1 + m(m−1)
1·2 am−2a0

]
x2

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
[
aman− m

1 am−1an−1 + m(m−1)
1·2 am−2an−2

− . . .±an−m

]
xn

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(7)

This last formula ought to remain true any time that the modulus of the variable x is
less than the modulus of the constant a, and consequently any time that we attribute
to x a real value slightly different from zero. We conclude, by reasoning similar to
that which we have used for the proof of theorem VI of Chapter VI (§ IV), that

(−1)m A = ama0,

ama1− m
1 am−1a0 = 0,

ama2− m
1 am−1a1 + m(m−1)

1·2 am−2a0 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(8)

[325] and in general,

aman−
m
1

am−1an−1 +
m(m−1)

1 ·2
am−2an−2− . . .±an−m = 0.(9)

It is essential to remark that equation (9) applies only for real integer values of n
greater than or equal to m, and that whenever we suppose that n < m, it ought to be
replaced by one of the formulas (8). Moreover, because equation (9) is linear with
respect to the constants

an, an−1, an−2, . . . , an−m,

it gives the first of these constants as a linear function of all the other ones. It follows
that in the series

an, a1x, a2x2, . . . , anxn, . . .(10)

starting from the term amxm,5 the coefficient of any power of x is expressed as a
linear function of the m coefficients of lesser powers taken consecutively. This series
is thus one of those that we have named recurrent.

Among the various particular formulas which we can deduce from equation (3),
it is good to mention those which correspond to the two suppositions m = 1 and
m = 2. We find, under the first hypothesis, that

5 In [Cauchy 1897, p. 325], this is written as amxm. It is given correctly in [Cauchy 1821, p. 394].
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A
x−a

=−
(

A
a

+
A
a2 x+

A
a3 x2 + . . .

)
,(11)

and under the second hypothesis, that

A

(x−a)2 =
A
a2 +2

A
a3 x+3

A
a4 x2 +4

A
a5 x3 + . . . .(12)

The two preceding formulas, where the first determines the sum of a geometric
progression, remain true, and thus equation (3) as well, as long as the modulus of x
is less than the modulus of a. [326] When in equation (12) we make both

A = 1 and a = 1,

we obtain the following

1

(x−1)2 = 1+2x+3x2 +4x3 + . . . ,(13)

which has for its right-hand side the sum of series (2) (§ I), and supposes that the
modulus of x is less than 1.

Now consider any rational fraction

f (x)
F (x)

,(14)

where f (x) and F(x) are two integer functions of the variable x. Represent by a, b,
c, . . . the various roots of the equation

F (x) = 0,(15)

by m′ the number of roots equal to a, by m′′ the number of roots equal to b, by m′′′

the number of roots equal to c, . . ., and by k the coefficient of the highest power of
x in the polynomial F(x), so that we have

F (x) = k (x−a)m′
(x−b)m′′

(x− c)m′′′
. . . .(16)

For the decomposition of the rational fraction f (x)
F(x) into simple fractions, the method

explained in the preceding chapter gives an equation of the form
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f (x)
F (x)

= R +
A

(x−a)m′ +
A1

(x−a)m′−1 + . . .+
Am′−1

x−a

+
B

(x−b)m′′ +
B1

(x−b)m′′−1 + . . .+
Bm′′−1

x−b

+
C

(x− c)m′′′ +
C1

(x− c)m′′′−1 + . . .+
Cm′′′−1

x− c

+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(17)

where A, A1, . . ., B, B1, . . ., C, C1, . . ., etc. denote determined constants [327] and R
is an integer function of x which vanishes when the degree of the polynomial f (x)
is less than that of the polynomial F(x). Given this, imagine that the modulus of the
variable x is less than the moduli of the various roots a, b, c, . . ., and consequently
less than the smallest of these moduli. We can expand each of the simple fractions
that make up the right-hand side of equation (17) into a convergent series ordered
according to the ascending powers of the variable x. Then, by adding the expansions
formed like this to the polynomial R, we obtain a new convergent series, still ordered
according to the ascending powers of x and where the sum is equal to the rational
fraction f (x)

F(x) . Let

a0, a1x, a2x2, . . . , anxn, . . .(18)

be the new series in question here. The formula

f (x)
F (x)

= a0 +a1x+a2x2 + . . .(19)

remains true any time this new series is convergent, that is to say any time the
modulus of the variable x is less than the smallest of the numbers that serve as
the moduli of the roots of equation (15). I add that series (18) is still a recurrent
series. We will easily prove this as follows.

Denote by m the sum of the integer numbers m′, m′′, m′′′, . . ., or what amounts to
the same thing, the degree of the polynomial F(x), and consequently make

F (x) = kxm + lxm−1 + . . .+ px+q,(20)

where k, l, . . ., p and q represent constants, real or imaginary. Equation (19) becomes

f (x)
kxm + lxm−1 + . . .+ px+q

= a0 +a1x+a2x2 + . . . .(21)

After putting it into the form

f (x) =
(
q+ px+ . . .+ lxm−1 + kxm)(a0 +a1x+a2x2 + . . .

)
,(22)

[328] we get, by expanding the right-hand side as we did for equation (6),
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f (x) = qa0 +(qa1 + pa0)x+ . . .

+(qam + pam−1 + . . .+ la1 + ka0)xm + . . .

+(qan + pan−1 + . . .+ lan−m+1 + kan−m)xn

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(23)

Because this last formula ought to remain true as long as the modulus of the variable
x is less than the moduli of the constants a, b, c, . . ., we can prove, by reasoning
similar to that which we have used to establish theorem VI of Chapter VI (§ IV),
that the coefficients of like powers of x in the two sides are necessarily equal to each
other. It follows: 1◦ that the coefficients of the various powers of x in the different
terms of the polynomial f (x) are respectively equal to the coefficients of the same
powers of the series, the sum of which constitutes the right-hand side of equation
(23); and 2◦ that in this series the coefficients of the powers where the exponent
surpasses the degree of the polynomial f (x) reduce to zero. Moreover, if we consider
a term of the series in which the exponent n of the variable x surpasses the degree
of the polynomial f (x), and is at the same time equal to or greater than m, the term
is of the form

(qan + pan−1 + . . .+ lan−m+1 + kan−m)xn.

Thus, any time the value of n is greater than the degree of the polynomial f (x) and
is also equal to or greater than the degree m of the polynomial F(x), the coefficients

an, an−1, . . . , an−m+1, an−m

are found to satisfy the linear equation

qan + pan−1 + . . .+ lan−m+1 + kan−m = 0.(24)

Consequently, for such a value of n, the coefficent an of the power xn is expressed
as a linear function of those coefficients of m lesser powers taken consecutively.
Series (18) [329] is thus one of those that we call recurrent. Its recurrence relation
is composed of the constants

k, l, . . . , p, q,

respectively equal to the coefficients of the various powers of x in the polynomial
F(x).

Among the series which represent the expansions of the fractions contained in
the right-hand side of formula (17) and which are all convergent in the case where
the modulus of the variable x remains less than the moduli of the various roots of
equation (15), at least one would become divergent if the modulus of the variable
came to surpass that of some root. Consequently, series (18), still convergent in
the first case, is divergent in the second. On the other hand, if we make the integer
number n increase indefinitely, and if we denote by ρn the modulus of the coefficient
an in series (18), this series is convergent or divergent (see § I) depending on whether
the modulus of x is less than or greater than the smallest of the limits of (ρn)

− 1
n .



264 12 On recurrent series.

Because the two rules of convergence that we have just stated must necessarily agree
with each other, we can conclude that the smallest of the moduli which correspond to
roots of equation (15) is precisely equal to the smallest of the limits of the expression
(ρn)

− 1
n .

When the two functions f (x) and F(x) are real, the coefficient an is real as well,
and its modulus ρn is no different from its numerical value. If under the same hy-
pothesis, the equation F(x) = 0 has no real roots, the root that has the smallest
numerical value is, from what we have just said, equal (up the sign) to the small-
est of the limits of (ρn)

− 1
n . Finally, if the ratio ρn

ρn+1
converges to a fixed limit, we

can substitute it (Chap. II, § III, theorem II) for the desired limit of the expression
(ρn)

− 1
n .6 This remark leads to the rule that Daniel Bernoulli has given for determin-

ing numerically [330] the smallest (ignoring the sign) of all the quantities which
represent the roots, supposed to be real, of an algebraic equation.

12.3 Summation of recurrent series and the determination of
their general terms.

When a series ordered according to the ascending powers of the variable x is at the
same time convergent and recurrent, it always has a rational fraction as its sum.
Indeed, let

a0, a1x, a2x2, . . . , anxn, . . .(1)

be such a series. Suppose that for values of n above a certain limit, the coefficient an
of the power xn is determined as a linear function of the n coefficients of the lesser
powers by an equation of the form

kam−n + lan−m+1 + . . .+ pan−1 +qan = 0,(2)

such that the constants
k, l, . . . , p and q

form the recurrence relation of the series. If we multiply the sum of the series,
namely

a0 +a1x+a2x2 + . . .

by the polynomial
kxm + lxm−1 + . . .+ px+q,

the product obtained is the sum of a new series in which the coefficient of xn, cal-
culated as in Chapter VI (§ IV, theorem V), vanishes for values of n greater than
the assigned limit. In other words, the product in question is a new polynomial of a
degree indicated by this limit. If we denote this new polynomial by f (x), we have

6 This was given as (ρ)−
1
n in [Cauchy 1821, p. 400, Cauchy 1897, p. 329].
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f (x) =
(
kxm + lxm−1 + . . .+ px+q

)(
a0 +a1x+a2x2 + . . .

)
(3)

[331] and consequently,

a0 +a1x+a2x2 + . . . =
f (x)

kxm + lxm−1 + . . .+ px+q
.(4)

Thus, any series which is ordered according to the ascending and integer powers of
the variable x and which is both convergent and recurrent has as its sum a rational
fraction for which the denominator is a polynomial in which the successive powers
of x have for coefficients the different terms of the recurrence relation of the series.

When we describe a recurrent series by giving only its first terms and the recur-
rence relation which serves to determine from the first terms all those which follow,
then with the aid of the method which we have just indicated, we easily determine
the rational fraction which represents the sum of the series in the case where it re-
mains convergent. Once this rational fraction is calculated, we can substitute a sum
of simple fractions for it, possibly augmented by an integer function of the variable
x. If we then seek the recurrent series which expresses the expansions of the simple
fractions in question for conveniently chosen values of x, and we add the general
terms of these same series, we obtain the general term of the proposed series.





NOTES.1

NOTE I.

ON THE THEORY OF POSITIVE AND NEGATIVE QUANTITIES.

[333] There has been much dispute about the nature of positive and negative quanti-
ties, and various theories have been given on this subject. The one we have adopted
(see the Preliminaries, pages 2 and 3)2 appears to us to be the best for clarifying
all the difficulties. First we will state it in a few words. Then we will show how we
deduce the rule of signs.

Just as we see the idea of number born from the measurement of magnitudes, so
also we acquire the idea of quantity (positive or negative) when we consider each
magnitude of a given kind as being able to serve as the increase or diminution of
another fixed size of the same kind. To indicate this intention, we represent the sizes
that ought to serve as increases by numbers preceded by the sign +, and the sizes
that ought to serve as diminutions by the numbers preceded by the sign −. Given
this, the signs + or − placed in front of numbers can be compared, following the
remark that has been made,3 with adjectives placed near their nouns. We designate

1 The last portion of the Cours d’analyse is a collection of 9 appendices, which Cauchy calls
“Notes.” On p. 1 of the introduction [Cauchy 1821, p. ii, Cauchy 1897, p. ii], he describes them
as “the derivations which may be useful both to professors and students of the Royal Colleges, as
well as to those who wish to make a special study of analysis.”
2 See [Cauchy 1821, pp. 2–3, Cauchy 1897, pp. 18–19]. Curiously, this reference in [Cauchy 1897]
was still to pages 2 and 3, even though that edition has no pages numbered 2 or 3. (tr.)
3 Cauchy’s footnote (1) reads “Transactions philosophiques, année 1806,” a reference is to [Buée
1806]. Abbé Buée (1748–1826) in turn cited Carnot, Frend and Euler, so it seems that Buée, hence
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numbers preceded by the sign + as positive quantities, and numbers preceded by
the sign − as negative quantities. Finally, we agree to include the absolute numbers
which are not preceded by any sign among the class of positive quantities, and it
is for this reason that we sometimes dispense with writing the sign + before the
numbers which ought to represent quantities of this kind.

In Arithmetic we always operate on numbers for which the particular value is
known, and which are consequently given as figures, while in Algebra, where we
consider the general properties of numbers, [334] we ordinarily represent these same
numbers by letters. There, a quantity is expressed by a letter preceded by the sign
+ or −. Moreover, nothing prevents representing the quantities by simple letters as
well as by numbers. It is an artifice which augments the resources of Analysis, but
when we wish to use it, it is necessary to take account of the following conventions.

Following what we have said above, in the case where the letter A represents a
number, we can denote the positive quantity for which the numerical value is equal
to A either by +A or by A alone, while −A denotes the opposite quantity, that is to
say the negative quantity for which A is the numerical value. Thus, in the case where
a represents a quantity, we regard the two expressions a and +a as synonyms, and
we denote by −a the opposite quantity.

Following these conventions, if we represent either a number or any quantity by
A, and if we make

a = +A and b =−A,

then we have
+a = +A, +b =−A,

−a =−A and −b = +A.

In the last four equations, if we replace a and b with their values between parenthe-
ses, we get the formulas{

+(+A) = +A, +(−A) =−A,

−(+A) =−A and −(−A) =−A.
(1)

In each of these formulas, the sign of the right-hand side is what we call the product
of the two signs of the left-hand side. To multiply two signs by each other is to form
their product. Inspection alone of equations (1) suffices to establish the rule of signs,
contained in the theorem which I am going to state.

Theorem I. — The product of two signs that are the same is always + and the
product of two opposite signs is always −.

It also follows from the same equations that when one of the signs is +, the
product of two signs is equal to the other one. Thus, if we have several signs to

Cauchy, was fully aware of the controversy raging in England at the time, regarding the nature of
negative numbers. This paper by Buée is described as “perhaps the very first purely mathematical
theory of time” [Windred 1933].
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multiply together, we can ignore all the + signs. From this remark, we easily deduce
the following propositions:

Theorem II. — If we multiply together several signs [335] in any order, the
product is always + whenever the number of − signs is even, and the product is −
in the opposite case.

Theorem III. — The product of as many signs as we like remains the same, in
any order in which we multiply them.

An immediate consequence of the above definitions is that the multiplication of
signs has no relation to the multiplication of numbers. However, we need not be
surprised if we note that the idea of the product of two signs arises as one of the first
steps that we make in Analysis, because in addition or subtraction of a monomial,
we really multiply the sign of this monomial by the sign + or −.

Starting from the principles which we have just established, we easily clear up
all difficulties which the use of the signs + and − can present in the operations
of Algebra and of Trigonometry. We need only distinguish carefully the operations
relative to numbers from those which apply to positive or negative quantities. We
especially ought to clarify precisely the goals of each kind of operation, to define
their results and to describe their principal properties. This is what we are going to
try to do in a few words, for the various operations which we commonly use.

Addition and subtraction.

Sums and differences of numbers. — To add the number B to the number A, or in
other words, to subject the number A to an increase +B is what we call an arithmetic
addition. The result of this operation is called the sum. We indicate this by placing
the increase +B next to the number A, as follows:

A+B.

We will not prove it, but we admit as evident that the sum of several numbers remains
the same in whatever order we add them. This is a fundamental axiom on which rest
Arithmetic, Algebra and all the sciences of calculation.

Arithmetic subtraction is the inverse of addition. It consists of taking away from
a first number A some second number B, that is to say of finding a third number C
which added to the second number reproduces the first number. This is also what we
call subjecting to the number A the diminution −B. The result of this operation is
called the difference. We indicate it by placing [336] the diminution −B following
the number A, as follows:

A−B.

Sometimes we indicate the difference A−B with the name the excess or the remain-
der or the arithmetic relation between the two numbers A and B.
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Sums and differences of quantities. — We have explained in the preliminaries
what it is to add two quantities together. In adding several quantities to each other,
we obtain what we call their sum. Based on the axiom about the addition of numbers,
it is easy to prove the following proposition:

Theorem IV. — The sum of several quantities remains the same in whatever
order we add them.

We indicate the unique sum of several quantities by the simple juxtaposition
either of the letters which represent their numerical values or of the quantities them-
selves, with each letter preceded by the sign which it must have to express the cor-
responding quantity. Moreover, the different letters can be arranged in any order,
and it is permitted to suppress the + sign before the first letter. Let us consider, for
example, the quantities

a, b, c, . . . , − f , −g, −h, . . . .

Their sum could be represented by the expression

a− f −g+b−h+ c+ . . . .

In such an expression, each of the quantities

a, b, c, . . . , − f , −g, −h, . . .

is what we call a monomial. The expression itself is a polynomial, for which the
monomials in question are the different terms.

When a polynomial contains only two, three, four, . . ., terms, it takes the name
binomial, trinomial, quadrinomial, . . ..

We easily prove that two polynomials for which the terms are equal and of con-
trary signs represent two opposite quantities.

The difference between a first quantity and a second is a third quantity which,
added to the second, reproduces the first. On the basis of this definition, we prove
that to subtract a second quantity b from a first quantity [337] a, it suffices to add
the quantity opposite to b, that is to say −b, to the first quantity. We thus conclude
that the difference of two quantities a and b ought to be represented by

a−b.

Note. — Subtraction, being the inverse of addition, can always be indicated in
two ways. Thus, for example, to express that the quantity c is the difference of two
quantities a and b, we can write either

a−b = c or a = b+ c.
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Multiplication and division.

Products and quotients of numbers. — To multiply the number A by the number B
is to operate on the number A precisely as we operate on one to obtain B. The result
of this operation is what we call the product of A by B. To better understand the
preceding definition of multiplication, it is necessary to distinguish different cases,
depending on the kind of number B is. This number may be rational, that is to say
integer or fractional, or it may be irrational, that is to say not rational.

To obtain B when B is an integer number, it suffices to add one to itself several
times consecutively. Thus, to form the product of A by B, we must add the number A
to itself the same number of times, that is to say the sum of as many numbers equal
to A as there are ones in B.

When B is a fraction which has numerator m and denominator n, the operation
by which we arrive at the number B consists of separating the number one into n
equal parts and then repeating the result m times. Thus, we obtain the product of A
by B by separating the number A into n equal parts and then repeating one of these
parts m times.

When B is an irrational number, we can obtain rational numbers that approach
it more and more closely. We can easily see that under the same hypothesis the
product of A by the rational numbers in question approach a certain limit more and
more closely. This limit is the product of A by B. If we suppose, for example, that
B = 0, we find a zero limit, and we conclude that the product of any number by zero
vanishes.

In the multiplication of A by B, we call the number A the multiplicand and [338]
the number B the multiplier. These numbers are also designated together under the
name the factors of the product.

To indicate the product of A by B, we use any one of the following three notations:

B×A, B ·A or BA.

The product of several numbers remains the same in whatever order we multiply
them. This proposition, when it concerns just two or three integer factors, is derived
from the axiom about the addition of numbers. We can then prove it successively:
1◦ for two or three rational factors; 2◦ for two or three irrational factors; and finally
3◦ for any number of factors, rational or irrational.

To divide the number A by the number B is to find a third number for which
its product by B is equal to A. The operation by which we arrive at this is called
division and the result of this operation is the quotient. Moreover, the number A
takes the name of dividend and the number B that of divisor.

To indicate the quotient of A by B, we use at will one of the two following nota-
tions:

A
B

or A : B.

Sometimes we indicate the quotient A : B by the name ratio or geometric relation of
the two numbers A and B.
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The equality of two geometric ratios A : B and C : D, or in other words the equa-
tion

A : B = C : D

is what we call a geometric proportion. Ordinarily, instead of the sign = we use the
following ::, which has the same meaning, and we write

A : B :: C : D.

Note. — From the definition, when B is an integer number, to divide A by B is
to find a number which, repeated B times, reproduces A. Thus, it is to separate the
number A into as many equal parts as there are ones in B. We conclude easily from
this remark that if m and n denote two integer numbers, the nth part of one ought to
be represented by

1
n
,

[339] and the fraction which has numerator m and denominator n by

m× 1
n
.

Indeed, this is the notion by which we naturally denote the fraction in question.
However, because we easily prove that the product

m× 1
n

is equivalent to the quotient of m by n, that is to say to m
n , it follows that the same

fraction can be represented more simply by the notation

m
n

.

Products and quotients of quantities. — The product of a first quantity by
a second is a third quantity which has for its numerical value the product of the
numerical values of the two others, and for its sign the product of their signs. To
multiply two quantities by each other is to form their product. The first of the two
quantities is called the multiplier and the other the multiplicand, and the two of them
are both factors of the product.

Using these definitions, we easily establish the following proposition:

Theorem V. — The product of several quantities remains the same in whatever
order we multiply them.

To prove this proposition, it suffices to combine the similar proposition about
numbers with theorem III about signs (see above).4

4 [Cauchy 1821, p. 405, Cauchy 1897, p. 335].
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To divide a first quantity by a second is to find a third quantity which, multiplied
by the second, reproduces the first. The operation by which we arrive at this is called
division. The first quantity is the dividend, the second is the divisor and the result
of the operation is the quotient. Sometimes we indicate the quotient by the name of
ratio or geometric relation of the two given quantities. On the basis of the preceding
definitions, we easily prove that the quotient of two quantities has as its numerical
value the quotient of their numerical values, and as its sign the product of their
signs.

[340] Multiplication and division of quantities are indicated just like the multi-
plication and division of numbers.

We say that two quantities are inverses of each other when the product of these
two quantities is one. From this definition, the quantity a has 1

a as its inverse, and
reciprocally.

We have remarked above that what we call a fraction in Arithmetic is equal to
the ratio or quotient of two integer numbers. In Algebra we also denote the ratio or
quotient of any two quantities by the name fraction. Thus if a and b represent two
quantities, their ratio a

b is an algebraic fraction.
Again we observe that division, being an inverse operation of multiplication, can

always be indicated in two ways. Thus, for example, to express that the quantity c
is the quotient of two quantities a and b, we can write either

a
b

= c or a = bc.

Products and quotients of numbers enjoy general properties to which we often
have recourse. We have already spoken of the one whereby the product remains
the same in whatever order we may multiply its factors. Other properties, no less
remarkable, are found in the formulas which I am about to write.

Let

a, b, c, . . . , k, a′, b′, . . . , a′′, b′′, . . . , . . .

be several sequences of quantities, positive or negative. For all possible values of
these quantities, we have

k (a+b+ c+ . . .) = ka+ kb+ kc+ . . . ,

a+b+ c+ . . .

k
=

a
k

+
b
k

+
c
k

+ . . .,

a
b
× a′

b′
× a′′

b′′
× . . . =

aa′a′′ . . .
bb′b′′ . . .

,

k
a
b

=
bk
a

=
b
a
× k.

(2)

The four preceding formulas give rise to a multitude of consequences [341] which
would be too long to list here in detail. We conclude from the third formula, for
example: 1◦ that the fractions
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a
b

and
ka
kb

are equal to each other, where a, b and k denote any quantities; 2◦ that the fraction
a
b has b

a as its inverse; and 3◦ that to divide one quantity k by another quantity a, it
suffices to multiply k by the inverse of a, that is to say by 1

a .

Elevation of powers. Extraction of roots.

Powers and roots of numbers. Positive exponents. — To raise the number A to the
power indicated by the number B is to look for a third number which is formed from
A by multiplication as B is formed from one by addition. The result of this operation
made on the number A is what we call its power of degree B. To understand the
preceding definition of the elevation to powers well, it is necessary to distinguish
three cases, depending on whether the number B is integer, fractional or irrational.

When B denotes an integer number, this number is the sum of several ones. The
power of A of degree B thus ought to be the product of as many factors equal to A
as there are ones in B.

When B represents a fraction m
n (m and n being two integer numbers), to represent

this fraction it is necessary: 1◦ to find a number which, repeated n times, produces
one; and 2◦ repeat the number in question m times. Thus, to obtain the power of A
of degree m

n , it is necessary: 1◦ to find a number such that the multiplication of n
factors equal to this number reproduces A; and 2◦ to form a product of m factors
equal to this same number. When we suppose in particular that m = 1, the power of
A under consideration reduces to that of degree 1

n , and it is found to be determined
by the single condition that the number A be equivalent to the product of n factors
equal to this same power.

When B is an irrational number, we can then obtain rational numbers with values
approaching it more and more closely. We easily prove that under the same hypoth-
esis, powers of A indicated by the rational [342] numbers in question approach more
and more closely towards a certain limit. This limit is the power of A of degree B.

In the elevation of the number A to the power of degree B, the number A is called
the root and the number B, which indicates the degree of the power, is the exponent.
To represent the power of A of degree B, we use the following notation

AB.

From the preceding definitions, the first power of a number is nothing but the
number itself. Its second power is the product of two factors equal to this number,
its third power three such factors, and so on. Geometric considerations have led us
to indicate the second power by the name square and the third power by the name
cube. As for the power of degree zero, it is the limit towards which the power of
degree B converges when the number B decreases indefinitely. It is easy to show
that this limit reduces to one, from which it follows that we have, in general,
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A0 = 1.

We always suppose that the value of the number A remains finite and different from
zero.

To extract the root indicated by the number B of a number A is to find a third
number which, raised to the power of degree B produces A. The operation by which
we accomplish this is called extraction and the result of the operation is the root of
A of degree B. The number B which indicates the degree of the root is called the
index. To represent it, we use the following notation:

B√A.

The roots of second and third degree are ordinarily indicated by the names square
roots and cube roots. When it is a matter of a square root, we almost always dispense
with writing the index 2 along with the sign √. Thus the two notations

2√A and
√

A

ought to be considered as equivalent.

Note. — The extraction of roots of numbers, being the inverse of their elevation
to powers, can always be indicated in two ways. Thus, for example, to express that
the number C is equal to the root of A of [343] degree B, we can write either

A = CB or C = B√A.

We remark again that, by virtue of these definitions, if we denote any integer
number by n, then A

1
n is a number such that the multiplication of n factors equal to

this number produces A. In other words, we have(
A

1
n

)n
= A,

from which we conclude that
A

1
n = n√A.

Thus, when n is an integer number, the power of A of degree 1
n , and the nth root of

A are equivalent expressions. We prove easily that it is the same in the case where
we replace the integer number n by any number.

Powers of numbers. Negative exponents. — To raise the number A to the power
indicated by the negative exponent −B is to divide one by AB. The value of the
expression

A−B

is thus found to be determined by the equation

A−B =
1

AB ,
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which we can also put into the form

ABA−B = 1.

Consequently, if we raise the same number to two powers indicated by two opposite
quantities, we obtain as results two positive quantities that are inverses to each other.

Powers and real roots of quantities. — In the definitions which we have given
of powers and roots of numbers corresponding to exponents, either integer or frac-
tional, if we substitute the word quantities in place of numbers, we obtain the fol-
lowing definitions for powers and real roots of quantities.

To raise the quantity a to the real power of degree m, where m is an integer
number, [344] is to form the product of as many factors equal to a as there are ones
in m.

To raise the quantity a to the real power of degree m
n , where m and n are two

integer numbers and, to avoid all uncertainty, where the fraction m
n is reduced to its

simplest expression, is to form a product of m factors chosen so that the nth power
of each of them is equal to the quantity a.

To extract the real root of degree m or m
n of the quantity a is to find a new quantity

which, raised to the real power of degree m or m
n produces a. From this definition,

the nth real root of a quantity is evidently the same thing as its real power of degree
1
n . Moreover, we easily prove that the root of degree n

m equals the power of degree
m
n .

Finally, to raise the quantity a to the real power of degree −m or −m
n is to divide

one by the same quantity a raised to the real power of degree m or m
n .

In these operations of which we have just spoken, the number or the quantity
which marks the degree of a real power of a is called the exponent of this power,
while the number which marks the degree of a real root is named the index of this
root.

Every power of a which corresponds to an exponent for which the numerical
value is an integer, that is to say to an exponent of the form +m or −m, where m
represents an integer number, admits a unique real value which we denote by the
notation

am or a−m.

As for the roots and powers for which the numerical value is fractional, they
can admit either two real values, or but one real value, or admit none at all. The
real values in question here are necessarily either positive quantities or negative
quantities. However, in Algebra, in addition to these quantities we also use symbols
which have no meaning by themselves, but nevertheless receive the names powers
and roots because of their properties. These symbols [345] are among the algebraic
expressions to which we have given the name imaginary, as opposed to the name
real expressions, which only applies to numbers or quantities.

Given this, it follows from the principles established in Chapter VII that the nth
root of any quantity a and its powers of degree m

n and −m
n , where n is an integer

number and m
n is an irreducible fraction, each of which admits n distinct values, real
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or imaginary. Conforming to the notations adopted in the same chapter, we denote
any one of these values, if it is a question of the nth root, by the notation

n
√√

a = ((a))
1
n ,

and if it is a question of the power which has for its exponent m
n or −m

n , by the
notation

((a))
m
n or ((a))−

m
n .

We add that the expression ((a))
1
n is contained as a particular case of the more gen-

eral expression ((a))
m
n . By calling A the numerical value of a, we find that the real

values of the two expressions

((a))
m
n and ((a))−

m
n are:

1◦ If n denotes an odd number and

a is +A . . . . . . . . . . . . +A
m
n and +A−

m
n ,

a is −A . . . . . . . . . . . . −A
m
n and −A−

m
n ;

2◦ If n denotes an even number and

a is +A . . . . . . . . . . . . ±A
m
n and ±A−

m
n .

In the last case, when we suppose that a is negative, all the values of each of the
expressions ((a))

m
n and ((a))−

m
n become imaginary.

If we make the fraction m
n vary in such a way that it approaches indefinitely an

irrational number B, the denominator n then grows beyond any assignable limit, and
likewise the number of imaginary values [346] which each of the expressions

((a))
m
n and ((a))−

m
n

take on. Consequently, we cannot admit into calculation the notations

((a))B and ((a))−B

or the notation
((a))b ,

when we make b =±B, unless we consider such a notation itself as representing an
infinity of imaginary expressions. To avoid this inconvenience, we never employ the
algebraic expression

((a))b

in the case where the numerical value of b is irrational. Under this hypothesis, only
when a takes a positive value +A can we make use of the notation
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ab or (a)b ,

which we ought to consider as equivalent to

+Ab

(see Chapter VII, § IV).
Powers of numbers and quantities enjoy several remarkable properties which are

easy to prove. Among others, we note those contained in the formulas which I am
going to write.

Let a, a′, a′′, . . ., b, b′, b′′, . . . be any quantities, positive or negative,. Let A, A′,
A′′, . . . be any numbers and let m, m′, m′′, . . . be integer numbers. We have

AbAb′Ab′′ . . . = Ab+b′+b′′+...,

AbA′bA′′b . . . = (AA′A′′ . . .)b ,(
Ab
)b′ = Ab′b,

(3)

and 

a±ma±m′
a±m′′

. . . = a±m±m′±m′′±...,

ama′ma′′m . . . = (aa′a′′ . . .)m ,

a−ma′−ma′′−m . . . = (aa′a′′ . . .)−m ,

(am)m′
= (a−m)−m′

= amm′
and

(am)−m′
= (a−m)m′

= a−mm′
,

(4)

where each of the numbers m, m′, m′′, . . . in the first equation (4) must be affected
with the same sign on both sides of the equation. [347] Formulas (3) and (4) give rise
to a multitude of consequences, among which we will content ourselves to indicate
the following. We get from the second formula (3) that

Ab
(

1
A

)b

= 1b = 1,

and we then conclude that (
1
A

)b

=
1

Ab .

Thus, if we raise two positive quantities that are inverses to each other to the same
power, the results are always two inverse quantities.
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Formation of exponentials and logarithms.

When we regard the number A as fixed and the quantity x as a variable in the ex-
pression Ax, the power Ax takes the name exponential. Under the same hypothesis,
if for a particular value of x we have

Ax = B,

then this particular value is what we call the logarithm of the number B in the system
for which the base is A. We indicate this logarithm by placing before the number
the initial letters ln or log, like5

lnB or logB.

However, as such a notation does not tell the base of the system of logarithms to
which it refers, it is important to state in the discussion the value of this base. Given
this, if we use the characteristic log to denote logarithms taken in the system for
which the base is A, the equation

Ax = B

implies the following one
x = logB.

Sometimes, when we must treat logarithms taken in different systems at the same
time, we distinguish among them with the aid of one of several accents placed to
the right of the letters log, and as a consequence we denote by these letters without
accents the logarithms of a first system, by the same letters followed by a single
accent logarithms of a second system, etc.

Based on the preceding definitions and on the general properties of powers of
numbers, we easily recognize: 1◦ that one [348] has zero for its logarithm in all
systems; 2◦ that in any system of logarithms for which the base exceeds one, every
number greater than one has a positive logarithm, and every number less than one
has a negative logarithm; 3◦ that in any system of logarithms for which the base is
less than one, every number less than one has a positive logarithm and every number
greater than one has a negative logarithm; and finally 4◦ that in two systems for
which the bases are inverses to one another, the logarithms of the same number are
equal and of contrary signs. Moreover, we easily prove the formulas which establish
the principal properties of logarithms, among which we ought to note these which I
am going to write.

If we denote by B, B′, B′′, . . ., C any numbers, by the characteristics log and log′

the logarithms taken in two different systems for which the bases are A and A′, and
by k any quantity, positive or negative, we have

5 As mentioned in the Preface and in a footnote in the Preliminaries, we use the more modern
notations “ln” and “log” to avoid confusion, whereas Cauchy used “l” and “L”, respectively. If
Cauchy means the natural logarithm, we always use “ln.” (tr.)
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logBB′B′′ . . . = logB+ logB′+ logB′′+ . . . ,

logBk = k logB,

BlogC = AlogB·logC = ClogB,

logC
logB

=
log′C
log′B

.

(5)

From the first of these formulas, we get

logB+ log
1
B

= log1 = 0

and consequently

log
1
B

=− logB.

From this it follows that two positive quantities that are inverse to each other have
equal logarithms of contrary signs. We add that the fourth formula can be deduced
easily from the second. Indeed, suppose that the quantity k represents the logarithm
of the number C in the system for which the base is B. We have

C = Bk

and consequently

logC = k logB and log′C = k log′B,

from which we conclude immediately that

logC
logB

=
log′C
log′B

= k.

[349] We can also remark that if we take B = A, then because logA = 1, we get from
the fourth formula that

log′C = log′A · logC,

or, taking for brevity log′A = µ ,

log′C = µ logC.

Thus, to pass from a system of logarithms for which the base is A to one for which
the base is A′, it suffices to multiply the logarithms taken in the first system by a
certain coefficient µ equal to the logarithm of A taken in the second system.

The logarithms of which we have just spoken are those which we call real loga-
rithms because they always reduce to positive or negative quantities. However, other
than these quantities, there exist imaginary expressions which, because of their prop-
erties, also bear the name of logarithms. We return to this subject in Chapter IX, in
which we reveal the theory of imaginary logarithms.
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Formation of trigonometric lines and arcs of a circle.

We have remarked in the Preliminaries that a length measured on a curved or straight
line can sometimes be represented by a number, sometimes by a quantity, depending
on whether we simply regard it as the measure of this length, or if we consider it as
being moved along the given line in one sense or another, relative to a fixed point
which we call the origin, to serve as the growth or diminution of another constant
length ending at this point. We have added that in a circle for which the plane is
taken to be vertical, we ordinarily fix the origin of the arcs as the endpoint of the
radius taken horizontally from left to right, and that, with respect to this origin, the
arcs are counted as positive or negative depending on whether, to describe them,
we begin by going up from there or by going down. Finally, we have indicated the
origins of several trigonometric lines which correspond to these same arcs in the
case where the radius of the circle is reduced to one. We will return to this topic
shortly and complete the ideas which pertain to it.

First, we easily establish with regard to lengths measured on the same line or
curve relative to a given origin the following propositions:

[350] Theorem VI. — Let a, b, c, . . . be any quantities, positive or negative. To
obtain on a line, straight or curved, the extremity of the length

a+b+ c+ . . .

measured with respect to a given origin and in the direction determined by the sign
of the quantity

a+b+ c+ . . . ,

it suffices to move along this line: 1◦ the length a starting from the origin in the
direction determined by the sign of a; 2◦ the length b starting from the extremity of
a in the direction determined by the sign of b; and 3◦ the length c starting from the
extremity of b in the direction determined by the sign of c, and so on.

Theorem VII. — Let a and b be any two quantities. Suppose also that we move
along a straight line or curve starting from a given origin: 1◦ a length equal to the
numerical value of a in the direction determined by the sign of a; and 2◦ a length
equal to the numerical value of b in the direction determined by the sign of b. To
pass from the extremity of the first length to that of the second, or reciprocally, along
the line under consideration, it suffices to move a third length equal to the numerical
value of the difference a−b.

Theorem VIII. — Supposing the same things as in the preceding theorem, the
extremity of the length represented by

a+b
2
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is situated on the given line at a point at equal distances from the extremities of the
lengths a and b (where the distances are measured along the line itself).

Now we apply these theorems to arcs measured on the circumference of a circle
for which the plane is vertical and for which the radius equals one, the origin of the
arcs being fixed at the extremity of the radius drawn horizontally from left to right.
If we denote the ratio of the circumference to its diameter by π , following common
usage, because the diameter is equal to 2, the entire circumference is found to be
expressed by the number 2π , half of the circumference by the number π , and the
quarter by π

2 . Moreover, if we denote by a any arc, [351] positive or negative, we
conclude from theorem VI that, to obtain the extremity of the arc

a+2mπ or a−2mπ,

(where m is an integer number), it is necessary to move along the circumference,
starting with the extremity of the arc a, either in the direction of the positive arcs or
in the direction of the negative arcs, a length equal to 2mπ , that is to say to travel m
times about the entire circumference in one direction or the other, which necessarily
returns to the point from which we started. It follows that the extremities of the arcs

a and a±2mπ

coincide.
Likewise we conclude from theorems VI or VII: 1◦ that the extremities of the

arcs
a and a±π

contain between themselves an arc equal to π and as a consequence they consist of
the extremities of the same diameter; and 2◦ that the extremities of the arcs

a and a± π

2

contain between themselves a quarter of the circumference, and so they coincide
with the endpoints of two radii perpendicular to each other.

Finally, we conclude from theorem VIII: 1◦ that the extremities of the arcs

a and π −a

are located at equal distances from the extrtemity of the arc

π

2
,

and as a consequence are placed symmetrically about the vertical diameter; and 2◦

that the extremities of the arcs

a and
π

2
−a
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are situated at equal distances from the extremity of the arc

π

4
.

[352] The arcs
π −a and

π

2
−a

in question here are, respectively, called the supplement and the complement of the
arc a. In other words, two arcs represented by two quantities a and b are supplements
or complements of each other depending on whether we have

a+b = π or a+b =
π

2
.

Because angles at the center which have for a common side the radius taken as the
origin of the arcs grow or diminish proportionally with the arcs which they serve to
measure, and because these angles themselves can be considered as the increases or
decreases of one of these taken at will, nothing prevents us from denoting angles by
the same quantities as arcs. This is a convention which has been effectively adopted.
We also say that two angles are complements or supplements of each other when
the corresponding arcs are themselves complements or supplements of each other.

Now we move on to the study of trigonometric lines, and towards this end we
consider a single arc represented by the quantity a. If we project it successively:
1◦ on the vertical diameter; and 2◦ on the horizontal diameter, the two projections
are what we call the sine and the versed sine of the arc a.6 We can observe that the
first of these is at the same time the projection on the vertical diameter of the radius
which passes through the extremity of the arc. If we prolong this same radius until
it intersects the tangent of the circle taken from the origin of the arcs, the part of this
tangent contained between the origin and the point of intersection is what we call
the trigonometric tangent of the arc a. Finally, the length measured on the radius
extended between the center and the point of intersection is the secant of this same
arc.

The cosine and versed cosine of an arc, its cotangent and its cosecant are nothing
but the sine, versed sine, tangent and secant of its complement, and they constitute,
along with the sine, the versed sine, the tangent and the secant of the same arc, the
complete system of trigonometric lines.

From what has been said above, the sine of an arc is measured on the vertical
diameter, the versed sine on the horizontal diameter, the tangent on the line which
touches the circle at the origin of the arcs, and the secant on the moving diameter
which passes through the extremity of the given arc. Moreover, the sine and the
secant have for their common origin the center of the circle, while the origin [353]
of the tangents and versed sines correspond to that of the arcs. Finally, we generally
agree to represent by positive quantities the trigonometric lines of the arc a in the

6 Some readers may have expected the projection onto the horizontal axis to be the cosine, but the
cosine is the projection of the radius, not the arc. For a more complete account of the versed sine
and other topics in the history of trigonometry, see [Van Brummelen 2009, Ch. 3–4].
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case where the arc is positive and less than a quarter of the circumference, from
which it follows that we ought to measure the sine and the tangent positively from
the base upwards, the versed sine from right to left, and the secant in the direction
of the radius towards the extremity of the arc a.

On the basis of the principles which we have just adopted, we immediately rec-
ognize that the versed sine, and consequently the versed cosine, are always positive,
and moreover, we determine without trouble the signs which ought to affect the
other trigonometric lines of an arc for which the endpoint is given. To make this
determination easier, we imagine the circle divided into four equal parts by two di-
ameters perpendicular to each other, one horizontal and the other vertical, and these
four parts of the circle are, respectively, designated as the first, second, third and
fourth quarters of the circle. The first two quarters of the circle are situated above
the horizontal diameter, namely the first on the right and the second on the left. The
last two are situated below the same diameter, namely the third on the left and the
fourth on the right. Given this, because the extremities of two arcs that are comple-
ments of each other are equally distant from the extremity of the arc π

4 , we conclude
that they are placed symmetrically on either side of the diameter which divides the
first and the third quarters of the circle into two equal parts. If we then look for what
signs ought to be attributed to the various trigonometric lines of an arc other than
the versed sign and the versed cosine, according to whether the extremity of this arc
falls in one quarter of the circle or in another, we find that the signs are, respectively,

In the 1st In the 2nd In the 3rd In the 4th
quarter of quarter of quarter of quarter of
the circle the circle the circle the circle

For sine and cosecant + + − −
For cosine and secant + − − +
For tangent and cotangent + − + −

On this subject, we can remark that the sign of the tangent is always the product of
the sign of the sine by the sign of the cosine.

The preceding considerations now lead us to recognize that the cosine of an arc
corresponds with the projection of the radius which passes through the extremity of
this arc onto the horizontal diameter, and that on this diameter it ought to be mea-
sured positively from left to right, starting from the center taken as the origin. The
versed cosine can be measured on the vertical diameter [354] from the highest point
on the circumference taken as the origin to the endpoint of the sine. The cotangent,
measured positively from left to right along the horizontal tangent to the circle at
the origin of the versed cosines, reduces to the length contained between this origin
and the extension of the moving diameter the half of which is the radius taken to the
extremity of the arc. Finally the cosecant, measured along the moving diameter, is
measured positively in the direction of the radius in question and starting from the
center taken as the origin to the extremity of the cotangent.
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In the preliminaries we have sufficiently developed the system of notations used
to represent the various trigonometric lines and the arcs to which they correspond.
We shall not return to this subject, and we will content ourselves to observe that the
trigonometric lines of an arc are at the same time supposed to belong to the angle
at the center of the circle which it measures and which we designate by the same
quantity. Thus, for example, if a, b, . . . represent any quantities, we can say that the
notations

sina, cosb, . . .

express equally the sine of the arc or of the angle a, the cosine of the arc or of the
angle b, . . ..

We end this note by recalling some remarkable properties of trigonometric lines.
First, if we denote by a any quantity, we find that the sine and the cosine of the

angle a are always related to each other by the equation

sin2 a+ cos2 a = 1,(6)

and that the other trigonometric lines can be expressed by means of these first two
as follows: {

siv a = 1− cosa, tana = sina
cosa , seca = 1

cosa ,

cosiv a = 1− sina, cota = cosa
sina , csca = 1

sina .
(7)

From formulas (6) and (7) we easily deduce several other equations, for example

cota =
1

tana
, sec2 a = 1+ tan2 a, csc2 a = 1+ cot2 a, . . . .(8)

It is also easy to see that if the positive quantity R represents the length [355] of a
straight line between two points and α represents the angle, acute or obtuse, formed
by this straight line with a fixed axis, the projection of the given length on the fixed
axis is measured by the numerical value of the product

Rcosα,

and the projection of the same length on a perpendicular axis is measured by the
numerical value of the product

Rsinα.

Finally, we recognize without trouble that if by starting from a point taken at
random on the circumference of a circle of radius one, we move along this circum-
ference in one direction or the other a length equal to the numerical value of any
quantity c, the smallest arc contained between the endpoints of this length is less
than or greater than π

2 , depending on whether cosc is positive or negative.
Admitting these principles, imagine that on the circumference of which we speak

we determine: 1◦ the extremities A and B of the arcs represented by any two quanti-
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ties a and b; and 2◦ the extremity N of a third arc represented by a+b
2 .7 In addition,

let M be the midpoint of the chord which joins the points A and B, and suppose that
the point M projects onto the horizontal diameter of the circle to a certain point P.
If the lengths measured on the diameter starting from the center taken for the origin
are counted positively from left to right, like cosines, the distance from the center to
the point P ought to be represented (by virtue of theorem VIII) by the quantity

cosa+ cosb
2

.

Moreover, because (by virtue of the same theorem) the point N is situated at equal
distances from the points A and B, the diameter which passes through the point N
contains the midpoint M of the chord AB and the distance from this midpoint M to
the center of the circle is equal (ignoring the sign) to the cosine of each of the arcs
NA and NB, or what amounts to the same thing, to

cos
(

a+b
2

−a
)

= cos
(

a+b
2

−b
)

= cos
a−b

2
.

To obtain the horizontal projection of this distance, it suffices to multiply it by the
cosine of the acute angle contained between the radius taken horizontally [356] from
left to right and the diameter which contains the point N, that is to say by a factor
equal (up to sign) by cos a+b

2 . In other words, the distance from the center to the
point P has for its measure the numerical value of the product

cos
a−b

2
cos

a+b
2

.

I add that this product is positive or negative according to whether the point M is
situated to the right or to the left of the vertical diameter. Indeed, cos a+b

2 is positive
or negative according to whether the point N is situated to the right side or the
left side with respect to this diameter. Also, cos a−b

2 is positive or negative – and
consequently the product

cos
a−b

2
cos

a+b
2

is of the same sign as cos a+b
2 or of the opposite sign – according to whether each of

the arcs NA and NB is less than or greater than π

2 , which in turn follows whether the
point M is situated on the same side as the point N or on the opposite side. Moreover,
because the vertical line which passes through the point M also contains the point P,
it follows from the preceding remark that the distance from the center to the point
P, even in the case where we pay attention to the signs, can be represented by the

7 At this point Cauchy is embarking on a delicate argument which, following the example of
Lagrange, he is determined to carry out without the aid of diagrams. The reader who wishes to
follow this argument carefully should note that the arcs a and b uniquely determine the point N,
although their extremities A and B do not. However, Cauchy will soon show that the additional
information of the sign of cos( a−b

2 ) suffices to determine N.
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product

cos
a−b

2
cos

a+b
2

.

Thus, this product and the quantity cosa+cosb
2 have the same sign as well as the

same numerical value, and we have, as a consequence, for all possible values of the
quantities a and b,

cosa+ cosb = 2cos
a−b

2
cos

a+b
2

.(9)

If we replace b by b+π in equation (9), we get

cosa− cosb = 2sin
b−a

2
sin

a+b
2

.(10)

Moreover, if in equations (9) and (10) we substitute for the angles a and b their [357]
complements π

2 −a and π

2 −b, we obtain the following:{
sina+ sinb = 2cos a−b

2 sin a+b
2 ,

sina− sinb = 2sin a−b
2 cos a+b

2 .
(11)

Once formulas (9), (10) and (11) are established, we then easily deduce a great
number of others. We find, for example,

sina− sinb
sina+ sinb

=
tan 1

2 (a−b)
tan 1

2 (a+b)
,

cosb− cosa
cosb+ cosa

= tan 1
2 (a−b) tan 1

2 (a+b) ,

(12)

{
cos(a−b)+ cos(a+b) = 2cosacosb,

cos(a−b)− cos(a+b) = 2sinasinb,
(13) {

sin(a+b)+ sin(a−b) = 2sinacosb,

sin(a+b)− sin(a−b) = 2sinbcosa,
(14) {

cos(a±b) = cosacosb∓ sinasinb,

sin(a±b) = sinacosb± sinbcosa,
(15)

tan(a±b) =
tana± tanb

1∓ tana tanb
,(16) {

cos2a = cos2 a− sin2 a = 2cos2 a−1 = 1−2sin2 a,

sin2a = 2sinacosa.
(17)

Now let a, b and c be any three angles. From the first formula (13), we get
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cos(a+b+ c)+ cos(b+ c−a)+ cos(c+a−b)

+cos(a+b− c) = 4cosacosbcosc.
(18)

In the preceding formula, if we write 1
2 a, 1

2 b and 1
2 c, instead of a, b and c and then

we suppose that
a+b+ c = π,(19)

we find
sina+ sinb+ sinc = 4cos

a
2

cos
b
2

cos
c
2
.(20)

[358] Under the same hypothesis, formula (16) gives

tana+ tanb+ tanc = tana tanb tanc.(21)

Equation (20) ought to remain true, along with equation (19), when we replace two
of the angles a, b and c with their supplements, and then change the sign of the third
one. Then we conclude

sinb+ sinc− sina = 4cos a
2 sin b

2 sin c
2 ,

sinc+ sina− sinb = 4sin a
2 cos b

2 sin c
2 ,

sina+ sinb− sinc = 4sin a
2 sin b

2 cos c
2 .

(22)

Combining these last formulas with equation (20), we deduce the following:
cos2 1

2 a =
(sina+ sinb+ sinc)(sinb+ sinc− sina)

4sinbsinc
,

sin2 1
2 a =

(sinc+ sina− sinb)(sina+ sinb− sinc)
4sinbsinc

.

(23)

Finally, if we imagine that a, b and c denote the three angles of a triangle and that
their opposite sides are, respectively, A, B and C, the six products, equal in pairs,
namely

Bsinc = C sinb, C sina = Asinc and Asinb = BsinA,

represent the perpendiculars dropped from the vertices to the three sides. It follows
that we have

sina
A

=
sinb

B
=

sinc
C

,(24)

and equations (23) become
cos2 1

2 a =
(A+B+C)(B+C−A)

4BC
,

sin2 1
2 a =

(C +A−B)(A+B−C)
4BC

.

(25)
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Moreover, by taking into consideration formulas (19) and (24), we get from the first
[359] equation (12)

tan 1
2 (a−b) =

A−B
A+B

cot 1
2 c.(26)

Formulas (19), (24), (25) and (26) suffice to determine three of the six elements
of a rectilinear triangle when the other three elements are known and when this
determination is possible. We can also remark that the values of cosa and sina,
deduced from equations (25) with the aid of formulas (17), are, respectively,8

cosa =
B2 +C2−A2

2BC
and

sina =

√
(A+B+C)(B+C−A)(C +A−B)(A+B−C)

2BC
.

(27)

The first of these values can be drawn directly from a known theorem of Geometry.
As for the second, it gives a means of expressing the area of a triangle as a function
of its three sides. Indeed, this area, equal to the product of the base C by half the
height corresponding to Bsina is9

1
2 BC sina = 1

4

√
(A+B+C)(B+C−A)(C +A−B)(A+B−C).(28)

8 The first formula in (27) is the Law of Cosines.
9 Formula (28) is known as Heron’s formula. The area is often given as

√
S(S−A)(S−B)(S−C)

where S = (A+B+C)/2 is the semiperimeter of the triangle.





Note II – On formulas that result from the use of
the signs > or <, and on the averages among
several quantities.

[360] Let a and b be two unequal quantities. The two formulas

a > b and a < b

serve equally to express that the first quantity, a, surpasses the second, b, that is to
say that the difference

a−b

is positive. On the basis of this principle, we easily establish the propositions that I
am going to state:

Theorem I. — If a, a′, a′′, . . ., b, b′, b′′, . . . represent quantities subject to the
conditions

a > b,

a′ > b′,

a′′ > b′′,
. . . . . . ,

then we also have
a+a′+a′′+ . . . > b+b′+b′′+ . . . .

Proof. — Indeed, when the quantities

a−b, a′−b′, a′′−b′′, . . .

are positive, we can be sure that their sum

a+a′+a′′+ . . .−
(
b+b′+b′′+ . . .

)
is positive as well.

Theorem II. —If A, A′, A′′, . . ., B, B′, B′′, . . . represent numbers [361] subject to
the conditions

291
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A > B,

A′ > B′,

A′′ > B′′,
. . . . . . . . . ,

then we also have
AA′A′′ . . . > BB′B′′ . . . .

Proof. — Indeed, because each of the differences is positive by hypothesis,

A−B, A′−B′, A′′−B′′, . . . ,

each of the products

(A−B)A′A′′ . . . = AA′A′′ . . .−BA′A′′ . . . ,

B(A′−B′)A′′ . . . = BA′A′′ . . .−BB′A′′ . . . ,

BB′ (A′′−B′′) . . . = BB′A′′ . . .−BB′B′′ . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

is positive as well, and consequently, so is their sum

AA′A′′ . . .−BB′B′′ . . . .

Theorem III. — Let a, b and r be any three quantities and suppose that

a > b.

We then conclude that if r is positive, then

ra > rb,

and if r is negative, then
ra < rb.

Proof. — Indeed, the product

r (a−b) = ra− rb

is positive in the first case and negative in the second.

Corollary. – Suppose that a and b are positive. If we successively take

r =
1
a

and r =
1
b
,

we then conclude that
1 >

b
a

and
a
b

> 1.
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We are thus brought back to the proposition, obvious by itself, [362] that a fraction
is less than or greater than 1 according to whether the larger of its two terms is its
denominator or its numerator.

Theorem IV. — Let A and A′ be two numbers that satisfy the condition

A > A′,

and let b be any quantity. If b is positive we have

Ab > A′b,

and if b is negative,
Ab < A′b.

Proof. — Indeed, because the quotient A
A′ is > 1, the fraction

Ab

A′b
=
(

A
A′

)b

is evidently greater than or less than 1 according to whether the quantity b is positive
or negative.

Theorem V. — Denote any number by A and let b and b′ be two quantities
subject to the condition

b > b′.

We then conclude that if A is greater than 1, then

Ab > Ab′ ,

and if A is less than 1, then
Ab < Ab′ .

Proof. — Indeed, because the quantity b−b′ is positive by hypothesis, the frac-
tion

Ab

Ab′ = Ab−b′

is evidently greater than or less than 1 according to whether A > 1 or A < 1.

Theorem VI. — Let log be the characteristic of logarithms taken in the system
for which the base is A, and denote by B and B′ two numbers subject to the condition

B > B′.

If A is greater than 1, we have

logB > logB′,
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[363] and if A is less than 1, we have

logB < logB′.

Proof. — Indeed, the logarithm

log
B
B′

= logB− logB′

is positive in the first case and negative in the second.

Corollary. — If we use the symbol ln to indicate the Napierian logarithms taken
in the system for which the base is

e = 2.7182818 . . . ,(1)

[Chapter VI, § I, equation (5)], then the condition

B > B′

always entails the formula
lnB > lnB′.

To the preceding theorems we add the following, from which we can deduce
several important consequences.

Theorem VII. — Let x be any quantity. We have

1+ x < ex,(2)

where the letter e denotes, as usual, the base of the Napierian logarithms.

Proof. — Because the right-hand side of formula (2) still remains positive, the
stated theorem is evident by itself if the quantity 1 + x is negative. Thus it suffices
to examine the case where we suppose that

1+ x > 0.(3)

Now, for all possible real values of x, equation (23) of Chapter VI (§ IV) gives
ex = 1+

x
1

+
x2

1 ·2
+

x3

1 ·2 ·3
+

x4

1 ·2 ·3 ·4
+

x5

1 ·2 ·3 ·4 ·5
+ . . .

= 1+ x+
x2

2

(
1+

x
3

)
+

x4

2 ·3 ·4

(
1+

x
5

)
+ . . . .

(4)

[364] Because the products1

1 The first term is given as x2

3 (1 + x
3 ) in [Cauchy 1897, p. 364]. It is given correctly in [Cauchy

1821, p. 442]. (tr.)
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x2

2

(
1+

x
3

)
,

x4

2 ·3 ·4

(
1+

x
5

)
, . . .

are positive not only when the quantity x is positive but also when x is negative but it
has a numerical value less than 1, we get from equation (4) that whenever condition
(3) is satisfied,

ex > 1+ x.

Corollary I. — In the case where 1+ x is positive, if we take the Napierian loga-
rithms of both sides of formula (2), we obtain the following:

ln(1+ x) < x(5)

(see the corollary of theorem VI). This last formula remains true whenever its left-
hand side is real.

Corollary II. — Let x, y, z, . . . be several quantities subject to the conditions

1+ x > 0, 1+ y > 0, 1+ z > 0, . . . .(6)

By virtue of formula (2), we have

1+ x < ex, 1+ y < ey, 1+ z < ez, . . . ,

and so we conclude (theorem II) that

(1+ x)(1+ y)(1+ z) . . . < ex+y+z....(7)

This last formula remains true whenever its left-hand side contains only positive
factors.

Corollary III. — In the preceding corollary, if we suppose that

x = aα, y = a′α ′, z = a′′α ′′, . . . ,

where α , α ′, α ′′, . . . denote positive quantities and a, a′, a′′, . . . denote other quan-
tities, respectively, greater than

− 1
α

, − 1
α ′ , − 1

α ′′ , . . . ,

[365] then formula (7) becomes

(1+aα)
(
1+a′α ′)(1+a′′α ′′) . . . < eaα+a′α ′+a′′α ′′+....

Moreover, if the quantities a, a′, a′′, . . . are all less than a certain limit A, then we
have (by virtue of theorems I and III) that

aα +a′α ′+a′′α ′′+ . . . < A
(
α +α

′+α
′′+ . . .

)
,
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and consequently we finally have

(1+aα)
(
1+a′α ′)(1+a′′α ′′) . . . < eA(α+α ′+α ′′+...).(8)

Formula (8) can be used to good advantage in the approximate solution of differen-
tial equations.

Now we move on to theorems on averages. As we have already said (Preliminar-
ies),2 we call an average among several given quantities a new quantity contained
between the smallest and the largest of those under consideration. From this defini-
tion, the quantity h is an average between two quantities g and k, or among several
quantities among which one of these values is the largest and the other is the small-
est, if the two differences

g−h and h− k

are of the same sign. Given this, if we use the notation

M
(
a,a′,a′′, . . .

)
for denoting an average among the quantities a, a′, a′′, . . ., as we did in the Prelimi-
naries, we establish the following propositions without trouble:

Theorem VIII. — Let a, a′, a′′, . . . and h be several quantities subject to the
condition

h = M
(
a,a′,a′′, . . .

)
,(9)

and let r be an entirely arbitrary quantity. Then we always have

rh = M
(
ra,ra′,ra′′, . . .

)
.(10)

Proof. — Indeed, let g denote by the largest and k denote the smallest of the
quantities a, a′, a′′, . . .. The two differences

g−h and h− k

[366] are positive, and consequently the products

r (g−h) and r (h− k)

or in other words, the two differences

rg− rh and rh− rk

are of the same sign. Thus we have

rh = M (rg,rk)

and a fortiori,

2 See [Cauchy 1821, p. 14, Cauchy 1897, p. 27].
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rh = M
(
ra,ra′,ra′′, . . .

)
,

given that rg and rk are necessarily two of the products

ra, ra′, ra′′, . . . .

Theorem IX. — Let A, A′, A′′, . . . and H be several numbers which satisfy the
condition

H = M
(
A,A′,A′′, . . .

)
,(11)

and let b be any quantity. Then we have

Hb = M
(

Ab,A′b,A′′b, . . .
)

.(12)

Proof. — Indeed, let G and K be the largest and the smallest of the numbers A,
A′, A′′, . . .. Because the differences

G−H and H−K

are positive, we conclude from theorem IV that the following

Gb−Hb and Hb−Kb

are of the same sign. Thus we have

Hb = M
(

Gb,Kb
)

,

and a fortiori,
Hb = M

(
Ab,A′b,A′′b, . . .

)
.

Corollary. — In particular, if we make b = 1
2 , we find

√
H = M

(√
A,
√

A′,
√

A′′, . . .
)

.

[367] Theorem X. — Let A denote any number and let b, b′, b′′, . . . and h be
several quantities subject to the condition

h = M
(
b,b′,b′′, . . .

)
.(13)

Then we have
Ah = M

(
Ab,Ab′ ,Ab′′ , . . .

)
.(14)

Proof. — Denote by g the greatest and k the smallest of the quantities b, b′, b′′,
. . .. Because the two differences

g−h and h− k
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are positive, we conclude from theorem V that the quantities

Ag−Ah and Ah−Ak

are of the same sign. Thus we have

Ah = M
(

Ag,Ak
)

= M
(

Ab,Ab′ ,Ab′′ , . . .
)

.

Theorem XI. — Let log be the characteristic of logarithms in the system for
which the base is A and denote by B, B′, B′′, . . . and H several numbers subject to
the condition

H = M
(
B,B′,B′′, . . .

)
.(15)

Whatever A may be, we have

logH = M
(
logB, logB′, logB′′, . . .

)
.(16)

Proof. — Indeed, suppose that we represent by G the largest and by K the small-
est of the numbers B, B′, B′′, . . .. Then because the two fractions

G
H

and
H
K

are greater than 1, the logarithms

log
G
H

and log
H
K

,

or in other words, the differences

logB− logH and logH− logK

are of the same sign. Thus we have

logH = M (logG, logK) = M
(
logB, logB′, logB′′, . . .

)
.

[368] Theorem XII. — Let b, b′, b′′, . . . be several quantities of the same sign, n
in number, and let a, a′, a′′, . . . be any quantities, also n in number. Then we have

a+a′+a′′+ . . .

b+b′+b′′+ . . .
= M

(
a
b
,

a′

b′
,

a′′

b′′
, . . .

)
.(17)

Proof. — Let g be the largest and k the smallest of the quantities

a
b
,

a′

b′
,

a′′

b′′
, . . . .

Then the differences
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g− a
b

and
a
b
− k,

g− a′

b′
and

a′

b′
− k,

g− a′′

b′′
and

a′′

b′′
− k,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

are all positive. By multiplying the first two by b, the following two by b′, etc., we
obtain the products

gb−a and a− kb,

gb′−a′ and a′− kb′,

gb′′−a′′ and a′′− kb′′,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which are all of the same sign as the quantities b, b′, b′′, . . .. Consequently, the sums
of these two kinds of products, namely

g(b+b′+b′′+ . . .)− (a+a′+a′′+ . . .) and

a+a′+a′′+ . . .− k (b+b′+b′′+ . . .) ,

and the quotients of these sums by b+b′+b′′+ . . ., namely

g− a+a′+a′′+ . . .

b+b′+b′′+ . . .
and

a+a′+a′′+ . . .

b+b′+b′′+ . . .
− k,

are also quantities of the same sign. From this we conclude that

a+a′+a′′+ . . .

b+b′+b′′+ . . .
= M (g,k) = M

(
a
b
,

a′

b′
,

a′′

b′′
, . . .

)
[see in the Preliminaries theorem I and formula (6)].

[369] Corollary I. — Suppose that the quantities b, b′, b′′, . . . reduce to 1. We
find that

a+a′+a′′+ . . .

n
= M(a,a′,a′′, . . .).(18)

The left-hand side of the preceding formula is what we call the arithmetic mean of
the quantities a, a′, a′′, . . ..

Corollary II. — Because the average among several equal quantities is equal to
each of them, if the fractions a

b , a′
b′ ,

a′′
b′′ , . . . are equal, we have

a+a′+a′′+ . . .

b+b′+b′′+ . . .
=

a
b

=
a′

b′
=

a′′

b′′
= . . . ,(19)

and this is easy to prove directly.
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Corollary III. — If we denote by α , α ′, α ′′, . . . new quantities which have the
same sign, then by virtue of equation (17) we have

αa+α ′a′+α ′′a′′+ . . .

αb+α ′b′+α ′′b′′+ . . .
= M

(
αa
αb

,
α ′a′

α ′b′
,

α ′′a′′

α ′′b′′
, . . .

)
= M

(
a
b
,

a′

b′
,

a′′

b′′
, . . .

)
.

(20)

This last formula suffices to establish theorem III of the Preliminaries.

Theorem XIII. — Let A, A′, A′′, . . ., B, B′, B′′, . . . be two sequences of numbers
taken at will, each of which we suppose has the same number of terms,n. With these
two sequences form the roots

B√A,
B′√A′, B′′√A′′, . . . .

Then we have

B+B′+B′′+...
√

AA′A′′ . . . = M
(

B√A,
B′√A′, B′′√A′′, . . .

)
.(21)

Proof. — The logarithms of the quantities

B+B′+B′′+...
√

AA′A′′ . . ., B√A,
B′√A′, B′′√A′′, . . . ,

indicated by the characteristic ln are, respectively,

lnA+ lnA′+ lnA′′+ . . .

B+B′+B′′+ . . .
,

lnA
B

,
lnA′

B′
,

lnA′′

B′′
, . . . ,

[370] and equation (17) gives the following relation among these logarithms:

lnA+ lnA′+ lnA′′+ . . .

B+B′+B′′+ . . .
= M

(
lnA
B

,
lnA′

B′
,

lnA′′

B′′
, . . .

)
.

Now if we return from logarithms to numbers, as is permitted by virtue of theorem
X, we again find formula (21).

Corollary I. — By supposing that the numbers B, B′, B′′, . . . reduce to 1, we have
simply

n√AA′A′′ . . . = M
(
A, A′, A′′, . . .

)
.(22)

The left-hand side of the preceding formula is what we call the geometric mean of
the numbers A, A′, A′′, . . ..

Corollary II. — If all the roots

B√A,
B′√A′, B′′√A′′, . . .
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are equal, then their average is equal to each of them. Thus we have

B+B′+B′′+...
√

AA′A′′ . . . = B√A = B′√A′ = B′′√A′′ = . . . ,(23)

which would be easy to prove directly.
The numerical value of an average among several given quantities is not always

an average among their numerical values. Thus, for example, −1 is an average be-
tween −2 and +3; however, 1 is not an average value between 2 and 3. Among the
various ways of obtaining an average among numerical values of n quantities

a, a′, a′′, . . . ,

one of the simplest consists of first forming the arithmetic mean among the squares,

a2, a′2, a′′2, . . . ,

and then extracting the square root of the result. In operating in this way, we first
find

a2 +a′2 +a′′2 + . . .

n
= M

(
a2, a′2, a′′2, . . .

)
,

[371] and then, taking into account the corollary of theorem IX, we find
√

a2 +a′2 +a′′2 + . . .√
n

= M
(√

a2,
√

a′2,
√

a′′2, . . .
)

.(24)

Now because the positive quantities
√

a2,
√

a′2,
√

a′′2, . . .

represent precisely the numerical values of the given quantities

a, a′, a′′, . . . ,

it follows from formula (24) that we obtain an average among the values if we divide
the very simple expression √

a2 +a′2 +a′′2 + . . .

by
√

n. This expression, which is greater than the largest of the numerical values in
question, is what we could call the modulus of the system of quantities a, a′, a′′, . . ..
The modulus of a system of two quantities a and b is nothing other than the modulus
itself of the imaginary expression a+b

√
−1 (see Chapter VII, § II). In any case, real

expressions of the form √
a2 +a′2 +a′′2 + . . .

enjoy some very remarkable properties. In Geometry, they serve to determine the
measured lengths of a straight line and the areas of plane surfaces by means of
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their orthogonal projections. In Algebra, they are the subject of several important
theorems, among which I will content myself to state those which follow.

Theorem XIV. — If the fractions

a
b
,

a′

b′
,

a′′

b′′
, . . .

are equal, then the numerical value of each of them is expressed by the ratio
√

a2 +a′2 +a′′2 + . . .√
b2 +b′2 +b′′2 + . . .

,

so that we have

a
b

=
a′

b′
=

a′′

b′′
= . . . =±

√
a2 +a′2 +a′′2 + . . .√
b2 +b′2 +b′′2 + . . .

,(25)

[372] where the sign + or the sign − is adopted according to whether the given
fractions are positive or negative.

Proof. — Indeed, under the given hypothesis, the fractions

a2

b2 ,
a′2

b′2
,

a′′2

b′′2
, . . .

are equal, and as a consequence we have

a2

b2 =
a′2

b′2
=

a′′2

b′′2
= . . . =

a2 +a′2 +a′′2 + . . .

b2 +b′2 +b′′2 + . . .
.

By extracting the square roots, we recover formula (25).

Theorem XV. — Let a, a′, a′′, . . . be any n real quantities. If these quantities are
not equal to each other, then the numerical value of the sum

a+a′+a′′+ . . .

is less than the product √
n
√

a2 +a′2 +a′′2 + . . . ,

so that we have

val.num.
(
a+a′+a′′+ . . .

)
<
√

n
√

a2 +a′2 +a′′2 + . . ..(26)

Proof. — Indeed, if to the square of the sum

a+a′+a′′+ . . .
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we add the squares of the differences among the quantities a, a′, a′′, . . . combined
in pairs in every possible manner, namely(

a−a′
)2

,
(
a−a′′

)2
, . . . ,

(
a′−a′′

)2
, . . . ,

we find{
(a+a′+a′′+ . . .)2 +(a−a′)2 +(a−a′′)2 + . . .+(a′−a′′)2 + . . .

= n
(
a2 +a′2 +a′′2 + . . .

)
,

(27)

and we conclude that(
a+a′+a′′+ . . .

)2
< n

(
a2 +a′2 +a′′2 + . . .

)
.

By taking the positive square roots of both sides of this last formula, we obtain
precisely formula (26).

[373] Corollary. — If we divide both sides of formula (26) by n, we find

val.num.
a+a′+a′′+ . . .

n
<

√
a2 +a′2 +a′′2 + . . .√

n
.(28)

Thus the numerical value of the arithmetic mean among several quantities a, a′, a′′,
. . . is less than the ratio √

a2 +a′2 +a′′2 + . . .√
n

,

which represents an average among the numerical values of these same quantities,
as we have remarked above.

Scholium I. — When the quantities a, a′, a′′, . . . become equal, we evidently have

val.num.
(
a+a′+a′′+ . . .

)
=
√

n
√

a2 +a′2 +a′′2 + . . . = na.

Scholium II. — If we successively set n = 2, n = 3, . . . in equation (27), we
conclude that

(a+a′)2 +(a−a′)2 = 2
(
a2 +a′2

)
,

(a+a′+a′′)2 +(a−a′)2 +(a−a′′)2 +(a′−a′′)2 = 3
(
a2 +a′2 +a′′2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(29)

Theorem XVI.3 — Let a, a′, a′′, . . ., α , α ′, α ′′, . . . be two sequences of quantities
and suppose that each of these sequences contains n terms. If the ratios

3 This is now known as the Cauchy–Schwarz Inequality.
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a
α

,
a′

α ′ ,
a′′

α ′′ , . . .

are not all equal to each other, then the sum

aα +a′α ′+a′′α ′′+ . . .

is less than the product√
a2 +a′2 +a′′2 + . . .

√
α2 +α ′2 +α ′′2 + . . .,

so that we have{
val.num.(aα +a′α ′+a′′α ′′+ . . .)

<
√

a2 +a′2 +a′′2 + . . .
√

α2 +α ′2 +α ′′2 + . . ..
(30)

[374] Proof. — Indeed, if to the square of the sum

aα +a′α ′+a′′α ′′+ . . .

we add the numerators of the fractions which represent the squares of the differences
between the ratios

a
α

,
a′

α ′ ,
a′′

α ′′ , . . .

combined with each other in every possible way, namely(
aα

′−a′α
)2

,
(
aα

′′−a′′α
)2

, . . . ,
(
a′α ′′−a′′α ′)2

, . . . ,

we find 
(aα +a′α ′+a′′α ′′+ . . .)2 +(aα ′−a′a)2

+(aα ′′−a′′a)2 + . . .+(a′α ′′−a′′α ′)2 + . . .

=
(
a2 +a′2 +a′′2 + . . .

)(
α2 +α ′2 +α ′′2 + . . .

)
,

(31)

and we conclude that(
aα +a′α ′+a′′α ′′+ . . .

)2
<
(
a2 +a′2 +a′′2 + . . .

)(
α

2 +α
′2 +α

′′2 + . . .
)
.

By extracting the square roots of both sides of this last formula, we obtain precisely
formula (30).

Corollary. — If we divide both sides of formula (30) by n, we find
val.num.

aα +a′α ′+a′′α ′′+ . . .

n

<

√
a2 +a′2 +a′′2 + . . .√

n

√
α2 +α ′2 +α ′′2 + . . .√

n
.

(32)
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Thus the arithmetic mean among the products

aα, a′α ′, a′′α ′′, . . .

has a numerical value less than the product of the two ratios that represent the aver-
ages among the numerical values of the two kinds of quantities contained in the two
sequences

a, a′, a′′, . . . and

α, α ′, α ′′, . . . .

[375] Scholium I. — When the ratios

a
α

,
a′

α ′ ,
a′′

α ′′ , . . .

become equal, we get from formula (31) that(
aα +a′α ′+a′′α ′′+ . . .

)2 =
(
a2 +a′2 +a′′2 + . . .

)(
α

2 +α
′2 +α

′′2 + . . .
)
,

and consequently

val.num.(aα +a′α ′+a′′α ′′+ . . .)

=
√

a2 +a′2 +a′′2 + . . .
√

α2 +α ′2 +α ′′2 + . . ..

It is easy to arrive directly at the same result.

Scholium II. — If we successively set

n = 2, n = 3, . . . ,

in formula (31), then we conclude that

(aα +a′α ′)2 +(aα ′−a′α)2 =
(
a2 +a′2

)(
α2 +α ′2) ,

(aα +a′α ′+a′′α ′′)2 +(aα ′−a′α)2

+(aα ′′−a′′α)2 +(a′α ′′−a′′α ′)2

=
(
a2 +a′2 +a′′2

)(
α2 +α ′2 +α ′′2) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(33)

The first of the preceding equations agrees with equation (8) of Chapter VII (§ I).
The second can be written as follows{

(aα ′−a′α)2 +(aα ′′−a′′α)2 +(a′α ′′−a′′α ′)2

=
(
a2 +a′2 +a′′2

)(
α2 +α ′2 +α ′′2)− (aα +a′α ′+a′′α ′′)2 ,

(34)

and in this form it can be used with good advantage in the theory of radii of curvature
of curves traced on any surfaces, thus in several questions of Mechanics.
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We end this note with the proof of a theorem worthy of remark, which leads to
comparing the geometric mean of several numbers with their arithmetic mean. It
consists of the following:

Theorem XVII.4 — The geometric mean of several numbers A, B, C, D, . . . is
always less than their arithmetic mean.

[376] Proof. — Let n be the number of the letters A, B, C, D, . . .. It suffices to
prove in general that

n√ABCD . . . <
A+B+C +D+ . . .

n
,(35)

or what amounts to the same thing,

ABCD . . . <

(
A+B+C +D+ . . .

n

)n

.(36)

Now in the first place, it is evident, for n = 2, that

AB =
(

A+B
2

)2

−
(

A−B
2

)2

<

(
A+B

2

)2

,

and by taking successively n = 4, n = 8, . . ., and finally n = 2m, we conclude that

ABCD <

(
A+B

2

)2(C +D
2

)2

<

(
A+B+C +D

2

)2

,

ABCDEFGH <

(
A+B+C +D

4

)4(E +F +G+H
4

)4

<

(
A+B+C +D+E +F +G+H

8

)8

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and

ABCD . . . <

(
A+B+C +D+ . . .

2m

)2m

.(37)

In the second place, if n is not a term of the geometric progression

2, 4, 8, 16, . . . ,

we denote by 2m a term of this progression greater than n, and we make

K =
A+B+C +D+ . . .

n
,

4 This is the Arithmetic–Geometric Mean Theorem, originally due to Gauss.
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then, returning to formula (37) and supposing that in the left-hand side of this for-
mula, the last 2m−n factors are equal to K, we find

ABCD . . .K2m−n <

[
A+B+C +D+ . . .+(2m−n)K

2m

]2m

,

or in other words,
ABCD . . .K2m−n < K2m

.

[377] Thus we have as a consequence

ABCD . . . < Kn =
(

A+B+C +D+ . . .

n

)n

,

which is what we set out to prove.

Corollary. — We conclude generally from formula (36)

A+B+C +D+ . . . > n n√ABCD . . .,(38)

whatever the number of the letters A, B, C, D, . . . may be. Thus, for example,
A+B > 2

√
AB,

A+B+C > 3 3
√

ABC,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(39)





Note III – On the numerical solution of
equations.

[378] To solve numerically one or several equations is to find the values in num-
bers of the unknowns which they contain. This evidently requires that the constants
contained in the equations be themselves constrained to numbers. We will concern
ourselves here only with equations that contain one unknown, and we will begin by
establishing, in this connection, the following theorems.

Theorem I.1 — Let f (x) be a real function of the variable x, which remains
continuous with respect to this variable between the limits x = x0 and x = X. If the
two quantities f (x0) and f (X) have opposite signs, we can satisfy the equation

f (x) = 0(1)

with one or several real values of x contained between x0 and X.

Proof. — Let x0 be the smaller of the two quantities x0 and X . Let

X − x0 = h,

and denote by m any integer number larger than 1. Because one of the two quantities
f (x0) and f (X) is positive and the other negative, if we form the sequence

f (x0), f
(

x0 +
h
m

)
, f

(
x0 +2

h
m

)
, . . . , f

(
X − h

m

)
, f (X),

and if we suppose that, in this sequence, we successively compare the first term with
the second, the second with the third, the third with the fourth, etc., eventually we
must find one or more times that two consecutive terms have opposite signs. Let

1 This is a special case of the Intermediate Value Theorem. See Chapter II, § II, theorem IV, p. 32
[Cauchy 1821, p. 43, Cauchy 1897, p. 50]. Cauchy’s proof there was quite intuitive. The version of
the theorem in Chapter II is given here as corollary II [Cauchy 1821 p. 463, Cauchy 1897, p. 381].
See also [Grabiner 2005, pp. 69–75].
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f (x1) and f (X ′)

[379] be two such terms, x1 being the smaller of the two corresponding values of x.
We evidently have2

x0 < x1 < X ′ < X

and
X ′− x1 =

h
m

=
1
m

(X − x0) .

Having determined x1 and X ′ as we have just said, we can likewise locate two other
values x2 and X ′′ between x1 and X ′, which give results of opposite signs when
substituted into f (x), and which satisfy the conditions

x1 < x2 < X ′′ < X ′

and
X ′′− x2 =

1
m

(
X ′− x1

)
=

1
m2 (X − x0) .

In continuing like this, we obtain: 1◦ an increasing series of values of x, namely

x0, x1, x2, . . . ;(2)

and 2◦ a series of decreasing values

X , X ′, X ′′, . . . ,(3)

which exceed the corresponding values of the first series by quantities, respectively,
equal to the products

1× (X − x0) ,
1
m
× (X − x0) ,

1
m2 × (X − x0) , . . . ,

and they eventually differ from the terms of the first series by as little as we might
wish. We must conclude that the general terms of series (2) and (3) converge towards
a common limit. Let a be that limit. Because the function f (x) is continuous from
x = x0 to x = X , the general terms of the following series

f (x0), f (x1), f (x2), . . . ,

f (X), f (X ′), f (X ′′), . . .

converge likewise towards the common limit f (a). As they approach that limit they
always have opposite signs, so it is clear [380] that the quantity f (a), being neces-
sarily finite, cannot differ from zero. As a consequence, it satisfies the equation

f (x) = 0,(1)

2 Here, Cauchy does not make the distinction between “less than” and “less than or equal to.”
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by assigning to the variable x the particular value a, contained between x0 and X . In
other words,

x = a(4)

is a root of equation (1).

Scholium I. — Suppose we have extended series (2) and (3) to the terms

xn and X (n),

(where n denotes any integer number). If we take the half-sum of these terms as
the value approximating the root a, the error made is less than their half-difference,
namely

1
2

X − x0

mn .

Because this last expression decreases indefinitely as n increases, it follows that,
by calculating a sufficient number of terms of the two series, we eventually obtain
values as close to the root a as we wish.

Scholium II. — If there exist several real roots of equation (1) between the limits
x0 and X , the preceding method locates some, and sometimes all of them. Then, we
find for x1 and X ′ or for x2 and X ′′, . . . several systems of values which enjoy the
same properties. 3

Scholium III. — If the function f (x) is constantly increasing or constantly de-
creasing from x = x0 to x = X , then between these limits there exists but a single
value of x that satisfies equation (1).

Corollary I. — If equation (1) has no real roots between the limits x0 and X , then
the two quantities

f (x0) and f (X)

have the same sign.

[381] Corollary II. — If in the statement of theorem I, we replace the function
f (x) by

f (x)−b

(where b denotes a constant quantity), then we obtain precisely theorem IV of Chap-
ter II (§ II).4 Under the same hypothesis, and following the method indicated above,
we can determine numerically the roots of the equation

f (x) = b(5)

3 Cauchy is saying in other words that if m > 2, then we may see more than one sign change in
f (x) in the interval at any given stage.
4 See p. 32 [Cauchy 1821, p. 43, Cauchy 1897, p. 50].
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contained between x0 and X .

Note. — When equation (1) has several roots contained between x0 and X , in
calculating series (2) and (3), we are not always assured of finding the smallest or
the largest of the roots in the interval. However, we could do this following another
method that Mr. Legendre has used in his Supplément à la Théorie des nombres.5

This second method follows immediately from the two theorems I am about to state.

Theorem II. — As in theorem I, suppose that the function f (x) remains continu-
ous from x = x0 to x = X (where X is greater than x0), and denote by ϕ(x) and χ(x)
two auxiliary functions also continuous on the given interval, but also subject to: 1◦

that they both increase constantly6 with x on this interval; and 2◦ that they give for
the difference

ϕ(x)−χ(x),

an expression which initially is negative when we give x the particular value x0, and
which always remains equal (up to sign) to f (x). If the equation

f (x) = 0(1)

has one or several real roots between x0 and X, then the values of x given by

x0, x1, x2, x3, . . . ,(6)

and derived from one another by means of the formulas

ϕ(x1) = χ(x0), ϕ(x2) = χ(x1), ϕ(x3) = χ(x2), . . .(7)

make an increasing series of quantities, for which the general term converges to-
wards the smallest of these roots. On the other hand, if equation (1) does not have
[382] real roots contained between x0 and X, then the general term of series (6)
eventually exceeds X.7

Proof. — Let us suppose in the first place that the equation f (x) = 0 has one or
several real roots between x0 and X , and denote by a the smallest of these roots. It
satisfies the equation in question, or what amounts to the same thing, the following:

ϕ(x)−χ(x) = 0.(1)

Taking x = a, we have as a consequence

ϕ(a) = χ(a).(8)

5 See [Legendre 1816, p. 43].
6 Legendre used the word omale to describe these functions that we now call “monotonic.” Galois
also used the term. It seems that Cauchy did not adopt the word, though he must have known of
Legendre’s use of it, and its use seems to have died out.
7 See [Galuzzi 2001] for more on Legendre’s method.
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Moreover, because the function χ(x) is constantly increasing with x from x = x0
to x = X and a is greater than x0, we have

χ(a) > χ(x0).

By combining these last two formulas with the first of equations (7), namely

χ(x0) = ϕ(x1),

we conclude that
ϕ(a) > ϕ(x1)

and consequently
a > x1.(9)

In the same way, by combining the three formulas

ϕ(a) = χ(a), χ(a) > χ(x1) and χ(x1) = ϕ(x2),

where the second follows immediately from formula (9), we find

ϕ(a) > ϕ(x2),

and consequently
a > x2.(10)

By continuing like this, we are assured that all the terms of series (6) are less than the
root a. I will add that these various terms form an increasing sequence of quantities,
and indeed, because the difference

ϕ(x)−χ(x)

[383] is negative by hypothesis for x = x0, we have

ϕ(x0) < χ(x0).

But χ(x0) = ϕ(x1), so
ϕ(x0) < ϕ(x1)

and
x0 < x1.(11)

Moreover, because x1 is contained between x0 and a, no real root of the equation

ϕ(x)−χ(x) = 0

is found contained between the limits x0 and x1, and consequently (see theorem I,
corollary I)

ϕ(x0)−χ(x0) and ϕ(x1)−χ(x1)
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are quantities of the same sign, that is to say, both of them are negative. So we have

ϕ(x1) < χ(x1),

and consequently, because χ (x1) = ϕ (x2),

ϕ (x1) < ϕ (x2) ,

and so
x1 < x2,(12)

etc. Thus, the quantities
x0, x1, x2, . . .

form a series for which the general term xn increases constantly with n without ever
surpassing the root a, and it necessarily converges to a root equal to or less than this
root. Let us call this limit l. Because, by virtue of equations (7), we have, for every
n,

ϕ (xn+1) = χ (xn) ,

we conclude, by letting n increase indefinitely and passing to the limits,

ϕ (l) = χ (l) .(13)

Thus, the quantity l is itself a root of equation (1), and because this quantity is
greater than x0 without being greater than the root a, we evidently have

l = a.(14)

[384] In the second place, let us suppose that equation (1) has no real roots be-
tween x0 and X . We will now prove under this hypothesis that the general term xn
of series (6) grows constantly with x, at least as long as this term remains less than
X . Indeed, as long as this condition is satisfied, the difference

ϕ(xn)−χ(xn)

has (theorem I, corollary I) the same sign as

ϕ(x0)−χ(x0),

that is to say negative, and consequently, we establish formulas (11), (12), . . ., as
above. Moreover, xn cannot converge towards a fixed limit l less than X , because
the existence of this limit would evidently involve equation (13), and consequently
the existence of a real root contained between x0 and X . Thus necessarily, under the
given hypothesis, the value of xn eventually surpasses the limit X .

Corollary I. — The conditions to which the auxiliary functions ϕ (x) and χ (x)
are subject in the statement of theorem II can be satisfied in infinitely many ways.
However, among the infinitely many values we could give to the function ϕ (x), it



Note III – On the numerical solution of equations. 315

is important to choose one that permits the easy solution of equations (7), that is to
say in general, any equation of the form

ϕ (x) = const.

After choosing the value of ϕ (x) as we just said, we calculate without difficulty
the various terms of series (6), and it suffices to find the limit towards which they
converge to obtain the smallest of the roots of equation (1) contained between x0
and X . If these same terms eventually surpass X , then equation (1) does not have a
real root in the interval from x0 to X .

Corollary II. — If we take
x0 = 0,

and if also equation (1) has positive roots, then the quantities x1, x2, . . . are all less
than the smallest root of this kind, and they give its value more and more closely.

Theorem III. — As in theorem I, suppose that the function f (x) remains contin-
uous from x = x0 to x = X (where X is greater than x0), and [385] denote by ϕ (x)
and χ (x) two auxiliary functions also continuous on the given interval, but also
subject to: 1◦ that they both increase constantly with x on this interval; and 2◦ that
they give for the difference

ϕ (x)−χ (x)

an expression which becomes positive when we give x the particular value X, and
which always remains equal (up to sign) to f (x). If the equation

f (x) = 0(1)

has one or several real roots between x0 and X, then the values of x given by

X , X ′, X ′′, X ′′′, . . .(15)

and derived from one another by means of the formulas

ϕ
(
X ′)= χ (X) , ϕ

(
X ′′)= χ

(
X ′) , ϕ

(
X ′′′)= χ

(
X ′′) , . . .(16)

make a decreasing series of quantities for which the general term converges towards
the largest of these roots. On the other hand, if equation (1) does not have real
roots contained between x0 and X, then the general term of series (15) eventually
descends below x0.

The proof of this third theorem is so similar to that of the second that for brevity
we will dispense with recounting it here.

Corollary I. — Among the infinitely many values we could give to the function
ϕ (x) in a way that satisfies the given conditions, it is important to choose one that
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permits the easy solution of equations (16), that is to say in general, any equation of
the form

ϕ (x) = const.

After choosing the value of ϕ (x) as we just said, we calculate without difficulty
the various terms of series (15), and it suffices to find the limit towards which they
converge to obtain the largest of the roots of equation (1) contained between x0 and
X . If these same terms eventually fall below x0, then equation (1) does not have a
real root in the interval from x0 to X .

[386] Corollary II. — If equation (1) has positive roots and if X surpasses the
largest root of this kind, the quantities X ′, X ′′, . . . always remain larger than this root
and they give its value more and more closely.

Scholium I. — If equation (1) has but one real root a, contained between x0 and
X , the general terms of series (6) and (15), where the first is increasing and the
second is decreasing, converge towards a common limit equal to this root. Then, if
we extend these series up to the terms

xn and X (n),

and then if we take the half-sum of these two terms as a value close to the root a,
the resulting error is less than

X (n)− xn

2
.

Scholium II. — To show an application of the principles that we have just estab-
lished, consider in particular the equation

xm−A1xm−1−A2xm−2− . . .−Am−1x−Am = 0,(17)

where m denotes any integer number and where

A1, A2, . . . , Am−1, Am

denote quantities, positive or zero. Because the left-hand side of this equation is
negative for x = 0 and positive for very large values of x, it follows that it has at
least one root that is positive and finite. Moreover, this same equation is not different
from the following

A1

x
+

A2

x2 + . . .+
Am−1

xm−1 +
Am

xm = 1,

where the right-hand side remains invariable, while the left-hand side decreases
constantly for positive and increasing values of x, so it evidently admits but a single
real positive root. Let a be that root, and let A be the largest of the numbers

A1, A2, . . . , Am−1, Am.
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Finally, denote as usual an average of these numbers by the notation

M (A1,A2, . . . ,Am−1,Am) .

[387] By making x = a and taking into account formula (11) of the Preliminaries,
we get from equation (17)

am = A1am−1 +A2am−2 + . . .+Am−1a+Am

=
(
am−1 +am−2 + . . .+a+1

)
M (A1,A2, . . . ,Am−1,Am)

=
am−1
a−1

M (A1,A2, . . . ,Am−1,Am) < A
am−1
a−1

,

and consequently

a−1 < A
am−1

am < A

and
a < A+1.(18)

As a consequence, the positive root of equation (17) is contained between the limits
0 and A+1. On the other hand, by letting

Aram−r and Asam−s

denote the smallest and the largest of the terms contained in the polynomial

A1am−1 +A2am−2 + . . .+Am−1a+Am,

and denoting the number of these that are different from zero by8 n≤m we evidently
have

am > nAram−r and

am < nAsam−s,

and consequently
a > (nAr)

1
r and

a < (nAs)
1
s .

It is clear that the root a is contained between the smallest and the largest of the
numbers

nA1, (nA2)
1
2 , (nA3)

1
3 , . . . , (nAm)

1
m .(19)

Finally, because by virtue of theorem I (corollary I), the left-hand side of equation
(17) remains negative from x = 0 to x = a and positive from x = a to x = ∞, it

8 Cauchy is simultaneously defining n and noting that it has the property that it is less than or equal
to m. He used the notation “n = or < m” in [Cauchy 1821, p. 472, 474]. In [Cauchy 1897, p. 387,
389], the editors used a symbol resembling n<m. There is a similar situation in Note VI with the
symbol ≥ in [Cauchy 1821, pp. 533–534, Cauchy 1897, pp. 437–438].
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follows that we can also choose as a lower bound9 of the root a the largest of the
integer numbers which make negative the expression

xm−A1xm−1−A2xm−2− . . .−Am−1x−Am,(20)

[388] and as an upper bound the smallest of these that make it positive. Now let

x0 and X

be the lower and upper bounds found following the rules that we have just given.
Moreover, if we make{

ϕ(x) = xm and

χ(x) = A1xm−1 +A2xm−2 + . . .+Am−1x+Am,
(21)

then theorems II and III are applicable to equation (17), and because under this
hypothesis, each of equations (7) and (16) can be reduced to the form

xm = const.,

it becomes easy to calculate the quantities contained in the two series

X , X ′, X ′′, X ′′′, . . . and
x0, x1, x2, x3, . . . ,

where the general terms are values approaching the root a from above and from
below.

Scholium III. — Consider again the equation

xm +A1xm−1 +A2xm−2 + . . .+Am−1x−Am = 0,(22)

where m still denotes an integer number and where

A1, A2, . . . , Am−1, Am

denote quantities, positive or zero, the largest of which is equal to A. By taking 1
x as

the unknown,10 we can rewrite this equation in the following form:(
1
x

)m

− Am−1

Am

(
1
x

)m−1

− Am−2

Am

(
1
x

)m−2

− . . .− A1

Am

1
x
− 1

Am
= 0,(23)

9 Here we translate Cauchy’s words limite inférieure as “lower bound.” He does not seem to mean
“limit inferior” in its modern sense. Likewise we translate limite supérieure as “upper bound” in
the next phrase. (tr.)
10 Note that equation (23) is algebraically equivalent to equation (22). Cauchy has not substituted
1
x in place of x in equation (22).
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which is similar to that of equation (17). We thus conclude that equation (22) admits
but one positive root less than the quotient

1
A

Am
+1

,(24)

[389] and this root is contained, not only between the smallest and the largest of the
quantities

Am

nAm−1
,

(
Am

nAm−2

) 1
2
,

(
Am

nAm−3

) 1
3
, . . . ,

(
Am

nA1

) 1
m−1

,

(
Am

n

) 1
m

,(25)

where n≤m represents the number of variable terms contained in the left-hand side
of equation (22), but the root a is also contained between the largest of the integer
numbers that make the following expression negative

xm +A1xm−1 +A2xm−2 + . . .+Am−1x−Am(26)

and the smallest of those that make it positive. Following these remarks, after having
determined two limits, one greater than and one less than the root in question, in
order to approach it more closely, it suffices to apply theorems II and III to equation
(23) and to consider 1

x as the unknown that we are trying to find.

Scholium IV. — If equation (1) had two real roots contained between x0 and X ,
but extremely close to each other, the general terms of series (6) and (15) would
appear at first to converge towards the same limit, and we would not be able to
extend the series very long before we would perceive the difference between the
limits towards which they are effectively converging. The same remark applies to
series (2) and (3). Consequently, the solution methods based only on theorem I or
else on theorems II and III are not always useful in all cases to find the number
of real roots of a numerical equation. However, they always give the value of any
single root which is found contained between any two given limits as accurately as
we might wish.

In the particular case where the numerical equation that we are considering has
for its left-hand side a real integer function of the variable x, we can determine the
number of real roots all at once, as M. Lagrange has shown, and calculate their ap-
proximate values. To do this easily, it is best to start by reducing the given equation
so that it has only unequal roots, and then proceeding as follows.

Let
F(x) = 0(27)

be the given equation. Denote by a, b, c, . . . the various roots, real or [390] imag-
inary, and let m be the degree of the left-hand side, for which we suppose that the
coefficient of this highest power of x is reduced to 1. Finally, let m′ be the number
of these roots equal to a, m′′ the number equal to b, m′′′ the number equal to c, . . ..
Then we have
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m′+m′′+m′′′+ . . . = m(28)

and
F (x) = (x−a)m′

(x−b)m′′
(x− c)m′′′

. . . .(29)

Let z be a new variable. We conclude that

F (x+ z)
F (x)

=
(

1+
z

x−a

)m′(
1+

z
x−b

)m′′(
1+

z
x− c

)m′′′

. . . .(30)

Now if we make

F (x+ z) = F (x)+ zF1 (x)+ z2F2 (x)+ . . . ,(31)

and if we expand the expressions(
1+

z
x−a

)m′

,

(
1+

z
x−b

)m′′

,

(
1+

z
x− c

)m′′′

, . . .

according to increasing powers of z, equation (30) becomes

1+ z
F1 (x)
F (x)

+ z2 F2 (x)
F (x)

+ . . .

=
(

1+ m′
x−a z+ . . .

)(
1+ m′′

x−b z+ . . .
)(

1+ m′′′
x−c z+ . . .

)
. . .

= 1+
(

m′
x−a + m′′

x−b + m′′′
x−c + . . .

)
z+ . . . .

Then, by equating corresponding coefficients of the first power of z on the two sides,
we find 

F1(x)
F(x) = m′

x−a + m′′
x−b + m′′′

x−c + . . .

= m′(x−b)(x−c)...+m′′(x−a)(x−c)...+m′′′(x−a)(x−b)...+...
(x−a)(x−b)(x−c)... .

(32)

Because the preceding formula has for its right-hand side an algebraic fraction that
is evidently irreducible, it follows that it is enough to divide the [391] left-hand side
F(x) of equation (27) by the greatest common divisor of the two polynomials F(x)
and F1(x) to reduce this equation to the following

(x−a)(x−b)(x− c) . . . = 0,(33)

which has only unequal roots.
We will not stop here to show how we could use these same principles to deduce

various equations whose distinct roots would be equal, either to the simple roots, or
to the double roots, or to the triple roots, etc., of the given equation. Here we will
only add some remarks relative to the case where we begin by supposing that all the
roots of equation (27) are distinct from one another. Each of these numbers m′, m′′,
m′′′, . . . then reduces to 1, and we get from formula (32)
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F1 (x) = (x−b)(x− c) . . .+(x−a)(x− c) . . .+(x−a)(x−b) . . .+ . . . ,(34)

and consequently 
F1 (a) = (a−b)(a− c) . . . ,

F1 (b) = (b−a)(b− c) . . . ,

F1 (c) = (c−a)(c−b) . . . ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(35)

and

F1 (a)F1 (b)F1 (c) . . . = (−1)
m(m−1)

2 (a−b)2 (a− c)2 . . .(b− c)2 . . . .(36)

Thus, under the given hypothesis, the product of squares of the differences between
the roots of equation (27) is equivalent, ignoring the sign, to the product

F1 (a)F1 (b)F1 (c) . . . ,

and consequently to the last term of the equation in z given by the elimination of x
between the two following

F (x) = 0 and z−F1 (x) = 0.(37)

Then, by calling the numerical value of the last term H, we have

(a−b)2 (a− c)2 . . .(b− c)2 . . . =±H.(38)

Under the same hypothesis, because the values of F1 (a), F1 (b), . . . given by formu-
las (35) are never zero, if we denote a real root of equation (27) by a, it suffices to
give very small values of the number α for [392] the two quantities

F (a+α) = αF1 (a)+α2F2 (a)+ . . . and

F (a−α) =− αF1 (a)+α2F2 (a)− . . .

to have opposite signs. Moreover, if we represent by x0 and X a lower bound and an
upper bound where a is the only real root contained between them, then by virtue
of theorem I (corollary I), F (X) has the same sign as F (a+α) and F (x0) the same
sign as F (a−α), and consequently the two quantities

F (x0) and F (X)

have opposite signs.
When equation (27) does not have equal roots, or it has been disencumbered of

those that it did have, then for this equation it becomes easy to determine not only
two limits between which all the real roots are contained, but also a sequence of
quantities which, taken two by two, serve, respectively, as limits of the various roots
of this kind, and finally values as close to these same roots as we might want. We
will establish this by solving, one after another, the three following problems.
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Problem I. — To determine two limits between which all of the real roots of the
equation

F(x) = 0(27)

are contained.

Solution. — By hypothesis, F(x) is a real polynomial of degree m with respect
to x, and in which the highest power of x has 1 for its coefficient. If we denote the
successive coefficients of the lesser powers by

a1, a2, . . . , am−1, am,

and the numerical values of these same coefficients by

A1, A2, . . . , Am−1, Am,

then we have identically{
F (x) = xm +a1xm−1 +a2xm−2 + . . .+am−1x+am

= xm±A1xm−1±A2xm−2± . . .±Am−1x±Am.
(39)

[393] Now let k be a number greater than the unique positive root of equation (17)
(theorem III, scholium II). Polynomial (20) is positive whenever we suppose that
x ≥ k. Consequently, it suffices to give x a numerical value greater than the number
k for the sum of the numerical values of the terms

A1xm−1, A2xm−2, . . . , Am−1x, Am

to become less than the numerical value of xm. As a result, the left-hand side of
equation (7) can never vanish while the value of x is located inside the limits

−k and + k.

Thus all the roots, positive and negative, of equation (27) are contained between
these same limits.

Scholium I. — If the number k is subject to the sole condition of surpassing
the positive root of equation (17), then we can suppose it to be equal either to the
largest of the expressions (19), or to the smallest of the integer numbers which, when
substituted in place of x in polynomial (20), give a positive result.

Scholium II. — We could easily assure that the number k, determined as we have
just said, is greater not only than all the numerical values of the real roots of equation
(27), but also than the moduli of all the imaginary roots. Indeed, let

x = r
(

cos t +
√
−1sin t

)



Note III – On the numerical solution of equations. 323

be such a root. At the same time we have two real equations{
rm cosmt±A1rm−1 cos(m−1) t

±A2rm−2 cos(m−2) t± . . .±Am−1r cos t±Am = 0
(40)

and {
rm sinmt±A1rm−1 sin(m−1) t

±A2rm−2 sin(m−2) t± . . .±Am−1r sin t = 0.
(41)

By adding the first equation multiplied by cosmt to the second one multiplied by
sinmt, we conclude{

rm ±A1rm−1 cos t±A2rm−2 cos2t± . . .

±Am−1r cos(m−1) t±Am cosmt = 0.
(42)

Now it is clear that we would not satisfy this last equation by supposing [394] r > k,
because under this hypothesis the numerical value of rm exceeds the sum of the
numerical values of the terms

A1rm−1, A2rm−2, . . . , Am−1r, Am,

and a fortiori it exceeds the sum of the numerical values that these same terms
acquire when they are multiplied by the cosines.

Scholium III. — By comparing the polynomial (26) with the left-hand sides of
equations (27) and (40), we easily prove that if g denotes a number less than the
unique positive root of equation (22), then g is a lower limit not only for the nu-
merical values of all the real roots of equation (27), but also of the moduli of all the
imaginary roots. This is what happens, for example, if we take g to be the smallest
of expressions (25), or the largest of the integer numbers which, substituted in place
of x in polynomial (26), give a negative result. The number g being determined as
we have just said, all the positive roots of equation (27) are contained between the
limits

+g and + k

and the negative roots of the same equation are between the limits

−k and −g.

Scholium IV. — When we only propose to obtain a lower limit on the smallest
of the positive roots or an upper limit on the largest of them, we can sometimes do
this by using the corollary to theorem XVII (preceding Note). Indeed, suppose that
all the terms of the polynomial F(x) except one have the same sign. Then equation
(27) takes the following form:
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xm +A1xm−1 + . . .+as−1xm−s+1

+As+1xm−s−1 + . . .+Am−1x+Am = Asxm−s.
(43)

Now let n be the number of terms in the left-hand side of equation (43) which do
not reduce to zero, and

Bxµ

the geometric mean of these terms, where B denotes the geometric mean of their
coefficients. By virtue of the corollary to theorem XVII (Note II), every real and
positive value of x that satisfies the given equation, [395] or what amounts to the
same thing, serves as its root, necessarily satisfies the condition

Asxm−s > nBxµ

and consequently, one of the two following

x >

(
nB
As

) 1
m−s−µ

,(44)

or

x <

(
As

nB

) 1
µ−m+s

,(45)

namely, the first, if m− s is greater than µ , and the second in the contrary case. It is
worth observing that if the number s vanishes, then As reduces to the coefficient of
xm, that is to say, to 1.

Scholium V. — It is again easy to obtain two limits, one less than and the other
greater than the positive roots of equation (27), by the method I am going to indicate.
We observe initially that any equation for which the left-hand side gives but one
change of sign, that is any equation that presents itself in the form

A0xm +A1xm−1 + . . .−Anxm−n−An+1xm−n−1− . . . = 0

or in the following

−A0xm−A1xm−1− . . .+Anxm−n +An+1xm−n−1 + . . . = 0,

where A0, A1, . . ., An, An+1, . . . denote any numbers, admits but one positive root,
evidently equal to the only positive value of x for which the fraction

A0xn +A1xn−1 +A2xn−2 + . . .

An +An+1
( 1

x

)
+An+2

( 1
x

)2 + . . .
,

which increases without stopping from x = 0 to x = ∞, can be reduced to 1. Conse-
quently the left-hand side of such an equation has the same sign as its first or its last
terms, depending on whether the value of x is larger than the root in question, or it is
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contained between zero and this same root. Given this, imagine that in polynomial
(39), −Asxs is the first negative term after xm, that +Anxn is the first positive term
after −Asxs, that −Avxv is the first negative term after Anxn, that +Awxw is the first
[396] positive term after −Avxv, . . ., so that equation (27) becomes

xm+ A1xm−1 + . . .

− Asxm−s−As+1xm−s−1− . . .

+ Auxm−u +Au+1xm−u−1 + . . .

− Avxm−v−Av+1xm−v−1− . . .

+ Awxm−w +Aw+1xm−w−1 + . . .±Am = 0.

We conclude from the preceding remarks that every positive value of x that satis-
fies equation (27) ought to be: 1◦ less than the largest of the positive roots of the
equations

xm +A1xm−1 + . . .−Asxm−s−As+1xm−s−1 − . . . = 0,

Anxm−n +An+1xm−n−1 + . . .−Avxm−v−Av+1xm−v−1 − . . . = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ;

and 2◦ greater than the smallest of the same roots, when Am is preceded by the sign
−, and in the contrary case, to the smallest positive roots of equations of the form

−Asxm−s−As+1xm−s−1− . . .+ Anxm−n +An+1xm−n−1 + . . . = 0,

−Avxm−v−Av+1xm−v+1− . . .+ Awxm−w +Aw+1xm−w−1 + . . . = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sometimes the two conditions which we have just stated are mutually exclusive, and
then we can be assured that equation (27) has no positive roots.

Problem II. — To find the number of real roots of equation (27) with a sequence
of quantities which, taken in pairs, serve as limits to these same roots.

Solution. — Suppose that equation (27) is reduced so that it has only unequal
roots. Then, if we denote by k (see the preceding problem) an upper limit of all
of the real roots, and by h a number less than the smallest difference between these
roots, and finally by k1, k2, . . ., kn some other numbers chosen so that in the sequence

− k, −k1, −k2, . . . , −kn, 0, kn, . . . , k2, k1, k,(46)

the difference between any term and the term which precedes it is always a positive
quantity less than or equal to h,11 it is clear that two consecutive terms of the se-
quence (46) never contain more than one real root between them. Moreover, when

11 From here to equation (49), Cauchy will be working to get a lower bound on the size of h.
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we substitute in the place of x in the polynomial F(x), two quantities [397] between
which there is at most a single real root, the results obtained are of the same sign or
of contrary signs. Put another way, the comparison of these two results gives either
no change in sign or a variation in sign depending on whether there does or does
not exist a real root between the two quantities in question. Consequently, if we take
the terms of sequence (46) for the successive values of the variable x and then form
the sequence of corresponding values of the polynomial F(x), this new sequence
gives as many variations in sign as equation (27) has real roots, and each of these
roots is contained between two consecutive values of x which, substituted into F(x),
give results with contrary signs. Thus, all the difficulty consists in finding a suitable
value for the number h. We do that in the following way.

Denote by H the numerical value of the last term in the equation in z given by
eliminating x in formulas (37). The number H, as we have already remarked, is
equivalent (ignoring the sign) to the product of the squares of the differences be-
tween the roots, real and imaginary, of equation (27). Consequently, H

1
2 is equiv-

alent to the product of the moduli of these differences (where the modulus of each
real difference is just its numerical value). Given this, let a and b be two distinct
roots of equation (27). If these two roots are real, each of them has a numerical
value less than k, and the numerical value of their difference, that is to say the dif-
ference or the sum of their numerical values, never surpasses 2k. On the other hand,
if one or both of these roots becomes imaginary, denoting their moduli by r1 and r2
and two real arcs by t1 and t2, we can suppose that

a = r1
(
cos t1 +

√
−1sin t1

)
and

b = r2
(
cos t2 +

√
−1sin t2

)
.

From this we deduce that

a−b = r1 cos t1− r2 cos t2 +(r1 sin t1− r2 sin t2)
√
−1,

mod .(a−b) =
[
(r1 cos t1− r2 cos t2)

2 +(r1 sin t1− r2 sin t2)
2
] 1

2

=
[
r2

1 −2r1r2 cos(t1− t2)+ r2
2
] 1

2 <
(
r2

1 +2r1r2 + r2
2
) 1

2 .

Thus we have
mod .(a−b) < r1 + r2,

and consequently
mod .(a−b) < 2k,(47)

[398] provided that the number k has been chosen, as in the first problem, in a way
that surpasses not only the numerical values of all the real roots, but also the moduli
of all the imaginary roots. In the same way, we prove that each of the differences

a− c, . . . , b− c, . . .
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has for its modulus a number less than 2k. If we form all the moduli of this kind,
numbering m(m−1)

2 , and if we set aside one of them, for example, the modulus of the
difference a−b, then we conclude that the product of all the others is a number less
than the expression

(2k)
m(m−1)

2 −1 .

Then, if we multiply this expression by the modulus of the difference a−b, we find
a result greater than the product of the moduli of all the differences, that is to say a
result greater than H

1
2 . In other words, we have

(2k)
m(m−1)

2 −1× mod .(a−b) > H
1
2 ,

or what amounts to the same thing,

mod .(a−b) >
H

1
2

(2k)
m(m−1)

2 −1
.(48)

When the roots a and b are real, the modulus of the difference a− b reduces to its
numerical value. Consequently, if we set

h =
H

1
2

(2k)
m(m−1)

2 −1
,(49)

then we obtain a number h less than the smallest difference between the real roots
of equation (27).

Scholium I. — It would be easy to prove that if each of the numbers A1, A2, . . .,
Am (problem I) is integer, then the number H is integer as well. Consequently, under
this hypothesis, the number H, which cannot vanish as long as the roots of equation
(27) are unequal to each other, has a value equal to or greater than 1. Given this,
formula (48) gives

mod .(a−b) >
1

(2k)
m(m−1)

2 −1
.(50)

[399] We conclude that, to obtain a number h less than the smallest difference be-
tween the roots, it suffices to take

h =
1

(2k)
m(m−1)

2 −1
.(51)

Scholium II. — Let
Z = 0(52)

be the equation in z given by the eliminating x from formulas (37). If, by the method
indicated above (problem I, scholium III), we determine a limit G less than the
moduli of all of the roots, real or imaginary, of equation (52), and if we still denote
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the roots of equation (27) a, b, c, . . ., then we have

mod .F1 (a) > G,

or what amounts to the same thing [see equations (35)],

mod .(a−b)(a− c) . . . > G.

We conclude that
mod .(a−b) >

G
mod .(a− c) . . .

and consequently,

mod .(a−b) >
G

(2k)m−2 ,(53)

because the differences
a−b, a− c, . . . ,

which involve the root a combined successively with each of the others, are m− 1
in number, or if we set aside the difference a−b, they are m−2 in number. Given
this, it is clear that the number h still satisfies the required conditions if we take

h =
G

(2k)m−2 .(54)

Scholium III. — Having determined h by one of the preceding methods, we are
able to choose for the sequence of numbers

k1, k2, . . . , kn

a decreasing arithmetic progression for which the difference is equal to or less than
h, in which the terms must always [400] lie between the limits 0 and k. Moreover, if
we denote by g (see problem I, scholium III), a limit less than the numerical values
of all of the real roots of equation (27), we are evidently able to remove from series
(46) all the terms, positive and negative, whose numerical values are smaller than g
and write in their place just the two terms

−g and +g.

If after modifying sequence (46) as we have just said, we substitute successively
into the polynomial F(x): 1◦ the negative terms of this series from −k to −g; and
2◦ the positive terms from +g to +k, and every time that two consecutive terms of
the first or the second kind give results of contrary signs, we are certain that a real
root, negative in the first case, positive in the second, is contained between these two
terms.

Scholium IV. — When, by whatever means, we have determined for equation (27)
a value close to the real root a, either above or below, then in a great number of cases
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we can obtain a value close to this same root in the contrary direction, and thus fix
two limits, one greater than the real roots less than a, and the other less than the real
roots greater than a, by applying the proposition I am about to state.

As usual, let
F1 (x) , F2 (x) , F3 (x) , . . .

represent the coefficients of the first, second, third, . . . powers of z in the expansion
of F(x + z), a, b, c, . . . the various roots of equation (27) and k a number greater
than their moduli. In addition, suppose that the quantity ξ has a value close to the
real root a, where the difference a−ξ and the quantity α determined by the equation

α =− F (ξ )
F1 (ξ )

(55)

are so small, ignoring the signs, that in the polynomial

F1 (ξ )+2(2α)F2 (ξ )+3(2α)2 F3 (ξ )+4(2α)3 F4 (ξ )+ . . . ,(56)

the numerical value of the first term surpasses the sum of the numerical values of
all the others. Finally, denote by G a number less than [401] the excess of the first
numerical value of the given sum. We are certain: 1◦ that the real root a is contained
between the limits

ξ and ξ +2α;

and 2◦ that the difference a− b or b− a between the root a and a new real root b
does not surpass

G

(2k)m−2 .(57)

To prove the preceding proposition, we first observe that under the given hypoth-
esis, because polynomial (56) has the same sign as its first term, we can say as much
a fortiori about the two polynomials{

−3F1 (ξ )+(2α)F2 (ξ )− (2α)2 F3 (ξ )+(2α)3 F4 (ξ )− . . . ,

F1 (ξ )+(2α)F2 (ξ )+(2α)2 F3 (ξ )+(2α)3 F4 (ξ )+ . . . ,
(58)

which we obtain by expanding the fractions

F (ξ −2α)
α

and
F (ξ +2α)

α

according to the ascending powers of α and using equation (55). Consequently,
because the first terms of the two polynomials are of opposite signs, the same is true
for the two fractions and for their numerators

F (ξ −2α) and F (ξ +2α) .

So there is at least one real root of equation (27) between the limits
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ξ −2α and ξ +2α.

I add that there is only one of them, and indeed, it is easy to see that if several
real roots were contained between these limits and if a and b denote two such roots
taken one after the other from the sequence, we would find for the values of the
expressions

F1 (a) = (a−b)(a− c) . . . , and

F1 (b) = (b− c)(b−a) . . . ,

two quantities with contrary signs. Consequently the equation

F1 (x) = 0(59)

[402] would have a real root contained between a and b, of the form

ξ + z,

where the quantity z is contained between the limits−2α and +2α . Now this cannot
be accepted, because if we replace z in formula (31) by y + z and if we expand the
left-hand side of this formula, modified according to the ascending powers of y, we
get

F (x+ z)+ yF1(x+ z)+ . . . = F (x)+(y+ z)F1 (x)+(y+ z)2 F2 (x)+ . . . ,

then, in equating the coefficients of the first power of y on both sides,

F1 (x+ z) = F1 (x)+2zF2 (x)+3z2F3(x)+4z3F4(x)+ . . . .(60)

Consequently, the expansion of

F1 (ξ + z)(61)

becomes
F1 (ξ )+2zF2 (ξ )+3z2F3 (ξ )+4z3F4 (ξ )+ . . . .(62)

Because in polynomial (56) the numerical value of the first term exceeds the sum of
the numerical values of all the others, the same is true a fortiori for polynomial (62),
as long as the numerical value of z is supposed to be less than that of 2α . It follows
that under this hypothesis expression (61) does not vanish. Thus equation (59) does
not have real roots contained between the limits ξ − 2α and ξ + 2α , and equation
(27) has only one root between these limits. The root in question is necessarily the
one closest to the quantity ξ , and which we have denoted by a. On the other hand,
because the fraction

F (ξ +2α)
α

is equivalent to the second of the two polynomials (58) and has the same sign as the
first term of this polynomial, namely
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F1 (ξ ) =−F (ξ )
α

,

we ought to conclude that

F (ξ ) and F (ξ +2α)

[403] are two quantities of contrary signs and that the root a is found bound between
the two limits

ξ and ξ +2α.

As for the second part of the proposition stated above, it is an immediate con-
sequence of scholium II, because the quantity G evidently lies below, ignoring the
sign, polynomial (62), that is to say of the expansion of F1 (ξ + z), as long as the
numerical value of z does not exceed that of 2α , and consequently is less than the
quantity F1 (a), which we deduce from F1 (ξ + z) by setting

z = a−ξ .

Thus it follows from this second part that the real roots greater than a are all greater
than the limit

a+
G

(2k)m−2(63)

and the roots smaller than a are less than the limit

a− G

(2k)m−2 .(64)

Problem III. — To find values as close as we might wish to the real roots of
equation (27).

Solution. — We begin by determining, with the aid of the preceding problem,
two limits, one greater than and one less than each real positive root. Suppose in
particular that the root a is of this kind, and denote by x0 and X the two limits,
below and above this root. If we form two different sums, the first with the positive
terms of the polynomial F(x), the second with the negative terms taken with the
contrary sign, then the one which is smaller for x = x0 becomes the larger for x = X .
Represent this sum by ϕ (x) and the other by χ (x). The two integer functions ϕ (x)
and χ (x) enjoy the properties stated in theorems II and III, and consequently, if the
function ϕ (x) is such that we can easily solve equations of the form

ϕ (x) = const.,

then formulas (7) and (16) immediately give values closer and [404] closer to the
root a. This is what happens, for example, whenever the function is given in the
form

B(x+C)n +D,
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where B, C, D are any three integer numbers and n an integer number equal to or less
than m, because then we obtain the successive terms of series (6) and (15) by the
extraction of roots of degree n. If the function ϕ (x) is not of the form that we have
just indicated, we can easily put it into that form by adding an integer polynomial
ψ (x), in which all the terms are positive, to both sides of the equation

ϕ (x) = χ (x) .

Indeed, it is clear that the values of ϕ (x) and of χ (x), modified by the addition of
such a polynomial, preserve all of the same properties. Moreover, we can assign an
infinity of different values to the polynomial ψ (x). Suppose, for example, that

ϕ (x) = x3 +3x2 +8.

The value of ϕ (x) modified by the addition of the polynomial ψ (x) becomes

(x+1)3 +7

if we suppose that
ψ (x) = 3x,

but it becomes
(x+2)3

if we suppose that
ψ (x) = 3x2 +12x,

etc. On this matter, it is worth remarking: 1◦ that we can always choose the integer
function ψ (x) so that the number B is 1; and 2◦ that in many cases, one of the
numbers C or D can be reduced to zero.

After using the preceding method to determine the real positive roots of equation
(27), it evidently suffices to obtain the negative roots as well by using the same
method to seek the positive roots of the equation

F (−x) = 0.(65)

Scholium. — There exist several methods of approximation other than the one
we have just described, among which we must mention that of Newton. It supposes
that we already know a value ξ close to the [405] root that we are seeking, and
it consists of taking as a correction to this value the quantity α determined by the
equation

α =− F (ξ )
F1 (ξ )

.(55)

However, because this last method is not always applicable, it is important to exam-
ine the cases in which it can be used. On this subject, we are going to establish the
following propositions:
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Theorem IV. — Suppose that a denotes any one of the real roots, positive or
negative, of equation (27) and that ξ is a value close to this root. Suppose that we
determine α by means of equation (55). If α is small enough, ignoring the sign,
that the numerical value of the first term of polynomial (56) exceeds the sum of the
numerical values of all the others, then of the two quantities

ξ and ξ +α,

the second is closer to a than the first.

Proof. — We have already seen (problem II, scholium IV) that under the given
hypotheses, the root a is the only root between the limits

ξ and ξ +2α.

Given this, if we take
a = ξ + z,(66)

then z is a quantity contained between the limits 0 and 2α and satisfies the equation

F (ξ + z) = 0,

or what amounts to the same thing,

F (ξ )+ zF1 (ξ )+ z2F2 (ξ )+ . . . = 0.(67)

If, for convenience, we make

q =−F2 (ξ )+ zF3 (ξ )
F1 (ξ )

(68)

and consider formula (55), then equation (67) becomes

z = α +qz2.(69)

[406] Consequently, we have

a = ξ + z = ξ +α +qz2,(70)

from which it follows that by taking ξ + α in place of ξ for the value close to a,
we commit an error that is equal, no longer to the numerical value of z, but rather
to that of qz2. Moreover, because polynomial (56) has the same sign as its first term
F1 (ξ ), the two polynomials{

F1 (ξ )+2(2α)F2 (ξ )+2(2α)zF3 (ξ )+ . . . = (1−4αq)F1 (ξ ) and

F1 (ξ )−2(2α)F2 (ξ )−2(2α)zF3 (ξ )− . . . = (1+4αq)F1 (ξ )
(71)
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evidently enjoy the same property, which requires that the numerical value of 2αq
and a fortiori that of qz be less than 1

2 . We conclude immediately that the numerical
value of qz2 is less than that of 1

2 z. Thus, of the two errors which we make by taking

ξ and ξ +α

as values close to a, the second error is smaller than half of the first.

Scholium I. — Because we get

z =
α

1−qz

from equation (69) and because the numerical value of qz is less than 1
2 , we are

certain that the value of z always remains between the limits

2
3 α and 2α.

Scholium II. — By solving equation (69) as if the value of q were known, we find

z =
1±

√
1−4αq
2q

=
2α

1∓
√

1−4αq
.

Here the radical
√

1−4αq is given a double sign. However, because the value of z
ought to be smaller than that of 2α , it is clear that we ought to prefer the inferior
sign. Thus we have

z =
2α

1+
√

1−4αq
.(72)

[407] Given this, if we call q0 and Q two limits, the first less than and the second
greater than the quantity q determined by formula (68), we conclude from equation
(72) that the exact value of z is contained between the two expressions

2α

1+
√

1−4αq0
and

2α

1+
√

1−4αQ
.(73)

Consequently, this value contains all the decimal digits common to the two expres-
sions expressed as numbers.

Scholium III. — Suppose that of the two quantities q0 and Q, the second has
the larger numerical value and that this numerical value is less than 1. Then, if the
difference a− ξ = z is, ignoring the sign, smaller than the unit decimal of order n,
that is to say if we have

val.num.z <

(
1

10

)n

,(74)

then the difference
a− (ξ +α) = qz2
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is smaller, ignoring the sign, than a unit decimal of order 2n. Indeed, we find that

val.num.qz2 <

(
1

10

)2n

.(75)

Thus, by taking ξ + α in place of ξ for the value close the root a, we double the
number of exact decimal places.

If we suppose that the numerical value of Q is not only less than 1 but also less
than 0.1, we conclude from formula (74) that

val.num.qz2 <

(
1

10

)2n+1

.

More generally, if we suppose that the numerical value of Q is less than
( 1

10

)r
, where

r denotes any integer number, then formula (74) implies the following

val.num.qz2 <

(
1
10

)2n+r

.(76)

Finally, if the value of Q is greater than 1 but less than (10)r, we [408] find

val.num.qz2 <

(
1
10

)2n−r

.(77)

Scholium IV. — The error that we make by taking ξ +α as a value close to a, or
the numerical value of the product qz2, can itself be calculated by approximation.
Indeed, if we consider equation (69), we find

qz2 = q
(
α +qz2)2

= qα
2 +(2α)q2z2 +q3z4.

Now suppose that the numerical value of 2α , and consequently that of z, is less than( 1
10

)n
and that the numerical value of Q, and consequently that of q, is less than

(10)∓r, where n and r denote two integer numbers. We evidently have

val.num. (2α)q2z2 <

(
1

10

)3n±2r

and

val.num.q3z4 <

(
1
10

)4n±3r

.

Moreover, if the numerical value of the fraction

F3 (ξ )+ zF4 (ξ )+ . . .

F1 (ξ )
(78)
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is known to be less than (10)∓s, where s again denotes an integer number, we can
take

−α
2 F2 (ξ )

F1 (ξ )

for a value close to the term qα2 without fearing an error more considerable than(
1

10

)3n±s

.

Consequently, if we choose ξ + α −α2 F2(ξ )
F1(ξ ) in place of ξ + α for a value close to

the root a, that is to say if we set

a = ξ +α −α
2 F2 (ξ )

F1 (ξ )
,(79)

then the error made affects only the decimal units of [409] the order given by the
largest of the three numbers

3n± s, 3n±2r and 4n±3r.

In the particular case where the numerical value of Q is less than
( 1

10

)r
, and that of

fraction (78) is less than
( 1

10

)s
, the new error becomes less than(

1
10

)3n

.

Thus it suffices to substitute the right-hand side of equation (79) for the quantity ξ

to triple the number of exact decimal digits in the value close to a. This is also what
happend, more or less, when the number n becomes very considerable. These results
agree with those which M. Nicholson has obtained in a work recently published in
London, which has for its title Essay on involution and evolution, etc.12

Theorem V. — Under the same hypotheses as the preceding theorem, imagine
that the first term of polynomial (56), that is to say the polynomial that represents
the expansion of F1 (ξ +2α), has a numerical value not only greater than the sum
of the numerical values of all the other terms, but also greater than the double of
this sum. Then if we denote a quantity contained between the limits

ξ and ξ +2α

by ξ1, then the second of the two quantities

ξ1 and ξ1−
F (ξ1)
F1 (ξ1)

12 Peter Nicholson (1765–1844); see [Nicholson 1820].
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is always closer to a than the first.

Proof. — To establish the proposition that we have just stated, it suffices to ob-
serve that the numerical value of the difference

a−ξ1

is greater than that of

a−
[

ξ1−
F (ξ1)
F1 (ξ1)

]
= (a−ξ1)−

F (a)−F (ξ1)
F1 (ξ1)

,

or what amounts to the same thing, that the fraction

F1 (ξ1)− F(a)−F(ξ1)
a−ξ1

F1 (ξ1)

[410] has a numerical value less than 1. Represent this fraction by u
v . It is enough to

prove that
v−u and v+u,

in other words,

F (a)−F (ξ1)
a−ξ1

and 2F1 (ξ1)−
F (a)−F (ξ1)

a−ξ1
(80)

are two expressions with the same sign. Now if we make

a = ξ + z and ξ1 = ξ +β ,(81)

where z and β are two quantities of the same sign contained between the limits 0
and 2α , and if we expand the functions

F (ξ1 + z) , F (ξ1 +β ) and F1 (ξ +β ) ,

then expressions (80) become, respectively,

F1 (ξ )+(β + z)F2 (ξ )+
(
β

2 +β z+ z2)F3 (ξ )+ . . .

and
F1 (ξ )− (β + z−4β )F2 (ξ )−

(
β

2 +β z+ z2−6β
2)F3 (ξ )+ . . . .

Because in each of these last polynomials the coefficient of Fn (ξ ) has a numerical
value evidently less than 1 of the quantities

nzn−1 and 2nβ
n−1,

and consequently less than the double of the numerical value of the product
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n(2α)n−1 ,

it is clear that if the condition stated in theorem V is satisfied, then they both have
the same sign as F1 (ξ ). Thus, etc.

Scholium I. — The errors committed when we take successively

ξ1 and ξ1−
F (ξ1)
F1 (ξ1)

for values close to the root a are, respectively, equal to the numerical values of the
two quantities

a−ξ1 and a−ξ1 +
F (ξ1)
F1 (ξ1)

.

[411] Considering formulas (81), we also find

a−ξ1 = z−β(82)

and

a−ξ1 +
F (ξ1)
F1 (ξ1)

= a−ξ1−
F (a)−F (ξ1)

F1 (ξ1)

= z−β − F (ξ + z)−F (ξ +β )
F1 (ξ +β )

.

Then, by expanding the functions F (ξ + z), F (ξ +β ) and F1 (ξ +β ), we find
a−ξ1 + F(ξ1)

F1(ξ1)

=−(z−β )2 F2 (ξ )+(z+2β )F3 (ξ )+
(
z2 +2β z+3β 2

)
F4 (ξ )+ . . .

F1 (ξ )+2βF2 (ξ )+3β 2F3 (ξ )+ . . .
.

(83)

Given this, imagine that for all values of β and z contained between 0 and 2α the
numerical value of the polynomial

F2 (ξ )+(z+2β )F3 (ξ )+
(
z2 +2β z+3β

2)F4 (ξ )+ . . .(84)

is always less than the limit M, and that of the polynomial

F1 (ξ )+2βF2 (ξ )+3β
2F3 (ξ )+ . . .(85)

is always greater than the limit N. If we have

val.num. (z−β ) <

(
1
10

)n

(86)

and
M
N

< (10)∓r ,(87)
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where n and r denote any two integer numbers, we conclude from equation (83) that

val.num.
[

a−ξ1 +
F (ξ1)
F1 (ξ1)

]
<

(
1

10

)2n∓r

.(88)

It is essential to remark that to obtain suitable values of M and N, it suffices: 1◦ to
replace z and β by 2α in polynomial (84), then to calculate the sum of the numerical
values of all the terms; and 2◦ to replace β by 2α in polynomial (85) and then to
look for the difference between the numerical value of the first term and the sum of
the numerical values of all the others.

[412] Scholium II. — Under the same hypotheses as in theorem V, if we succes-
sively make

ξ1 = ξ − F (ξ )
F1 (ξ )

, ξ2 = ξ1−
F (ξ1)
F1 (ξ1)

, ξ3 = ξ2−
F (ξ2)
F1 (ξ2)

, . . .(89)

then the quantities ξ1, ξ2, ξ3, . . . are values that are closer and closer to the root a.
Moreover, if we give M and N the same values as in scholium I, then by supposing
that

val.num.(a−ξ ) <

(
1

10

)n

,

we conclude that
val.num.(a−ξ1) <

( 1
10

)2n±r
,

val.num.(a−ξ2) <
( 1

10

)4n±3r
,

val.num.(a−ξ3) <
( 1

10

)8n±7r
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These last formulas contain the proposition stated by M. Fourier in the Bulletin
de la Société philomathique13 (read in May 1818), relative to the number of exact
decimal places given by each new operation of Newton’s method.

Any time the fraction M
N is less than 1, we can take r = 0 and consequently the

successive differences between the root a and its nearby values

ξ , ξ1, ξ2, ξ3, . . . ,

are, respectively, less than the numbers(
1

10

)n

,

(
1

10

)2n

,

(
1

10

)4n

,

(
1

10

)8n

, . . . .

Thus we find that the number of exact decimal places at least doubles for each new
operation.

13 See [Fourier 1818].
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The preceding researches give several methods for solving numerical equations.
In order to give a better sense of the advantages that these methods present, I will
apply them to the two equations

x2−2x−5 = 0(90)

and
x3−7x+7 = 0,(91)

[413] which Lagrange chose as his examples (Résolution des equations numeriques,
Chap. IV)14 and the first of which was earlier treated by Newton.

If we first consider equation (90), we find (theorem III, scholium II) that it has a
single positive root contained between the two limits

√
2 ·2 = 2 and 3√2 ·5 = 2.15 . . . .

Moreover, the positive value of x that satisfies the equation

2x+5 = x2

satisfies (problem I, scholium IV) the condition

2
√

5 ·2x < x2,

or what amounts to the same thing, the following:

x > (40)
1
5 = 2.09 . . . .

The root in question is thus contained between the numbers 2.09 . . . and 2.15 . . .,
so that its value, to less than a tenth part, is 2.1. To obtain a more exact value, we
observe that in the present case,

F (x) = x3−2x−5, F1 (x) = 3x2−2, F2 (x) = 3x and F3 (x) = 1,

and that, if we take
ξ = 2.1,

then the condition stated in theorem IV is satisfied. Given this, because from equa-
tion (55) we get

α =
5+ 4

3 ξ

3ξ 2−2
− ξ

3
=−0.005431878 . . . ,

we find for the new values close to the unknown x

ξ +α = 2.094568121 . . .

and

14 See [Lagrange 1769].



Note III – On the numerical solution of equations. 341

ξ +α −α
2 F2 (ξ )

F1 (ξ )
= ξ +α −α

2 3ξ

3ξ 2−2
= 2.0945515 . . . .

Finally, because the exact value of x is presented in the form x = ξ + z, [414] z is a
quantity contained between the limits 0 and 2α and that consequently we evidently
have

−q =
F2 (ξ )+ zF3 (ξ )

F1 (ξ )
=

6.3+ z
11.23

< 0.6 < 1,

F3 (ξ )
F1 (ξ )

=
1

11.23
< 0.1,

and

val.num.z = val.num.
(
α +qz2)< val.num.α +(2α)2 val.num.q < 0.01.

Then we conclude (theorem IV, scholia III and IV) that in taking

x = 2.0945681,

we commit an error smaller than 0.0001, and in taking

x = 2.0945515

an error smaller than 0.000001.
Instead of using the general formulas, we could carry out the calculation in the

following manner. After finding 2.1 as the value close to x, we make in equation
(90)

x = 2.1+ z,

and we find, by dividing all the terms by the coefficient of z, that

0.005431878 . . .+ z+0.560997328 . . .z2 +0.089047195 . . .z3 = 0,(92)

or what amounts to the same thing,

z =−0.005431878 . . .+qz2,(93)

where the value of q is determined by the formula

q =−0.560997328 . . .−0.089047195 . . .z.(94)

The double of the first term of equation (92) is almost 0.01, and because the left-
hand side of this equation gives two results of contrary signs when we successively
make

z = 0 and z =−0.01,

we can be sure it has a real root contained between the limits 0 and −0.01. To
prove that this root is unique, it suffices to observe that by virtue of formula (60) the
equation
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F1 (2.1+ z) = 0

[415] reduces to

1+2×0.560997328 . . .z+3×0.089047195 . . .z2 = 0,

and this last equation is not satisfied by any value of z between the limits in ques-
tion. Moreover, it is clear that for such a value of z, the quantity q determined by
formula (94) remains contained between −0.560 and −0.561. Because we draw
from equation (93){

z =−0.005431878 . . .− 0.000029505 . . .(−q)

− 0.000000320 . . .(−q)2− . . . ,
(95)

we conclude: 1◦ supposing that −q = 0.560,

z =−0.00544850 . . . ;

and 2◦ supposing that −q = 0.561,

z =−0.00544853 . . . .

Consequently, the real positive value of x that satisfies equation (90) is contained
between the limits

2.1−0.00544850 = 2.09455150

and
2.1−0.00544854 = 2.09455146.

Thus this equation has a unique positive real root very nearly equal to

2.0945515.

Moreover, it is easy to assure ourselves that it does not have any negative roots, for
if it had one, we would be able to satisfy with a positive value of x the formula

x3−2x+5 = 0,(96)

and this value of x (see scholium V of problem I) is at the same time less than the
positive root of the equation

x3−2x = 0,

that is to say, than √
2 = 1.414 . . . ,

and greater than the root of the equation

5−2x = 0,
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[416] that is to say than
5
2

= 2.5,

which is absurd.
We now move on to equation (91) and begin by looking for its positive roots. To

have a limit greater than the roots of this kind, it suffices to observe that the equation
under consideration can be put into the form

x3 +7 = 7x,

and we find (problem I, scholium IV) by supposing x is positive, that

2
√

7x3 < 7x

and consequently

x <
7
4
.

Thus we can take 7
4 as a value close the largest positive root. Given this, if we make

x =
7
4

+ z

in equation (91), we find

0.5+ z+2.40z2 +
32
70

z3 = 0,(97)

or what amounts to the same thing,

z =−0.05+qz2,(98)

where the value of q is determined by the formula

q =−2.40− 32
70

z.(99)

The double of the first term of equation (97) is 0.1. Because the left-hand side
changes sign as it passes from z = 0 to z =−0.1, while the polynomial

1+2×2.40z+3× 32
70

z2

remains always positive in this interval, it follows that it has a real root, but only one
of them, contained between the limits 0 and −0.1. The [417] corresponding value
of q is evidently contained between the two quantities

−2.354 . . . and −2.40.

From equation (98), we find that
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1+

√
1+0.2q

= −0.05−0.0025(−q)−0.00025(−q)2−0.00003125(−q)3− . . . .

(100)

In this last equation, if we successively make

q =−2.354 and q =−2.40,

we find the corresponding values of z,

z =−0.05788 . . . and z =−0.05810 . . . ,

and we conclude that the largest positive root of the given equation is contained
between the limits

7
4
−0.05788 . . . = 1.69211 . . .

and
7
4
−0.05810 . . . = 1.69189 . . . .

Thus, if we call this largest root a, its value approximated to eleven one hundred
thousandths is given by the formula

a = 1.6920.(101)

Starting with this first approximate value, in just one operation we could obtain a
second value in which the error would not be more than decimals of the twelfth
order.

In addition to the root a which we have just considered, equation (91) evidently
admits a negative root equal, up to sign, to the unique positive solution of the equa-
tion

x3−7x−7 = 0,(102)

and consequently (theorem III, scholium II) contained between the limits

−
√

14 =−3.7416 . . . and − 3√14 =−2.41 . . . .

[418] Call this negative root c. The third real root b of equation (91) is evidently real
and positive because the product abc of the three roots is equal to the negative of the
third term, that is to say, equal to −7. Let us now determine this third root. To find
it, we first look for a number G equal to or less than the numerical value of F1 (a).
Because in this case15

F (x) = x3−7x+7 and

F1 (x) = 3x2−7,

we conclude

15 The first term of F(x) is written as x2 in [Cauchy 1897, p. 418]. It is correctly written as x3 in
[Cauchy 1821, p. 512]. (tr.)
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F1 (a) = 3a2−7.

Thus we can take
G = 3(1.69189)2−7 = 1.5874 . . . .

Moreover, by virtue of what has come before, we also have

a < 1.6922 and − c < 3.7417,

and consequently
a− c < 5.4339.

Given this, we find (problem II, scholium II)

a−b >
G

a− c
>

1.5874
5.4339

= 0.29212 . . .

and as a consequence we have

b < 1.69211 . . .−0.29214 . . . < 1.40.

After having recognized, as we have just done, that the root b is less than the limit
1.40, suppose that

x = 1.40+ z.

Under this hypothesis, equation (91) gives

0.05+ z−3.75z2− 25
28

z3 = 0,(103)

or what amounts to the same thing,

z =−0.05+qz2,(98)

where the value of q is determined by the formula

q = 3.75+
25
28

z.(104)

[419] The double of the first term of equation (103) is 0.1, and because the left-hand
side of this equation changes sign when it passes from z = 0 to z =−0.1, while the
polynomial

1−2×3.75z−3× 25
28

z2

always remains positive in the interval, it results that the polynomial has a single
real root contained between the limits 0 and −0.1. The corresponding value of q is
evidently contained between the two quantities

3.66 and 3.75.
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By successively substituting these two quantities in place of the letter q in equation
(100), we obtain two new limits for the unknown z, namely

− 0.1
1+

√
1.732

=−0.04317 . . .

and
− 0.1

1+
√

1.750
=−0.04305 . . . ,

so we conclude that the positive root is contained between

1.40−0.04317 . . . = 1.35682 . . .

and
1.40−0.04305 . . . = 1.35694 . . . .

Thus we obtain the value approximating this root to a ten thousandth part if we take

b = 1.3569.(105)

As for the negative root c of equation (91), we already know that it is contained
between the limits

−3.7416 . . . and −2.41 . . . .

Thus we have its value approximated to within one unit if we suppose it is equal to
−3. Given this, take in equation (91)

x =−3+ z.

We find
0.05+ z−0.45z2 +0.05z3 = 0,(106)

[420] or what amounts to the same thing,

z =−0.05+qz2,(98)

where the value of q is determined by the formula

q = 0.45−0.05z.(107)

Moreover, we easily recognize: 1◦ that equation (106) has a real root, but only one
of them, contained between the limits 0 and −0.1; 2◦ that the corresponding value
of q is contained between the two numbers

0.45 and 0.455;

and 3◦ that these two numbers substituted in place of the letter q in equation (100)
give two new values close to z, namely
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− 0.1
1+

√
1.09

=−0.048922 . . .

and
− 0.1

1+
√

1.091
=−0.048911 . . . .

Consequently, the value approximating c to a hundred thousandth part is

c =−3.04892.(108)

Finally, we could have immediately deduced the value approximating c from formu-
las (101) and (105). Indeed, because in equation (91) the coefficient of x2 is reduced
to zero, we conclude

a+b+ c = 0,
c =−a−b

and consequently, to within a very small margin,

c =−(1.6920−1.3569) =−3.0489.

To end this note, we will present here two theorems, the second of which contains
the rule stated by Descartes relative to the determination of the number of positive
or negative roots that pertain to a polynomial of any degree. With this plan, we will
begin by examining the number of variations and permanences in signs exhibited
by [421] a sequence of quantities, when we suppose that the different terms of the
sequence are compared to each other in the order in which they appear.

Let
a0, a1, a2, . . . , am−1, am(109)

be the sequence we are considering, composed of m+1 terms. If none of these terms
reduce to zero, then the number of variations in sign which we obtain in comparing
consecutive terms two by two is completely determined. However, if some of the
terms are zero, then because in this case we can arbitrarily decide the sign of each
of these terms, the number of variations in sign depends on the decisions themselves,
but it depends in such a way that the number cannot fall below a certain minimum,
nor rise above a certain maximum. A similar remark can be made about the number
of permanences in signs. We add that to obtain the maximum number of variations
in sign, it suffices to consider each term that vanishes as having the opposite sign of
the term that precedes it. Imagine, for example, that sequence (109) consists of the
four terms

+1, 0, 0 and −1.

Because the first of these terms is positive, we obtain the maximum number of vari-
ations in sign by considering the second term as negative and the third as positive,
or what amounts to the same thing, by writing

+1, −0, +0 and −1.
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Consequently, in this particular case the maximum number in question is equal to
3. On the other hand, we obtain the minimum number of variations in sign, equal to
1, by assigning each 0 term a sign the same as that of the preceding term, that is to
say, by writing16

+1, +0, +0 and −1.

If we adopt these principles, we establish the following propositions without diffi-
culty:

Theorem VI. — Suppose that the constant h is real and positive and that we
multiply the polynomial

a0xm +a1xm−1 +a2xm−2 + . . .+am−1x+am(110)

by the linear factor x+h. This multiplication does not increase [422] the maximium
number of variations in sign of the successive coefficients of the descending powers
of the variable x.

Proof. — By multiplying polynomial (110) by x+h, we obtain a new polynomial
in which the descending powers of the variable have for their respective coefficients
the quantities

a0, a1 +ha0, a2 +ha1, . . . , am +ham−1, ham.(111)

Thus it suffices to prove that the number of variations in sign does not increase
in the passage from sequence (109) to sequence (111), when we have carried this
number to its maximum in both sequences by giving each term that vanishes the
sign opposite to that of the preceding term. Now, I say that initially fixing the signs
according to this rule, each term of sequence (111), represented by a binomial of the
form

an +han−1,

takes the same sign as one of the terms an or an−1 of sequence (109). This assertion
is equally evident in the two cases that can present themselves, namely: 1◦ when
the terms an−1 and an are originally, or by virtue of the rule adopted, given opposite
signs, for example, when an vanishes; or 2◦ when an has a value different from zero
and an−1 has the same sign as an. Consequently, if we give the quantities

ha0, ha1, ha2, . . . , ham−1, ham(112)

the same signs as the corresponding terms of sequence (109), we can, without alter-
ing in any way the succession of signs in sequence (111), replace each binomial of
the form

an +han−1

16 The third term in this sequence is written as −0 in [Cauchy 1897, p. 421]. It is correctly given
as +0 in [Cauchy 1821, p. 516]. (tr.)
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by one of the two monomials an or han−1. In operating like this, we obtain a new
sequence in which each term of the form an finds itself followed by another term
equal either to the monomial an+1 or to the monomial han, which is the second part
of the binomial an+1 + han, while each term of the form han is followed either by
the monomial han+1 or the monomial an+2, which is the first part of the binomial
an+2 +han+1. Given this, imagine that in the new sequence we distinguish: 1◦ each
term of the form an which [423] is followed by another term of the form han; and
2◦ each term of the form han which is followed by another term of the form an+2.
Let, respectively,

as, han, av, haw, . . .

be the different terms of these two kinds arranged following the increasing size of
the indices which describe the letter a. The new sequence, composed of the mono-
mials {

a0, a1, . . . , as, has, has+1, . . . , hau, au+2, . . . , av,

hav, hav+1, . . . , haw, aw+2, aw+3, . . . , ham,
(113)

evidently exhibits only those changes of sign like those of sequence (109) along
with those which can arise in the passage from han to an+2, from haw to aw+2, . . ..
Moreover, it is easy to see that if the two quantities

han and an+2,

or what amounts to the same thing,

an and an+2,

have contrary signs, then the variation in sign does nothing but replace another vari-
ation of sign in sequence (109), namely the one that had been between term an+1
and one of the two terms an or an+2. A very similar remark applies in the case that
the monomials haw and aw+2 have contrary signs, etc. We can thus conclude that
the maximum number of variations in sign does not increase when we pass from
sequence (109) to sequence (113), and consequently to the sequence (111). This is
what we set out to prove.

Corollary. — If we multiply polynomial (110) by several linear factors of the
form

x+h, x+h′, x+h′′, . . . ,

where h, h′, h′′, . . . denote positive quantities, we do not increase the maximum
number of variations in sign among the coefficients of successive descending powers
of the variable x.

Theorem VII. — In the polynomial

F (x) = a0xm +a1xm−1 + . . .+am−1x+am,(110)
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[424] let m′ be the minimum number of permanences in signs, and m′′ the minimum
number of variations in sign among the successive coefficients of descending powers
of x. Then in the equation

F(x) = 0,(114)

the number of negative roots is equal to or less than m′, the number of positive roots
is less than or equal to m′′, and the number of imaginary roots is equal to or greater
than to the difference

m−
(
m′+m′′) .

Proof. — To establish the first part of the theorem, I observe that if we call h, h′,
h′′, . . . the negative roots of equation (114), then the polynomial F(x) is divisible by
the product

(x+h)
(
x+h′

)(
x+h′′

)
. . . .

Denote the quotient by Q. From the corollary to the preceding theorem, the maxi-
mum number of variations in sign in the polynomial F(x) is less than or equal to the
maximum of these variations in the polynomial Q, and as a consequence less than
or equal to the degree of that polynomial. It follows that the minimum number of
permanences in sign of the polynomial F(x) is equal to or greater than the differ-
ence between the number m and the degree of the polynomial Q, that is to say, the
number of real negative roots of the equation

F(x) = 0.(114)

To prove the second part of theorem VII, it suffices to remark that by writing
−x in place of x in equation (114), we interchange all at once the positive and the
negative roots and the variations and permanences in sign.

Finally, because this equation is of degree m, it ought to have m roots, real and
imaginary, so it is clear that the third part of the theorem is an immediate conse-
quence of the two others.

Corollary. — To show an application of the preceding theorem, consider the
particular equation

xm +1 = 0.(115)

[425] We find: 1◦ if we suppose that m is even, that

m′ = 0 and m′′ = 0;

and 2◦ if we suppose that m is odd,

m′ = 1 and m′′ = 0.

Consequently, in the first case equation (115) does not have any real roots, and in
the second case it has only one real root, namely a negative root.



Note IV – On the expansion of the alternating
function (y− x)× (z− x)(z− y)× . . .×
(v− x)(v− y)(v− z) . . .(v−u).

[426] We denote the function in question1 by ϕ . As we have already remarked
(Chap. III, § II), each term of its expansion is equivalent, ignoring the sign, to the
product of the various variables arranged in a certain order and, respectively, raised
to powers indicated by the numbers

0, 1, 2, 3, . . . , n−1.

Moreover, it is easy to see that each of the products of this kind can be derived from
each other with the aid of one or several exchanges operated between the variables
taken two by two. Thus, for example, we derive the product

x0y1z2 . . .un−2vn−1

from any of the products of the same form by making the letter x pass to the first
position by successive exchanges, then the letter y to the second position, then the
letter z to the third, etc. Moreover, because the function ϕ changes sign but takes the
same value, up to sign, every time we exchange two variables with each other, we
ought to conclude: 1◦ that the expansion of this function contains all the products
mentioned above, some taken with the sign + and the others with the sign −; and
2◦ that in the same expansion, two products, taken at random, are affected with the
same sign or with contrary signs depending on whether one can derive one from the
other by an even number or an odd number or exchanges. As a consequence of these
remarks, we establish without difficulty the following proposition:

Theorem I. — Add to the product

x0y1z2 . . .un−2vn−1

1 In the chapter heading of this note in [Cauchy 1897, p. 426], the formula is given in a slightly
different form. This version of ϕ is what appears on [Cauchy 1821, p. 521] as well as in the tables
of contents of both editions. (tr.)
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all those products which we can derive with the aid of one or several exchanges
[427] successively performed among the variables

x, y, z, . . . , u, v

taken two by two. The number of products which we obtain is

1 ·2 ·3 . . .(n−1)n,

and they divide themselves into two distinct classes in such a way that we can al-
ways derive two products of the same class from each other by an even number of
exchanges, and two products of different classes by an odd number of exchanges.
Given this, if we attach the sign + to all the products of one class and the sign − to
all the products of the other class, then we find that the sum is the expansion of +ϕ

or the expansion of −ϕ , depending on the class to which we give the sign +.

It evidently suffices to consider the preceding proposition in constructing the ex-
pansion of the alternating function +ϕ . However, we also ought to mention another
theorem, with the aid of which we can decide immediately if two products taken
at random in the expansion in question are found to have the same sign or contrary
signs. We will content ourselves with stating here this second theorem without giv-
ing its proof, which we can deduce without trouble from the principles which we
have already explained.

Theorem II. — To decide if, in the expansion of the alternating function ±ϕ ,
two products of the form

x0y1z2 . . .un−2vn−1

are affected with the same sign or with contrary signs, we distribute the variables

x, y, z, . . . , u, v

into several groups, taking care to put two variables into the same group whenever
they carry the same exponent in the two products that we are considering, and form-
ing an isolated group for each variable that does not have a change in exponent in
the passage from the first product to the second. Given this, the two products are af-
fected with the same sign if the difference between the total number of variables and
the total number of groups is an even number, and they are affected with contrary
signs if this difference is an odd number.

[428] The use of the preceding theorem is facilitated by writing the two products
one over the other and arranging the variables in each of these according to the size
of the exponents that they carry.

To apply these two theorems stated above to an example, consider in particular
five variables

x, y, z, u and v.

The product of their differences, or if we wish, the alternating function



Note IV – On the expansion of a certain alternating function. 353

(y− x)(z− x)(z− y)(u− x)(u− y)(u− z)

×(v− x)(v− y)(v− z)(v−u)

gives an expansion composed of 120, respectively, equal to the 120 products where
60 are preceded by the sign + and 60 by the sign −. One of the products affected
by the sign + is the one which has for its factors the first letters of the binomials

y− x, z− x, z− y, . . . , v−u,

namely
x0y1z2u3v4.

To judge whether another product such as

x0z1v2u3y4

ought to be taken with the sign + or with the sign −, it suffices to observe that if we
compare the two products in question here with respect to the changes which take
place among the given variables when we pass from one to the other, we are led to
divide these variables into three groups, the first containing the single variable x, a
second containing the three variables y, z and v, and the third the single variable u. If
from the number of variables, five, we subtract the number of groups, three, we find
there remains two, that is to say, an even number. Consequently, the two products
ought to be affected with the same sign, and because the first is preceded by the sign
+, the second ought to be as well.





Note V – On Lagrange’s interpolation formula.

[429] When we wish to determine an integer function of x of degree n−1, given a
certain number of particular values assumed to be known, it suffices to use formula
(1) of Chapter IV (§ I). This formula, first given by Lagrange, may easily be deduced
from the principles outlined in section I of Chapter III. Indeed, let us denote the
function we seek by

u = a+bx+ cx2 + . . .+hxn−1(1)

and denote its particular values by

u0, u1, u2, . . . , un−1,

corresponding to the values

x0, x1, x2, . . . , xn−1

of the variable x. The unknowns in this problem are the coefficients a, b, c, . . ., h of
the various powers of x in the polynomial u. In order to determine these unknowns,
we have the equations of condition

u0 = a+bx0 + cx2
0 + . . .+hxn−1

0 ,

u1 = a+bx1 + cx2
1 + . . .+hxn−1

1 ,

u2 = a+bx2 + cx2
2 + . . .+hxn−1

2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

un−1 = a+bxn−1 + cx2
n−1 + . . .+hxn−1

n−1.

(2)

Given this, in order to obtain the explicit value of the function u, we need only
eliminate the coefficients a, b, c, . . ., h from among the formulas (1) and (2). We
do this by adding equation (1) to equations (2), after [430] multiplying these latter
ones by quantities chosen in such a way as to make the sum of the right-hand sides
disappear. Let

−X0, −X1, −X2, . . . , −Xn−1

355
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be the quantities in question. We have

u−X0u0−X1u1−X2u2− . . .−Xn−1un−1

= (1−X0−X1−X2− . . .−Xn−1)a

+(x− x0X0− x1X1− x2X2− . . .− xn−1Xn−1)b

+
(
x2− x2

0X0− x2
1X1− x2

2X2− . . .− x2
n−1Xn−1

)
c

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(
xn−1− xn−1

0 X0− xn−1
1 X1− xn−1

2 X2− . . .− xn−1
n−1Xn−1

)
h,

and consequently

u = X0u0 +X1u1 +X2u2 + . . .+Xn−1un−1,(3)

as long as the quantities
X0, X1, X2, . . . , Xn−1

are subject to the equations of condition

X0+ X1+ X2 + . . .+ Xn−1 = 1,

x0X0+ x1X1+ x2X2 + . . .+ xn−1Xn−1 = x,

x2
0X0+ x2

1X1+ x2
2X2 + . . .+ x2

n−1Xn−1 = x2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

xn−1
0 X0+ xn−1

1 X1+ xn−1
2 X2 + . . .+ xn−1

n−1Xn−1 = xn−1.

(4)

If we solve these new equations by the method described in Chapter III (§ I), we
obtain the formulas

X0 =
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)
,

X1 =
(x− x0)(x− x2) . . .(x− xn−1)

(x1− x0)(x1− x2) . . .(x1− xn−1)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Xn−1 =
(x− x0)(x− x1) . . .(x− xn−2)

(xn−1− x0)(xn−1− x1) . . .(xn−1− xn−2)
,

(5)

by virtue of which equation (3) is transformed into the formula of Lagrange.
[431] Moreover, Lagrange’s formula is contained in another more general for-

mula, to which we find ourselves drawn when we wish to determine not just an
integer function, but a rational function of the variable x, given a certain number of
particular values assumed to be known. To clarify the ideas, imagine that the rational
function should be of the form

u =
a+bx+ cx2 + . . .+hxn−1

α +βx+ γx2 + . . .+θxm .(6)



Note V – On Lagrange’s interpolation formula. 357

In this case, the unknowns in the problem are the coefficients

a, b, c, . . . , h and α, β , γ, . . . , θ ,

or better still, the ratios

a
α

,
b
α

,
c
α

, . . . ,
h
α

and
α

α
,

β

α
,

γ

α
, . . . ,

θ

α
.

There are n + m such ratios. It is easy to conclude from this that the function u is
completely determined if we know n+m particular values

u0, u1, u2, . . . , un+m−1(7)

corresponding to the n+m values

x0, x1, x2, . . . , xn+m−1(8)

of the variable x. We arrive at the same conclusions by showing that a second rational
function of the form

a′+b′x+ c′x2 + . . .+h′xn−1

α ′+β ′x+ γ ′x2 + . . .+θ ′xm(9)

cannot satisfy the same conditions as the first without being identically equal to it.
Indeed, suppose that the fractions (6) and (9) become equal to each other for the
particular values of x contained in series (8). Therefore, the equation{

(a+bx+ . . .+hxn−1)(α ′+β ′x+ . . .+θ ′xm)

− (a′+b′x+ . . .+h′xn−1)(α +βx+ . . .+θxm) = 0
(10)

[432] remains true for n + m values of the variable, while its degree remains less
than n + m, so it must necessarily be an identity. From this it follows that we have
identically 

a+bx+ cx2 + . . .+hxn−1

α +βx+ γx2 + . . .+θxm

=
a′+b′x+ c′x2 + . . .+h′xn−1

α ′+β ′x+ γ ′x2 + . . .+θ ′xm .

(11)

Thus, we may solve the given question in only one way. We effectively resolve it by
taking the general value of u to be the fraction

u0u1 . . .um
(x−xm+1)(x−xm+2)...(x−xm+n−1)

(x0−xm+1)...(x0−xm+n−1)...(xm−xm+1)...(xm−xm+n−1) + . . .

u0u1 . . .um−1
(x0−x)(x1−x)...(xm−1−x)

(x0−xm)...(x0−xm+n−1)...(xm−1−xm)...(xm−1−xm+n−1) + . . .
,

in which the denominator must be replaced by 1 when we suppose that m = 0 and
the numerator by the product u0u1 . . .um when we suppose that n = 1. Given this,
we find that for m = 0,
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u = u0
(x− x1)(x− x2) . . .(x− xn−1)

(x0− x1)(x0− x2) . . .(x0− xn−1)
+ . . . .(12)

For m = 1,

u =
u0u1

(x−x2)(x−x3)...(x−xn)
(x0−x2)(x0−x3)...(x0−xn)(x1−x2)(x1−x3)...(x1−xn) + . . .

u0
x0−x

(x0−x1)(x0−x2)...(x0−xn) +u1
x1−x

(x1−x0)(x1−x2)...(x1−xn) + . . .
,(13)

and so forth. For n = 1,

u =
u0u1 . . .um

u0u1 . . .um−1
(x0−x)(x1−x)...(xm−1−x)

(x0−xm)(x1−xm)...(xm−1−xm) + . . .
.(14)

In each of the preceding formulas, we may complete the numerator or the denomi-
nator of the fraction that represents the value of u without trouble by adding to the
first term of this numerator or of this denominator all of those terms that we may de-
rive with the assistance of one or several exchanges performed among the indices.
For example, if we suppose that m = 1 and [433] n = 2, we find the completely
expanded value of u to be

u =
u0u1

x−x2
(x0−x2)(x1−x2) +u0u2

x−x1
(x0−x1)(x2−x1) +u1u2

x−x0
(x1−x0)(x2−x0)

u0
x0−x

(x0−x1)(x0−x2) +u1
x1−x

(x1−x0)(x1−x2) +u2
x2−x

(x2−x0)(x2−x1)

.(15)

It is worth noting that formula (12) is Lagrange’s formula, and that to deduce for-
mula (14) from it, it suffices to replace n−1 by m and then to take as the unknown
the function 1

u , assumed to be integer, in place of the function u.



Note VI – On figurate numbers.

[434] We call numbers figurate of the first order, second order, third order, etc.
which serve as the coefficients of the successive powers of x in the expansions of
the expressions

(1− x)−2 , (1− x)−3 , (1− x)−4 , . . . .

This definition gives an easy means to calculate them. Indeed, we have proved in
Chapter VI (§ IV), that we have, for any real values of µ and for numerical values
of x less than 1,

(1+ x)µ = 1+
µ

1
x+

µ (µ −1)
1 ·2

x2 + . . .+
µ (µ −1) . . .(µ −n+1)

1 ·2 ·3 . . .n
xn + . . . .(1)

If in the preceding equation we set µ = −(m+1), where m denotes any integer
number, we find

(1+ x)−m−1 = 1 −m+1
1

x+
(m+1)(m+2)

1 ·2
x2− . . .

± (m+1)(m+2) . . .(m+n)
1 ·2 ·3 . . .n

xn± . . ..

(2)

Moreover, because we evidently have1
(m+1)(m+2) . . .(m+n)

1 ·2 ·3 . . .n
=

(m+1)(m+2) . . .m(m+1) . . .(m+n)
(1 ·2 ·3 . . .m)(1 ·2 ·3 . . .n)

=
(n+1)(n+2) . . .(n+m)

1 ·2 ·3 . . .m
,

(3)

[435] it follows that equation (2) can be written as follows:

1 This is evidently the familiar identity for binomial coefficients
(

m+n
n

)
=
(

m+n
m

)
.

359



360 Note VI – On figurate numbers.

(1+ x)−m−1 =
1 ·2 ·3 . . .m
1 ·2 ·3 . . .m

− 2 ·3 ·4 . . .(m+1)
1 ·2 ·3 . . .m

x

+
3 ·4 ·5 . . .(m+2)

1 ·2 ·3 . . .m
x2− . . .∓ n(n+1) . . .(n+m−1)

1 ·2 ·3 . . .m
xn−1

± (n+1)(n+2) . . .(n+m)
1 ·2 ·3 . . .m

xn∓ . . . .

(4)

The numerical coefficients of the successive powers of x in the right-hand side of
this last formula, namely

1 ·2 ·3 . . .m
1 ·2 ·3 . . .m

,
2 ·3 ·4 . . .(m+1)

1 ·2 ·3 . . .m
, . . . ,

n(n+1) . . .(n+m−1)
1 ·2 ·3 . . .m

, . . . ,(5)

are precisely the figurate numbers of order m. The sequence of these same numbers
or series (5) extends to infinity. Its nth term, that is to say the fraction

n(n+1) . . .(n+m−1)
1 ·2 ·3 . . .m

,

is at the same time the numerical coefficient of xn−1 in the expansion of (1+ x)−m−1

and the coefficient of xm in the expansion of (1+ x)n+m−1 . Moreover, if in series (5)
we successively make

m = 1, m = 2, m = 3, . . . ,

we obtain: 1◦ the sequence of natural numbers, or figurate numbers of the first order,

1, 2, 3, . . . , n, . . . ;

2◦ the sequence of numbers which we call triangular, or figurate of the second order,
namely

1, 3, 6, 10, . . . ,
n(n+1)

1 ·2
, . . . ;

and 3◦ the sequence of numbers we call pyramidal, or figurate of the third order,
namely

1, 4, 10, 20, . . . ,
n(n+1)(n+2)

1 ·2 ·3
, . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[436] If we write these different sequences one below the other, preceding them by
a first sequence composed of terms all equal to 1, and additionally placing them
so that the first term of each is under the second term of the sequence immediately
above it, we obtain the following table:
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1, 1, 1, 1, 1, . . . ,
1, 2, 3, 4, . . . ,

1, 3, 6, . . . ,
1, 4, . . . ,

1, . . . ,
. . . .

(6)

The numbers contained in the (n + 1)st vertical column of this table are the coeffi-
cients of the nth power of a binomial. Pascal, in his Traité du triangle arithmétique,2

first gave the law of formation for these very numbers. Newton later showed how the
formula established from this law can be extended to fractional or negative powers.

Several remarkable properties of figurate numbers are deduced immediately from
formula (4) of Chapter IV (§ III). Imagine, for example, that after replacing n by
n−1 in this formula, we suppose that

x = m+1 and y = m′+1,

where m and m′ are any two integer numbers. Then we find that

(m+m′+2)(m+m′+3) . . .(m+m′+n)
1 ·2 ·3 . . .(n−1)

=
(m+1)(m+2) . . .(m+n−1)

1 ·2 ·3 . . .(n−1)

+
(m+1)(m+2) . . .(m+n−2)

1 ·2 ·3 . . .(n−2)
m′+1

1
+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
m+1

1
(m′+1)(m′+2) . . .(m′+n−2)

1 ·2 ·3 . . .(n−2)

+
(m′+1)(m′+2) . . .(m′+n−1)

1 ·2 ·3 . . .(n−1)
.

(7)

[437] Then, by making m′ = 0, we find that3

(m+2)(m+3) . . .(m+n)
1 ·2 ·3 . . .(n−1)

=
(m+1)(m+2) . . .(m+n−1)

1 ·2 ·3 . . .(n−1)

+
(m+1)(m+2) . . .(m+n−2)

1 ·2 ·3 . . .(n−2)

+ . . .+
m+1

1
+1.

(8)

2 See [Pascal 1665].
3 Formula (8) is sometimes called the “hockey stick pattern” in Pascal’s Triangle.



362 Note VI – On figurate numbers.

Likewise, if after replacing n by n− 1 in formula (4) (Chap. IV, § III), we instead
make

x = m+1 and y =−
(
m′+1

)
,

then we conclude that

(m−m′)(m−m′+1) . . .(m−m′+n−2)
1 ·2 ·3 . . .(n−1)

=
(m+1)(m+2) . . .(m+n−1)

1 ·2 ·3 . . .(n−1)

− (m+1)(m+2) . . .(m+n−2)
1 ·2 ·3 . . .(n−2)

m′+1
1

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∓m+1
1

(m′+1)m′ . . .(m′−n+4)
1 ·2 ·3 . . .(n−2)

± (m′+1)m′ . . .(m′−n+3)
1 ·2 ·3 . . .(n−1)

.

(9)

When in the preceding equation we suppose that m′ ≥ m and at the same time n ≥
m′+2, we find that4

0 =
(m+1) . . .(m+n−1)

1 ·2 ·3 . . .(n−1)
m′+1

1
(m+1) . . .(m+n−2)

1 ·2 ·3 . . .(n−2)

+
(m′+1)m′

1 ·2
(m+1) . . .(m+n−3)

1 ·2 ·3 . . .(n−3)
− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∓m′+1
1

(m+1) . . .(m+n−m′−1)
1 ·2 ·3 . . .(n−m′−1)

± (m+1) . . .(m+n−m′−2)
1 ·2 ·3 . . .(n−m′−2)

.

(10)

[438] Finally, because equations (8) and (10) can be written as follows
1 ·2 ·3 . . .m
1 ·2 ·3 . . .m

+
2 ·3 ·4 . . .(m+1)

1 ·2 ·3 . . .m
+ . . .

+
n(n+1) . . .(n+m−1)

1 ·2 ·3 . . .m
=

n(n+1) . . .(n+m)
1 ·2 ·3 . . .(m+1)

,

(11)

and

4 The numerator m′+1 in the first line of equation (10) was incorrectly written as m+1 in [Cauchy
1821, p. 534], but not noted its Errata. It was corrected in [Cauchy 1897, p. 437]. (tr.)



Note VI – On figurate numbers. 363

0 =
n . . .(n+m−1)

1 ·2 ·3 . . .m
−m′+1

1
(n−1) . . .(n+m−2)

1 ·2 ·3 . . .m
+ . . .

∓m′+1
1

(n−m′) . . .(n+m−m′−1)
1 ·2 ·3 . . .m

± (n−m′−1) . . .(n+m−m′−2)
1 ·2 ·3 . . .m

,

(12)

it is clear that they entail the two propositions which I am going to state:

Theorem I. — If we form the sequence of figurate numbers of order m, and then
if we add together the first n terms of this sequence, we obtain for the sum the nth
figurate number of order m+1.

Theorem II. — If we denote by m and m′ two integer numbers subject to the
condition

m′ ≥ m,

and if in the expansion of (1− x)m′+1 we replace the successive powers of x by
m′ + 2 consecutive terms taken from the sequence of figurate numbers of order m,
we obtain a result equal to zero.

Corollary I. — If we suppose that the different terms of the sequence

a0, a1, a2, . . . , an, . . .(13)

successively represent the natural numbers, the triangular numbers and the pyrami-
dal numbers, we find in the first case that

an−2an−1 +an−2 = 0,(14)

in the second case that

an−3an−1 +3an−2−an−3 = 0,(15)

and in the third case

an−4an−1 +6an−2−4an−3 +an−4 = 0.(16)

[439] The first of the preceding equations becomes identical to formula (3) of Chap-
ter XII (§ I).

Corollary II. — If we denote the figurate numbers of order m in general by

a0, a1, a2, . . . , an, . . . ,(13)

then
a0, a1x, a2x2, . . . , anxn, . . .(17)

is a recurrent series for which the recurrence relation has for its terms the quantities
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1, −m+1
1

, +
(m+1)m

1 ·2
, − (m+1)m(m−1)

1 ·2 ·3
, + . . . ,(18)

that is, the coefficients of successive powers of x in the expansion of (1− x)m+1 .
Thus, for example, the series

1, 3x, 6x2, 10x3, . . . ,

in which the successive powers of x have for coefficients the triangular numbers, is
recurrent and its recurrence relation is composed of the quantities

1, −3, +3 and −1.

Among the principal properties of figurate numbers, we ought to point out those
which equations (7) and (9) give when we put them in the following forms:

n(n+1) . . .(n+m+m′)
1 ·2 ·3 . . .(m+m′+1)

=
n(n+1) . . .(n+m−1)

1 ·2 ·3 . . .m
1 ·2 ·3 . . .m′

1 ·2 ·3 . . .m′

+
(n−1)n . . .(n+m−2)

1 ·2 ·3 . . .m
2 ·3 ·4 . . .(m′+1)

1 ·2 ·3 . . .m′

+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
1 ·2 ·3 . . .m
1 ·2 ·3 . . .m

n(n+1) . . .(n+m′−1)
1 ·2 ·3 . . .m′

(19)

[440] and

n(n+1) . . .(n+m−m′−2)
1 ·2 ·3 . . .(m−m′−1)

=
n(n+1) . . .(n+m−1)

1 ·2 ·3 . . .m
− m′+1

1
(n−1)n . . .(n+m−2)

1 ·2 ·3 . . .m
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∓ (m′+1) . . .(m′−n+4)
1 ·2 ·3 . . .(n−2)

2 ·3 ·4 . . .(m+1)
1 ·2 ·3 . . .m

± (m′+1) . . .(m′−n+3)
1 ·2 ·3 . . .(n−1)

1 ·2 ·3 . . .m
1 ·2 ·3 . . .m

.

(20)

We add that in the sequence of figurate numbers of order n, the (n+1)st term equals
the sum of the squares of the coefficients which are contained in the nth power of a
binomial. Indeed, if in formula (2) (Chap. IV, § III) we suppose that both x = n and
y = n, we find
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2n(2n−1) . . .(n+1)

1 ·2 ·3 . . .(n−1)n

= 1+
(n

1

)2
+
[

n(n−1)
1 ·2

]2

+ . . .+
[

n(n−1)
1 ·2

]2

+
(n

1

)2
+1.

(21)
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[441] Let 
u0, u1, u2, . . . ,

u′0, u′1, u′2, . . . ,

u′′0 , u′′1 , u′′2 , . . . ,
. . . , . . . , . . . , . . .

(1)

be any quantities arranged in horizontal and vertical lines in such a way that every
series, horizontal or vertical, contains an infinity of terms. The system of all these
quantities is what we can call a double series, and these quantities themselves are
the different terms of the series, which has for its general term

u(m)
n ,

where m and n denote any two integer numbers. Given this, imagine that we repre-
sent by

s(m)
n

the sum of the terms of series (1) which are contained in the following table

u0, u1, u2, . . . , un−1,

u′0, u′1, u′2, . . . , u′n−1,

u′′0 , u′′1 , u′′2 , . . . , u′′n−1,

. . . , . . . , . . . , . . . , . . . ,

u(m−1)
0 , u(m−1)

1 , u(m−1)
2 , . . . , u(m−1)

n−1 ,

(2)

that is to say, of terms which carry at the same time a lower index smaller than
n and an upper index smaller than m. If the sum of the remaining terms, taken in
whatever order and whatever number as we might wish, becomes infinitely small
for infinitely large values of m and n, it is clear that the sum s(m)

n – and all those
sums which we can then derive by adding to s(m)

n some of the terms excluded from

367
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Table (2) – converges, for increasing values [442] of m and n, towards a fixed limit
s. In this case we say that series (1) is convergent, and that it has the limit s for its
sum. In the contrary case, series (1) is divergent and it does not have a sum.

When, for infinitely large values of m and n, the terms excluded from Table (2),
however many may be added together, never give anything but infinitely small sums,
we can say as much a fortiori about the sums of the terms which belong to one or
several horizontal or vertical rows of Table (1). It follows immediately from this re-
mark that if the double series contained in Table (1) is convergent, each of the simple
series contained in the rows, horizontal or vertical, of the same table is convergent
as well. Under this hypothesis, denote by

s(m)

the result which we obtain by adding the sum of the first m horizontal series of Table
(1), that is to say, the m first terms of the simple series

u0 +u1 +u2 + . . . , u′0 +u′1 +u′2 + . . . , u′′0 +u′′1 +u′′2 + . . . ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,
(3)

and by
sn

the result which we obtain by adding the sums of the first n vertical series, that is to
say the first n terms of the simple series

u0 +u′0 +u′′0 + . . . , u1 +u′1 +u′′1 + . . . , u2 +u′2 +u′′2 + . . . ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . .
(4)

Then s(m) is evidently the limit of the expression s(m)
n for increasing values of n, and

sn is the limit of the same expression for increasing values of m. Consequently, it
suffices to make m grow indefinitely in s(m) and n in sn to make s(m) and sn converge
towards the limit s. We can thus state the following proposition:

Theorem I. – Suppose that the double series contained in Table (1) is convergent,
and denote by s the sum of this series. Then series (3) and (4) are likewise convergent
and each of them have for their sum the quantity s.

Now imagine that the numerical values of the quantities contained [443] in Table
(1) are, respectively, denoted by

ρ0, ρ1, ρ2, . . . ,

ρ ′0, ρ ′1, ρ ′2, . . . ,

ρ ′′0 , ρ ′′1 , ρ ′′2 , . . . ,

. . . , . . . , . . . , . . . .

(5)
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The terms of Table (1) which are excluded from Table (2), however many of them
we wish to add together, evidently give a sum less than or at most equal (ignoring
the sign) to the sum of the corresponding terms of Table (5). Thus, if for infinitely
large values of the numbers m and n, this last sum becomes infinitely small, and it
is the same, a fortiori, as the first one. We can also express this by saying that if the
double series contained in Table (5) is convergent, then series (1) is convergent as
well. I add that we are completely assured of the convergence of the double series
contained in Table (5) any time that the horizontal series of this table are convergent
and their sums, namely

ρ0 +ρ1 +ρ2 + . . . , ρ ′0 +ρ ′1 +ρ ′2 + . . . , ρ ′′0 +ρ ′′1 +ρ ′′2 + . . . ,
. . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .,

(6)

themselves form a simple convergent series. Indeed, under this hypothesis, let ε be
a number as small as we may wish. We can choose m large enough that the addition
of the sums

ρ
(m)
0 +ρ

(m)
1 +ρ

(m)
2 + . . . , ρ

(m+1)
0 +ρ

(m+1)
1 +ρ

(m+1)
2 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

and consequently that of the terms of Table (5) affected with an upper index greater
than or equal to m, never produces a result greater than 1

2 ε . Moreover, if the number
m is determined as we have just said, and because each of the horizontal series of
Table (5) is convergent, we can also choose n large enough so that each of the sums

ρn +ρn+1 +ρn+2 + . . . ,

ρ ′n +ρ ′n+1 +ρ ′n+2 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

ρ
(m−1)
n +ρ

(m−1)
n+1 +ρ

(m−1)
n+2 + . . .

is equal to or less than 1
2m ε . In this case, the addition of the terms in [444] Table (5)

which have an upper index less than m and a lower index at least equal to n never
produces a result greater than 1

2 ε . When the two preceding conditions are satisfied,
it is clear that in series (5), the addition of the terms with an upper index at least
equal to m and a lower index at least equal to n cannot give anything but a sum
at most equal to ε . Thus if we attribute infinitely large values to the numbers m
and n, this sum becomes infinitely small, because we can make ε decrease below
any assignable value. Thus the given hypothesis entails the convergence of series
(5), and consequently that of series (1). By combining this principle with the first
theorem, we deduce a new proposition which I am going to state.

Theorem II. — Suppose that all the horizontal series of Table (1) are convergent
and their sums, namely



370 Note VII – On double series.

u0 +u1 +u2 + . . . , u′0 +u′1 +u′2 + . . . , u′′0 +u′′1 +u′′2 + . . . ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,
(3)

also form a convergent series, and that this double property of horizontal series
remains true in the case where we replace each term of Table (1) by its numerical
value. Then we can affirm: 1◦ that all the vertical series are convergent; 2◦ that their
sums, namely

u0 +u′0 +u′′0 + . . . , u1 +u′1 +u′′1 + . . . , u2 +u′2 +u′′2 + . . . ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . ,
(4)

also form a convergent series; and 3◦ finally that the sum of series (4) is precisely
equal to that of series (3).

Corollary I. — The preceding theorem remains true as well when we suppose that
some of the series, horizontal or vertical, are composed of a finite number of terms.
Indeed, each series of this kind can be considered as a convergent series indefinitely
extended, but in which all the terms for which the rank surpasses a given given
number vanish.

Corollary II. — Let {
u0, u1, u2, u3, . . . ,

v0, v1, v2, v3, . . .
(7)

be two convergent series which have, respectively, for their sums the two quantities
s and s′, and for which each remains convergent when we reduce [445] its various
terms to their numerical values. If we form the table

u0v0, u1v0, u2v0, u3v0, . . . ,
u0v1, u1v1, u2v1, . . . ,

u0v2, u1v2, . . . ,
u0v3, . . . ,

. . . ,

(8)

we recognize without trouble that the horizontal series of this table enjoy the prop-
erties stated in theorem II, and that their sums are, respectively,

v0s, v1s, v2s, v3s, . . . .(9)

Consequently, by virtue of theorem II and its first corollary, the vertical series,
namely {

u0v0, u0v1 +u1v0, u0v2 +u1v1 +u2v0, . . . ,

u0vn +u1vn−1 + . . .+un−1v1 +unv0, . . . ,
(10)

form a new convergent series and the sum of this new series is equal to that of series
(9), that is to say, evidently equal to the product ss′. Thus we find that we have
returned to theorem VI of Chapter VI (§ III) by the consideration of double series.
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Corollary III. — Let x be the sine of an arc contained between the limits −π

2 and
+π

2 , and let z be its tangent. We find that

z =
x√

1− x2
= x
(
1− x2)− 1

2 .

Given this, and by virtue of formula (39) (Chap. IX, § II), for numerical values of z
less than 1, we have

arctanz = z− z3

3
+

z5

5
− z7

7
+ . . . .

We conclude that, for numerical values of x less than 1√
2
,

arcsinx = arctanx
(
1− x2

)− 1
2

= x
(
1− x2

)− 1
2 − x3

3
(
1− x2

)− 3
2 +

x5

5
(
1− x2

)− 5
2

−x7

7
(
1− x2

)− 7
2 + . . . ,

[446] or what amounts to the same thing,

arcsinx = x+
3
2

x3

3
+

3 ·5
2 ·4

x5

5
+

3 ·5 ·7
2 ·4 ·6

x7

7
+ . . .

− x3

3
− 5

2
x5

5
− 5 ·7

2 ·4
x7

7
− . . .

+
x5

5
+

7
2

x7

7
+ . . .

− x7

7
− . . .

. . . .

Because the horizontal series contained in the right-hand side of the preceding equa-
tion evidently satisfy the conditions stated in theorem II as long as the variable x
maintains a numerical value less than 1√

2
, it follows that this equation can be writ-

ten as follows:

arcsin(x) = x +
(

3
2
−1
)

x3

3
+
(

5 ·3
2 ·4

− 5
2

+1
)

x5

5

+
(

7 ·5 ·3
2 ·4 ·6

− 7 ·5
2 ·4

+
7
2
−1
)

x7

7
+ . . .(

x =− 1√
2
, x = + 1√

2

)
.
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Moreover, if in formula (5) of Chapter IV (§ III) we attribute to y the negative value
−2 and to x one of the positive values 3, 5, 7, . . ., we get successively

3
2
−1 =

1
2
,

3 ·5
2 ·4

− 5
2

+1 =
1 ·3
2 ·4

,

7 ·5 ·3
2 ·4 ·6

− 7 ·5
2 ·4

+
7
2
−1 =

1 ·3 ·5
2 ·4 ·6

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(11)

and consequently we find finally
arcsinx = x+

1
2

x3

3
+

1 ·3
2 ·4

x5

5
+

1 ·3 ·5
2 ·4 ·6

x7

7
+ . . .(

x =− 1√
2
, x = + 1√

2

)
.

(12)

[447] It is easy to prove with the aid of infinitesimal Calculus that this last equation
remains true not only between the limits x = − 1√

2
and x = + 1√

2
, but also between

the limits x =−1 and x = +1.

Corollary IV. — By virtue of formula (20) (Chap. VI, § IV), we have, for all
values of x contained between the limits −1 and +1,

(1+ x)µ −1
µ

= x− x2

2
(1−µ)+

x3

3
(1−µ)

(
1− 1

2
µ

)
+ . . . ,

or what amounts to the same thing,

(1+ x)µ −1
µ

=
x
1

− x2

2
+ µ

x2

2

+
x3

3
−µ

(
1+

1
2

)
x3

3
+ µ

2
(

1
1 ·2

)
x3

3

− x4

4
+ µ

(
1+

1
2

+
1
3

)
x4

4
−µ

2
(

1
1 ·3

+
1

1 ·2
+

1
2 ·3

)
x4

4

++µ
3
(

1
1 ·2 ·3

)
x4

4
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Because the horizontal series which make up the right-hand side of the preceding
equation satisfy the conditions stated in theorem II, as long as the variable x main-
tains a numerical value less than 1, it follows that this equation can be written as
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follows: 

(1+ x)µ −1
µ

=
x
1
− x2

2
+

x3

3
− x4

4
+ . . .

+µ

[
x2

2
−
(

1+
1
2

)
x3

3
+
(

1+
1
2

+
1
3

)
x4

4
− . . .

]
+µ

2
[

1
1 ·2

x3

3
−
(

1
1 ·2

+
1

1 ·3
+

1
2 ·3

)
x4

4
+ . . .

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(x =−1, x = +1) .

(13)

However, we already have found (Chap. VI, § IV, problem I, corollary II)

(1+ x)µ −1
µ

= ln(1+ x)+
µ

2
[ln(1+ x)]2 + . . . ,(14)

where ln is the characteristic of the Napierian logarithms. Formulas (13) and [448]
(14) ought to agree with each other (see theorem VI of Chapter VI, § IV), and we
conclude that for all values of x contained between the limits −1 and +1,

ln(1+ x) = x− x2

2 + x3

3 −
x4

4 + . . . ,

1
2 [ln(1+ x)]2 = x2

2 −
(
1+ 1

2

) x3

3 +
(
1+ 1

2 + 1
3

) x4

4 − . . .

±
(
1+ 1

2 + 1
3 + . . .+ 1

n−1

) xn

n ∓ . . . ,

1
2·3 [ln(1+ x)]3 = 1

1·2
x3

3 −
( 1

1·2 + 1
1·3 + 1

2·3
) x4

4 + . . . ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15)

In what precedes, we have not considered anything but double series, conver-
gent or divergent, for which the different terms are real quantities. However, what
has been said with regard to these series can just as well be applied to the case
where their terms become imaginary, provided that we write throughout imaginary
expression in place of quantity and modulus in place of numerical value. With these
modifications, theorems I and II still remain true. We prove this without trouble by
applying the following principle:

The modulus of the sum of several imaginary expressions is always less than the
sum of their moduli.1

To establish this principle, it suffices to observe that if we make

ρ
(
cosθ +

√
−1sinθ

)
+ρ ′

(
cosθ ′+

√
−1sinθ ′

)
+ . . .

= R
(
cosT +

√
−1sinT

)
,

where ρ , ρ ′, . . . and R denote positive quantities, then we conclude that

1 This is the triangle inequality for complex numbers.



374 Note VII – On double series.

R2 = (ρ cosθ +ρ ′ cosθ ′+ . . .)2 +(ρ cosθ +ρ ′ cosθ ′+ . . .)2

= ρ2 +ρ ′2 + . . .+2ρρ ′ cos(θ −θ ′)+ . . .

< ρ2 +ρ ′2 + . . .+2ρρ ′+ . . . = (ρ +ρ ′+ . . .)2 ,

and consequently
R < ρ +ρ

′+ . . . .



Note VIII – On formulas that are used to convert
the sines or cosines of multiples of an arc into
polynomials, the different terms of which have
the ascending powers of the sines or the cosines
of the same arc as factors.

[449] The formulas in question here are those which we constructed in solving the
two first problems stated in section V of Chapter VII, and which we gave the num-
bers (3), (4), (5), (6), (9), (10), (11) and (12). They give rise to the following remarks.

First, if in the calculations we used to establish formulas (3), (4), (5) and (6),
we substitute equations (24) of Chapter IX (§ II) into equations (12) of Chapter VII
(§ II), we recognize immediately that the same formulas remain true in the case
where we replace the integer number m by any quantity µ while we suppose that the
numerical value of z is less than π

4 . Thus, under this hypothesis we have
cos µz = 1− µ ·µ

1 ·2
sin2 z+

(µ +2)µ ·µ (µ −2)
1 ·2 ·3 ·4

sin4 z

− (µ +4)(µ +2)µ ·µ (µ −2)(µ −4)
1 ·2 ·3 ·4 ·5 ·6

sin6 z+ . . . ,

(1)


sin µz = cosz

[
µ sinz− (µ +2)µ (µ −2)

1 ·2 ·3
sin3 z

+
(µ +4)(µ +2)µ (µ −2)(µ −4)

1 ·2 ·3 ·4 ·5
sin5 z− . . .

](2)

and 
cos µz = cosz

[
1− (µ +1)(µ −1)

1 ·2
sin2 z

+
(µ +3)(µ +1)(µ −1)(µ −3)

1 ·2 ·3 ·4
sin4 z− . . .

]
,

(3)


sin µz = µ sinz− (µ +1)µ (µ −1)

1 ·2 ·3
sin3 z

+
(µ +3)(µ +1)µ (µ −1)(µ −3)

1 ·2 ·3 ·4 ·5
sin5 z− . . . .

(4)

[450] Moreover, by virtue of the principles established in Chapter IX (§ II) and
in the preceding note, we can expand not only cos µz and sin µz, but also the right-
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hand sides of formulas (1), (2), (3) and (4), according to ascending powers of µ ,
and because the coefficients of these powers ought thus to be the same in the left-
and the right-hand sides of each formula, we obtain, by comparing two by two the
coefficients in question, one series of equations among which we distinguish those
which I am going to write:

1
2

z2 =
sin2 z

2
+

2
3

sin4 z
4

+
2 ·4
3 ·5

sin6 z
6

+ . . . and(5)

z = sinz+
1
2

sin3 z
3

+
1 ·3
2 ·4

sin5 z
5

+ . . . .(6)

We still suppose here that the variable z is contained between the limits −π

4 and
+π

4 . However, we easily prove, with the aid of infinitesimal Calculus, that, without
changing equations (1), (2), (3), (4), (5), (6), . . ., we can make the numerical value
of z as large as π

2 . We add that by taking sinz = x, we make equation (6) coincide
with formula (12) of Note VII, and equation (5) with the following:

(arcsinx)2 = x2 +
2
3

x4

2
+

2 ·4
3 ·5

x6

3
+

2 ·4 ·6
3 ·5 ·7

x8

4
+ . . . .

This last formula is found in the Mélanges d’Analyse, published in 1815 by Mr. de
Stainville,1 lecturer at the École Royale Polytechnique.

Imagine for now that in the formulas in Chapter VII (§ V) already cited, we
attribute an imaginary value to the variable z. We conclude without trouble from
the principles developed in Chapter IX (§ III) that they are still exact. Suppose, for
example, that

z =
√
−1lnx,

where ln is the characteristic of the Napierian logarithms. Because under this hy-
pothesis we have

cosz =
1
2

(
elnx + e− lnx

)
=

1
2

(
x+

1
x

)
and

sinz =
√
−1
2

(
elnx− e− lnx

)
=
√
−1
2

(
x− 1

x

)
,

[451] and in general

cosnz =
1
2

(
xn +

1
xn

)
and sinnz =

√
−1
2

(
xn− 1

xn

)
,

where n denotes any integer number. From equations (3), (4), (5) and (6) (Chapter
VII, § V), we get: 1◦ for even values of m,

1 See [Stainville 1815, pp. 406–408].
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xm +

1
xm = 2

[
1+

m ·m
2 ·4

(
x− 1

x

)2

+
(m+2)m ·m(m−2)

2 ·4 ·6 ·8

(
x− 1

x

)4

+
(m+4)(m+2)m(m−2)(m−4)

2 ·4 ·6 ·8 ·10 ·12

(
x− 1

x

)6

+ . . .

]
,

(7)


xm− 1

xm =
(

x+
1
x

)[
m
2

(
x− 1

x

)
+

(m+2)m(m−2)
2 ·4 ·6

(
x− 1

x

)3

+
(m+4)(m+2)m(m−2)(m−4)

2 ·4 ·6 ·8 ·10

(
x− 1

x

)5

+ . . .

]
;

(8)

and 2◦ for odd values of m,
xm +

1
xm =

(
x+

1
x

)[
1+

(m+1)(m−1)
2 ·4

(
x− 1

x

)2

+
(m+3)(m+1)(m−1)(m−3)

2 ·4 ·6 ·8

(
x− 1

x

)4

+ . . .

]
,

(9)


xm− 1

xm = 2

[
m
2

(
x− 1

x

)
+

(m+1)m(m−1)
2 ·4 ·6

(
x− 1

x

)3

+
(m+3)(m+1)m(m−1)(m−3)

2 ·4 ·6 ·8 ·10

(
x− 1

x

)5

+ . . .

]
.

(10)

Formulas (9), (10), (11) and (12) of section V (Chap. VII) give analogous results.
Now we return to formula (3) of the same section. By virtue of this formula, for

even values of m, cosmz is an integer function of sinz of degree m, and because
this function, as well as cosmz, ought to vanish for all values of z contained in the
sequence

− (m−1)π

2m
, . . . , − 3π

2m
, − π

2m
, +

π

2m
, +

3π

2m
, . . . , +

(m−1)π

2m
,

[452] it is clear that it is divisible by each of the binomial factors

sinz+ sin
(m−1)π

2m
, . . . , sinz+ sin

3π

2m
, sinz+ sin

π

2m
,

sinz− sin
(m−1)π

2m
, . . . , sinz− sin

3π

2m
, sinz− sin

π

2m
.

Consequently it is equal to a the product of all these binomial factors by the numer-
ical coefficient of sinm z, namely
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(−1)
m
2

(m+m−2) . . .(m+2)m(m−2) . . .(m−m+2)
1 ·2 ·3 . . .(m−1) ·m

= (−1)
m
2 2m−1.

Thus we have, for even values of m,
cosmz = 2m−1

(
sin2 π

2m
− sin2 z

)(
sin2 3π

2m
− sin2 z

)
. . .

. . .

(
sin2 (m−1)π

2m
− sin2 z

)
.

(11)

By similar reasoning, from formulas (4), (5) and (6) (Chap. VIII, § V) we get: 1◦ for
even values of m,

sinmz = 2m−1 sinzcosz
(

sin2 2π

2m
− sin2 z

)(
sin2 4π

2m
− sin2 z

)
. . .

. . .

(
sin2 (m−2)π

2m
− sin2 z

)
;

(12)

and 2◦ for odd values of m,
cosmz = 2m−1 cosz

(
sin2 π

2m
− sin2 z

)(
sin2 3π

2m
− sin2 z

)
. . .

. . .

(
sin2 (m−2)π

2m
− sin2 z

)(13)

and 
sinmz = 2m−1 sinz

(
sin2 2π

2m
− sin2 z

)(
sin2 4π

2m
− sin2 z

)
. . .

. . .

(
sin2 (m−1)π

2m
− sin2 z

)
.

(14)

In the preceding four equations, if we reduce the constant part of each binomial
factor to 1 by writing, for example,

1− sin2 z
sin2 π

2m

in place of sin2 π

2m
− sin2 z,

the numerical factors of the right-hand sides evidently become equal to those of the
terms in formulas (3), (4), (5) and (6) of Chapter VII (§ V), which are indepen-
dent of sinz or contain its first power, that is to say equal to 1 or to the number m.
Consequently, we find: [453] 1◦ for even values of m,
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cosmz =

(
1− sin2 z

sin2 π

2m

)(
1− sin2 z

sin2 3π

2m

)
. . .

. . .

(
1− sin2 z

sin2 (m−1)π
2m

)
,

(15)


sinmz = msinzcosz

(
1− sin2 z

sin2 2π

2m

)(
1− sin2 z

sin2 4π

2m

)
. . .

. . .

(
1− sin2 z

sin2 (m−2)π
2m

)
;

(16)

and 2◦ for odd values of m,
cosmz = cosz

(
1− sin2 z

sin2 π

2m

)(
1− sin2 z

sin2 3π

2m

)
. . .

. . .

(
1− sin2 z

sin2 (m−2)π
2m

)
,

(17)


sinmz = msinz

(
1− sin2 z

sin2 2π

2m

)(
1− sin2 z

sin2 4π

2m

)
. . .

. . .

(
1− sin2 z

sin2 (m−1)π
2m

)
.

(18)

Moreover, if we observe that in general we have

sin2 b− sin2 a =
cos2a− cos2b

2
,

we recognize without trouble that equations (11), (12), (13) and (14) can be replaced
by these which follow

cosmz = 2
m
2 −1

(
cos2z− cos

π

m

)(
cos2z− cos

3π

m

)
. . .

. . .

(
cos2z− cos

(m−1)π

m

)
,

sinmz = 2
m
2 −1 sin2z

(
cos2z− cos

2π

m

)(
cos2z− cos

4π

m

)
. . .

. . .

(
cos2z− cos

(m−2)π

m

)
,

(19)
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cosmz = 2
m−1

2 cosz
(

cos2z− cos
π

m

)(
cos2z− cos

3π

m

)
. . .

. . .

(
cos2z− cos

(m−2)π

m

)
,

sinmz = 2
m−1

2 sinz
(

cos2z− cos
2π

m

)(
cos2z− cos

4π

m

)
. . .

. . .

(
cos2z− cos

(m−1)π

m

)
,

(20)

where the first two equations apply in the case where m is an even number and the
last two in the case where m is an odd number.

The 12 preceding equations remain true whether the values attributed to the vari-
able z are real or imaginary. Thus, we can replace this variable by π

2 −z, by
√
−1lnx,

. . .. In the first case, we obtain several new equations corresponding to [454] formu-
las (9), (10), (11) and (12) of Chapter VII (§ V). In the second case, equations (19)
and (20) give, respectively, for even values of m,

xm +
1

xm =
(

x2−2cos
π

m
+

1
x2

)(
x2−2cos

3π

m
+

1
x2

)
. . .

. . .

(
x2−2cos

(m−1)π

m
+

1
x2

)
,

xm− 1
xm =

(
x2− 1

x2

)(
x2−2cos

2π

m
+

1
x2

)
. . .

. . .

(
x2−2cos

(m−2)π

m
+

1
x2

)
,

(21)

and for odd values of m,2

xm +
1

xm =
(

x+
1
x

)(
x2−2cos

π

m
+

1
x2

)
. . .

. . .

(
x2−2cos

(m−2)π

m
+

1
x2

)
,

xm− 1
xm =

(
x− 1

x

)(
x2−2cos

2π

m
+

1
x2

)
. . .

. . .

(
x2−2cos

(m−1)π

m
+

1
x2

)
,

(22)

which agrees with the results obtained in Chapter X (§ II).
It remains for us to point out several rather remarkable consequences of equations

(11) and (15), (12) and (16), (13) and (17), and (14) and (18). When we expand their
right-hand sides according to ascending powers of sinz, the numerical coefficients

2 In [Cauchy 1897, p. 454] the cosine term of the last factor of equation (22) has a numerator of
(m−2)π . The numerator is correctly written as (m−1)π in [Cauchy 1821, p. 555] (tr.)
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of these powers evidently must be the same as in formulas (3), (4), (5) and (6) of
Chapter VII (§ V). From this single observation, we deduce immediately several
new equations which are satisfied by the sines of the arcs

π

2m
,

2π

2m
,

3π

2m
,

4π

2m
, . . . .

We find, for example, for even values of m,
1 = 2m−1 sin2 π

2m
sin2 3π

2m
. . .sin2 (m−1)π

2m
,

m = 2m−1 sin2 2π

2m
sin2 4π

2m
. . .sin2 (m−2)π

2m

(23)

and 
m·m
1·2 =

1
sin2 π

2m

+
1

sin2 3π

2m

+ . . .+
1

sin2 (m−1)π
2m

,

(m+2)(m−2)
1·2·3 =

1
sin2 2π

2m

+
1

sin2 4π

2m

+ . . .+
1

sin2 (m−2)π
2m

,

(24)

[455] and for odd values of m,
1 = 2m−1 sin2 π

2m
sin2 3π

2m
. . .sin2 (m−2)π

2m
,

m = 2m−1 sin2 2π

2m
sin2 4π

2m
. . .sin2 (m−1)π

2m

(25)

and 
(m+1)(m−1)

1·2 =
1

sin2 π

2m

+
1

sin2 3π

2m

+ . . .+
1

sin2 (m−2)π
2m

,

(m+1)(m−1)
1·2·3 =

1
sin2 2π

2m

+
1

sin2 4π

2m

+ . . .+
1

sin2 (m−1)π
2m

.

(26)

I add that if we multiply both sides of each of equations (24) and (26) by
(

π

m

)2, we
conclude by making m grow indefinitely that3

π2

8
= 1+

1
9

+
1
25

+
1

49
+ . . . and(27)

π2

6
= 1+

1
4

+
1
9

+
1

16
+

1
25

+ . . . .(28)

Indeed, to clarify the ideas, consider the second of equations (24). Multiplying both
sides by

(
π

m

)2, we find

3 These series give another solution to one of the most important problems of the 18th century, the
so-called “Basel problem.” Euler gave the first solution in [Euler 1740].
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π2

6

(
1− 4

m2

)
=

(
π

m

)2

sin2 π

m

+
1
4

( 2π

m

)2

sin2 2π

m

+
1
9

( 3π

m

)2

sin2 3π

m

+ . . .

+
1(m

2 −1
)2

[
(m−2)π

2m

]2

sin2 (m−2)π
2m

.

(29)

First, let n be an integer number less than m
2 . As usual, indicate by the notation

M (a,b) an average value between the quantities a and b. Finally, we observe that
the ratio x

sinx is still (see page 45)4 contained between the limits 1 and 1
cosx and that

consequently we have, for numerical values of x less than π

2 ,

x
sinx

=
1
2 x

sin 1
2 x

1
cos 1

2 x
<

1
cos2 1

2 x
<

1
cos2 π

4
= 2.

[456] The right-hand side of equation (29) is evidently the sum of the two polyno-
mials (

π

m

)2

sin2 π

m

+
1
4

( 2π

m

)2

sin2 2π

m

+ . . .+
1
n2

( nπ

m

)2

sin2 nπ

m

and

1

(n+1)2

[
(n+1)π

m

]2

sin2 (n+1)π
m

+
1

(n+2)2

[
(n+2)π

m

]2

sin2 (n+2)π
m

+ . . .+
1(m

2 −1
)2

[
(m−2)π

2m

]2

sin2 (m−2)π
2m

,

where the first of these, by virtue of equation (11) of the Preliminaries, can be pre-
sented in the form (

1+
1
4

+
1
9

+ . . .+
1
n2

)
M
(

1,
1

cos2 nπ

m

)
,

while the second, composed of m
2 −n−1 terms all less than 4

n2 , remains contained
between the limits 0 and 2m

n2 . Given this, equation (29) becomes

π2

6

(
1− 4

m2

)
=
(

1+
1
4

+
1
9

+ . . .+
1
n2

)
M
(

1,
1

cos2 nπ

m

)
+

2m
n2 M (0,1) ,

and then we immediately conclude

4 [Cauchy 1821, p. 63, Cauchy 1897, p. 66].
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1+

1
4

+
1
9

+ . . .+
1
n2 =

π2

6

(
1− 4

m2

)
M
(

1,cos2 nπ

m

)
− 2m

n2 M (0,1) .
(30)

This last formula remains true whatever the integer numbers m and n may be, pro-
vided we have 1

2 m > n. In addition, it is easy to see that if we always take for 1
2 m

the smallest of the integers greater than na (where a denotes a number contained
between 1 and 2), the ratios n

m and m
n2 converge together, for increasing values of n,

towards the limit zero, and the right-hand side of formula (30) converges towards
the limit π2

6 . The left-hand side ought to have the [457] same limit as the right-hand
side, and it follows that: 1◦ the series

1,
1
4
,

1
9
,

1
16

, . . . ,
1
n2 , . . .

is convergent, as we already know (see the corollary to theorem III, Chap. VI, § II);
and 2◦ this series has for its sum π2

6 .
Because equation (28) is thus proved, we can divide its two sides by 4 to get

π2

24
=

1
4

+
1

16
+

1
36

+ . . . .

As a consequence, we have

π2

6
− π2

24
= 1+

1
9

+
1

25
+ . . . .

This new formula agrees with equation (27), which we could deduce directly from
the first of equations (24) or (26).

Before ending this note, we remark that to establish the eight formulas (3), (4),
(5), (6), (9), (10), (11) and (12) of Chapter VII (§ V), it suffices to prove the four
last ones, and that we can do that very succinctly by expanding equations (10) of
Chapter IX (§ I), namely

1+ zcosθ + z2 cos2θ + z3 cos3θ + . . . =
1− zcosθ

1−2zcosθ + z2(31)

(z =−1, z = +1) ,

and

zsinθ + z2 sin2θ + z3 sin3θ + . . . =
zsinθ

1−2zcosθ + z2(32)

(z =−1, z = +1) .
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Consider, for example, equation (32). For numerical values of z less than 1, we get5

zsinθ + z2 sin2θ + z3 sin3θ + . . .+ z2n sin2nθ + z2n+1 sin(2n+1)θ + . . .

=
1

1+ z2
zsinθ

1− 2zcosθ

1+z2

= sinθ

[
z
(
1+ z2

)−1 +2z2 cosθ
(
1+ z2

)−2 +4z3 cosθ
(
1+ z2

)−3 + . . .
]

= sinθ
{

z− z3 + z5− . . .± z2n+1∓ . . .

+cosθ
(
2z2−4z4 + . . .∓2nz2n± . . .

)
+cos2

θ

[
2 ·4
1 ·2

z3− 4 ·6
1 ·2

z5 + . . .∓ 2n(2n+2)
1 ·2

z2n+1± . . .

]
+cos3

θ

[
2 ·4 ·6
1 ·2 ·3

z4− . . .± (2n−2)2n(2n+2)
1 ·2 ·3

z2n∓ . . .

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .} .

[458] Consequently, by equating the coefficients of like powers of z, we find

sin2nθ = (−1)n+1 sinθ

[
2ncosθ − (2n−2)2n(2n+2)

1·2·3 cos3 θ + . . .
]
,(33)

and

sin(2n+1)θ = (−1)n sinθ

[
1− 2n(2n+2)

1 ·2
cos2

θ + . . .

]
.(34)

In these last formulas, if we replace θ by z and 2n or 2n+1 by m, we obtain precisely
equations (10) and (11) of Chapter VII (§ V). Equations (9) and (12) of the same
section are deduced from formula (31) by a similar calculation.

5 The second − sign on the fourth line of this calculation was + in [Cauchy 1897, p. 457]. It was
correctly given in [Cauchy 1821, p. 560]. (tr.)



Note IX – On products composed of an infinite
number of factors.

[459] Denote by
u0, u1, u2, . . . , un, . . .(1)

an infinite sequence of terms, positive or negative, each of which is greater than −1.
If the quantities

ln(1+u0) , ln(1+u1) , ln(1+u2) , . . . , ln(1+un) , . . .(2)

(where ln is the characteristic of the Napierian logarithms), form a convergent series
for which the sum is equal to s, then the product

(1+u0)(1+u1)(1+u2) . . .(1+un−1)(3)

evidently converges for increasing values of the integer n towards a finite limit dif-
ferent from zero, equal to es. On the other hand, if series (2) is divergent, product
(3) does not converge towards a finite limit different from zero. In the first case, we
agree to indicate the limit of the product under consideration by writing the product
of its first factors followed by . . ., as we see here,

(1+u0)(1+u1)(1+u2) . . . .(4)

The same notation can still be used in the case where this limit vanishes.
For series (2) to be convergent, it is first necessary that as the number n grows

indefinitely, each of the expressions

ln(1+un) , ln(1+un+1) , ln(1+un+2) , . . . ,

and consequently that each of the quantities

un, un+1, un+2, . . .

[460] becomes infinitely small. If this condition is satisfied, then because in general
we have

385
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ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ . . .(5)

(x =−1, x = +1) ,

we find that, for very large values of n,
ln(1+un) = un− 1

2 u2
n + 1

3 u3
n− . . . = un− 1

2 u2
n (1± εn) ,

ln(1+un+1) = un+1− 1
2 u2

n+1 + 1
3 u3

n+1− . . . = un+1− 1
2 u2

n+1 (1± εn+1) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(6)

where±εn,±εn+1, . . . again denote infinitely small quantities. Then by representing
by m any integer number whatsoever and by 1± ε an average among the factors
1± εn, 1± εn+1, . . ., we conclude that{

ln(1+un)+ ln(1+un+1)+ . . .+ ln(1+un+m−1)

= un +un+1 + . . .+un+m−1− 1
2

(
u2

n +u2
n+1 + . . .+u2

n+m−1
)
(1± ε) .

(7)

Imagine now that in the preceding formula we make the number m increase beyond
all limits. Series (2) is convergent or divergent depending on whether or not both
sides of the formula converge towards a fixed limit. Given this, the inspection of
just the right-hand side suffices to establish the proposition that I am going to state.

Theorem I. — If series (1) and the following

u2
0, u2

1, u2
2, . . . , u2

n, . . .(8)

are both convergent, then series (2) is convergent as well, and consequently product
(3) converges, for increasing values of n, towards a finite limit different from zero.
However, if series (1) is convergent and series (8) is divergent, the right-hand side
of formula (7) then has for its limit negative infinity, and so product (3) necessarily
converges towards the limit zero.

Corollary I. — If series (2) is convergent and has all its terms positive, or if it re-
mains convergent when we reduce its various terms [461] to their numerical values,
we are evidently assured of the convergence of series (8) and as a consequence prod-
uct (3) has for its limit a finite quantity different from zero. This is what happens,
for example, if the product in question reduces to one of the following:

(1+1) (1+ 1
22 ) (1+ 1

32 ) . . .(1+ 1
n2 ),

(1+1) (1− 1
22 ) (1+ 1

32 ) . . .(1± 1
n2 ),(

1+ x2
)

(1+ x2

22 ) (1+ x2

32 ) . . .(1+ x2

n2 ).

Corollary II. — Because the series

1, − 1√
2
, +

1√
3
, − 1√

4
, . . .
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is convergent, while the squares of its various terms, namely

1,
1
2
,

1
3
,

1
4
, . . . ,

form a divergent series, it follows from theorem I that the product

(1+1)
(

1− 1√
2

)(
1+

1√
3

)(
1− 1√

4

)
· · ·

has zero for its limit.

Corollary III. — Theorem I evidently remains true even in the case where among
the first terms of series (1), some of the terms remain less than −1. However, when
we admit this new hypothesis, we ought to replace the logarithms of negative quan-
tities in series (2) with the logarithms of their numerical values. Given this, it is clear
for increasing values of n that the product

(
1− x2)(1− x2

22

)(
1− x2

32

)
. . .

(
1− x2

n2

)
converges, whatever the value of x, towards a finite limit different from zero.

Corollary IV. — Whenever series (1) is convergent, product (3) converges for
increasing values of n towards a finite limit which might reduce to zero.

[462] When the limit of product (3) is finite without being zero, we can not
always assign it an exact value. In the small number of products of this kind which
correspond to a known limit, we ought to point out the following

(
1− x2)(1− x2

22

)(
1− x2

32

)
. . .

(
1− x2

n2

)
,(9)

which we are now going to consider.
If we set x = π

n and make n grow indefinitely, then product (9) converges towards
a finite limit represented by the notation(

1− z2

π2

)(
1− z2

22π2

)(
1− z2

32π2

)
. . . .(10)

To determine this limit, it suffices to recall equation (16) or (18) of the preceding
note. To clarify the ideas, consider equation (16). If we write throughout z

m in place
of z, we find, for even values of m,

sinz = msin
z
m

cos
z
m

(
1−

sin2 z
m

sin2 π

m

)(
1−

sin2 z
m

sin2 2π

m

)
. . .

. . .

(
1−

sin2 z
m

sin2 (m−2)π
2m

)
,

(11)
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and consequently (by supposing that the numerical value of z is less than π and the
number m is equal to or greater than 2),

ln
sinz

msin z
m cos z

m
= ln

(
1−

sin2 z
m

sin2 π

m

)
+ ln

(
1−

sin2 z
m

sin2 2π

m

)
+ . . .

+ ln

(
1−

sin2 z
m

sin2 (m−2)π
2m

)
.

(12)

Moreover, let n be a number less than 1
2 m and 1 + α be an average quantity

among the ratios

ln
(

1− sin2 z
m

sin2 π
m

)
ln
(

1− z2

π2

) ,

ln
(

1− sin2 z
m

sin2 2π
m

)
ln
(

1− z2

22π2

) , . . . ,
ln
(

1− sin2 z
m

sin2 nπ
m

)
ln
(

1− z2

n2π2

) ,

[463] and let 1+β be another average quantity among the expressions

−
ln
(

1− sin2 z
m

sin2 (n+1)π
m

)
(

sin2 z
m

sin2 (n+1)π
m

) , −
ln
(

1− sin2 z
m

sin2 (n+2)π
m

)
(

sin2 z
m

sin2 (n+2)π
m

) , . . . , −
ln
(

1− sin2 z
m

sin2 (m−2)π
2m

)
(

sin2 z
m

sin2 (m−2)π
2m

) .

The right-hand side of equation (12) is evidently the sum of the two polynomials

ln
(

1− sin2 z
m

sin2 π
m

)
+ ln

(
1− sin2 z

m
sin2 2π

m

)
+ . . .+ ln

(
1− sin2 z

m
sin2 nπ

m

)
and

ln
(

1− sin2 z
m

sin2 (n+1)π
m

)
+ ln

(
1− sin2 z

m

sin2 (n+2)π
m

)
+ . . .+ ln

(
1− sin2 z

m

sin2 (m−2)π
2m

)
,

where the first one can be presented in the form[
ln
(

1− z2

π2

)
+ ln

(
1− z2

22π2

)
+ . . .+ ln

(
1− z2

n2π2

)]
(1+α) ,

while the second takes the form of the product

−
sin2 z

m(
π

m

)2

 1

(n+1)2

(
(n+1)π

m

)2

sin2 (n+1)π
m

+
1

(n+2)2

(
(n+2)π

m

)2

sin2 (n+2)π
m

+ . . .

+
1(m

2 −1
)2

(
(n−2)π

2m

)2

sin2 (m−2)π
2m

(1+β ) ,
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which (by virtue of the principles established in the preceding note) we can reduce
to

−2m
n2

sin2 z
m(

π

m

)2 (1+β )M (0,1) .

[464] Given this, equation (12) becomes
ln

sinz
msin z

m cos z
m

=
[
ln
(

1− z2

π2

)
+ ln

(
1− z2

22π2

)
+ . . .

+ ln
(

1− z2

n2π2

)]
(1+α)− 2m

n2

sin2 z
m(

π

m

)2 (1+β )M (0,1) .
(13)

For brevity, let

1
1+α

= 1+ γ and
sin2 z

m(
π

m

)2
1+β

1+α
=

z2

π2 (1+δ ) .(14)

Then returning from logarithms to numbers, we conclude
(

1− z2

π2

)(
1− z2

22π2

)
. . .

(
1− z2

n2π2

)
=
(

sinz
msin z

m cos z
m

)1+γ

e
2mz2

n2π2 (1+δ )M(0,1)
.

(15)

Now let the value of n be chosen arbitrarily. Suppose that we take for 1
2 m the integer

number immediately greater than na (where a denotes a number, fractional or irra-
tional, contained between 1 and 2). When the value of n is very large, the quantities
n
m , m

n2 , α , β , γ and δ are infinitely small and the product

msin
z
m

cos
z
m

=
sin z

m
z
m

zcos
z
m

differs very little from z, and consequently the right-hand side of equation (15) ap-
proaches indefinitely the limit

sinz
z

.

The left-hand side must converge towards the same limit, so we necessarily have1(
1− z2

π2

)(
1− z2

22π2

)(
1− z2

32π2

)
. . . =

sinz
z

.(16)

1 Euler used this indentity in his first solution of the Basel Problem in [Euler 1740], but his deriva-
tion was flawed. This derivation justifies Euler’s proof.
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[465] Thus we find that this last formula is proved in the case where the numerical
value of z remains less than π . Then the quantities for which we have taken the
logarithms are all positive. But the given proof holds as well for numerical values
of z greater than π when we agree to replace the logarithm of each negative quantity
by the logarithm of its numerical value. Consequently, equation (16) remains true
whatever the real value attributed to the variable z. We do not even have to exclude
the case where we suppose that

z =±kπ,

where k denotes any integer number, because under this hypothesis, both sides of
the equation vanish at the same time.

Equation (16), once established, immediately leads to several others. Thus, for
example, for any real values of the variables x, y and z, we get

sinz = z
(

1− z2

π2

)(
1− z2

22π2

)(
1− z2

32π2

)
. . .

= z
(

1− z
π

)(
1+

z
π

)(
1− z

2π

)(
1+

z
2π

)(
1− z

3π

)(
1+

z
3π

)
. . .

(17)

and
sinx
siny

=
x
y

π − x
π − y

π + x
π + y

2π − x
2π − y

2π + x
2π + y

3π − x
3π − y

3π + x
3π + y

· · · ·(18)

If we make z = π

2 in equation (17), we find

1 =
π

2
1
2

3
2

3
4

5
4

5
6

7
6
· · · ,

and consequently we obtain the expansion of π

2 into factors, discovered by the ge-
ometer Wallis,2 namely

π

2
=

2
1

2
3

4
3

4
5

6
5

6
7

8
7

8
9
· · · ·(19)

Likewise, by taking z = π

4 , we find

π

4
=

1√
2

4
3

4
5

8
7

8
9

12
11

12
13

16
15

16
17
· · · ·(20)

[466] In equation (18), if we set both

x =
π

2
− z and y =

π

2
,

we conclude that cosz =
(
1− 2z

π

)(
1+ 2z

π

)(
1− 2z

3π

)(
1+ 2z

3π

)(
1− 2z

5π

)(
1+ 2z

5π

)
. . .

=
(

1− 4z2

π2

)(
1− 4z2

32π2

)(
1− 4z2

52π2

)
. . . .

(21)

2 John Wallis, (1616–1703); see [Wallis 1656].
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We can deduce the same formula from equation (15) or (17) (preceding note), by
replacing z by z

m , then making the number m converge towards the limit ∞. Finally, if
we suppose that the numerical value of z in equation (16) is less than π , we observe
that we can get

ln
sinz

z
= ln

(
1− z2

π2

)
+ ln

(
1− z2

22π2

)
+ ln

(
1− z2

32π2

)
+ . . .

= − z2

π2

(
1+

1
22 +

1
32 + . . .

)
−1

2
z4

π4

(
1+

1
24 +

1
34 + . . .

)
−1

3
z6

π6

(
1+

1
26 +

1
36 + . . .

)
− . . . . . . . . . . . . . . . . . . . . . . . . . . .

(22)

Moreover, because under this hypothesis we have

sinz
z

< 1,

we get

ln
sinz

z
= ln

(
1− z2

1 ·2 ·3
+

z4

1 ·2 ·3 ·4 ·5
− z6

1 ·2 ·3 ·4 ·5 ·6 ·7
+ . . .

)
= − z2

1 ·2 ·3

(
1− z2

4 ·5
+

z4

4 ·5 ·6 ·7
− . . .

)
−1

2

(
z2

1 ·2 ·3

)2(
1− z2

4 ·5
+ . . .

)2

−1
3

(
z2

1 ·2 ·3

)3

(1− . . .)3

− . . . . . . . . . . . . . . . . . . . . . .

(23)

[467] Consequently (by virtue of the principles established in Chapter VI and in
Note VII),

ln
sinz

z
=−1

6
2z2

1 ·2
− 1

2
1

30
23z4

1 ·2 ·3 ·4
− 1

3
1

42
25z6

1 ·2 ·3 ·4 ·5 ·6
− . . . .(24)

The comparison of the coefficients of the same powers of z in formulas (22) and
(24) gives the equations
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1+
1
22 +

1
32 +

1
42 + . . . =

1
6

2π2

1 ·2
=

π2

6
,

1+
1
24 +

1
34 +

1
44 + . . . =

1
30

23π4

1 ·2 ·3 ·4
=

π4

90
,

1+
1
26 +

1
36 +

1
46 + . . . =

1
42

25π6

1 ·2 ·3 ·4 ·5 ·6
=

π2

945
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(25)

where the first of these agrees with formula (28) of Note VIII. The numerical factors
1
6 , 1

30 , 1
42 , . . . which enter into the right-hand sides of these equations are what we

call the Bernoulli numbers.3 We add that if we denote any even number by 2m, we
have in general

1+
1

32m +
1

52m +
1

72m + . . .

= 1+
1

22m +
1

32m +
1

42m + . . .− 1
22m

(
1+

1
22m +

1
32m + . . .

)
=
(

1− 1
22m

)(
1+

1
22m +

1
32m +

1
42m + . . .

)
.

(26)

In the preceding analysis, we have only considered products for which all the
factors are real quantities and series for which all the terms are real. However, we
ought to remark: 1◦ that by virtue of the principles established in Chapter IX [see
equation (37) of § II and equation (26) of § III], formula (5) remains true even in
the case where the variable x becomes imaginary, provided that its modulus remains
less than 1; 2◦ that the ratio

sinz
z

= 1− z2

1 ·2 ·3
+

z4

1 ·2 ·3 ·4 ·5
− . . .

converges towards 1 whenever the real or imaginary value attributed [468] to the
variable z indefinitely approaches zero; and 3◦ finally that equations (15), (16), (17)
and (18) of Note VIII remain true for real values as well as for imaginary values of z.
On the basis of these remarks, we soon come to recognize how we ought to modify
the propositions and the formulas proved above in the case where the expressions

u0, u1, u2, . . . , x, y, z

are imaginary. Thus, for example, with the aid of formulas (6), we establish without
difficulty the following proposition, analogous to corollary I of theorem I:

Theorem II. — Suppose that series (1) is imaginary and remains convergent
when we reduce its different terms to their respective moduli. Then product (3) nec-

3 Named for Jakob (I) Bernoulli (1654–1705). Bernoulli numbers first appeared in [Bernoulli
1713]. They were first called “Bernoulli numbers” in [Euler 1755].
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essarily converges, for increasing values of n, towards a finite limit, real or imagi-
nary.

Moreover, we easily prove that equations (17) and (21) remain true when we
attribute to z any imaginary value u+ v

√
−1, from which it follows that: 1◦ that we

can express by products composed of an infinite number of factors the imaginary
expressions 

ev + e−v

2
sinu+

√
−1

ev− e−v

2
cosu and

ev + e−v

2
cosu−

√
−1

ev− e−v

2
sinu,

(27)

and the squares of their moduli, namely
(

ev+e−v

2

)2
sin2 u+

(
ev−e−v

2

)2
cos2 u = e2v+e−2v

2 − cos2u and(
ev+e−v

2

)2
cos2 u+

(
ev−e−v

2

)2
sin2 u = e2v+e−2v

2 + cos2u;
(28)

and 2◦ that the expressions
arctan

(
ev− e−v

ev + e−v cotu
)

and

arctan
(

ev− e−v

ev + e−v tanu
)(29)

[469] are, respectively, equal to the two sums

arctan
v
u
− arctan

v
π −u

+ arctan
v

π +u

−arctan
v

2π −u
+ arctan

v
2π +u

− . . . and

arctan
2v

π −2u
− arctan

2v
π +2u

+ arctan
2v

3π −2u

−arctan
2v

3π +2u
+ arctan

2v
5π +2u

+ . . .,

(30)

augmented or dimished by a multiple of the circumference 2π . In addition, because
expressions (29) and sums (30) are continuous functions of v which always vanish
with this variable, we can be sure that the multiple of which we have just spoken
reduces to zero.

If we suppose in particular that u = 0, we find
ev− e−v

2
= v

(
1+

v2

π2

)(
1+

v2

22π2

)(
1+

v2

32π2

)
. . . and

ev + e−v

2
=

(
1+

22v2

π2

)(
1+

22v2

32π2

)(
1+

22v2

52π2

)
. . . .

(31)
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By taking u = π

4 , we also find that
arctan

ev− e−v

ev + e−v = arctan
4v
π
− arctan

4v
3π

+arctan
4v
5π

− arctan
4v
7π

+ . . . ,

(32)

and by taking u = v,

e2v + e−2v

2
− cos2v = 2v2

(
1+

22v4

π4

)(
1+

22v4

24π4

)(
1+

22v4

34π4

)
. . .

and

e2v + e−2v

2
+ cos2v =

(
1+

22v4

π4

)(
1+

22v4

34π4

)(
1+

22v4

54π4

)
. . . .

(33)

Finally, if we suppose that the numerical value of 4v
π

in formula (32) is less than
1, then the two sides of this formula can be expanded according to the ascending
powers of v, and the comparison of coefficients of the same powers in the expansions
in question [470] gives the equations

1− 1
3

+
1
5
− 1

7
+ . . . =

π

4
,

1− 1
33 +

1
53 −

1
73 + . . . =

π3

32
,

1− 1
35 +

1
55 −

1
75 + . . . =

5π5

1536
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

(34)

where the first of these equations coincides with equation (40) of Chapter IX (§ II).
Now imagine that we divide expressions (29) and sums (30) by v and then we

make the variable v converge towards the limit zero. By passing to the limits, we
find that 

cotu =
1
u
− 1

π −u
+

1
π +u

− 1
2π −u

+
1

2π +u
− . . .

=
1
u
−2u

(
1

π2−u2 +
1

22π2−u2 +
1

32π2−u2 + . . .

)(35)

and 
tanu =

1
π

2 −u
− 1

π

2 +u
+

1
3π

2 −u
− 1

3π

2 +u
+

1
5π

2 −u
− . . .

= 2u

[
1(

π

2

)2−u2
+

1( 3π

2

)2−u2
+

1( 5π

2

)2−u2
+ . . .

]
.

(36)
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Moreover, because we generally have, for numerical values of u less than those of
a,

1
a2−u2 =

1
a2

(
1− u2

a2

)−1

=
1
a2 +

u2

a4 +
u4

a6 + . . . ,

we get from formulas (35) and (36), by supposing that the numerical value of u is
less than π

2 , that 

cotu =
1
u
− 2u

π2

(
1+

1
22 +

1
32 +

1
42 + . . .

)
− 2u3

π4

(
1+

1
24 +

1
34 +

1
44 + . . .

)
− 2u5

π6

(
1+

1
26 +

1
36 +

1
46 + . . .

)
− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(37)

[471] and 

tanu =
23u
π2

(
1+

1
32 +

1
52 +

1
72 + . . .

)
+

25u3

π4

(
1+

1
34 +

1
54 +

1
74 + . . .

)
+

27u5

π6

(
1+

1
36 +

1
56 +

1
76 + . . .

)
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(38)

Consequently, by virtue of equations (25) and (26), we have

cotu =
1
u
− 1

6
22u
1 ·2

− 1
30

24u3

1 ·2 ·3 ·4
− 1

42
26u5

1 ·2 ·3 ·4 ·5 ·6
− . . .(39)

and 
tanu =

1
6
(
22−1

) 22u
1 ·2

+
1

30
(
24−1

) 24u3

1 ·2 ·3 ·4

+
1

42

(
26−1

) 26u5

1 ·2 ·3 ·4 ·5 ·6
+ . . . .

(40)

If we replace u by 1
2 u and then add these last two equations together, we obtain the

expansion of

cot
1
2

u+ tan
1
2

u =
cos 1

2 u

sin 1
2 u

+
sin 1

2 u

cos 1
2 u

=
1

sin 1
2 ucos 1

2 u
= 2cscu

into a series, and we conclude that
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cscu =

1
u

+
1
6

(2−1)
2u

1 ·2
+

1
30
(
23−1

) 2u3

1 ·2 ·3 ·4

+
1

42

(
25−1

) 2u5

1 ·2 ·3 ·4 ·5 ·6
+ . . . .

(41)

There is no need to dwell any further on the consequences of formula (17). On this
subject, we can consult the excellent Work of Euler, entitled Introductio in Analysin
infinitorum.4

4 See [Euler 1748, § 158–187].
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product, the result equals that function of the sum of the variables
added to the same function of the difference of the variables.

Chapter VI – On convergent and divergent series. Rules for the
convergence of series. The summation of several convergent series.

§ 1. General considerations on series. 123 114
§ 2. On series for which all the terms are positive. 132 121
§ 3. On series which contain positive terms and negative terms. 142 128
§ 4. On series ordered according to the ascending 150 135
integer powers of a single variable.



Page Concordance of the 1821 and 1897 Editions 399

[1821] [1897]

Chapter VII – On imaginary expressions and their moduli.

§ 1. General considerations on imaginary expressions. 173 153
§ 2. On the moduli of imaginary expressions and on reduced 182 159
expressions.
§ 3. On the real and imaginary roots of the two quantities 196 171
+1 and −1 and on their fractional powers.
§ 4. On the roots of imaginary expressions, and on their 217 186
fractional and irrational powers.
§ 5. Applications of the principles established in the 230 196
preceding sections.

Chapter VIII – On imaginary functions and variables.

§ 1. General considerations on imaginary functions and variables. 240 204
§ 2. On infinitely small imaginary expressions and on the continuity 250 211
of imaginary functions.
§ 3. On imaginary functions that are symmetric, alternating 253 214
or homogeneous.
§ 4. On imaginary integer functions of one or several variables. 254 214
§ 5. Determination of continuous imaginary functions of a single 261 220
variable that satisfy certain conditions.

Chapter IX – On convergent and divergent imaginary series.
Summation of some convergent imaginary series. Notations used to
represent imaginary functions that we find by evaluating the sum
of such series.

§ 1. General considerations on imaginary series. 274 230
§ 2. On imaginary series ordered according to the ascending 285 239
integer powers of a single variable.
§ 3. Notations used to represent various imaginary functions 308 256
which arise from the summation of convergent series. Properties
of these same functions.
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Chapter X – On real or imaginary roots of algebraic equations for
which the left-hand side is a rational and integer function
of one variable. The solution of equations of this kind by
algebra or trigonometry.

§ 1. We can satisfy any equation for which the left-hand side 329 274
is a rational and integer function of the variable x by real or
imaginary values of that variable. Decomposition of polynomials
into factors of the first and second degree. Geometric representation
of real factors of the second degree.
§ 2. Algebraic or trigonometric solution of binomial equations 348 288
and of some trinomial equations. The theorems of de Moivre
and of Cotes.
§ 3. Algebraic or trigonometric solution of equations of the 354 293
third and fourth degree.

Chapter XI – Decomposition of rational fractions.

§ 1. Decomposition of a rational fraction into two other 365 302
fractions of the same kind.
§ 2. Decomposition of a rational fraction for which the 371 306
denominator is the product of several unequal factors into
simple fractions which have for their respective denominators
these same linear factors and have constant numerators.
§ 3. Decomposition of a given rational fraction into other 380 314
simpler ones which have for their respective denominators
the linear factor of the first rational fraction, or of the powers
of these same factors, and constants as their numerators.

Chapter XII – On recurrent series.

§ 1. General considerations on recurrent series. 389 321
§ 2. Expansion of rational fractions into recurrent series. 391 322
§ 3. Summation of recurrent series and the determination 400 330
of their general terms.
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Notes

Note I – On the theory of positive and negative quantities. 403 333

Note II – On formulas that result from the use of the signs 438 360
> or <, and on the averages among several quantities.

Note III – On the numerical solution of equations. 460 378

Note IV – On the expansion of the alternating function 521 426
(y−x)×(z−x)(z−y)×...×(v−x)(v−y)(v−z)...(v−u).

Note V – On Lagrange’s interpolation formula. 525 429

Note VI – On figurate numbers. 530 434

Note VII – On double series. 537 441

Note VIII – On formulas that are used to convert the sines or 548 449
cosines of multiples of an arc into polynomials, the different
terms of which have the ascending powers of the sines or the
cosines of the same arc as factors.

Note IX – On products composed of an infinite number of factors. 561 459
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raisonné des sciences, des arts et des métiers, ed. Denis Diderot, Jean le Rond d’Alembert,
vol. 4, pp. 985–989, Briasson et al., Paris, 1754.

[Belhoste 1991] Belhoste, Bruno, Augustin-Louis Cauchy: A biography, tr. Frank Ragland,
Springer-Verlag, New York, 1991.

[Berkeley 1734] Berkeley, George, The analyst, or a discourse addressed to an infidel mathemati-
cian, Tonson, London, 1734.

[Bernoulli 1713] Bernoulli, Jakob, Ars conjectandi, Thurnisi, Basel, 1713.
[Bolzano 1817] Bolzano, Bernard, Rein analytischer Beweis der Lehrsatzes dass zwischen je zwey

Werthen, die ein entgegengesetztes Resultat gewahren wenigstens einer reele Wurzel der Gle-
ichung liege, Prague, 1817.

[Bottazzini 1986] Bottazzini, Umberto, The higher calculus: A history of real and complex anal-
ysis from Euler to Weierstrass, tr. W. Van Egmond, Springer-Verlag, New York, 1986.

[Bottazzini 1990] Bottazzini, Umberto, “Geometrical Rigour and ‘modern’ analysis.” An intro-
duction to Cauchy’s Cours d’analyse, pp. xi–clxvii, in Bottazzini’s 1990 facsimile edition of
[Cauchy 1821].
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addition, 6, 19, 20, 119, 160, 269–270
Alembert, Jean le Rond d’, vii, viii
algebra, 119, 122, 217, 224, 268, 269, 273,

276, 302
algebraic multiplication, 118, 125, 126
alternating function, 49, 51–56, 167, 351–353

definition, 51
alternating series, 98
Ampère, André-Marie, ix, x, 3
arbitrary constant, 73, 74, 76, 77, 83, 173, 176,

177, 179
arithmetic addition, 269
arithmetic mean, 13, 299, 301, 303, 305, 306
arithmetic progression, 328
arithmetic subtraction, 269
Arithmetic–Geometric Mean Theorem, 306
average, 5, 12–15, 33, 47, 291–307, 382, 386,

388
definition, 296

Basel problem, 381, 389
Berkeley, George, vii
Bernoulli numbers, 392
Bernoulli, Daniel, 264
Bernoulli, Jakob, 392
Binet, Jacques Philippe Marie, x
binomial coefficients, 359
binomial, Newton, 70, 110, 127
Buée, Abbé, 267

calculus, 44, 372, 376
differential, 110
infinitesimal, 45, 89, 111

Cardano Formula, 233–237
Cauchy Condensation Test, 92
Cauchy Criterion, xiv, 86, 87

Cauchy’s incorrect theorem, 90, 184
Cauchy’s Logarithmic Convergence Test, 94
Cauchy–Schwarz inequality, 303
chord, 10, 45, 286
circumference, 233, 282, 284, 285, 393
combinations, 67–70
conjugate, 121, 123, 124, 133–135, 139, 140,

155, 227, 250, 255
definition, 121
pair, 227, 230

constant
arbitrary, 73, 74, 76, 77, 83, 173
decrease, 21
definition, 6
increase, 22

continuity, 21, 32, 165–167
solution of, 26, 31, 33, 165

continuous function, 27–32, 44, 71–83, 90,
109, 111

definition, 26, 165
of several variables, 28, 30, 31

convergence
absolute, 97, 99
Alternating Series Test, 98
Cauchy Criterion, xiv, 87
Comparison Test, 88, 99
Condensation Test, 92
conditions, 2
double series, 368–370
infinite products, 3
Logarithmic Test, 94
products of series, 96, 100
Ratio Test, 92, 97
Root Test, 91, 97, 185
Squeeze Theorem, 45, 96
sums of series, 95, 99
uniform, 90
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convergent series, 86–90, 258, 262–265
definition, 85, 181

Coriolis, Gaspard Gustave de, 3
Cotes, Roger, 229, 233
Cramer’s Rule, 54, 55
Cramer, Gabriel, 55
cube, 237, 274
cube root, 275
curved lines, 7, 31, 281

d’Alembert, Jean le Rond, vii, viii
de Bure, Aloı̈se, x
de Moivre, Abraham, 127, 229, 233
de Prony, Gaspard Clair François Marie Riche,

xii
decomposition, 217, 225–227, 232, 241–256,

261
decrease

constant, 21, 98
indefinite, 7, 21–22, 26, 27, 29, 43, 87, 88,

98, 105, 111, 196
degree, 20, 24, 41, 49, 56, 57, 59–62, 64, 66,

114, 241, 243, 245, 251
derivative, 44
Descartes’ rule of signs, 347
difference, 6, 7, 9, 21, 26, 28, 29, 35–37, 42,

44, 51, 52, 119, 269, 270
of imaginary expressions, 119

difference quotient, 44
differential equations, 296
discontinuous, 26, 28, 33, 165
divergent series, 87, 114, 181, 183, 185, 186,

189, 258, 263
definition, 85, 181

division, 19, 20, 119, 160, 271–273
double series, 367–374

definition, 367
doubled parentheses, 8, 12, 15, 18

e, 88, 89, 112–114, 197, 200, 202–207, 210,
212, 294, 295

Ecole Polytechnique, vii, viii, x, xii, 1, 376
epsilon, 22–23, 35, 36, 38–40, 43, 369, 386

over two, 369
equations of condition, 355
Euler’s Identity, 203
Euler’s polyhedral formula, x
Euler, Leonhard, viii–x, xiv, 7, 64, 121, 127,

151, 183, 203, 205, 267, 381, 389, 392,
396

exchanges, 351, 352, 358
expand, 51, 52, 54, 55, 70, 109, 258, 262

definition, 109
expansion, 200, 250, 253, 258–264

explicit functions, 18
exponential, 7, 19, 38, 163, 279–280

Fermat, Pierre de, x
figurate numbers, 359–365
fluxion, viii
Fourier, Jean Baptiste Joseph, 339
fraction

rational, 20, 241–256, 258–264
function, 17

algebraic, 19, 20, 163
alternating, 49, 51–56, 167, 351–353
auxiliary, 314, 315
circular, 20, 163
composite, 19–20, 30, 34, 43
explicit, 18, 164
exponential, 20, 163
fractional, 20, 163
homogeneous, 56–57, 167
imaginary, 163
implicit, 18, 164
integer, 20, 163, 167–171
inverse, 34, 202, 204, 215
inverse trigonometric, 10
irrational, 20, 163
linear, 20, 163, 237, 240
logarithmic, 20, 163
of functions, 19
of several variables, 20
polynomial, 20
rational, 20, 163, 241–256
simple, 18–19, 28, 33, 34
symmetric, 49–51, 167
trigonometric, 7, 10, 11, 20, 45, 229

Fundamental Theorem of Algebra, 224

Galois, Evariste, 312
Gauss, Carl Friedrich, 306
general term of a series, 85–87, 97, 98, 101,

107, 108, 112, 182, 185, 264, 265, 310,
312, 314–316, 318, 319, 367

geometric mean, 13, 39, 300, 306, 324
geometric progression, 85, 87–89, 91–93, 182,

183, 261
greater than, 6, 9, 24, 69
Gregory, James, 201
Gregory–Leibniz Series, 201

half-difference, 311
half-sum, 142, 311, 316
harmonic series, 87
Heron’s formula, 289
homogeneous function, 56–57, 167

definition, 56
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degree, 56
hyperbolic logarithm, 89

imaginary equation, 194
definition, 119

imaginary expression, 10, 117–158, 161, 165,
204, 210–212, 258, 277, 280, 301, 373,
393

definition, 118
equality, 118

imaginary function, 159, 163–179, 181, 202
algebraic, 163
circular, 163
explicit, 164
exponential, 163
fractional, 163
implicit, 164
integer, 163, 167–171
irrational, 163
linear, 163
logarithmic, 163
rational, 163

imaginary logarithm, 204, 209, 280
imaginary quantity, 27, 132
imaginary series, 181–203

definition, 181
imaginary value, 10, 277, 376, 392, 393
imaginary variable, 159, 160
increase, 267, 269, 283

constant, 22
indefinite, 22, 188
infinitely small, 165, 193

indefinite
decrease, 21
increase, 22

infinite product, 3, 385–396
infinitely large, 22, 25, 44, 46–48, 220
infinitely small, 21–26, 43, 44, 46–48, 86, 90,

367, 369, 385, 386, 389
first order, 22, 44
second order, 22

infinitely small quantity, 7, 165
infinitesimal, 7, 45
infinity, 7, 12, 15, 22, 34, 36, 37, 39, 40, 46, 47

negative, 7, 386
positive, 7, 37, 40, 47

Intermediate Value Theorem, 32, 217, 309–312
interpolation, 59–63

definition, 59
Lagrange, 60, 355–358

irrational, 6, 147, 150, 151, 162, 271, 274, 277

L’Huilier, Simon Antoine Jean, 12, 22
Lacroix, Sylvestre François, 22

Lagrange interpolation, 60, 355–358
Lagrange’s Theorem, 121
Lagrange, Joseph-Louis, viii, x, 45, 60, 121,

286, 319, 340, 355, 356
Lambert, Johann Heinrich, 83
Laplace, Pierre-Simon, ix, 1
Law of Cosines, 228, 289
Legendre, Adrien-Marie, x, 223, 312
Leibniz Series, 201
Leibniz, Gottfried Wilhelm von, 201
less than, 6, 310, 325
limit, vii, viii, xiv, 6, 21–23, 29–32, 35–48,

72, 74, 79, 82, 91–94, 96, 97, 100–102,
104, 108, 111, 113, 159, 165, 166, 176,
181–183, 185, 186, 188, 189, 196, 197,
199, 201, 271, 274, 310, 314–316, 319,
368, 383, 385–387, 389, 394

definition, 6
imaginary, 159
notation, 12
of a series, 85–96

linear factor, 224–227, 241, 245, 247, 250–252
logarithm, 7, 10, 18–20, 27, 37, 40, 46, 75,

76, 89, 94, 110, 115, 212, 279–280, 387,
389, 390

definition, 279
hyperbolic, 89
imaginary, 10, 204
Napierian, 89, 112–115, 186, 200, 202, 205,

210, 294, 295, 373, 376, 385
notation, 10, 210

Maclaurin, Colin, vii, viii, 3
Malus, Étienne Louis, x
maximum, 25
mean, see average

arithmetic, 13
geometric, 13, 39

Mertens’ Theorem, 100, 370
minimum, 25
modulus, 122–124, 128–131, 148, 182,

184–187, 190, 204, 207, 219, 221, 228,
231, 236, 258, 263, 301, 326, 373, 392

definition, 123
monomial, 269, 270
multiplication, 19, 20, 53, 54, 67, 108, 119,

160, 271
algebraic, 118, 125

Napier, 89
natural numbers, 22, 363
Navier, Claude Louis Marie Henri, xii
neighborhood, 26–31, 44, 77, 90, 165–167,

174, 184
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Newton binomial, 70, 110, 127
Newton’s method, 332, 339
Newton, Isaac, 340, 361
Nicholson, Peter, 336
notation, 271, 272, 274–277, 279, 285, 296,

317, 382, 385, 387
doubled signs, 8, 12, 18, 120, 164
imaginary arithmetic, 119, 159–162
imaginary functions, 163, 164, 181, 202–215
inverse trig function, 214
limit, 12
logarithm, 200, 206, 209–211, 279

number, 5, 268
definition, 5
figurate, 359–365
irrational, 143, 147, 150, 151, 274, 277

number theory, 121, 122
numbers

natural, 363
pyramidal, 360, 363
triangular, 360, 363, 364

numerical solution, 309–314
numerical value, 5

omale, 312
ordinate, 20, 31, 32, 59, 62, 63
origin, 7, 281, 283, 284, 286

Pascal, Blaise, 361
permutations, see exchanges
Poinsot, Louis, x
Poisson, Siméon Denis, ix, xii, 1, 3
polynomial, 20, 23–25, 41, 51, 52, 54, 60, 61,

152, 154
decomposition of, 217–229
definition, 270

power, 274–276, 278, 279
fractional, 120, 274
irrational, 274
negative, 120

power series, 23–25, 102–115, 188, 198, 200,
202, 221, 257, 258

prime
relatively, 132, 136, 141, 142, 144, 146

product, 271
infinite, 3
of imaginary expressions, 119
of quantities, 272–274
of series, 95, 96, 100, 101, 106, 112, 187,

200, 370
of signs, 268, 269

pyramidal numbers, 360, 363

quadratic formula, 231

quantity, 5
definition, 5
imaginary, ix
infinite, 7
infinitely small, 7

quotient, 7, 9, 271
of imaginary expressions, 119, 120, 129,

130
of quantities, 273–274

radius of convergence, 102–115, 189–201
radius of curvature, 305
Ratio Test, 92, 97, 102
rational function, 241–256

definition, 241
recurrence relation, 258, 263–265
recurrent series, 257–265, 363, 364

definition, 257, 258
reduced expression, 122–125, 128–131, 184,

219
definition, 123

regular polygon, 21, 22
remainder, 90, 246, 252
Rolle, Michel, vii
root of an equation, 217, 226, 227, 229–231,

233–235, 237–239, 261–264, 311–330,
350

root of an imaginary expression, 120, 132, 137,
143–152

Root Test, 91, 97, 185
roots of unity, xv, 133, 135, 137
rule of signs, 6, 267–269

Sandifer, C. Edward, 64
series

definition, 85
divergent, 85–115
double, 367–374
of functions, 90

Cauchy’s incorrect theorem, 90, 184
signs

product, 44
rule of, 267–269
variations in, 326, 347–350

singular value, 21, 32–48
square, 73, 274, 301

sum of two, 121, 122
square root, 8, 18, 175, 213, 233, 275, 301
Squeeze Theorem, 45, 96
Stainville, M. J. de, 376
subtraction, 19, 20, 119, 160
sum, 6, 269–271, 274

of a series, 85, 109, 191
of double series, 368
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of imaginary expressions, 119
of two series, 95, 100, 106
of two squares, 121, 122

symbolic equations
definition, 117

symbolic expression, 118
definition, 117

symbolic value, 55
symmetric function, 49–51, 167

definition, 49

terms, 85, 258, 270
time, mathematical theory of, 268
triangle, 228, 233, 288, 289

triangle inequality, 97, 373
triangular numbers, 360, 363, 364
trigonometric line, 19, 281, 283–285
trigonometry, 217, 228, 283

Van Brummelen, Glen, 283
variable

definition, 6
imaginary, 159, 160
independent, 17

versed cosine, 284
versed sine, 10, 283

Wallis, John, 390
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