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Abstract We study global minimizers of an energy functional arising as a thin sample limit
in the theory of light-matter interaction in nematic liquid crystals. We show that depending on
the parameters various defects are predicted by the model. In particular we show existence of
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a new type of topological defect which we call the shadow kink. Its local profile is described
by the generalized Hastings and McLeod solutions of the second Painlevé equation (Claeys
et al. in Ann Math 168(2):601–641, 2008; Hastings and McLeod in Arch Ration Mech
Anal 73(1):31–51, 1980). As part of our analysis we give a new proof of existence of these
solutions.

Mathematics Subject Classification 35J20 · 35J61 · 35Q56 · 35Q60

1 Introduction

1.1 Physical motivation

In a suitable experimental set up [9–13,17] involving a liquid crystal sample, a laser and a
photoconducting cell one can observe light defects such as kinks, domain walls and vortices.
A concrete example of formation of optical vortices is presented in [13].

To describe the energy of the illuminated liquid crystal light valve (LCLV) filled with a
negative dielectric nematic liquid crystal which is homeotropically anchored, we consider
the Oseen-Frank model in the vicinity of the Fréedericksz transition. Denoting the molecular
director by �n the Oseen-Frank energy is given by [18]

F =
∫

K1

2
(∇ · �n)2 + K2

2
(�n · (∇ × �n))2

+K3

2
(�n × (∇ × �n))2 − εa

2
( �E · �n)2, (1.1)

where {K1, K2, K3} are, respectively, the splay, twist, and bend elastic constants of the
nematic liquid crystal and εa anisotropic dielectric constant (εa < 0). We will neglect the
anisotropy i.e we will assume that K1 = K2 = K3 = K . Under uniform illumination
�E = [V0 + aI ]/d ẑ, where V0 is the voltage applied to the LCLV, d thickness of the cell, I
intensity of the illuminating light beam, and a is a phenomenological dimensional parameter
that describes the linear response of the photosensitive wall [35]. The homeotropic state,
�n = ẑ, undergoes a stationary instability for critical values of the voltage which match the
Fréedericksz transition threshold VFT = √−Kπ2/εa − aI .

Illuminating the liquid crystal light valve with a Gaussian beam induces a voltage drop
with a bell-shaped profile across the liquid crystal layer, higher in the center of the illuminated
area. The electric field within the thin sample takes the form [9]

�E = Ez ẑ + Er r̂ ≡ [V0 + aI (r)]

d
ẑ + za

dω
I ′(r)r̂ , (1.2)

where r is the radial coordinate centered on the beam, r̂ the unitary radial vector, I (r) the
intensity of Gaussian light beam, I (r) = I0e−r2/2ω2

, I0 the peak intensity, and ω the width
of the light beam.

If the intensity of the light beam is sufficiently close to the Fréedericksz transition the
director is slightly tilted from the ẑ direction and one can use the following ansatz

�n(x, y, z) ≈
⎛
⎜⎝
n1(x, y, π z/d)

n2(x, y, π z/d)

1 − (n2
1+n2

2)

2

⎞
⎟⎠ . (1.3)
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Introducing the above ansatz in the energy functional F and taking the limit of the thickness
of the sample d → 0 one obtains the following problem (written here for simplicity in a non
dimensional form) [9,11,21]

G(u) =
∫
R2

ε

2
|∇u|2 − 1

2ε
μ(x, y)|u|2 + 1

4ε
|u|4

−a ( f1(x, y)u1 + f2(x, y)u2) , (1.4)

where u = (u1, u2) : R2 → R
2 is an order parameter describing the tilt of �n from the ẑ

direction in the thin sample limit, ε � 1 is proportional to the width of the Gaussian beam
and in radial co-ordinates

μ(x, y) = e−r2 − χ,

f (x, y) = −1

2
e iθ

d

dr
[e−r2 − χ] = e iθre−r2

,

(x, y) = re iθ , (1.5)

and χ ∈ (0, 1) is a fixed constant. The function μ describes light intensity and is sign
changing due to the fact that the light is applied to the sample locally and areas where μ < 0
are interpreted as shadow zones while areas where μ > 0 correspond to illuminated zones.
The function f describes the electric field induced by the light due to the photo conducting
bluewall mounted on top of the sample [9]. Experiments show that as the intensity of the
applied laser light represented here explicitly by the parameter a increases, defects such as
light vortices appear first on the border of the illuminated zone and then in its center. This
transition takes places suddenly once a threshold value of a is attained. At large values of a
vortices have local profiles resembling the profile of the standard vortex of degree +1 in the
Ginzburg–Landau theory. At low values of a vortices are located in the shadow area (we call
them shadow vortices) and their local profiles are very different than that of the standard ones.
In particular while the amplitude of the standard vortex is of order O(1) in ε the amplitude of
the shadow vortex is of order O(ε1/3). This picture is confirmed experimentally, numerically
and by formal calculations [13]. Currently new experiments are being designed in order to
realize experimentally other types of defects, such as kinks or domain walls. In the context
of the model energy (1.4) this amounts to assuming that u2 ≡ 0 (domain walls) or u = u(x)
and u2 ≡ 0 (kinks). In the latter case the energy takes form

E(u) =
∫
R

ε

2
|ux |2 − 1

2ε
μ(x)u2 + 1

4ε
|u|4 − a f (x)u, (1.6)

with μ(x) and f (x) given by:

μ(x) = e−x2 − χ, χ ∈ (0, 1), f (x) = −1

2
μ′(x) = xe−x2

, (1.7)

where χ ∈ (0, 1) is fixed.
In this paper we will study global minima of the problem (1.6). The energy E(u) is a real

valued, one dimensional version of G(u), yet both show a remarkable qualitative agreement.
This is not surprising in view of the fact that both of them come from taking the thin sample
and small tilt of the director limit of the Oseen-Frank energy (1.1). The theoretical value
of our study lies in understanding and explaining the basic mechanism of formation of the
various types of defects on the basis of the analogous mechanism for the the energy E(u). In
particular we will show existence of a new type of defect, the shadow kink, appearing at the
points where μ changes sign i.e. in the shadow area of the one dimensional model. Its analog
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for the energy G is the shadow vortex [13] and here we make a first step in understanding its
local profile via the second Painlevé equation.

The model of light-matter interaction in nematic liquid crystals described above has some
similarities with the model of the Bose-Einstein condensates in a rotating trap based on the
Gross–Pitaevskii energy

F(u) =
∫
R2

1

2
|∇u|2 + 1

2ε2 V (x)|u|2 + 1

4ε
|u|4

−�x⊥ · (iu,∇u) subject to ‖u‖L2 = 1,

where � ∈ R is the angular velocity, (iu,∇u) = iu∇ū − i ū∇u and V (x) = x2
1 + 	x2

2
is a harmonic trapping potential (more general nonnegative, smooth V are considered as
well). The role played in G(u) or E(u) by the parameter a is played here by the angular
velocity, whose threshold values correspond to emergence of global minimizers of different
nature. When � = O(| ln ε|) is below a critical value �1 global minimizers are vortex free
[5,24], while at some other critical values �2 > �1 global minimizers have at least one
vortex [24,25], which looks locally like the radially symmetric degree ±1 solution to the
Ginzburg–Landau equation


u + u(1 − |u|2) = 0, in R
2.

At still higher values of � = O( 1
ε
) the so called giant vortex becomes the equilibrium state

of the Bose-Einstein condensate [4] (see also [2]). All these localized structures have exact
analogues for our one dimensional model. This could be surprising at first so let us explain
this point. Due to the mass constraint we can recast the Gross–Pitaevskii energy in the form
somewhat similar to G

F(u) =
∫
R2

1

2
|∇u|2 + 1

4ε2

[(|u|2 − a(x)
)2 − (

a−(x)
)2

]2 − �x⊥ · (iu,∇u), (1.8)

where a(x) = a0 − V (x), a0 is determined so that
∫
R2 a+ = 1 and a± are the positive and

negative parts of the function a. Additionally, the splitting of this functional corresponding to
density and phase of u found in [33] shows that on the nonlinear level the two models should
have many properties in common. To get an idea of what we have in mind let us demonstrate
the similarity between the case when a = 0 in E and � = 0 in F . The former problem
becomes to minimize

E(u) =
∫
R

ε

2
|ux |2 − 1

2ε
μ(x)u2 + 1

4ε
|u|4

and the latter to minimize

F(u) =
∫
R2

1

2
|∇u|2 + 1

4ε2

[(|u|2 − a(x)
)2 − (

a−(x)
)2

]2
.

Intuitively the global minimizers should be respectively: u = √
μ+ and u = √

a+ (this is the
Thomas-Fermi limit of Bose-Einstein condensate). The problem is that both of these functions
are not smooth at their zero level sets. Because of this the true minimizers will exhibit a
boundary layer behavior near the zero level set of a+ or μ and their local profiles, after
suitable scaling, are given by the unique, positive solution of the second Painlevé equation
[22]

y′′ − xy − 2y3 = 0, in R, (1.9)
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such that

y(x) → 0, x → ∞, y(x) ∼ √−x/2 x → −∞. (1.10)

This phenomenon is also known as the corner layer and it is present in the context of the
Bose-Einstein condensates [3,29] as well as in many other problems, see for example [6,7,
30,31,37]. In the next section we will see that the shadow kink, which is the one dimensional
analog of the shadow vortex and is the global minimizer of E(u) is described locally by a
solution of the second Painlevé equation

y′′ − xy − 2y3 − α = 0, in R, (1.11)

with α �= 0 leading to a quite different behaviour than the corner layer. Equation (1.11)
has been studied by Painlevé and others since the early 1900’s and is a part of a hierarchy
of the Painlevé equations, which in turn is a part of a larger hierarchy of equations charac-
terised by the fact that the only movable singularities of their solutions are poles (see for
example [28]). One of the most interesting aspects of these equations is how ubiquitous they
are in applications. To mention a few examples besides the Bose-Einstein condensates dis-
cussed above: the problem of finding self-similar solution of the KdV equation is reduced
to (1.11) by a change of variables (see [1] and [20] for more about the connection of (1.11)
with the theory of integrable systems); the theory of random matrices [15,19]; supercon-
ductivity [14,23,34]; for even more applications we refer to [26,32,36] and the references
therein.

In view of this discussion existence of the shadow kink should have consequences that
go beyond the one dimensional model (1.6) considered here. Indeed our result suggests that
(1.11) with α �= 0 should play an important role in various boundary layer phenomena and
for this it is necessary to understand special solutions of the Painlevé equation beyond the
case α = 0. In fact one of our contributions in this paper is to find new proof of existence of
solutions of (1.11) and to characterize them from the variational point of view as we explain
below. Furthermore, the analogy between the problem of minimization of the energy func-
tionals E and G, on the one hand, and formal relation between E and the Gross–Pitaevski
energy functional, on the other hand, suggest that the behaviour of the Bose-Einstein con-
densates between the threshold values of the angular velocity �1 < �2 is described by a new
type of topological defect, the shadow vortex. Therefore it is important to show rigorously
existence of shadow vortices for the energy G and here we make the first step in this direction
considering a simpler case of the energy E .

To explain this let us briefly discuss one of the results of this paper which deals directly
with the second Painlevé equation (1.11) and gives new proof of existence of special type of
solution. In [22] Hastings and McLeod considered (1.9) and showed existence of a unique
solution with (1.10) as the asymptotic conditions at ±∞. In [15] it was proven that for
any α �= 0 Eq. (1.11) has two distinct solutions which converge to 0 as x → ∞. One of
these generalized Hastings–McLeod solutions is nonnegative and the other is sign changing.
This result, which was conjectured on the basis of numerical simulations in [16], was first
proven in [15] (the proof relies on [27] and [26]). Another proof of existence was given in
[38]. These solutions of the second Painlevé equation give formally the local profiles of the
shadow kink which is different from the corner layer type of behaviour determined by (1.9).
We conjecture that minimizers of the Gross–Pitaevski energy in the intermediate regime
�1 < � < �2 may also have similar profile near the zero level set of the function a(x) in
(1.8).
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1.2 Statements of the main results

More generally than in (1.7) in what follows we assume that:
{

μ ∈ C1(R) ∩ L∞(R) is even, μ′ < 0 in (0,∞), and μ(ξ) = 0 for a unique ξ > 0,

f ∈ L1(R) ∩ L∞(R) ∩ C(R) is odd, f (x) > 0, ∀x > 0.

(1.12)

The assumption that μ is even is made here for the sake of simplicity. It is only utilized in
the Proof of Theorem 1.1 to deduce the evenness of the global minimizer for a = 0 (cf.
Step 2), and to simplify the expression of the comparison functions in Step 5. Our statements
can easily be adjusted if μ′ < 0 in (0,∞), μ′ > 0 in (−∞, 0), μ(ξ) = 0 for a unique
ξ > 0, μ(ξ ′) = 0 for a unique ξ ′ < 0. We just mention that without symmetry, the global
minimizer may prefer for 0 < a < a∗, either the profile

√
μ+ or −√

μ+, depending on the

sign of
∫ ξ

ξ ′
√

μ f .
We consider the energy

E(u) =
∫
R

(
ε

2
|u′(x)|2 − 1

2ε
μ(x)u2(x) + 1

4ε
|u(x)|4 − a f (x)u(x)

)
dx,

u ∈ H1(R). (1.13)

In this paper we will keep a ≥ 0 fixed and ε � 1. Under assumptions (1.12), there exists
v ∈ H1(R) such that E(v) = minH1(R) E . In addition, v ∈ C2(R) is a classical solution of
the O.D.E.

ε2v′′(x) + μ(x)v(x) − v3(x) + εa f (x) = 0, ∀x ∈ R. (1.14)

Note that due to the symmetries in (1.12), the energy (1.13) and Eq. (1.14) are invariant under
the odd symmetry v(x) �→ −v(−x).

Next we discuss the dependence of the global minimizer on a.

Theorem 1.1 The following statements hold.

(i) When a = 0 the global minimizer v is even, and positive up to change of v by −v.
(ii) For a > 0, the global minimizer v has a unique zero x̄ such that

|x̄ | ≤ ξ + O(
√

ε), and v(x) > 0,∀x > x̄, while v(x) < 0, ∀x < x̄ . (1.15)

(iii) Suppose that

a∗ := sup
x∈[−ξ,0)

√
2
(
(μ(0))3/2 − (μ(x))3/2

)
3

∫ 0
x | f |√μ

< ∞. (1.16)

For all a > a∗, x̄ → 0 as ε → 0, and the global minimizer v satisfies

lim
ε→0

v(x̄ + εs) = √
μ(0) tanh(s

√
μ(0)/2),

lim
ε→0

v(x + εs) =

⎧⎪⎨
⎪⎩

√
μ(x) for 0 < x < ξ,

−√
μ(x) for − ξ < x < 0,

0 for |x | ≥ ξ,

(1.17)

in the C1
loc(R) sense.
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(iv) Let

a∗ := inf
x∈(−ξ,0]

√
2(μ(x))3/2

3
∫ x
−ξ

| f |√μ
∈ (0,∞), and note that a∗ ≤ a∗.

Up to change of v(x) by −v(−x), for all a ∈ (0, a∗), x̄ → −ξ as ε → 0, and

lim
ε→0

v(x + sε) =
{√

μ(x) for |x | < ξ,

0 for |x | ≥ ξ,
(1.18)

in theC1
loc(R) sense. The above asymptotic formula holds aswell when a = 0.Moreover,

when f = −μ′
2 we have a∗ = a∗ = √

2.

We observe that (1.16) holds for instance provided μ is twice differentiable at 0, and f ′(0) > 0
cf. Step 6 of the proof below. We note also that convergence in (1.17) and (1.18) can be
improved to C2 convergence on compacts of R by a straightforward bootstrap argument
(provided f ∈ C1(R)). One can see intuitively why the transition occurs near the origin for
a > a∗ by considering the term − ∫

R
a f (x)u(x)dx , whose contribution in (1.13) increases

with a. When u vanishes at 0, the value of − ∫
R
f u is minimal, since u and f have the same

sign. This gain of energy compensates the cost of a transition near the origin for a > a∗.
The preceding theorem justifies the name shadow kink for the global minimizer when

a ∈ (0, a∗). Indeed, when a > a∗ the global minimizer has a profile of suitably re-scaled and
modulated hyperbolic tangent. This is not surprising since H(x) = tanh(x/

√
2) is a solution

of the Allen-Cahn equation

H ′′ + H − H3 = 0, in R, (1.19)

and it is a standard, local profile of topological defects such as kinks or domain walls appearing
in many phase transition problems. On the other hand, when a < a∗ the zero of the global
minimizer occurs near the point where ξ changes its sign i.e. between the illuminated zone
and the dark zone in the nematic liquid crystal experiment. Because of this, unlike in the
case of the standard kink, the shadow kink is hard to detect experimentally. To understand
qualitative properties of the global minimizers described above it helps to consider the roots
of the equation:

− u3 + μ(x)u + εa f (x) = 0. (1.20)

Note that transitions of the global minimizers as ε → 0 connect the branches rε,± either near
x = ±ξ (the shadow kink) or at x = 0 (the standard kink).

From the preceding discussion we see that when the parameter a changes from a < a∗
to a > a∗ the global minimizer changes its character very significantly and in the particular
case a∗ = a∗ an abrupt transition between the shadow kink and the standard kink takes place.
One may speculate that both the shadow and the standard kink are local minimizers and that
a∗ = a∗ is the Maxwell point of the energy functional.

Next we will study local profiles of the global minimizers near the points ±ξ , that is the
zeros of μ. Our goal is to show that the shadow kink is indeed different than the standard
kink, and its local profile near the point of sign change is nothing like the solution (1.19). We
recall the second Painlevé equation

y′′(s) − sy(s) − 2y3(s) − α = 0, ∀s ∈ R. (1.21)
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ξ−ξ

x x
ξ−ξ

y y

rε,+

rε,-

rε,0

Fig. 1 The roots of Eq. (1.20). Left with a > 0; Right: with a = 0

We will now define the notion of minimal solutions of (1.21). Let us denote

EPII (u, I ) =
∫
I

[
1

2
|u′|2 + 1

2
su2 + 1

2
u4 + αu

]

By definition a solution of (1.21) is minimal if

EPII (y, supp φ) ≤ EPII (y + φ, supp φ)

for all φ ∈ C∞
0 (R). This notion of minimality is standard for many problems in which the

energy of a localized solution is actually infinite due to non compactness of the domain.

Theorem 1.2 (Local profile of the global minimizer) Let v be the global minimizer of E for
a ≥ 0, let μ1 := μ′(ξ) < 0, and let

w±(s) = ±2−1/2(−μ1ε)
−1/3v

(
±ξ ± ε2/3 s

(−μ1)1/3

)
.

As ε → 0, the function w± converges in C1
loc(R) up to subsequence, to a bounded at ∞,

minimal solution of (1.21) with α = a f (ξ)√
2μ1

< 0.

In order to be more precise about the limit of w± we state:

Theorem 1.3 (A generalisation of the Hastings–McLeod result) The following statements
hold.

(i) For any α ≤ 01 the second Painlevé equation has a positive minimal solution y, which
is strictly decreasing (y′ < 0) and such that

(a) When α = 0

y(s) ∼ Ai(s), s → ∞
y(s) ∼ √|s|/2, s → −∞ (1.22)

Moreover, this is the only nonnegative minimal solution, bounded at ∞.

1 By changing y by −y, we obtain the solutions of (1.21) corresponding to α ≥ 0.
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(b) When α < 0

y(s) ∼ |α|
s

, s → ∞
y(s) ∼ √|s|/2, s → −∞ (1.23)

(ii) When α < 0 and y is a minimal solution bounded at ∞, such that it vanishes at s = s̄
then

y(s) ∼ |α|
s

, s → ∞
y(s) ∼ −√|s|/2, s → −∞ (1.24)

From this we have as a corollary:

Corollary 1.4 If v is the global minimizer of E for a > 0 and if v ≥ 0 on [0,∞) (resp.
v ≤ 0 on (−∞, 0]), then w+ (resp. w−) converges to the solution y, described in Theorem
1.3 (i).

We recall that when α = 0 existence of a positive solution was proven in [22] by Hastings
and McLeod. In [15] the notion of the generalized Hastings–McLeod solutions was introduced
and the following was shown about them: when −1/2 < α < 0 there is a sign changing
solution and when α < −1/2 there is a positive solution (the constant α in [15] is taken
with opposite sign, we adopt their result to our notation). Our theorem states that the positive
solution exists in fact for all α. It should also be mentioned that in [38] another proof of
existence of the sign changing solutions has been given. Together with numerical simulations
it seems to suggest that the range of α for which the sign changing solution exists is bigger
than then one given in [15].

Part (i) (a) of Theorem 1.3 characterizes the Hastings–McLeod solution (α = 0) as
minimal. This property holds also for solutions described in part (i) (b) of this theorem and it
explains why they are energetically privileged in the boundary layer behaviour seen in various
physical systems. The minimality property holds for H(x) = tanh(x/

√
2) in the Allen-Cahn

equation and the vortex of degree ±1 in the Ginzburg–Landau theory and it appears to be
a universal fact about topologically nontrivial and physically relevant defects. On the basis
of of numerical simulations of the global minimizers of E and existence results in [15] and
[38] we expect that minimal solution described in Theorem 1.3 (ii) coincide with the sign
changing, bounded at ∞ solution of the Painlevé equation.

In the rest of this paper we give proofs of the results stated above.

2 Proof of Theorem 1.1

Step 1 (Existence of a global minimizer)

Lemma 2.1 There exists v ∈ H1(R) such that E(v) = minH1(R) E. As a consequence, v is
a classical solution of (1.14).

Proof We first show that inf{ E(u) : u ∈ H1
loc(R) } > −∞. To see this, we regroup the

last three terms in the integral of E(u). Setting Iη := {x ∈ R : μ(x) + η > 0}, for η > 0
sufficiently small such that Iη is bounded, we have

− 1

2ε
μ(x)u2 + 1

8ε
|u|4 < 0 ⇐⇒ u2 < 4μ �⇒ x ∈ Iη,
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thus

− 1

2ε
μ(x)u2 + 1

8ε
|u|4 ≥ −2

ε
‖μ‖2

L∞ χη,

where χη is the characteristic function of Iη. On the other hand,

1

8ε
|u|4 − a f (x)u < 0 �⇒ |u|3 ≤ 8aε| f | �⇒ | f u| ≤ (8aε)1/3| f |4/3,

thus

1

8ε
|u|4 − a f (x)u ≥ −a(8aε)1/3| f |4/3.

Next, we notice that E(u) ∈ R for every u ∈ H1(R), thanks to the imbedding H1(R) ⊂
L p(R), for 2 ≤ p ≤ ∞. Now, let m := infH1 E > −∞, and let un be a sequence such that
E(un) → m. Repeating the previous computation, we can bound∫

R

ε

2
|u′

n |2 + η

2ε
u2
n = E(un) +

∫
R

1

2ε
(μ(x) + η)u2

n − 1

4ε
|un |4 + a f (x)un

≤ E(un) + 2

ε
(‖μ‖L∞ + η)2|Iη| + a(8aε)1/3

∫
R

| f |4/3.

From this expression it follows that ‖un‖H1(R) is bounded. As a consequence, for a subse-
quence still called un, un ⇀ v weakly in H1, and thanks to a diagonal argument we also
have un → v in L2

loc, and almost everywhere in R. Finally, by lower semicontinuity∫
R

|v′|2 ≤ lim inf
n→∞

∫
R

|u′
n |2,

and by Fatou’s Lemma we have∫
R

|v|4 ≤ lim inf
n→∞

∫
R

|un |4, and
∫

μ≤0
− 1

2ε
μv2 ≤ lim inf

n→∞

∫
μ≤0

− 1

2ε
μu2

n .

To conclude, it is clear that∫
μ>0

− 1

2ε
μv2 = lim

n→∞

∫
μ>0

− 1

2ε
μu2

n,

thus m ≤ E(v) ≤ lim infn→∞ E(un) = m. ��
Step 2 (Proof of (i))

Proof When a = 0, we have E(|v|) = E(v) since E depends on the square of v or its
derivative, in particular |v| is also a minimizer and a smooth solution of the Euler-Lagrange
equation. Now suppose that v(x0) = 0 for some x0. Then, |v| has a minimum at x0, and
|v|(x0) = |v|′(x0) = 0. By the uniqueness result for O.D.E., it follows that v ≡ 0. However,
this situation does not occur for ε � 1. Indeed, by choosing an appropriate test function φ

with supp φ ⊂ (−ξ, ξ), one can see that E(φ) < 0 for ε � 1 (take for instance φ = √
μ+η

where η is a suitable cut off function supported in (−ξ, ξ)). Thus v is positive up to change
of v by −v. Finally, we notice that E(v, [0,∞)) = E(v, (−∞, 0]), since otherwise we can
construct a function in H1 with smaller energy than v. As a consequence, ṽ(x) = v(|x |) is
also a minimizer, and since ṽ = v on [0,∞), it follows by the uniqueness result for O.D.E.
that ṽ ≡ v. ��
Step 3 (Uniform bounds)
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Lemma 2.2 For ε and a belonging to a bounded interval, let uε,a be a solution of (1.14)
converging to 0 at ±∞. Then, the solutions uε,a are uniformly bounded.

Proof Since | f |, μ, ε, a are bounded (see 1.12), the real roots of the cubic equation (1.20)
belong to a bounded interval, for all values of x, ε, a (see Figure 1).

If u := uε,a takes positive values, then it attains its maximum 0 ≤ maxR u = u(x0), at a
point x0 ∈ R. Since

0 ≥ ε2u′′(x0) = u3(x0) − μ(x0)u(x0) − εa f (x0),

we can see that u(x0) is uniformly bounded above. In the same way, we prove the uniform
lower bound. ��
Step 4 (Proof of (ii))

Claim 1 When a > 0, the global minimizer v has at most one zero, denoted by x̄ . Further-
more, v(x) > 0,∀x > x̄ , and v(x) < 0,∀x < x̄ .

Proof of Claim 1 Let x̄ ≥ 0 be a zero of v. If v(x1) < 0 for some x1 > x̄ , then E(v, [x̄,∞) >

E(|v|, [x̄,∞)), which is a contradiction. Now, if v(x2) = 0 for some x2 > x̄ , then according
to what precedes v has a minimum at x2. It follows that v(x2) = v′(x2) = 0, and v′′(x2) ≥ 0,
which is impossible, since by (1.14) we have: εv′′(x2) = −a f (x2) < 0. Thus we have proved
that v(x̄) = 0, with x̄ ≥ 0, implies that v(x) > 0,∀x > x̄ . Thanks to the previous argument,
we also see that v cannot have another zero in the interval [0,∞). In the same way, one can
show that v has at most one zero ȳ in the interval (−∞, 0]. Furthermore, v(ȳ) = 0, with
ȳ ≤ 0, implies that v(x) < 0,∀x < ȳ. To complete the proof, it remains to exclude the case
where v(ȳ) = v(x̄) = 0, with ȳ < 0 < x̄ . In this case, we have either v > 0 or v < 0 in the
interval (ȳ, x̄). Assuming the former we see that v has a minimum at x̄ , which is impossible
by the argument at the beginning of the proof. The second statement of Claim 1 follows by
a similar argument. ��
Claim 2 If ε > 0 and a > 0 remain in a bounded interval, there exists a constant δ > 0
such that v has a unique zero x̄ , when ε

a < δ. In addition, |x̄ | ≤ ξ + O(
√

ε/a).

Proof of Claim 2 Suppose that x0 < −ξ is such that v(x0) > 0. We are first going to show
that v′(x0) > 0. Indeed, suppose by contradiction that v′(x0) ≤ 0. Setting

m := inf{x < x0 : v ≥ 0 on [x, x0]},
one can see by (1.14), that v is convex on the interval (m, x0], and thus v ≥ v(x0) on (m, x0].
It follows that m = −∞, which is a contradiction since lim−∞ v = 0. This proves our claim.
Now, let M > 0 be the constant (cf. Lemma 2.2), such that |vε,a | ≤ M when ε and a remain
bounded, and let m′ = min[−ξ−1,−ξ ](− f ). According to Claim 1, we have v > 0 on the
interval [x0,−ξ ], thus in view of (1.14) we have v′′ ≥ − a

ε
f on [x0,−ξ ]. In particular, for

any x0 ∈ [−ξ − 1,−ξ ] such that v(x0) > 0, we obtain

M ≥ v(−ξ) − v(x0) ≥ m′ a
ε

(ξ + x0)
2

2
. (2.1)

From this inequality, we see by taking δ = m′
2M , that if ε

a < δ, then we cannot have x0 =
−ξ − 1, or in other words v(−ξ − 1) ≤ 0. Repeating the same analysis for x0 > ξ , we also
deduce that if ε

a < δ then v(ξ + 1) ≥ 0. Thus, the existence of a zero of v in the interval
[−ξ − 1, ξ + 1] is ensured when ε

a < δ. This zero denoted by x̄ which is unique by Claim
1, satisfies in view of (2.1): |x̄ | ≤ ξ + O(

√
ε/a). ��
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Step 5 (Upper bound of the renormalized energy)

The minimum of the energy defined in (1.13) is nonpositive and tends to −∞ as ε → 0.
Since we are interested in the behavior of the minimizers as ε → 0, it is useful to define a
renormalized energy, which is obtained by adding to (1.13) a suitable term so that the result
is bounded from below and above by an ε independent constant. We define the renormalized
energy as

E(u) := E(u) +
∫

|x |<ξ

μ2

4ε
=

∫
R

ε

2
|u′|2 +

∫
|x |<ξ

(u2 − μ)2

4ε

+
∫

|x |>ξ

u2(u2 − 2μ)

4ε
−

∫
R

a f u, (2.2)

and claim the bound

lim sup
ε→0

E(vε,a) ≤ min
(

0,
2
√

2

3
(μ(0))3/2 −

∫ ξ

−ξ

a| f |√μ
)
. (2.3)

Proof of (2.3) Let us consider the C1 piecewise function:

φ(x) =
{√

μ(x) for |x | ≤ ξ − ε,

kεε
1/2e− |x |−ξ

ε for |x | ≥ ξ − ε,

with kε defined by kεε
1/2e = √

μ(ξ − ε) �⇒ kε = O(1). Since φ ∈ H1(R), it is clear
that E(v) ≤ E(φ). We check that E(φ) = O(ε ln(ε)), since it is the sum of the following
integrals:

∫
|x |≤ξ−ε

ε

2

|μ′|2
4μ

= O(ε| ln ε|),
∫

ξ−ε≤|x |≤ξ

μ2

4ε
= O(ε2),

E(φ, (−∞,−ξ + ε]) + E(φ, [ξ − ε,∞)) = O(ε).

Next, we repeat the previous computation by considering another C1 piecewise function:

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−kεε
1/2e

x+ξ
ε for x ≤ −ξ + ε,

−√
μ(x) for − ξ + ε ≤ x ≤ −ζεε,

lε tanh
(
x
ε

√
μ(0)

2

)
for |x | ≤ ζεε,√

μ(x) for ζεε ≤ x ≤ ξ − ε,

kεε
1/2e− x−ξ

ε for x ≥ ξ − ε,

with

ζε = − ln ε, kε as above,

lε tanh
(
ζε

√
μ(0)

2

)
= √

μ(ζεε) �⇒ lim
ε→0

lε = √
μ(0),

l2ε
μ(0)

= 1 + O(εγ ), for some 0 < γ < 1.

Since ψ ∈ H1(R), we have E(v) ≤ E(ψ). We can check that

lim
ε→0

E(ψ) → 2
√

2

3
(μ(0))3/2 −

∫ ξ

−ξ

a| f |√μ. (2.4)
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Indeed, setting ψ̃(s) = √
μ(0) tanh

(
s
√

μ(0)
2

)
, E(ψ) is the sum of the following integrals:

E(ψ, (−∞,−ξ + ε]) + E(ψ, [ξ − ε,∞)) = O(ε),∫
ζεε<|x |≤ξ−ε

ε

2

|μ′|2
4μ

= O(ε| ln ε|),
∫

ξ−ε≤|x |≤ξ

μ2

4ε
= O(ε2),

−
∫

ζεε<|x |<ξ−ε

a| f |√μ → −
∫

|x |<ξ

a| f |√μ,

∫
|x |≤ζεε

μ2

4ε
=

∫
|x |≤ζεε

μ2(0)

4ε
+ O(ζ 2

ε ε),

∫
|x |<ζεε

ε

2
|ψ ′|2 = l2ε

μ(0)

∫
|s|<ζε

1

2
|ψ̃ ′|2 =

∫
|s|<ζε

1

2
|ψ̃ ′|2 + O(ζεε

γ ),

−
∫

|x |<ζεε

μ

2ε
ψ2 = −

∫
|x |<ζεε

μ(0)

2ε
ψ2 + O(ζ 2

ε ε)

= − l2ε
μ(0)

∫
|s|<ζε

μ(0)

2
ψ̃2 + O(ζ 2

ε ε)

= −
∫

|s|<ζε

μ(0)

2
ψ̃2 + O(ζεε

γ ),

∫
|x |<ζεε

1

4ε
|ψ |4 = l4ε

(μ(0))2

∫
|s|<ζε

1

4
|ψ̃ |4 =

∫
|s|<ζε

1

4
|ψ̃ |4 + O(ζεε

γ ),

−
∫

|x |<ζεε

a f ψ = O(ζεε).

Gathering the previous Eq. (2.4) follows immediately. ��

Step 6 Let a > 0, and let vε,a be a global minimizer. Up to the odd symmetry we may assume
that v is nonnegative on [0,∞). Setting

a∗ := inf
x∈(−ξ,0]

√
2(μ(x))3/2

3
∫ x
−ξ

| f |√μ
∈ (0,∞),

and

a∗ := sup
x∈[−ξ,0)

√
2
(
(μ(0))3/2 − (μ(x))3/2

)
3

∫ 0
x | f |√μ

∈ [a∗,+∞],

we have x̄ → −ξ as ε → 0, and a ∈ (0, a∗), while x̄ → 0 as ε → 0, and a > a∗. In the
particular case where f = −μ′

2 , we have a∗ = a∗ = √
2.

Proof Let us consider a sequence εn → 0, let a > 0, and suppose that x̄n := x̄εn ,a → l ∈
(−ξ, ξ), as n → ∞ (cf. (1.15)). We rescale v by setting ṽn(s) = vεn ,a(x̄n + sεn). Clearly,
ṽ′′
n (s) = ε2

nv
′′
εn ,a(x̄n + sεn). As a consequence of Lemma 2.2 and (1.14), the functions ṽn are

uniformly bounded up to the second derivatives. Thus, we can apply the theorem of Ascoli,
via a diagonal argument, and show that for a subsequence still called ṽn, ṽn converges in
C1

loc(R) to a function Ṽ . Now, we are going to determine Ṽ . For this purpose, we introduce
the rescaled energy
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Ẽn(ũ) =
∫
R

(1

2
|ũ′(s)|2 − 1

2
μ(x̄n + sεn)ũ

2(s)

+1

4
|ũ|4(s) − εna f (x̄n + sεn)ũ(s)

)
ds = E(un),

where we have set ũ(s) = un(x̄n + sεn) i.e. un(x) = ũ
( x−x̄n

εn

)
. Let ξ̃ be a test function with

support in the compact interval J . We have Ẽn(ṽn + ξ̃ , J ) ≥ Ẽn(ṽn, J ), and at the limit
G0(Ṽ + ξ̃ , J ) ≥ G0(Ṽ , J ), where

G0(φ, J ) =
∫
J

[
1

2
|φ′|2 − 1

2
μ(l)φ2 + 1

4
|φ|4

]
,

or equivalently G(Ṽ + ξ̃ , J ) ≥ G(Ṽ , J ), where

G(φ, J ) =
∫
J

[
1

2
|φ′|2 − 1

2
μ(l)φ2 + 1

4
|φ|4 + (μ(l))2

4

]

=
∫
J

[
1

2
|φ′|2 + 1

4
(φ2 − μ(l))2

]
. (2.5)

Thus, we deduce that Ṽ is a bounded minimal solution of the O.D.E. associated to the
functional (2.5):

Ṽ ′′(s) − (Ṽ 2(s) − μ(l))Ṽ (s) = 0, (2.6)

and since we have Ṽ (0) = 0, and Ṽ (s) ≥ 0,∀s ≥ 0, we obtain Ṽ (s) =√
μ(l) tanh(s

√
μ(l)/2) (recall l ∈ (−ξ, ξ)). So far we have proved that

lim
n→∞ v(x̄n + εns) = √

μ(l) tanh(s
√

μ(l)/2), in the C1
loc sense. (2.7)

Similarly, one can show that

lim
n→∞ v(x + εns) =

⎧⎪⎨
⎪⎩

√
μ(x) for l < x < ξ,

−√
μ(x) for − ξ < x < l,

0 for |x | ≥ ξ,

in the C1
loc sense. (2.8)

Next, we compute a lower bound of the renormalized energy of vn , by examining each
integral appearing in the definition of E (cf. (2.2)). In view of Lemmas 2.2 and (2.8), we have
by dominated convergence

lim
n→∞ −

∫
R

a f vn =
∫ l

−ξ

a f
√

μ −
∫ ξ

l
a f

√
μ.

On the other hand, it is clear that

0 ≤
∫

|x |>ξ

v2
n(v

2
n − 2μ)

4ε
,

and ∫
R

(
ε

2
|v′

n |2 + χ(−ξ,ξ)

(v2
n − μ)2

4ε

)

=
∫
R

(
1

2
|ṽ′

n(s)|2 + χ
(−(ξ+x̄n)ε

−1
n ,(ξ−x̄n)ε

−1
n )

(s)
(ṽ2

n(s) − μ(x̄n + sεn))2

4

)
ds =: Ln,
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where χ is the characteristic function. Finally, by Fatou’s Lemma, we obtain

lim inf
n→∞ Ln ≥

∫
R

lim inf
n→∞

(
1

2
|ṽ′

n(s)|2 + χ
(−(ξ+x̄n)ε

−1
n ,(ξ−x̄n)ε

−1
n )

(s)

(ṽ2
n(s) − μ(x̄n + sεn))2

4

)
= 2

√
2

3
(μ(l))3/2.

Thus,

lim inf
n→∞ E(vn) ≥ 2

√
2

3
(μ(l))3/2 +

∫ l

−ξ

a f
√

μ −
∫ ξ

l
a f

√
μ.

To conclude, we are going to compare the above lower bound with the upper bound (2.3),
and deduce the convergence of the zero of the minimizer according to the value of a. We first

check that a∗ > 0. Let ψ : [−ξ, 0] � x �→ ψ(x) =
√

2
3 (μ(x))3/2 − a

∫ x
−ξ

| f |√μ. There
exists a1 such that for 0 < a < a1 we have ψ ′ > 0 on a small interval (−ξ,−ξ + γ ], with
γ > 0. Also, there existsa2 such that for 0 < a < a2, we have ψ > 0 on [−ξ+γ, 0]. Thus, we

can see that a∗ ≥ min(a1, a2). Furthermore, a∗ ≤
√

2(μ(0))3/2

3
∫ 0
−ξ | f |√μ

≤ a∗. Now, if the minimizers

vn are nonnegative on [0,∞), it follows that l ∈ [−ξ, 0], and that lim infn→∞ E(vn) ≥
2
√

2
3 (μ(l))3/2 − 2

∫ l
−ξ

a| f |√μ > 0, for l ∈ (−ξ, 0] and a ∈ (0, a∗). In view of (2.3) in Step
5, this situation does not occur, hence x̄ε,a → −ξ as ε → 0, and a ∈ (0, a∗). Similarly,

lim infn→∞ E(vn) ≥ 2
√

2
3 (μ(l))3/2 − 2

∫ l
−ξ

a| f |√μ > 2
√

2
3 (μ(0))3/2 − 2

∫ 0
−ξ

a| f |√μ, for

l ∈ [−ξ, 0) and a > a∗, since we have a > a∗ ≥
√

2
(
(μ(0))3/2−(μ(l))3/2

)
3

∫ 0
l | f |√μ

,∀l ∈ [−ξ, 0).

Again, by (2.3), this situation does not occur, hence x̄ε,a → 0 as ε → 0, and a > a∗. When

f = −μ′
2 , an easy computation shows that a∗ = a∗ = √

2. Indeed, in this case we check that

3
∫ 0
x | f |√μ = 3

∫ 0
x

μ′
2

√
μ = [μ3/2]0

x ,∀x ∈ [−ξ, 0], and 3
∫ x
−ξ

| f |√μ = 3
∫ x
−ξ

μ′
2

√
μ =

[μ3/2]x−ξ = μ3/2(x),∀x ∈ [−ξ, 0]. ��
Step 7 [Proof of (1.17) and (1.18)]

Proof We proceed as in Step 6. For fixed a ≥ 0, and εn → 0, we consider the sequence of
global minimizers vn := vεn ,a , and rescale them by setting ṽn(s) = v(x + εns). Since the
rescaled sequence ṽn is uniformly bounded up to the second derivatives (cf. Lemma 2.2),
we obtain the convergence in C1

loc of a subsequence to a minimal solution Ṽ of the O.D.E.
Ṽ ′′ = W ′(Ṽ ). According to the shape of the potential W , and to the location of the zero of v,
we deduce that Ṽ is either a constant or a heteroclinic connection (cf. [8]). Finally, since the
limit Ṽ is independent of the sequence εn , we obtain the convergence in (1.17) and (1.18),
as ε → 0. ��

3 Proof of Theorems 1.2 and 1.3

Step 1 (Uniform bounds)

Lemma 3.1 For ε � 1 and a belonging to a bounded interval, let uε,a be a solution of
(1.14) converging to 0 at ±∞. Then, there exist a constant K > 0 such that

|uε,a(x)| ≤ K (
√

max(μ(x), 0) + ε1/3), ∀x ∈ R. (3.1)
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As a consequence, the rescaled functions ũ±
ε,a(s) = ± uε,a(±ξ±sε2/3)

ε1/3 are uniformly bounded
on the intervals [s0,∞),∀s0 ∈ R.

Proof For the sake of simplicity we drop the indexes and write u := uε,a . Let M > 0 be the
constant such that |uε,a | is uniformly bounded by M (cf. Lemma 2.2), and let k > 0 be such
that 4μ(ξ + h) < −kh < 8μ(ξ + h), for h ∈ (−δ, 0) (with δ > 0 small). Next, define λ > 1
such that λkδ ≥ M2. Finally, let F := sup f . To prove the uniform upper bound for x ≥ 0,
we utilize the strict convexity of u in the region

D :=
{
(x, y) ∈ [0,∞) × [0,∞) : y >

√
4 max(μ(x), 0) + (4εaF)1/3

}
.

Indeed, one can see that for x ≥ 0, the positive root σ of the cubic equation u3 −
μ(x)u − εa f (x) = 0, satisfies σ(x) − √

μ(x) ≤ |εa f (x)|1/3,∀x ∈ [0, ξ ], and σ(x) ≤
|εa f (x)|1/3,∀x ≥ ξ .

Suppose that there exists x0 ∈ [0, ξ − ε2/3) such that u(x0) ≥ √
8λμ(x0) + (4εaF)1/3.

In view of what precedes we have x0 ∈ (ξ − δ, ξ). In fact, we are going to show that
|ξ − x0| ≤ K ′ε2/3, for a constant K ′ > 0. Our claim is that

u(z) >
√

4μ(z) + (4εaF)1/3, for x0 ≤ z ≤ ξ. (3.2)

Indeed, if u(x ′) ≤ √
4μ(x ′) + (4εaF)1/3, for some x ′ ∈ (x0, ξ ], the curve [0, ξ ] � x →√

kλ(ξ − x)+ (4εaF)1/3, denoted by �, separates the points (x0, u(x0)) and (x ′, u(x ′)). On
the other hand, by construction, the curve � separates also the points (0, u(0)) and (x0, u(x0)).
This implies the existence of an interval [x1, x2], with 0 < x1 < x0 < x2 ≤ ξ , such that

• (xi , u(xi )) belongs to �, and
(
u − (4εaF)1/3

)2
(xi ) = λk(ξ − xi ), for i = 1, 2,

• (x, u(x)) is above �, and
(
u − (4εaF)1/3

)2
(x) ≥ λk(ξ − x), for x ∈ [x1, x2],

• u and also
(
u − (4εaF)1/3

)2 are convex in [x1, x2]
which is clearly impossible. Thus, (3.2) holds, and as a consequence u is convex in [x0, ξ ].
Now, let l := min{x > ξ : u(x) = (4εaF)1/3}. Thanks again to the convexity of u in the
region D, we see that

u(x) ≤ (4εaF)1/3, ∀x ≥ l.

In addition, u is convex and decreasing in the interval [x0, l], since u′(l) ≤ 0. Our second
claim is that

ε2u′′ − u3

2
= u3

2
− μu − εa f ≥ 0, on the interval [x0, l].

This is true for x ∈ [ξ, l], since u3

2 ≥ 2εa f , and −μu ≥ 0. We also check that when
x ∈ [x0, ξ ]:

u2 ≥ 4μ + (4εaF)2/3 (by (3.2)) ⇒ u

2
(u2 − 2μ) ≥ μu + (4εaF)2/3 u

2
≥ 2εaF,

which establishes the second claim. Next, we obtain on the interval [x0, l] : ε2u′′u′− u3u′
2 ≤ 0,

which implies that the function [x0, l] � x → 4ε2|u′|2 − u4 is decreasing. Furthermore,
4ε2|u′|2 − u4 ≥ −u4(l) = −(4εaF)4/3, and on the interval [x0, l) we have:

4ε2|u′|2 ≥ u4 − (4εaF)4/3 ≥ (u − (4εaF)1/3)4 ⇒ −u′

(u − (4εaF)1/3)2 ≥ 1

2ε
.
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An integration of the latter inequality over the interval [x0, ξ −ε2/3] gives: ε1/3

u(ξ−ε2/3)−(4εaF)1/3

≥ (ξ−ε2/3−x0)

2ε2/3 , and since u(ξ−ε2/3)−(4εaF)1/3

ε1/3 >

√
4μ(ξ−ε2/3)

ε2/3 ≥ K ′′ > 0, by (3.2), we deduce

that ξ − x0 ≤ K ′ε2/3, with K ′ = 1 + 2
K ′′ . As a consequence, we have proved the upper

bounds:

u(x) ≤
{√

8λμ(x) + (4εaF)1/3 for x ∈ [0, ξ − K ′ε2/3],√
8λμ(ξ − K ′ε2/3) + (4εaF)1/3 for x ∈ [ξ − K ′ε2/3,∞).

(3.3)

The proof of the upper bound for x ≤ 0 is similar and simpler, since instead of D, we can
consider the region

D′ :=
{
(x, y) ∈ (−∞, 0] × [0,∞) : y >

√
4 max(μ(x), 0)

}
,

where the solutions are strictly convex. Finally, the lower bound follows from the odd sym-
metry û(x) = −u(−x). This completes the proof of (3.1). The uniform bounds for ũ± are
straightforward. ��
Step 2 (Proof of Theorems 1.2 and 1.3)

Proof We rescale the global minimizers v as in Lemma 3.1 by setting ṽ±
ε,a(s) =

± vε,a(±ξ±sε2/3)

ε1/3 . Without loss of generality we consider them only in a neighborhood of

ξ , and write ṽ := ṽ+
ε,a . Clearly ṽ′′(s) = εv′′(ξ + sε2/3), thus,

ṽ′′(s) + μ(ξ + sε2/3)

ε2/3 ṽ(s) − ṽ3(s) + a f (ξ + sε2/3) = 0, ∀s ∈ R. (3.4)

Writing μ(ξ + h) = μ1h + hA(h), with μ1 := μ′(ξ) < 0, A ∈ C(R), and A(0) = 0, we
obtain

ṽ′′(s) + (μ1 + A(sε2/3))sṽ(s) − ṽ3(s) + a f (ξ + sε2/3) = 0, ∀s ∈ R. (3.5)

Next, we define the rescaled energy by

Ẽ(ũ) =
∫
R

(
1

2
|ũ′(s)|2 − μ(ξ + sε2/3)

2ε2/3 ũ2(s)

+ 1

4
|ũ|4(s) − a f (ξ + sε2/3)ũ(s)

)
ds. (3.6)

With this definition Ẽ(ũ) = 1
ε
E(u). From Lemma 3.1 and (3.5), it follows that ṽ′′, and also

ṽ′, are uniformly bounded on compact intervals.2 Thanks to these uniform bounds, we can
reproduce the arguments in the Proof of Theorem 1.1, to obtain the convergence of ṽε to a
minimal solution solution Ṽ of the O.D.E.

Ṽ ′′(s) + μ1sṼ (s) − Ṽ 3(s) + a f (ξ) = 0, ∀s ∈ R, (3.7)

which is associated to the functional

Ẽ0(φ, J ) =
∫
J

(
1

2
|φ′(s)|2 − μ1

2
sφ2(s) + 1

4
φ4(s) − a f (ξ)φ(s)

)
ds. (3.8)

2 By differentiating (3.5) we can also obtain the boundedness of ṽ′′′ on compact intervals (provided f ∈
C1(R)). Then, the convergence in Theorem 1.2 can be improved to C2 convergence on compacts.
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Setting y(s) := 1√
2(−μ1)1/3 Ṽ

( s
(−μ1)1/3

)
, (3.7) reduces to (1.21) with α = a f (ξ)√

2μ1
, and y is still

a minimal solution of (1.21) bounded at ∞. By taking global minimizers v nonnegative on
[0,∞), it is clear that at the limit we obtain Ṽ ≥ 0, and y ≥ 0. Lemmas 4.2, 4.3 and 4.4
whose proofs are postponed for now, show that actually y is positive, strictly decreasing, and
has the asymptotic behavior described in Theorem 1.3 (i) (cf. (1.22) and (1.23)). Finally, if
we take global minimizers v nonpositive on (−∞, 0], we know by Theorem 1.1 (iv) that their
zero x̄ converges to ξ , as ε → 0. However, we are not aware if their limit Ṽ also vanishes.
If so, the minimal solution y has a unique zero s̄, and behaves asymptotically as in (1.24)
(cf. Lemma 4.4). Note that proving that Ṽ vanishes is actually equivalent to establishing the
bound |x̄ε − ξ | = O(ε2/3). The proof of the theorems is complete except for the Lemmas
describing the asymptotic behaviour of the solutions of the Painlevé equation. ��

4 Some lemmas for solutions of the O.D.E. (1.21)

In this section we show Lemmas 4.2, 4.3 and 4.4 announced above. We begin with:

Lemma 4.1 Let us consider, for α < 0, the cubic equation

2y3 + sy + α = 0, ∀s ∈ R, (4.1)

and let s∗ := −6|α
4 |2/3 < 0. Then

• for s > s∗, (4.1) has a unique real root σ+(s), which is positive;
• for s = s∗, (4.1) has a simple zero σ+(s∗) > 0, and a double zero σ−(s∗) = σ0(s∗) =

−|α
4 |1/3 < 0;

• for s < s∗, (4.1) has three simple zeros: σ+(s) > 0, and σ−(s) < σ0(s) < 0.

Moreover,

(i) σ ′+(s) < 0,∀s ∈ R;

(ii) σ+(s) <
|α|
s , for s > 0, and σ+ ∼ |α|

s at +∞;
(iii) σ+(s) >

√|s|/2, for s < 0, and σ+(s) = √|s|/2 + o(1), at −∞;
(iv) σ+ is convex in [0,∞), and concave in a neighborhood of −∞.

Similarly,

(v) the function (−∞, s∗] � s → σ−(s) is strictly increasing;
(vi) σ−(s) > −√|s|/2, for s ≤ s∗, and σ−(s) = −√|s|/2 + o(1), at −∞;

(vii) σ− is convex in a neighborhood of −∞.
(viii) σ0(s) → 0 as s → −∞.

(ix) σ0 is decreasing and concave in a neighborhood of −∞.

Proof The first statement of the Proposition follows by studying the variations and the
extrema of the polynomial in (4.1). Let us prove the properties of σ+. (i) By the implicit
function theorem, it follows that σ+ is differentiable. A computation shows that

σ ′+ = − 1

4σ+ − α

σ 2+

< 0. (4.2)

Next, we notice that 2y3 + sy + α > sy + α ≥ 0, for y ≥ |α|
s , with s > 0, and this proves

the inequality in (ii). Writing σ+(s) = |α|
2σ 2+(s)+s

, we also obtain the equivalence in (ii). To
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see (iii), it is obvious that 2y3 + sy + α < 0, for y = √|s|/2, s < 0. Thus, σ+(s) >
√|s|/2,

for s < 0. In addition,

σ+(s) − √|s|/2 = |α|
2σ+(s)(σ+(s) + √|s|/2)

= o(1).

(iv) Finally, we utilize again (4.2). Setting ψ(s) = 4σ+(s) − α

σ 2+(s)
, we have ψ ′(s) =

2σ ′+(s)
(

2 + α

σ 3+(s)

)
< 0, as s → −∞, and ψ ′(s) > 0 for s > 0. As a consequence,

σ ′+ is decreasing (respectively increasing) in a neighborhood of −∞ (resp. in [0,∞)), and
σ+ is concave (resp. convex) in this neighborhood. The properties of σ− and σ0 are established
in a similar way. ��
Lemma 4.2 Let α < 0, and let y be a solution of (1.21), bounded in a neighborhood of
+∞. Then,

(i) y ≥ σ+ in a neighborhood of ∞,
(ii) σ− ≤ y ≤ σ+ in a neighborhood of −∞,

(iii) the function

θ(s) = |y′(s)|2 − sy2(s) − y4(s) − 2αy(s), s ∈ R (4.3)

is decreasing, and converges to 0 at +∞.
(iv) y ∼ |α|

s , as s → +∞.

Proof (i) Our first claim is that there exists a sequence sn → +∞ such that y(sn) ≥ σ+(sn)
Assume by contradiction that this is not true. Then, y < σ+ on some interval [m,∞), where y
is also concave. Since y is bounded on [m,∞), we deduce that lim+∞ y′ = 0, and y′ ≥ 0 on
[m,∞). Furthermore, lim+∞ y exists, and y < 0 on [m,∞). Now, we notice that by (1.21),
θ ′(s) = −y2 ≤ 0, and thus θ is decreasing. This implies in particular that lims→+∞ sy2(s) =
l ∈ [0,∞]. If l �= 0, it follows from (1.21) that lims→+∞ y′′(s) = −∞, which is impossible,
since y is bounded in a neighborhood of +∞. Therefore, lims→+∞ sy2(s) = 0, and θ(s) ≥
0,∀s ∈ R. As a consequence, we have |y′(s)|2 ≥ sy2(s), and − y′

y ≥ √
s for s > 0.

Integrating this inequality, we obtain that y(s) = O(e− 2
3 s

3/2
) at +∞. By (1.21) again, we

conclude that lims→+∞ y′′(s) = α, which contradicts the fact that y is bounded at +∞. This
establishes our first claim. To finish the proof of (i), let us assume that y(t) < σ+(t), for
some t > sk , with sk such that σ+ is convex on [sk,∞). It follows that there exists an interval
[a, b] such that

• sk ≤ a < t < b ≤ sl (for some l > k),
• y(a) = σ+(a), y(b) = σ+(b), and y(s) < σ+(s),∀s ∈ (a, b).

Clearly, this is impossible since σ+ − y is convex on [a, b]. Thus, we have proved that
y ≥ σ+ in a neighborhood of +∞, where y is also convex. Furthermore, by repeating the
previous arguments, we obtain that lim+∞ y′ = 0 and lims→+∞ sy2(s) = 0. Then, (iii)
follows immediately.

(ii) We proceed as in (i). To show that y ≤ σ+ in a neighborhood of −∞, we first establish
the existence of a sequence sn → −∞ such that y(sn) ≤ σ+(sn). Assume by contradiction
that this is not true. Then, y > σ+ on some interval (−∞,m], where y is also convex. In
addition, y′(s) < 0,∀s ≤ m, since otherwise y would be convex on all R, and lim+∞ y =
+∞. As a consequence, there exists m′ < m, such that y3(s) + 2sy(s) + 4α ≥ 0,∀s ≤ m′.
Indeed, the positive root of the polynomial y3(s) + 2sy(s) + 4α is of order O(

√|s|) at −∞.
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Next, in view of (iii), we obtain |y′(s)|2− y4(s)
2 ≥ y(s)

2 (y3(s)+2sy(s)+4α) ≥ 0,∀s ≤ m′. An

integration of the inequality − y′
y2 ≥ 1√

2
over the interval [s,m′] gives 1

y(m′) ≥ 1
y(m′) − 1

y(s) ≥
m′−s√

2
, and letting s → −∞, we obtain a contradiction. This proves the existence of the

sequence sn . To deduce that y ≤ σ+ in a neighborhood of −∞, just repeat the convexity
argument in (i). Finally, the proof of the bound y ≥ σ− is identical.

(iv) Let λ > 1 be fixed, let [m,∞) be an interval where y is convex, and suppose there
exists a sequence m < sk → ∞ such that y(sk) > λ2 |α|

sk
. We notice that the inequality

λ2 |α|
sk

≥ λ
|α|
s holds for s ≥ sk

λ
. Since y is decreasing on [m,∞), it follows that y(s) ≥ λ

|α|
s

for s ∈ [
max

(
m,

sk
λ

)
, sk

]
. In particular, by Lemma 4.1 (ii), we obtain on each interval[

max
(
m,

sk
λ

)
, sk

]
:

2y3(s) + sy(s) + λα > 0 ⇔ 2y3(s) + sy(s) + α > (λ − 1)|α|
since the positive root of the cubic equation 2y3 + sy + λα = 0 is smaller than λ

|α|
s . As

a consequence
∫ ∞
m y′′(s)ds = ∫ ∞

m (2y3(s) + sy(s) + α)ds = ∞, which is a contradiction.
Thus, we have proved that for every λ > 1, there exists a neighborhood of +∞ where
σ+ ≤ y ≤ λ2 |α|

s . This implies that y ∼ |α|
s , as s → +∞. ��

Lemma 4.3 Let α = 0, and let y ≥ 0 be a minimal solution of (1.21), bounded at ∞. Then,
y coincides with the solution described in Theorem 1.3 (i): it is positive, strictly decreasing,
and satisfies (1.22).

Proof Let us show that y > 0. If y(s0) = 0 for some s0 ∈ R, then y has a local minimum
at s0, and y ≡ 0 by the uniqueness result for O.D.E. But this is excluded since a solution
of (1.21) which is bounded in a neighborhood of −∞, is not minimal. To see this, we recall
that for a minimal solution y, the second variation of the energy is nonnegative:∫

R

(|φ′(s)|2 + (6y2(s) + s)φ2(s))ds ≥ 0,∀φ ∈ C1
0 (R), (4.4)

Clearly (4.4) does not hold when y is bounded and we take φ(s) = φ0(s + h), with h → ∞,
and φ0 ∈ C1

0 (R) fixed. We also notice that lims→∞ y′(s) = 0, and y′(s) ≤ 0,∀s ≥ 0,
since y is convex and bounded on [0,∞). To obtain the asymptotic convergence at +∞,
we establish, as in Lemma 4.2 (iii), that the function θ(s) = |y′(s)|2 − sy2(s) − y4(s) is
decreasing, and converges to 0 at +∞. As a consequence, − y′

y ≥ √
s, ∀s ≥ 0, and thus

y(s) ≤ y(0)e− 2
3 s

3/2
, ∀s ≥ 0. Now, we refer to [22] where a complete classification of

the solutions of (1.21) converging to 0 at +∞ is established. It is known that among these
solutions, only the one described in Theorem 1.3 (i) does not converge to 0 at −∞. Clearly,
y does not converge to 0 at −∞, since it is not bounded by minimality, thus y coincides with
the aforementioned solution. ��
Lemma 4.4 Let α < 0, and let y be a solution of (1.21), bounded at ∞. Then,

(i) if y ≥ 0, we have y > 0, y′ < 0, and y(s) = √|s|/2 + o(1), as s → −∞.
(ii) if y is minimal and vanishes at s̄, we have y(s) > 0 ⇔ s > s̄, y(s) < 0 ⇔ s < s̄, and

y(s) = −√|s|/2 + o(1), as s → −∞.

Proof (i) If y(s0) = 0 for some s0 ∈ R, then y′′(s0) ≥ 0, in contradiction with (1.21) that
gives y′′(s0) = α < 0. Thus, y > 0. To show that y′ < 0, we notice, that y(s) ≥ σ+(s) ⇒
y′(s) < 0. Indeed, if y(s) ≥ σ+(s), and y′(s) ≥ 0, then y would be strictly convex in the
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interval (s,+∞), since σ ′+ < 0, and this would contradict the boundedness of y in [s,+∞).
Similarly, we have that 0 < y(s) < σ+(s) ⇒ y′(s) < 0. Here again, 0 < y(s) < σ+(s),
and y′(s) ≥ 0, imply that y is strictly concave in the interval (−∞, s], in contradiction with
y > 0. Now, let λ > 0 be fixed, and suppose there exists a sequence sk → −∞ such that
0 ≤ y(sk) <

√|sk |/2 − λ. Since y′ is bounded (in view of the bound 0 ≤ y ≤ σ+, and the
concavity of y), we notice that 0 ≤ y(s) ≤ √|sk |/2 ≤ √|s|/2, for s ∈ [sk − l, sk], with l
independent of k. In particular, by Lemma 4.1 (iii), we obtain on each interval [sk − l, sk]:

2y3(s) + sy(s) + α ≤ α.

As a consequence
∫ s1
−∞ y′′(s)ds = ∫ s1

−∞(2y3(s) + sy(s) + α)ds = −∞, which is a con-
tradiction. Thus, we have proved that for every λ > 0, there exists a neighborhood of −∞
where σ+ ≥ y ≥ √|s|/2 − λ. This implies that y = √|s|/2 + o(1), as s → −∞.

(ii) If y is minimal and vanishes at s̄, it is easy to see that this zero is unique. Indeed,
if y also vanishes at s̄′ < s̄, we have y ≥ 0 on [s̄′, s̄], since otherwise we would obtain
EPII (y, [s̄′, s̄]) > EPII (|y|, [s̄′, s̄]). It follows from Lemma 4.2 (i) that s̄ is a local minimum
of y in contradiction with (1.21). Another consequence of the minimality of y, is the inequality
(4.4), which implies that y is not bounded at −∞ (cf. Lemma 4.3). Let l < 0 be fixed, and let
sk → −∞ be a sequence such that y(sk) < l. We notice that minu∈[l,0]

( 1
2u

4 + s
2u

2 + αu
)

is attained for u = l, when s < si , with |si | large enough. Thus, if y(s) > l for some s < si ,
we can find an interval [a, b] containing s, such that y(a) = y(b) = l, and Ẽ0(y, [a, b]) >

Ẽ0(min(y, l), [a, b]), which is a contradiction. This proves that y(s) ≤ l for s < si i.e.
lim−∞ y = −∞. It also follows that y is convex in a neighborhood of −∞, since σ− ≤ y ≤
σ0. Utilizing the convexity of y, one can establish as in (i) that y(s) = −√|s|/2 + o(1), as
s → −∞. ��
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