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Abstract. We present a systematic study of entire symmetric solutions u : Rn → Rm of the

vector Allen-Cahn equation ∆u−Wu(u) = 0, x ∈ Rn, where W : Rm → R is smooth, symmetric,
nonnegative with a finite number of zeros, and Wu := (∂W/∂u1, . . . , ∂W/∂um)>. We introduce

a general notion of equivariance with respect to a homomorphism f : G → Γ (G, Γ reflection

groups) and prove two abstract results, concerning the cases of G finite and G discrete, for the
existence of equivariant solutions. Our approach is variational and based on a mapping property

of the parabolic vector Allen-Cahn equation and on a pointwise estimate for vector minimizers.

1. Introduction

We study bounded solutions u : Rn → Rm to the vector Allen-Cahn equation

∆u−Wu(u) = 0, x ∈ Rn,(1.1)

where W : Rm → R is a smooth nonnegative multi-well potential that vanishes at N ≥ 1 distinct
points a1, a2, · · · , aN ∈ Rm, and Wu := (∂W/∂u1, . . . , ∂W/∂um)>. The stationary Allen-Cahn
equation is formally the L2 Euler-Lagrange equation associated to the functional

JΩ(u) :=

∫
Ω

(1

2
|∇u|2 +W (u)

)
dx,(1.2)

defined on each bounded domain Ω ⊂ Rn for u ∈W 1,2(Ω,Rm).
A complete description of the set of entire solutions of (1.1), even in the scalar case m = 1 in

spite of many interesting and deep results (see for example [8] [18] [9] and the references therein),
appears to be an impossible task. In this paper we are mostly interested in the vector case m > 1.
We focus on symmetric potentials and proceed to a systematic discussions of symmetric solutions
that can be determined by minimization of the energy (1.2).

The restriction to the symmetric setting has both physical and mathematical motivations. From
the physical point of view we observe that symmetry is ubiquitous in nature and that the modeling
of systems (e.g. materials) that can exist in different symmetric crystalline phases requires the use
of vector order parameters [7]. Symmetric structures are observed at the junction of three or four
coexisting phases in physical space. Similar structures appear at the singularities of soap films and
compounds of soap bubbles.
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From the mathematical point of view, as we discuss in Sec.2, symmetry plays an essential role
in the derivation of pointwise estimate for solutions of (1.1). Indeed by exploiting the symmetry
we show, as in [1] and [3], the existence of minimizers of JΩ that map fundamental domains in the
domain x-space into fundamental domains in the target u-space. A basic consequence of this is the
existence of minimizers that in certain sub-domains avoid all the minima of W but one. It follows
that in each such sub-domain the potential W can be considered to have a unique global minimum.
This is a key point since, for potentials with two or more global minima, it is very difficult to
determine a priori in which subregions a minimizer u of JΩ is near to one or another of the minima
of W . Even in the scalar case, m = 1, for a potential with two minima this has proved to be a very
difficult question. For instance, this is one of the main difficulties in the problem of characterizing
the level sets of solutions u : Rn → R of the equation

∆u = u3 − u, x ∈ Rn,(1.3)

that satisfy the bound |u| ≤ 1 and the conditions

∂u

∂xn
> 0,(1.4)

a problem related to a celebrated conjecture of De Giorgi [10].
The study of equation (1.1) under symmetry hypotheses on the potential W was initiated in [6]

and [5] where the existence of a solution u : R2 → R2 of (1.1) with the symmetry of the equilateral
triangle was established. Existence of solutions with the symmetry of the regular tetrahedron was
later proved in [14] for n = m = 3. These solutions are known as the triple and the quadruple
junction states, respectively and, as indicated before with reference to soap films, are related to
minimal surface complexes and in particular to the local structure of singularities where three
sheets meet along a line or where four of these lines meet at a point [20]. Existence of solutions
u : Rn → Rm equivariant with respect to a generic finite reflection group G acting both on the
domain and on the target space was studied in [1], [2] and [11].

We introduce an abstract notion of equivariance of maps that includes as a special case the notion
considered in [5], [14] and [1]. We assume there is a finite or discrete (infinite) reflection group G
acting on Rn and a finite reflection group Γ acting on Rm and assume there exists a homomorphism
f : G→ Γ between G and Γ. For the concept of fundamental domain and for the general theory of
reflection groups we refer to [13] and [16]. We define a map u : Rn → Rm to be f -equivariant if

u(gx) = f(g)u(x), for g ∈ G, x ∈ Rn.(1.5)

We characterize the homomorphisms which allow for the existence of f -equivariant maps that map
a fundamental domain F for the action of G on Rn into a fundamental domain Φ for the action of
Γ on Rm:

u(F ) ⊂ Φ.(1.6)

We refer to these homomorphism and to the maps that satisfy (1.6) as positive. Positive homo-
morphisms (see Definition 1 below) have certain mapping properties that relate the projections
associated to the walls of a fundamental domain F to the projections associated to the walls of a
correponding region Φ. These properties are instrumental to show that minimizing in the class of
f -equivariant maps that satisfy (1.6) does not affect the Euler-Lagrange equation and renders a
smooth solution of (1.1). The proof of this fact is based on a quite sophisticated use of the maximum
principle for parabolic equations that was first introduced in [19] and [3]. We prove (see Lemma
4.2) that, provided f is a positive homomorphism, the L2 gradient flow associated to the functional
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(1.2) preserves the positivity condition (1.6). By a careful choice of certain scalar projections of the
vector parabolic equation that describes the above mentioned gradient flow, we show that this fact
is indeed a consequence of the maximum principle. Based on this and on a pointwise estimate from
[11] and [12] we prove two abstract existence results: Theorem 3.1 which concerns the case where
G is a finite reflection group and Theorem 3.2 that treats the case of a discrete (infinite) group G.

From (1.6) and the f -equivariance of u it follows

u(gF ) ⊂ f(g)Φ, for g ∈ G.(1.7)

Therefore, besides its importance for the proofs of Theorem 3.1 and Theorem 3.2, the mapping
property (1.6) is a source of information on the geometric structure of the vector valued map
u. The fact that (1.7) holds true in general in the abstract setting of the present analysis can
perhaps be regarded as a major result of our work. Indeed due to the variety of choices for
n and m, the dimensions of domain and target space, of the possible choices of the reflection
groups G and Γ, and of the homomorphism f : G → Γ, we will deduce from Theorem 3.1 and
Theorem 3.2 the existence of various complex multi-phase solutions of (1.1) including several types
of lattice solutions. A characterization of all homomorphisms between reflection groups in general
dimensions is not known. For the special case n = m = 2, in the Appendix, we determine all
positive homomorphisms between finite reflection groups and the corresponding solutions of (1.1).

The paper is organized as follows. In Sec.2 we discuss the notion of f -equivariance, the concept
of positive homomorphism f : G → Γ and give a few examples. In Sec.3 we list the hypotheses
on the potential W and state the main results, Theorem 3.1 and Theorem 3.2, that we prove in
Sec.4. In Sec.5 and in Sec.6 we apply the abstract theorems proved in Sec.4 to specific situations
and present a series of solutions of (1.1).

We denote by 〈x, y〉 the standard inner product of x, y ∈ Rk, k ≥ 1, by |x| =
√
〈x, x〉 the norm

of x ∈ Rk and by d(x,A) = infy∈A |y − x| the distance of x from A ⊂ Rk.

2. f-Equivariance and the notion of positive homomorphism

Here and in the following section, together with the abstract concepts and general proofs, we
present simple but significant examples and special cases to help the reader to build a deep under-
standing of the paper. We begin with some examples of f -equivariant maps. We let Ik the identity
map of Rk, k ≥ 1. As a first example we observe that, in the particular case where Γ = G and the
homomorphism f is the identity, f -equivariance reduces to the notion considered in [5], [14], [1],
[2], and [11]:

u(gx) = gu(x), for g ∈ G, x ∈ Rn.
The next example is a genuine f -equivariant map. In [4], under the assumption that W is invariant
under the group Γ of the equilateral triangle, we constructed a solution u : R2 → R2 to system
(1.1) such that

(i) u(γx) = γu(x) for all γ ∈ Γ (which is the dihedral group D3).
(ii) u(−x) = u(x) for all x ∈ R2.

If we incorporate the additional symmetry (ii) in a group structure, this solution can be seen as
an f -equivariant map. Indeed, the regular hexagon reflection group G = D6 contains Γ = D3, and
the antipodal map σ : R2 → R2 given by σ(x) = −x. Since σ commutes with the elements of D3,
G is isomorphic to the group product {I2, σ} × D3. Furthemore, we can define a homomorphism
f : D6 = {I2, σ} × D3 → D3, by setting f(γ) = γ and f(σγ) = γ, for every γ ∈ D3. Then, the
above conditions (i) and (ii) express the f -equivariance of the solution u in [4].
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Similarly, we can consider the action on R2 of the discrete reflection group G′ generated by the
reflections s1, s2 and s3 with respect to the correponding lines P1 := {x2 = 0}, P2 := {x2 = x1/

√
3}

and P3 := {x2 = −
√

3(x1 − 1)} (the dashed lines in Figure 1). These three lines bound a triangle
F ′ with angles 30, 60 and 90 degrees, which is a fundamental domain of G′. The discrete group
G′ contains also all the reflections with respect to the lines drawn in Figure 1, which partition the
plane into triangles congruent to F ′.

Figure 1. The discrete reflection group G′ on the left and the finite reflection
group Γ = D3 on the right.

The point group of G′, that is the stabilizer of the origin: {g ∈ G′ : g(0) = 0}, is the group
G = D6, and we have G′ = TG, where T is the translation group of G′. T is generated by the

translations t± by the vectors ( 3
2 ,±

√
3

2 ). Now, if we compose the canonical homomomorphism
p : G′ → G such that p(tg) = g for every t ∈ T and g ∈ G, with the homomorphism f : D6 → D3

defined in the previous paragraph, we obtain a homomorphism f ′ : G′ → D3. We have in particular

f ′(s1) = f(p(s1)) = s1,

f ′(s3) = f(p(s3)) = p(s3),

f ′(s2) = f ′(σp(s3)) = f(σp(s3)) = p(s3),

(2.1)

where p(s3) is the reflection in the line Π2 = {u2 = −
√

3u1}. We note that the image of the line
P1 = {x2 = 0} by an f ′-equivariant map u : R2 → R2 is contained in the line Π1 := {u2 = 0} while

the images of the lines P2 = {x2 = x1/
√

3} and P3 = {x2 = −
√

3(x1− 1)} are contained in the line

Π2 := {u2 = −
√

3u1}. Indeed

x = s1x ⇒ u(x) = u(s1x) = f ′(s1)u(x) = s1u(x),

x = s2x ⇒ u(x) = u(s2x) = f ′(s2)u(x) = p(s3)u(x),

x = s3x ⇒ u(x) = u(s3x) = f ′(s3)u(x) = p(s3)u(x).

(2.2)
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The lines Π1 and Π2 define a 60 degree sector Φ which is a fundamental domain of the finite
reflection group D3. At a later stage, we will prove the existence of a solution to (1.1) that maps
the triangle F ′ in this sector.

Now we return to the general setting and discuss the notion of positive homomorphism f :
G → Γ between reflection groups G and Γ. Before giving the definition we observe that if s ∈ G
is a reflection we have Im = f(In) = f(s)f(s). This and the fact that f(s) is an orthogonal
transformation imply that f(s) is symmetric. Thus f(s) has m ortho-normal eigenvectors ν1, . . . , νm
and νj = f(s)f(s)νj = µ2

jνj implies that |µj | = 1 for the corresponding eigenvalues µj , j =
1, . . . ,m. Therefore if we let E ⊂ Rm be the span of the eigenvectors corresponding to the eigenvalue
µ = 1, that is, E = ker(f(s)− Im) the set of the points fixed by f(s), we have Rm = E ⊕ E⊥ and

(2.3) f(s)u = f(s)(uE + (u− uE)) = uE − (u− uE) = −u+ 2uE ,

where we have used the decomposition u = uE + (u − uE) with uE ∈ E and u − uE ∈ E⊥. We
can interpret (2.3) by saying that f(s) is a projection with respect to the subspace E or that f(s)
coincides with Im on E and with the antipodal map on E⊥.

Definition 1. Let F be a fundamental domain of G, bounded by the hyperplanes P1, . . . , Pl,
correponding to the reflections s1, . . . , sl. We say that a homomorphism f : G → Γ is positive if
there exists a fundamental domain Φ of Γ, bounded by the hyperplanes Π1, . . . ,Πk, such that for
every i = 1, . . . , l, there is 1 ≤ ki ≤ k and Π̃1, . . . , Π̃ki ∈ {Π1, . . . ,Πk} such that

(2.4) ker(f(si)− Im) = ∩kij=1Π̃j .

That is, the set of points fixed by the orthogonal map f(si) is one of the hyperplanes Πj , or the
intersection of several of them.

The property of being positive for a homomorphism f is independent of the choice of F . Indeed,
if we take F̂ = gF , with g ∈ G, then F̂ is bounded by the hyperplanes gP1, . . . , gPl, correponding
to the reflections gs1g

−1, . . . , gslg
−1. In addition ker(f(gsig

−1)− Im) = f(g) ker(f(si)− Im), thus,

the fundamental domain Φ̂ = f(g)Φ can be associated with F̂ , in accordance with the definition.
Note that the choice of Φ is not unique, since the homomorphism f can associate F to Φ, or to

−Φ indifferently.
The homomorphism f ′ : G′ → D3 defined above is an example of a positive homomorphism.

Indeed, if we identify F with the triangle F ′ and Φ with the 60 degree sector {−
√

3u1 < u2 <
0, u1 > 0} bounded by the lines Π1 and Π2, then (2.1) expresses the positivity of f ′.

It is not true in general that a homomorphism f : G → Γ between reflection groups G and Γ
is positive. For example the canonical projection p of a discrete reflection group G′ onto its point
group G does not, in general, fulfill this requirement. To see this, let us revisit the discrete reflection
group G′ depicted in Figure 1. We have

p(s1) = reflection in the line Π1,

p(s2) = reflection in the line {u2 = u1/
√

3},

p(s3) = f(s3) = reflection in the line {u2 = −
√

3u1},

then p(si), i = 1, 2, 3 are reflections with respect to three distinct lines intersecting at the origin.
Thus, the canonical projection p : G′ → G = D6 cannot associate F ′ to any fundamental domain
of D6 (a 30 degree sector).
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3. The theorems

We assume:

Hypothesis 1 (Homomorphism). There exist: a finite (or discrete) reflection group G acting on
Rn, a finite reflection group Γ acting on Rm, and a homomorphism f : G→ Γ which is positive in
the sense of Definition 1. We denote by Φ the fundamental domain of Γ that f associates with the
fundamental domain F of G.

Hypothesis 2. The potential W : Rm → [0,∞), of class C3, is invariant under the finite reflection
group Γ, that is,

(3.1) W (γu) = W (u), for all γ ∈ Γ and u ∈ Rm.

Moreover, we assume that there exists M > 0 such that W (su) ≥W (u), for s ≥ 1 and |u| = M.

Hypothesis 3. There exist a ∈ Φ, the closure of Φ, and q∗ > 0 such that:

(i) 0 = W (a) < W (u), for u ∈ Φ \ {a} and
(ii) for each ν ∈ Sm−1, Sm−1 ⊂ Rm the unit sphere, the map (0, q∗] 3 q → W (a + qν) has a

strictly positive second derivative.

.

Hypothesis 2 and 3 determine the number N of minima of W . From Hypothesis 2 we have

W (γa) = 0, for γ ∈ Γ.

Therefore, if a ∈ Φ, that is, a is in the interior of Φ, from the fact that γΦ 6= Φ for γ ∈ Γ \ {Im} it
follows that W has exactly N = |Γ| distinct minima, where |G| denotes the order of a group G. If
a ∈ ∂Φ then the stabilizer Γa = {γ ∈ Γ : γa = a} of a is nontrivial and we have N = |Γ|/|Γa| < |Γ|
and a is the unique minimum of W in the cone D ⊂ Rm defined by

D = Int ∪γ∈Γa γΦ.

The set D satisfies

(3.2) for γ ∈ Γ : either γD ∩D = ∅ or γD = D.

It follows that

Rm = ∪γ∈ΓγD,
that is, Rm is partitioned into N = |Γ|/|Γa| cones congruent to D. The cone D ⊂ Rm has its
counterpart in the set D ⊂ Rn given by

D = Int
(
∪g∈f−1(Γa)gF

)
(3.3)

which is mapped into D by any positive f -equivariant map u : Rn → Rm. Indeed, for such a map
(1.7) implies that u(gF ) ⊂ D if and only if f(g) ∈ Γa or equivalently g ∈ f−1(Γa).

In the case G = Γ and f = I, the expression for D reduces to D = Int
(
∪g∈ΓagF

)
, considered in

[1], [2], and [11].
The set D satisfies the analog of (3.2). Therefore also the domain space Rn is partitioned into

N = |Γ|/|Γa| sets congruent to D.
Let us consider a few examples

(i) if G = Γ, f is the identity and a is in the interior of Φ, then D = Φ and D = F .
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(ii) if m = n = 2, G = Γ = D3, Φ = {u : 0 < u2 <
√

3u1, u1 > 0}, f is the identity and
a = (1, 0), then Γa = {I2, g1} where g1 is the reflection in the line {u2 = 0}. Therefore

(3.3) yields D = Int
(
F ∪ g1F

)
= {x : |x2| <

√
3x1, x1 > 0}.

(iii) if n = m = 2, G = D6 = {I2, σ}×D3, Γ = D3, f(γ) = γ and f(σγ) = γ for every γ ∈ D3,

and a ∈ Φ = {u : 0 < u2 <
√

3u1, u1 > 0}, then Γa = {I2} and f−1(Γa) = {I2, σ}.
Therefore D = Φ and D = Int

(
F ∪ σF

)
= {x : 0 < −x1x2

|x1| <
|x1|√

3
, x1 6= 0}. (F = {x : 0 <

−x2 <
x1√

3
, x1 > 0})

(iv) If in the previous example we take a = (1, 0) ∈ Φ we have Γa = {I2, g1} and f−1(Γa) =

{I2, σ, g1, σg1}. It follows D = Int
(
Φ ∪ g1Φ

)
= {0 < |u2| <

√
3u1, u1 > 0} and D =

Int
(
F ∪ σF ∪ g1F ∪ σg1F

)
= {x : 0 < |x2| < |x1|√

3
}.

Figure 2. The sets F , Φ, D and D and their correspondence by an f -equivariant
map in the the examples (i)-(iv).

If G is a discrete (infinite) group, then D has infinitely many connected components. As examples
(iii) and (iv) above show, even when G is a finite group, D does not need to be connected. To
characterize one of the connected components of D, let Ga ⊂ f−1(Γa) be the subgroup generated
by f−1(Γa) ∩ {s1, . . . , sl} and define

D0 := Int ∪g∈Ga gF .(3.4)

Since Ga is a reflection group generated by a subset of {s1, . . . , sl}, the set of reflections in the planes
that bound F , the set D0 is connected. To show that D0 is one of the connected components of D
we show that D0 and D \D0 are disconnected. This is equivalent to prove that if s is the reflection
in one of the planes that bound D0, then s 6∈ f−1(Γa). The definition of D0 implies s = sis

0si for
some si ∈ Ga and some reflection s0 ∈ {s1, . . . , sl} \ f−1(Γa) and therefore s0 = sissi ⇒ s0 ∈ Ga
if s ∈ f−1(Γa).

For examples (i)-(iv) we have: F = D0 = D in (i); F ( D0 = D in (ii); ;F = D0 ( D = D0∪σD0

in (iii); F ( D0 = Int
(
F ∪ g1F

)
( D = D0 ∪ σD0 in (iv). Figure 2 illustrates these properties.

We are now in a position to state the main results.
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Theorem 3.1. Under Hypotheses 1–3, and assuming that G is a finite reflection group, there exists
an f -equivariant classical solution u to system (1.1), and a positive decreasing map q : [0,+∞)→ R
with limr→+∞ q(r) = 0, such that

(i) u(F ) ⊂ Φ and u(D) ⊂ D,
(ii) |u(x)− a| ≤ q(d(x, ∂D)), for x ∈ D,

(iii) if the matrix D2W (a) is positive definite, then q(r) ≤ Ke−kr for some constants k,K > 0
and therefore |u(x)− a| ≤ Ke−kd(x,∂D), for x ∈ D.

Theorem 3.2. Under Hypotheses 1–3, and assuming that G is a discrete reflection group, there
exists for every R > R0 (a positive constant), a nontrivial f -equivariant classical solution uR to
system

(3.5) ∆uR −R2Wu(uR) = 0, for x ∈ Rn

such that

(i) uR(F ) ⊂ Φ and uR(D) ⊂ D.
(ii) |uR(x)− a| ≤ q(Rd(x, ∂D)), for x ∈ D where q is as in Theorem 3.1,

(iii) |uR(x)− a| ≤ Ke−kRd(x,∂D), for x ∈ D,
for positive constants k, K, provided D2W (a) is positive definite.

The solution uR of (3.5) given by Theorem 3.2 is periodic. We describe this periodic structure
of uR under the assumption that the positive homomorphism f satisfies 1

(3.6) f(t) = Im, for t ∈ T.
This covers the examples that we present below. On the other hand we are not aware of positive
homomorphisms that do not satisfy (3.6). Assuming (3.6), if G = TG0 with G0 the point group of
G and T its translation group we have

uR(tx) = uR(x), for t ∈ T, x ∈ C

where
C = Int ∪g∈G0

gF

is the elementary cell. C is a convex polytope that satisfies

tC ∩ C = ∅, for t ∈ T \ {In}
and defines a tessellation of Rn as the union of the translations tC, t ∈ T of C: Rn = ∪t∈T tC. In
this sense we can say that uR has a crystalline structure and that C is the elementary crystal.

Let us illustrate Theorem 3.2 with the help of the example described in Sec.2, where the discrete
reflection group G′ acts on the domain x-plane while the finite reflection group Γ = D3 acts on
the target u-plane. We have already verified that the homomorphism f ′ : G′ → Γ is positive
and therefore Hypothesis 1 is satisfied. When Hypotheses 2–3 also hold, Theorem 3.2 ensures the
existence, for every R sufficiently large, of a nontrivial f ′-equivariant solution uR to (3.5), such
that uR(F ′) ⊂ Φ. By f ′-equivariance, the other fundamental domains of G′ are mapped into

1 For an example of a homomorphism that does not satisfy (3.6) take Γ = {Im, γ} with γ the reflection in the
plane {u1 = 0} and G = 〈sj〉j∈Z = TG0 where sj is the reflection in the plane {x1 = j}, T is the translation group

generated by the translation t0 by the vector (2, 0, . . . , 0) and G0 = {In, s0}. Define f : G→ Γ by

f(t0) = f(s2j) = γ,

f(s2j+1) = Im.
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fundamental domains of Γ as in Figure 3. Properties (ii) and (iii) state that for every x ∈ D, uR(x)
approaches as R grows, the unique minimum a of W in Φ, with a speed that depends on d(x, ∂D).
If for instance the potential W has six minima (one in the interior of each fundamental domain of
D3), then the set D is the union of the fundamental domains of G′ with the same colour (cf. Figure
3 left) and D is the sector with the same color of D (cf. Figure 3 right). If a lies on the boundary of
the fundamental domain of D3, for instance a = (1, 0) then D is the 120 degree sector that contains
a and D is the union of all fundamental domains (triangles) with the same colors of the two sectors
that compose D. For this example condition (3.6) is satisfied and the elementary crystal C, is the
hexagon determined by the fundamental domains (triangles) whose closure contains 0 ∈ R2.

Figure 3. Fundamental domains for the actions on R2 of G′ (left) and D3 (right).
The f ′-equivariant solution uR of (1.1) given by Theorem 3.2 maps fundamental
domains into fundamental domains with the same color.

To give a first application of Theorem 3.1, consider the particular case where G = D6 = {I2, σ}×
D3, Γ = D3, and f the positive homomorphism defined by f(γ) = γ, f(σγ) = γ, for every γ ∈ D3.
Figure 2 (iii) and (iv) shows the correspondence of the fundamental domains by f - equivariant
solutions u of (1.1) when the potential W has respectively six and three minima. The case of W
with three minima when u has a six-fold structure, see Figure 2 (iv) was first considered in [4].
Other examples of application of Theorem 3.1 and Theorem 3.2 are given in Sec.5 and Sec.6.

4. Proofs of Theorem 3.1 and Theorem 3.2

Step 1 (Minimization).

In the case where G is a finite reflection group, we first construct the solution in a ball BR ⊂ Rn
of radius R > 0 centered at the origin. We set FR = F ∩BR and define the class

AR :=
{
u ∈W 1,2(BR,Rm) : u is f -equivariant and u(FR) ⊂ Φ

}
in which we have imposed the positivity constraint u(FR) ⊂ Φ. Then, we consider the minimization
problem

min
AR

JBR , where JBR(u) =

∫
BR

(1

2
|∇u|2 +W (u)

)
dx.
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Since AR is convex and hence weakly closed in W 1,2(BR,Rm), a minimizer uR exists, and because
of Hypothesis 2 we can assume that

|uR(x)| ≤M.(4.1)

In the case where G is a discrete reflection group, we can work directly in the fundamental
domain F . Suppose first that F is bounded. Then, we consider the class

A := {u ∈W 1,2
loc (Rn,Rm) : u is f -equivariant and such that u(F ) ⊂ Φ},

and choose a minimizer uR of the problem

min
A
JRF , where JRF (u) =

∫
F

(1

2
|∇u|2 +R2W (u)

)
dx,

satisfying the estimate (4.1).
Now, suppose that F is not bounded. This implies that all the reflection hyperplanes of G are

parallel to a subspace {0}ν × Rd ⊂ Rn (with ν + d = n, d ≥ 1), and that G also acts in Rν . Since
F = Fν × Rd, with Fν ⊂ Rν bounded, we have, according to the preceding argument, a minimizer
vR : Rν → Rm of

JRFν (v) =

∫
Fν

(1

2
|∇xνv|2 +R2W (v)

)
dxν ,

in the analog of A with n replaced by ν, that is, the class of W 1,2
loc (Rν ,Rm) maps v, which are

f -equivariant and satisfy v(Fν) ⊂ Φ. Then, we set uR(x) := vR(xν), where x = (xν , xd) ∈ Rn.

Step 2 (Removing the positivity constraint with the gradient flow).

To show that the positivity constraint built in AR (or A) does not affect the Euler-Lagrange
equation we will utilize the gradient flow associated to the elliptic system. In the case where G is
a finite reflection group we consider

(4.2)



∂u

∂t
= ∆u−Wu(u), in BR × (0,∞),

∂u

∂ n
= 0, on ∂BR × (0,∞),

u(x, 0) = u0(x), in BR,

where ∂/∂ n is the normal derivative.
In the case where G is a discrete reflection group, we consider

(4.3)


∂u

∂t
= ∆u−R2Wu(u), in Rn × (0,∞),

u(x, 0) = u0(x), in Rn.

Since W is C3, the results in [15] apply and provide a unique solution to (4.2) (or (4.3)) which is
smooth if we assume that u0 is globally Lipschitz. In the next two lemmas we will establish that
the gradient flow preserves the f -equivariance and the positivity of a smooth initial condition.

Lemma 4.1. Under Hypothesis 2, if the initial condition u0 is a smooth, f -equivariant map, then
for every t > 0, the solution u(·, t) of problem (4.2) (or (4.3)) is also f -equivariant.
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Proof. We only write the proof for (4.2), since it is identical for (4.3). Let g ∈ G and γ :=
f(g) ∈ Γ < O(Rm). We are going to check that for every x ∈ BR and every t > 0, we have
u(gx, t) = γu(x, t) or equivalently u(x, t) = γ>u(gx, t). Let us set v(x, t) := γ>u(gx, t). Since g is
an isometry, ∆v(x, t) = γ>(∆u)(gx, t). On the other hand, we have ∂v

∂t (x, t) = γ> ∂u∂t (gx, t), and

utilizing the symmetry of the potential: Wu(v(x, t)) = γ>Wu(u(gx, t)). Finally, we see that for

x ∈ ∂BR and t > 0,
∂v

∂ n
(x, t) = γ>

∂u

∂g n
(gx, t) = 0. Thus, v is also a smooth solution of (4.2) with

initial condition v0(x) = γ>u0(gx) = u0(x), and by uniqueness u ≡ v. �

Lemma 4.2. Under Hypotheses 1–2, and assuming that the initial condition u0 is a smooth map,
we have:

• u0 ∈ AR ⇒ u(·, t) ∈ AR, ∀t > 0, when G is a finite reflection group.
• u0 ∈ A⇒ u(·, t) ∈ A, ∀t > 0, when G is a discrete reflection group.

Proof. We first present the proof in a specific case where the argument can be described with
simpler notation and then consider the abstract situation and give the proof for the general case.
The case we discuss first is the example of Sec.2 where we have the discrete reflection group G′

acting on the domain, Γ = D3 acting on the target, and the homomorphism f ′ : G′ → Γ. We
conserve the notation of Sec.2 and refer to Figure 1 and to the comments following Theorem 3.2.
In particular, we still denote by F ′ the fundamental domain of G′ and by f ′ the homomorphism
G′ → Γ (which are denoted by F and f in the statement of Theorem 3.2 and in the first step of its
proof). We also denote by ρ1 and ρ2 the outward unit normals to the lines Π1 and Π2 that bound

the fundamental domain Φ of Γ. Let Π3 = {u2 =
√

3u1} be the third reflection line of Γ and let

ρ3 := (−
√

3/2, 1/2)⊥Π3. From (4.3) and the symmetry of W given by (3.1), it follows that for
every j = 1, 2, 3, the projection hj(x, t) := 〈u(x, t), ρj〉 satisfies the linear scalar equation:

∆hj + c∗jhj −
∂hj
∂t

= 0 in R2 × (0,+∞),

with c∗j = R2cj and cj (cf. (4.7) below) continuous and bounded on R2 × [0, T ], for every T > 0 .
Now, suppose that for some t0 > 0, u(., t0) does not belong to the class A.
In order to have equations with nonpositive coefficients, we do the standard transformation and

set h̃j(x, t) := e−λthj(x, t), where the constant λ is chosen larger than sup{c∗j (x, t) | x ∈ R2, t ∈
[0, t0], j = 1, 2, 3}. Then, we have

(4.4) ∆h̃j + c̃∗j h̃j −
∂h̃j
∂t

= 0 in R2 × (0, t0], with c̃∗j = c∗j − λ ≤ 0.

Let µ := max{d(e−λtu(x, t),Φ) | x ∈ F ′, t ∈ [0, t0]} > 0, and suppose that this is achieved at
x̃ ∈ F ′ at time t̃ ∈ (0, t0] (since u0 ∈ A). Define

ũ := e−λt̃u(x̃, t̃), ρ :=
ũ− ṽ
|ũ− ṽ|

,

where ṽ is the unique point of ∂Φ (since Φ is convex) such that d(ũ, ṽ) = µ. According to the
direction of ρ, we distinguish the following cases:

(i) If ρ = ρ1, then ṽ ∈ Π1 ∩Φ and we define ω := {(x, t) ∈ R2 × (0, t0] : 〈e−λtu(x, t), ρ1〉 > 0}.
Clearly, (x̃, t̃) ∈ ω which is relatively open in R2 × (0, t0].

(ii) If ρ = ρ2, then ṽ ∈ Π2 ∩Φ. Similarly, define ω := {(x, t) ∈ R2 × (0, t0] : 〈e−λtu(x, t), ρ2〉 >
0}, and we have (x̃, t̃) ∈ ω which is relatively open in R2 × (0, t0].
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(iii) If ρ = ρ3, then ṽ = 0. We check that (x̃, t̃) ∈ ω := {(x, t) ∈ R2× (0, t0] : 〈e−λtu(x, t), ρ3〉 >
0}, which is relatively open in R2 × (0, t0].

(iv) If ρ = α1ρ1 + α3ρ3 with α1, α3 > 0, then ṽ = 0 and we define
ω := {(x, t) ∈ R2 × (0, t0] : 〈e−λtu(x, t), ρj〉 > 0 for j = 1 and j = 3}. Thanks to the fact
that 〈ρ1, ρ3〉 ≥ 0, we have again (x̃, t̃) ∈ ω which is relatively open in R2 × (0, t0].

(v) If, ρ = α2ρ2 + α3ρ3 with α2, α3 > 0, then ṽ = 0 and we define ω in a similar way.

We want to apply the maximum principle to h̃(x, t) := 〈e−λtu(x, t), ρ〉 in a neighborhood of (x̃, t̃).
In the cases (i), (ii) and (iii) above, the equation (4.4) trivially holds in ω. In the cases (iv) and
(v), we have the inequality

∆h̃+ c̃∗h̃− ∂h̃

∂t
≥ 0 in ω, with c̃∗ = max{c̃∗j | j = 1, 2, 3} ≤ 0.

Indeed, we can check that for instance in the case (iv):

∆h̃+ c̃∗h̃− ∂h̃

∂t
= α1(c̃∗ − c̃∗1)h̃1 + α3(c̃∗ − c̃∗3)h̃3 ≥ 0, ∀(x, t) ∈ ω.

At this stage, the fact that Φ is an acute angle sector (i.e. 〈ρ1, ρ2〉 ≤ 0) is essential to conclude
the proof. This property implies that

(4.5) ũ ∈ Πj (with j = 1, 2)⇒ ṽ, ρ ∈ Πj ,

and as a consequence

(4.6) f ′(si) /∈ Γρ ⇒ x̃ /∈ Pi,

where Pi (i = 1, 2, 3) is a line bounding F ′, corresponding to the reflection si ∈ G′. To show (4.6),
suppose that x̃ ∈ Pi. Then, si(x̃) = x̃, and by f ′-equivariance

u(x̃, t̃) = u(si(x̃), t̃) = f ′(si)u(x̃, t̃)⇔ u(x̃, t̃) ∈ ker(f ′(si)− I2).

Since ker(f ′(si) − I2) is either the line Π1 or the line Π2 (cf. Hypothesis 1), we deduce thanks to
(4.5) that

ρ ∈ ker(f ′(si)− I2)⇔ f ′(si) ∈ Γρ.

Property (4.6) will enable us to locate x̃ in F ′. Let G̃′ be the subgroup of G′ generated by the
reflections si (i = 1, 2, 3) such that f ′(si) ∈ Γρ. By f ′-equivariance we have

µ = h̃(x̃, t̃) = max{h̃(x, t) : x ∈ ∪g∈G̃′gF ′, t ∈ [0, t0]}.

But now x̃ ∈ Int
(
∪g∈G̃′gF ′

)
, thus thanks to the maximum principle for parabolic equations

applied in ω, we can see that h̃(x, t̃) ≡ µ, for x ∈ Bδ(x̃) ∩ F ′ (where δ > 0). To finish the proof,

we are going to show that the set S := {y ∈ F ′ : h̃(y, t̃) = µ} is relatively open. Indeed, let y ∈ S
and let w be the projection of e−λt̃u(y, t̃) on Φ. We have e−λt̃u(y, t̃) − w = µρ, and repeating the

above argument we find h̃(x, t̃) ≡ µ, for x ∈ Bδ′(y) ∩ F ′ (where δ′ > 0). Thus, by connectedness

h̃(., t̃) ≡ µ > 0 on F ′ which is a contradiction since h̃(0, t̃) = 0.
Let us now give the proof of the Lemma for arbitrary groups. We just present it when G is a

finite reflection group since it is similar for discrete reflection groups. We will need to apply the
maximum principle to some projections of the solution u. We denote by ρ1, . . . , ρk the outward
unit normals to the hyperplanes Π1, . . . ,Πk that bound the fundamental domain Φ (see Definition
1). We also consider the collection Π1, . . . ,Πq (k ≤ q) of all the reflection hyperplanes of Γ, and
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choose for j > k, a unit normal ρj to Πj . Since the potential W is symmetric, we know that for
every j = 1, . . . , q, the projection hj(x, t) := 〈u(x, t), ρj〉 satisfies the linear scalar equation:

∆hj + cjhj −
∂hj
∂t

= 0 in BR × (0,+∞),

with

(4.7) cj = −
〈∫ 1

0

Wuu

(
u+ (s− 1)〈u, ρj〉ρj

)
ρj ds, ρj

〉
.

From this formula, one can see that cj is continuous and bounded on BR × [0, T ], for every T > 0.
Now, suppose that for some t0 > 0, u(., t0) does not belong to the class AR.
In order to have an equation with a nonpositive coefficient, we again do the standard transfor-

mation and set h̃j(x, t) := e−λthj(x, t), where the constant λ is chosen bigger than sup{cj(x, t) :
x ∈ BR, t ∈ [0, t0], j = 1, . . . , q}. Then, we have

∆h̃j + c̃j h̃j −
∂h̃j
∂t

= 0 in BR × (0, t0], with c̃j = cj − λ ≤ 0.

Let µ := max{d(e−λtu(x, t),Φ) | x ∈ FR, t ∈ [0, t0]} > 0, and suppose that this is achieved at
x̃ ∈ FR at time t̃ ∈ (0, t0] (since u0 ∈ AR). Define

ũ := e−λt̃u(x̃, t̃), ρ :=
ũ− ṽ
|ũ− ṽ|

,

where ṽ is the unique point of ∂Φ (since Φ is convex) such that d(ũ, ṽ) = µ. We will apply the

maximum principle to h̃(x, t) := 〈e−λtu(x, t), ρ〉 in a neighborhood of (x̃, t̃) in BR × (0, t0]. To
do this, in analogy to what was done in the special case considered above we need to consider
various possibilities for the unit vector ρ. If ṽ belongs to the interior of a m − p dimensional face
Π1 ∩ . . . ∩ Πp ∩ Φ (1 ≤ p ≤ k) of Φ, then, using also that ρ1, . . . , ρk are linearly independent, we
have

ρ⊥E, E := Π1 ∩ . . . ∩Πp, that is, ρ ∈ E⊥ = Rρ1 ⊕ . . .⊕ Rρp
where Rρj = {x : x = tρj , t ∈ R} and E⊥ is the orthogonal complement of E. Let Γ̃ be the subgroup

of Γ generated by the reflections with respect to the hyperplanes Π1, . . . ,Πp. The elements of Γ̃

leave invariant the subspace E, and actually Γ̃ acts in E⊥. Let N ⊃ {±ρ1, . . . ,±ρp}, be the set of

all the unit normals to the reflection hyperplanes of Γ̃. We claim that

(4.8)

 ρ = α1ν1 + . . .+ αp̃νp̃, with 1 ≤ p̃ ≤ p, α1, . . . , αp̃ > 0, ν1, . . . , νp̃ ∈ N,

and 〈νi, νj〉 ≥ 0, for 1 ≤ i, j ≤ p̃.

Given p linearly independent vectors ν1, . . . , νp ∈ N we denote by C(ν1, . . . , νp) the cone

(4.9) C(ν1, . . . , νp) := {α1ν1 + . . .+ αpνp | α1, . . . , αp ≥ 0}.

To prove the claim we start by observing that (since ρ1, . . . , ρp are linearly independent) we have
ρ ∈ C with

C = C(ρ′1, . . . , ρ
′
p), with ρ′j = ρj or − ρj , j = 1, . . . , p.

To conclude the proof we show that C can be partitioned in cones of the form (4.9) that satisfy the
condition

(4.10) C(ν1, . . . , νp) ∩N = {ν1, . . . , νp}.
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Note that (4.10) and the fact that Γ̃ is a reflection group automatically imply

〈νi, νj〉 ≥ 0, for 1 ≤ i, j ≤ p.

Indeed N is invariant under Γ̃ (N is the root system of Γ̃) and therefore 〈νi, νj〉 < 0 implies that the
reflection ν 6∈ {νi, νj} of νj in the hyperplane orthogonal to νi belongs to both N and C(ν1, . . . , νp)
in contradiction with (4.10). If C does not satisfy (4.10) there exists ν ∈ N that (possibly after
a renumbering of the vectors ρ′1, . . . , ρ

′
p) has the form ν = α1ρ

′
1 + . . . + αp̂ρ

′
p̂ with 2 ≤ p̂ ≤ p,

α1, . . . , αp̂ > 0 and we can partition C into the p̂ cones Ci = C(ρ′1, . . . , ρ
′
i−1, ν, ρ

′
i+1, . . . , ρ

′
p), i =

1, . . . , p̂ defined by the linearly independent vectors ρ′1, . . . , ρ
′
i−1, ν, ρ

′
i+1, . . . , ρ

′
p, i = 1, . . . , p̂. If Ci

does not satisfy (4.10) we partition Ci in the same fashion used for C and continue in this way.
Note that at each step (if some of the cones of the partition does not satisfies (4.10)) the number
of vectors in N used to generate the cones of the partition increases by one. Therefore, since N is
a finite set, the process terminates after a finite number of steps exactly when all the cones of the
partition satisfy (4.10). This conclude the proof of the claim.

Since ṽ ∈ E, it follows that (with ν1 . . . , νp̃ the vectors in (4.8))

(x̃, t̃) ∈ ω := {(x, t) ∈ BR × (0, t0] | 〈e−λtu(x, t), νj〉 > 0, ∀j = 1, . . . , p̃},

which is relatively open in BR × (0, t0], and in addition we have

∆h̃+ c̃h̃− ∂h̃

∂t
≥ 0 in ω, with c̃ = max{c̃j | j = 1, . . . , q} ≤ 0.

At this stage, the fact that Φ has acute angles (i. e. 〈ρi, ρj〉 ≤ 0 for 1 ≤ i < j ≤ k) is essential to
conclude the proof. This property implies that

(4.11) ũ ∈ Πj (with 1 ≤ j ≤ k)⇒ ṽ, ρ ∈ Πj ,

and as a consequence

(4.12) f(si) /∈ Γρ ⇒ x̃ /∈ Pi,

where Pi is, as in Definition 1, a hyperplane bounding F corresponding to the reflection si ∈ G. To
show (4.12), suppose that x̃ ∈ Pi. Then

u(x̃, t̃) ∈ ker(f(si)− Im) by f -equivariance,

and thanks to Hypothesis 1 and (4.11),

ρ ∈ ker(f(si)− Im)⇒ f(si) ∈ Γρ.

Property (4.12) will enable us to locate x̃ in FR. Let G̃ be the subgroup of G generated by the
reflections si (i = 1, . . . , l) such that f(si) ∈ Γρ. By f -equivariance we have

µ = h̃(x̃, t̃) = max{h̃(x, t) | x ∈ ∪g∈G̃gFR, t ∈ [0, t0]}.

But now, either x̃ ∈ Int
(
∪g∈G̃gFR

)
or x̃ ∈ Int

(
∪g∈G̃gF

)
∩∂BR. In both cases, we can see, thanks

to the maximum principle for parabolic equations applied in ω and thanks to Hopf’s Lemma, that
h̃(x, t̃) ≡ µ, for x ∈ Bδ(x̃) ∩ FR (where δ > 0). To finish the proof, we are going to show that the

set S := {y ∈ FR | h̃(y, t̃) = µ} is relatively open. Indeed, let y ∈ S and let w be the projection

of e−λt̃u(y, t̃) on Φ. We have e−λt̃u(y, t̃) − w = µρ and according to the preceding argument

h̃(x, t̃) ≡ µ for x ∈ Bδ′(y) ∩ FR (where δ′ > 0). Thus, by connectedness h̃(., t̃) ≡ µ > 0 on FR
which is a contradiction since h̃(0, t̃) = 0. �
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If the initial condition in (4.2) (respectively (4.3)) is aW 1,2(BR,Rm) (respectively, W 1,2
loc (Rn,Rm)),

bounded map, then the solution to (4.2) (respectively, (4.3)) belongs to C([0,∞),W 1,2(BR,Rm))

(respectively C([0,∞),W 1,2
loc (Rn,Rm))), and is smooth for t > 0. We are now going to take the

minimizer uR constructed in Step 1, as the initial condition in (4.2) (respectively (4.3)). Thanks
to Lemma 4.3 below (and to its analog for discrete reflection groups), we can construct a sequence
of smooth, f -equivariant, and positive maps (uk) which converges to uR for the W 1,2 norm, as
k → ∞. Applying then Lemmas 4.1 and 4.2 to uk, and utilizing the continuous dependence for
the flow of the initial condition, we obtain that the solution to (4.2) (respectively (4.3)), with ini-
tial condition uR, is f -equivariant and positive, that is, u(·, t;uR) ∈ AR, for t ≥ 0 (respectively
u(·, t;uR) ∈ A, for t ≥ 0).

Lemma 4.3. Let u ∈W 1,2(BR,Rm) ∩ L∞(BR,Rm) be a f -equivariant map such that u(FR) ⊂ Φ.
Then, there exists a sequence (uk) ⊂ C(BR,Rm) of globally Lipschitz maps with the following
properties:

(i) uk is f -equivariant,
(ii) ‖uk‖L∞(BR,Rm) ≤ ‖u‖L∞(BR,Rm),

(iii) uk(FR) ⊂ Φ (positivity),
(iv) uk converges to u in W 1,2(BR,Rm), as k →∞.

Proof. See Proposition 5.2 in [3]. �

Thanks to the fact that uR is a global minimizer of JBR (respectively JRF ) in AR (respectively
A), and since u(·, t;uR) is a classical solution to (4.2) (respectively (4.3)) for t > 0, we conclude
from the computation

(4.13)
d

dt
JBR(u(·, t)) = −

∫
BR

|ut|2 dx

(
respectively

d

dt
JRF (u(·, t)) = −

∫
F

|ut|2 dx

)
that |ut(x, t)| = 0, for all x ∈ BR (respectively x ∈ F ) and t > 0. Hence, for t > 0, u(·, t) satisfies

(4.14) ∆u(x, t)−Wu(u(x, t)) = 0 (respectively ∆u(x, t)−R2Wu(u(x, t)) = 0).

By taking t→ 0+ and utilizing the continuity of the flow inW 1,2(BR,Rm) (respectivelyW 1,2
loc (Rn,Rm))

at t = 0, we obtain that uR is a f -equivariant, classical solution to system (1.1) (respectively (3.5))
satisfying also uR(FR) ⊂ Φ (respectively uR(F ) ⊂ Φ).

If G is a finite reflection group, from the family of solutions uR ∈ C3(BR,Rm), R ≥ 1 we can
deduce the existence of an entire f -equivariant classical solution u ∈ C3(Rn,Rm) to system (1.1)
defined by

u(x) = lim
j→+∞

uRj (x),(4.15)

where Rj → +∞ is a suitable subsequence and the convergence is in the C2 sense in compact
subsets of Rn. This follows from the fact that uR satisfies the bound

‖uR‖C2+α(BR,Rm) ≤M
′,(4.16)

for some α ∈ (0, 1) and M ′ > 0 independent of R ≥ 1. The estimate (4.16) follows by elliptic
regularity from (4.1), from the assumed smoothness of W and from the fact that ∂BR is uniformly
smooth for R ≥ 1. The solution u satisfies also: u(F ) ⊂ Φ.

Step 3 (Pointwise estimates).
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From Step.2 to complete the proof of Theorem 3.1 and Theorem 3.2 it remains to prove that the
entire solution u to system (1.1) and the solution uR to system (3.5) satisfy the pointwise estimates
stated in Theorem 3.1 and Theorem 3.2 respectively. For establishing these estimates we utilize the
following theorem that we quote from [12]. We need the concept of local minimizer

Definition 2. Let Ω ⊂ Rn an open set. A map u ∈ C2(Ω;Rm)∩L∞(Ω,Rm) is a local minimizer if

JΩ′(u) ≤ JΩ′(u+ v),(4.17)

for all v ∈W 1,2
0 (Ω′,Rm) ∩ L∞(Ω′,Rm) and for all smooth bounded open subset Ω′ ⊂ Ω.

Theorem 4.4. Assume W : Rm → R is a nonnegative C3 potential and that W (a) = 0 for some
a ∈ Rm satisfying condition (ii) in Hypothesis 2. Let Z ⊂ Rm be the set Z = {z 6= a : W (z) = 0}
and let Zδ = ∪z∈ZBz,δ a δ-neighborhood of Z.

Assume that u : Ω→ Rm is a local minimizer and that there is M > 0 such that

|u|+ |∇u| ≤M, x ∈ Ω(4.18)

Then there is a q̄ ∈ (0, q∗] and a strictly decreasing continuous function r : (0, q̄] → (0,∞),
limq→0+ r(q) = +∞, such that the condition

Br(q)(x0) ⊂ Ω and u(Br(q)(x0)) ∩ Zδ = ∅,(4.19)

implies

|u(x0)− a| < q.

The map r depends only on W and M if Z = ∅ and also on δ otherwise.
Moreover, if a is nondegenerate in the sense that D2W (a) is positive definite, then there exists

a constant k0 > 0 such that

r(q) ≤ r(q̄) +
1

k0
| log

q

q̄
|, q ∈ (0, q̄].(4.20)

Remark 4.5. The map r has a strictly decreasing inverse q : [r(q̄),+∞) → (0, q̄]. If a is nonde-
generate (4.20) implies

q(r) < K0e
−k0r, r ∈ [r(q̄),+∞),(4.21)

for some K0 > 0.

For the proof of Theorem 4.4 we refer to [12], [11]. In [12] the proof is for the case of a generic
potential and covers all cases where D0 = F . To treat the general case F ⊂ D0 one needs to show
that Theorem 4.4 holds true in the case of symmetric potentials and f -equivariant local minimizers.
In [11] the validity of Theorem 4.4 is established for symmetric potential and f = I. The arguments
in [11] extend naturally to cover the general case of f -equivariance.

If G is a finite reflection group we apply Theorem 4.4 to uR with Ω = D0,R := D0 ∩ BR and

Z = {γa}γ∈Γ \ {a}. From Step.2 we have uR(FR) ⊂ Φ and therefore by f -equivariance

uR(D0,R) ⊂ uR(DR) ⊂ ∪γ∈ΓaγΦ = D.(4.22)

Since by Hypothesis 3, as we have seen, a is the unique minimizer of W in D it results

uR(D0,R) ∩ Zδ = ∅, for δ = d(a, ∂D) > 0.(4.23)

This, the bound (4.16) and Theorem 4.4 imply

|uR(x)− a| < q(d(x, ∂D0,R)), x ∈ D0,R,(4.24)
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for some positive function r → q(r) that does not depend on R. Therefore the inequality (4.24)
passes to the limit along the sequence uRj that defines the entire solution u. This and the f -
equivariance of u establish (ii). The exponential estimate (iii) follows from Remark 4.5. The proof
of Theorem 3.1 is complete.

Assume now that G is a discrete group. In this case the fundamental domain can be bounded
as for the group G′ considered in Section 2 or unbounded as for the group G generated by the
reflections in the plane {x1 = 0} and {x1 = 1} of Rn, n > 1 where F = {x ∈ Rn : 0 < x1 < 1}. For
establishing the estimates (ii) and (iii) in Theorem 3.2 it suffices to consider the case where F is
bounded. For R > 0 define

vR(y) = uR( yR ), y ∈ Rn,

FR = {y ∈ Rn : y
R ∈ F},

(4.25)

and let GR the discrete reflection group generated by the reflections in the planes PR1 , . . . , P
R
l

that bound FR. There is an obvious group isomorphim ηR : GR → G between GR and G and the
minimality of uR implies that vR ∈W 1,2

loc (Rn,Rm) is a local minimizers in the class of fR-equivariant
maps where fR := f ◦ ηR. Therefore vR is a solution of

∆v −Wu(v) = 0, in Rn.(4.26)

This, (4.1) and elliptic regularity implies

|∇vR| ≤M ′, in Rn,(4.27)

for some M ′ > 0 independent of R. As before we have

uR(D0) ⊂ ∪γ∈ΓaγΦ = D,
or equivalently

vR(D
R

0 ) ⊂ D,(4.28)

where D
R

0 = ∪g∈Ga(ηR)−1(g)F
R

. From (4.28) it follows

vR(DR
0 ) ∩ Zδ = ∅, for δ = d(a, ∂D) > 0.(4.29)

Therefore we can apply Theorem 4.4 to vR with Ω = DR
0 and deduce, for R ≥ R0 := r(q̄)

|vR(y)− a| ≤ q(d(y, ∂DR
0 )), y ∈ DR

0 ,(4.30)

which is equivalent to

|uR(x)− a| ≤ q(Rd(x, ∂D0)), x ∈ D0.(4.31)

The rest of the proof is as in the case of G finite discussed before. The proof of Theorem 3.2 is
complete.

5. Three detailed examples involving the reflection group of the tetrahedron

5.1. Preliminaries. In this subsection we recall some properties of the group of symmetry of a
regular tetrahedron and the group of symmetry of a cube.

Let T be the group of symmetry of a regular tetrahedron A1A2A3A4 (with A1 = (1, 1, 1),
A2 = (−1,−1, 1), A3 = (1,−1,−1), A4 = (−1, 1,−1)) which can be inscribed in a cube centered
at the origin O (see Figure 4). The order of T is |T | = 24 and T is isomorphic to the permutation
group S4. The 24 elements of T are associated to the following elements of S4:

• I3 the identity map of R3, corresponds to the unit of S4 (I3 fixes the 4 vertices),
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• the 8 rotations of angle ±2π/3 with respect to the axes OAi correspond to the 3-cycles
(j k l) (only the vertex Ai is fixed),

• the 6 reflections with respect to the planes OAiAj correspond to the transpositions (k l)
(the vertex Ai and Aj are fixed),

• the 3 symmetries with respect to the coordinate axes correspond to the permutations
(i j)(k l) (no vertex fixed),

• a reflection with respect to the plane OAkAl composed with a rotation with respect to the
axis OAi corresponds to one of the six 4-cycles (i j k l) (no vertex fixed).

Since there exists a homomorphism between the permutation groups S4 and S3, and since S3 is
isomorphic to the dihedral group D3 which is the group of symmetry of an equilateral triangle in
the plane, we also have a homomorphism φ : T → D3. φ associates:

• I3 and the symmetries with respect to the coordinate axes to I2
(i.e. ker φ = {I3 and the three symmetries with respect to the coordinate axes}),

• the rotation of angle 2π/3 with respect to the axis OA1 to the rotation ρ of angle 2π/3 in
the plane,

• the reflections with respect to the planes OA1A2 and OA3A4 to the reflection σ0 : R2 → R2

in the u1 axis (cf. Figure 4),
• the reflections with respect to the planes OA1A4 and OA2A3 to the reflection σ1 = ρσ0,
• the reflections with respect to the planes OA1A3 and OA2A4 to the reflection σ2 = ρ2σ0.

Let K be the group of symmetry of a cube centered at the origin O with vertices at the points
(±1,±1,±1). The order of K is |K| = 48, and K contains the group of symmetry of the regular
tetrahedron as a subgroup (i.e. T < K). Let σ : R3 → R3, σ(x) = −x, be the antipodal map.
Clearly, σ is an element of K of order 2 which does not belong to T , and K = T ∪σT . Furthermore,
σ commutes with the reflections with respect to the planes OAiAj , thus σ commutes with every
element of K. As a consequence, the correspondence

{I3, σ} × T 3 (α, β)→ αβ ∈ K,

defines an isomorphism of the group product {I3, σ}×T onto K, and we can define a homomorphism
ψ : K → T by setting ψ(β) = β, and ψ(σβ) = β, for every β ∈ T . By definition, ψ leaves invariant
the elements of T . We also mention that K contains the 3 reflections with respect to the coordinate
planes xi = 0 (which are the symmetries with respect to the coordinate axes Oxi composed with
σ).

5.2. A solution u : R3 → R2 to (1.1) with the reflection group of the tetrahedron acting
on the domain and the reflection group of the equilateral triangle acting on the target.

In this example we consider the aforementioned homomorphism φ : T → D3. Let F be the
fundamental domain of T bounded by the planes OA1A2, OA3A4 and OA1A4, and Φ be the
fundamental domain of D3 bounded by the lines u2 = 0 and u2 =

√
3u1 corresponding to the

reflections σ0 and σ1. According to what precedes, the image by φ of the reflections with respect
to the planes OA1A2 and OA3A4 is σ0, while the image by φ of the reflection with respect to the
plane OA3A4 is σ1. Thus φ is a positive homomorphism that associates F to Φ, and Hypothesis
1 is satisfied. If Hypotheses 2–3 also hold, Theorem 3.1 ensures the existence of a φ-equivariant
solution u to (1.1). In particular (see Figure 4) φ-equivariance implies that u maps

• the coordinate axes into the reflection lines (with the same colour),
• the planes OA1A2 and OA3A4 into the reflection line u2 = 0,
• the planes OA1A4 and OA2A3 into the reflection line u2 =

√
3u1,
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• the planes OA1A3 and OA2A4 into the reflection line u2 = −
√

3u1,
• the diagonals of the cube at the origin O.

In addition Theorem 3.1 implies that the solution u is positive (i.e. u(F ) ⊂ Φ), and therefore u
maps each fundamental domain of T into a fundamental domain of D3 as in Figure 4. If for instance
the potential W has 6 minima (one in the interior of each fundamental domain of D3), then the
domain space R3 is also split into six regions as in Figure 4. Properties (ii) and (iii) of Theorem 3.1
state that for every x in such a region D, u(x) converges as d(x, ∂D) → ∞, to the corresponding
minimum a of W .

Figure 4. Fundamental domains for the action of T on R3 (left) and for the action
of D3 on R2 (right). The φ-equivariant solution u : R3 → R2 of (1.1) given by
Theorem 3.1 maps fundamental domains into fundamental domains with the same
color. In particular u maps the infinite double cone (union of four fundamental
domains) generated by O and by the two yellow triangle into the sector Φ.

5.3. A solution u : R3 → R3 to (1.1) with the reflection group of the cube acting on the
domain and the reflection group of the tetrahedron acting on the target.

In this example we consider the homomorphism ψ : K → T defined previously. Now, we denote
by F be the fundamental domain of K bounded by the planes OA1A2, OA1A4 and x2 = 0, and
by Φ be the fundamental domain of T bounded by the planes OA1A2, OA1A4 and OA2A3 (cf.
Figure 5). According to what precedes, ψ leaves invariant the reflections with respect to the planes
OA1A2 and OA1A4, while the image by ψ of the reflection with respect to the plane x2 = 0 is
the coordinate axis x2, that is, the intersection of the planes OA1A4 and OA2A3. Thus ψ is a
positive homomorphism that associates F to Φ, and Hypothesis 1 is satisfied. If Hypotheses 2–3
also hold, Theorem 3.1 ensures the existence of a ψ-equivariant solution u to (1.1). More precisely,
ψ-equivariance implies that u maps

• every plane OAiAj into itself,
• every diagonal of the cube into itself,
• the coordinate planes into the perpendicular coordinate axes,
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• the coordinate axes at the origin O.

In addition, the solution u is positive (i.e. u(F ) ⊂ Φ), and in fact u maps each fundamental domain
of K into a fundamental domain of T as in Figure 5.

Figure 5. Fundamental domains for the action on R3 of K (left) and T (right).
The ψ-equivariant solution u : R3 → R3 of (1.1) given by Theorem 3.1 maps
fundamental domains into fundamental domains with the same color. Note in
particular that u maps F ∪ σF into Φ.

If the potential W has for instance 4 minima (located at the vertices of the tetrahedron A1,A2,A3

and A4), then the stabilizer Γa of a = A1 in Γ = T has six elements: I3, the reflections with respect
to the planes OA1A2, OA1A3 and OA1A4, and the rotations of angle ±2π/3 with respect to the
axis OA1. Thus D is the (interior of the closure) of the union of the six fundamental domains that
have A1 on their boundary; the group ψ−1(Γa) = Γa ∪ σΓa has 12 elements, and the set D has
two connected components: the solid right angle D0 = {xi > 0, ∀i = 1, 2, 3} and σD0 = −D0

(cf. Figure 6 and also note that the group Ga is in this particular case the group Γa). According
to Theorem 3.1, if x ∈ D0 and d(x, ∂D0) → ∞ (that is, if xi → +∞ for every i = 1, 2, 3) then
u(x) → a. Of course, the same result is true when x ∈ −D0 and d(x, ∂(−D0)) → ∞, and the
solution also converges in the other solid right angle cones to the corresponding minima of W as in
Figure 6.

5.4. A crystalline structure in R3.
Now, let us consider the discrete reflection group K′ acting in R3 which is generated by the

reflections s1, s2, s3 and s4 with respect to the corresponding planes P1 := OA1A2, P2 := OA1A4,
P3 := {x2 = 0} and P4 := {x1 + x3 = 2}. These planes bound the fundamental domain F ′ of K′
with vertices at the points O, A1, I := (1, 0, 1) and B := (0, 0, 2) (cf. Figure 7). The point group
of K′, that is the stabilizer of the origin, is the group K, and we have K′ = TK, where T is the
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Figure 6. The sets D = {u = α1(1, 1,−1)+α2(−1, 1, 1)+α3(1,−1, 1), αi > 0, i =
1, 2, 3}, D0 = {x1 > 0,∀i = 1, 2, 3} and D = D0 ∪ σD0 when W has four minima
on the vertices of the tetrahedron. In this case the solution u of (1.1) given by
Theorem 3.1 satisfies: u(x)→ A1, for mini |xi| → +∞, x ∈ D.

translation group of K′. T is generated by the translations with respect to the vectors t1 := (2, 0, 2),
t2 := (0, 2, 2) and t3 := (0,−2, 2). By composing the canonical homomorphism p : K′ → K such
that p(tg) = g for every t ∈ T and g ∈ K, with the homomorphism ψ : K → T defined previously,
we obtain a homomorphism ψ′ : K′ → T . We note that ψ′(s4) is the image by ψ of the reflection
with respect to the plane OA2A3, which is the reflection with respect to OA2A3. Thus, ψ′ is a
positive homomorphism which associates F ′ to the fundamental domain Φ of T bounded by the
planes OA1A2, OA1A4 and OA2A3. In this case the elementary crystal C = ∪g∈KgF ′ is a rhombic
dodecahedron (cf. Figure 7) that tiles the three dimensional space when translated by the elements
of T 2. Several structures are possible for the solution uR given by Theorem 3.2 depending on the
position of a ∈ Φ. For instance if a ∈ Φ we have D = Φ and D0 = F ′. If a = (0, 1, 0) (cf. Figure 8)
then D = {u : max{|u1|, |u3|} < u2} and D0 is the pyramid with basis the rhombus defined by the
points A1, B, (1,−1, 1), (2, 0, 0), and vertex in O. Finally, if a = A1, D is the cone which has vertex
in O and is generated by the triangle with vertices at the points (1, 1,−1), (1,−1, 1), (−1, 1, 1), while
D0 is the polyhedron (union of two pyramids) with vertices at the points O, (2, 0, 0), (0, 2, 2), B,A1

and D = ∪t∈T (D0 ∪ σD0).

6. Appendix: other examples in lower dimension

6.1. Positive homomorphisms between finite reflection groups of the plane.

2Space filling tessellation with rhombic dodecahedra is the crystal structure in which often are found garnets and
other minerals like pyrite and magnetite.
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Figure 7. Fundamental domains for the action on R3 of K′ (left) and T (right).
The fundamental domain F ′ of K′ is a pyramid with basis the triangle A1BI and
vertex in O. Under the action of the point group K, F ′ generates the rhombic
dodecahedron C (left) which tiles the domain space R3 when translated by the
elements of T . The ψ′-equivariant solution u : R3 → R3 of (1.1) given by Theorem
3.2 maps fundamental domains into fundamental domains with the same color.
Note in particular that u maps ∪t∈T (F ′ ∪ σF ′) into Φ.

The finite reflection groups of the plane are the dihedral groups Dn with n ≥ 1. Dn contains
2n elements: the rotations r0

n = I2, r1
n,..., rn−1

n (where I2 is the identity map of the plane, and rn
is the rotation of angle 2π/n), and the reflections r0

ns = s, r1
ns,..., r

n−1
n s (where s is the reflection

with respect to the x1 coordinate axis). Similarly, the elements of Dnk (with k ≥ 1) are the

rotations: r0
nk = I2, r1

nk,..., rnk−1
nk (where rnk is the rotation of angle 2π/nk) and the reflections

r0
nks = s, r1

nks,..., r
nk−1
nk s. In the two Propositions below we have determined all the positive

homomorphisms between finite reflection groups of the plane (up to an isomorphism). From the
list of homomorphisms between dihedral groups established in [17], we have extracted the positive
ones.

For m = ±1 we define the homomorphism fm : Dnk → Dn, by setting fm(rpnk) = rmpn and
fm(rpnks) = rmpn s, for every integer p. Thanks to the property sr = r−1s (which holds for every
reflection s and every rotation r), it is easy to check that fm is a homomorphism from Dnk onto
Dn. We can also define the homomorphism g : D2k → D2, by setting g(rp2k) = sp and g(rp2ks) = spσ
for every integer p, where σ denotes the the antipodal map σu = −u.

Proposition 6.1. If n ≥ 2, k ≥ 1, G = Dnk acts on the domain plane R2, and Γ = Dn on
the target plane R2, then for every m = ±1, fm is a positive homomorphism which associates
the fundamental domain F := {reit | 0 < r, 0 < t < π/nk} of G to the fundamental domain
Φ := {reit | 0 < r, 0 < mt < π/n} of Γ. In addition, the homomorphism fm leaves invariant the
elements of Dn < Dnk if and only if mk = 1 mod n.
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Figure 8. The sets D0 and D when W has six minima (one in the middle of each
side of the tetrahedron). In this case the ψ′-equivariant solution uR : R3 → R3

given by Theorem 3.2 satisfies limR→+∞ uR(x+ t) = (0, 1, 0) for x ∈ D0∪σD0, t ∈
T .

Proof. By definition, the lines that bound the fundamental domain F correspond to the reflections
s and rnks. Since for m = ±1, the fixed points of the reflections fm(s) = s and fm(rnks) = rmn s
are the lines that bound the fundamental domain Φ, the homomorphism fm can associate F to Φ.
fm leaves invariant the elements of Dn < Dnk if and only if fm(rn) = rn, that is, if and only if

fm(rn) = fm(rknk) = rmkn = rn ⇔ rmk−1
n = I2 ⇔ mk = 1 mod n.

�

Proposition 6.2. If k ≥ 1, G = D2k acts on the domain plane R2, and Γ = D2 on the target
plane R2, then g is a positive homomorphism which associates the fundamental domain F = {reit |
0 < r, 0 < t < π/2k} of G to the fundamental domain Φ = {reit | 0 < r, 0 < t < π/2} of Γ.

Proof. As previously, we see that g(s) = σ fixes only the origin, while g(r2ks) = sσ fixes the u2

coordinate axis. Thus, the homomorphism g can associate F to Φ (and in fact it can associate F
to any of the 4 fundamental domains of D2). �

To illustrate the Propositions above, let us give some examples.

• The homomorphism f : D6 → D3 that was mentioned at the beginning of Sec.2 (cf. also
[4]) coincides with the homomorphism f−1 of Proposition 6.1 with n = 3, k = 2 and
m = −1. Since mk = −2 = 1 mod 3, we see again that it leaves invariant the elements of
D3.
• Taking n = 3, k = 5 and m = −1, we check that mk = 1 mod n, and we obtain a new

homomorphism f−1 : D15 → D3 that leaves invariant the elements of D3. The kernel of
this homomorphism is the cyclic group generated by the rotation r5.
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• Taking n = 2, k = 2 and m = 1, we obtain the positive homomorphism f1 : D4 → D2.
When Hypotheses 2–3 also hold, Theorem 3.1 ensure the existence of a f1-equivariant
solution to (1.1) which maps F into Φ, and the other fundamental domains of G = D4 as
in Figure 9.

• Considering the homomorphism g : D4 → D2 of Proposition 6.2 (with k=2) we can also
construct a g-equivariant solution u to (1.1). This solution has the particularity that the
coordinate axes are mapped at the origin. Indeed, by g-equivariance, if x, y ∈ R2 are
symmetric with respect to one of the coordinate axes, then u(x) = −u(y) (cf. Figure 10
for the correspondence of the fundamental domains).

Figure 9. The correspondence of the fundamental domains for a solution to (1.1)
equivariant with respect to the homomorphism f1 : D4 → D2.

Figure 10. The correspondence of the fundamental domains for a solution to (1.1)
equivariant with respect to the homomorphism g : D4 → D2.

6.2. Saddle solutions.
In this subsection we are going to construct as an application of Theorems 3.1 and 3.2, scalar

solutions to (1.1) and (3.5) having particular symmetries. The only finite reflection group that acts
on the target space R is the dihedral group Γ = D1 with two elements: the identity I1 and the
antipodal map σu = −u. We assume that a finite or a discrete reflection group G acts on the
domain space Rn, and that W : R→ R satisfies Hypotheses 2–3, that is,

• W is a nonnegative and even function,
• there exists M > 0 such that W (u) ≥W (M), for u ≥M ,
• W (u) = 0⇔ u = ±a, with in addition a > 0 and W ′′(a) > 0.
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Clearly, the map ε which sends the orientation-preserving motions to I1, and the orientation-
reversing motions to σ, is a positive homomorphism from G onto Γ. Thus, Theorems 3.1 and
3.2 ensure the existence of classical solutions u : Rn → R to (1.1) and (3.5) with the following
properties:

(i) ε-equivariance implies that if x, y ∈ Rn are symmetric with respect to a reflection plane
of G, then u(x) = −u(y). In particular, u vanishes on the reflection planes of G. If G is
a discrete reflection group, then u is periodic in the sense that u(x + t) = u(x), for every
x ∈ Rn, and every translation t in the translation group T < G.

(ii) Positivity means that either u ≥ 0 or u ≤ 0 in each fundamental domain F of G.
(iii) In each fundamental domain F , u(x) approaches either a or −a, as x ∈ F and d(x, ∂F )

increases.

We also give another example, more elaborated, when G = D2k (with k ≥ 1) acts on R2. Let
us consider the homomorphism h : D2k → D1 such that h(rp2k) = σp and h(rp2ks) = σp, for every
integer p (see the previous subsection for the notation). In this particular set-up, we can again
construct a h-equivariant solution u : R2 → R to (1.1) which has in each fundamental domain of
D2k alternatively even and odd symmetries. Figure 11 represents the symmetries of such a solution
for k = 2.

Figure 11. The symmetries of a solution u : R2 → R to (1.1) equivariant with
respect to the homomorphism h : D4 → D1.

6.3. Other examples involving discrete reflection groups.
To finish, we give some more examples illustrating Theorem 3.2. Let us assume again that the

discrete reflection group G′ acts on the domain x-plane as in Sec.2 (cf. also the end of Sec.3), but
let us consider now a new reflection group acting on the target u-plane: the group Γ = D2. We
construct a homomorphism f ′′ : G′ → D2 by composing the canonical projection p : G′ → D6 with
the homomorphism g : D6 → D2 defined in subsection 6.1 (that is, f ′′ = g ◦ p). As we did before
for the homomorphism f ′, we can check that f ′′ is a positive homomorphism. Thus, once again,
Theorem 3.2 allows us to construct f ′′-equivariant solutions uR to (3.5). Figure 12 represents the
correspondence of the fundamental domains of G′ with the fundamental domains of D2 for such
solutions (compare with Figure 3). The f ′′-equivariant solutions have the particularity that some
reflection lines of the group G′ are mapped at the origin.

Let us also mention a last example involving the discrete reflection group of the plane H, gen-
erated by the reflections with respect to the lines x2 = 0, x2 = x1 and x1 = 1. The point group
associated to H is the group D4, and we can compose the canonical projection H → D4 either with
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Figure 12. The correspondence of the fundamental domains by the f ′′-equivariant
solution uR: on the right the fundamental domains of the discrete reflection group
G′ and on the left the fundamental domains of the finite reflection group D2.

the homomorphism f1 : D4 → D2 or with the homomorphism g : D4 → D2 defined in subsection
6.1, to construct positive homomorphisms from H onto D2.
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