
On Minimizers of the Hamiltonian System
u′′ = ∇W(u) and on the Existence of

Heteroclinic, Homoclinic and Periodic Orbits
PANAGIOTIS ANTONOPOULOS & PANAYOTIS SMYRNELIS

ABSTRACT. In the first part of the paper, we establish two nec-
essary conditions for the existence of bounded one-dimensional
minimizers u: the potential W must have a global minimum
supposed to be 0 without loss of generality, and W(u(x)) → 0
as |x| → ∞. Furthermore, non-constant minimizers connect at
±∞ two distinct components of the set {W = 0}. In the second
part, we prove (when the previous assumptions are satisfied) the
existence of nontrivial minimizers. We also show the existence
of heteroclinic, homoclinic, and periodic orbits in analogy with
the scalar case. Finally, we study the asymptotic convergence of
these solutions.

1. INTRODUCTION

Note that the existence of heteroclinic, homoclinic, and periodic orbits for the
scalar O.D.E.

(1.1) u′′ = W ′(u), u : R→ R, W ∈ C2(R,R),

is textbook material. We recall that if W > 0 in the interval (a−, a+) and
W(a±) = 0, then we have the following:

(i) When W ′(a±) = 0, there exists a solution u : R → (a−, a+) to (1.1) such
that limx→±∞u(x) = a±. It is the heteroclinic connection that is unique
up to translations.

(ii) When W ′(a−) = 0 and W ′(a+) ≠ 0, there exists a unique even solution
u : R→ (a−, a+] to (1.1) such that limx→±∞u(x) = a− and u(0) = a+.
This is the homoclinic connection.
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(iii) When W ′(a−) ≠ 0 and W ′(a+) ≠ 0, there exists a periodic solution
u : R → [a−, a+] to (1.1) such that u(0) = a−, u(T/2) = a+ and
∀x ∈ R: u(x + T) = u(x), u(x + T/2) = u(−x + T/2), for some
T > 0.

In [1], one can find a variational proof of the existence of a heteroclinic connection
for the scalar equation (1.1). The first existence proof of a heteroclinic connection
in the vector case for a double-well potential was given in [11] and [12]. In this
work, the Jacobi principle is used, but somewhat restrictive hypotheses on the
behavior ofW are imposed at the minima. In [3], the heteroclinic problem for the
O.D.E. system

(1.2) u′′ = ∇W(u), u : R → Rm, W ∈ C2(Rm,R),

has also been studied. Under the assumption that the potential W is nonnegative,
vanishes only at two points a+ and a−, and satisfies a monotonicity assumption
in a neighborhood of a±, a solution to system (1.2) connecting a− and a+ at ±∞
was constructed, namely,

(1.3) lim
x→±∞u(x) = a

±.

The approach in [3] is variational, and consists of showing that the heteroclinic
connection is a minimizer of the Action functional (cf. (3.1)) in the class of maps
satisfying the constraint (1.3).

The scope of this paper is to study systematically the connection problem,
and extend the results in [3], where only potential possessing several global min-
ima were considered. In our more general setup (cf. Section 2), by heteroclinic
connection we mean a solution to (1.2) taking its values in a connected compo-
nent Ω of the set {u ∈ Rm | W(u) > 0}, and approaching at ±∞ two distinct
portions of ∂Ω where ∇W(u) = 0. By homoclinic connection we mean an even
solution u to (1.2) approaching at ±∞ the portion of ∂Ω where ∇W(u) = 0,
and such that u(0) ∈ ∂Ω, ∇W(u(0)) ≠ 0. Recall that by the uniqueness result
for O.D.E., ∇W(u(0)) = 0 is excluded. Indeed, since u is even and u′(0) = 0,
note that ∇W(u(0)) = 0 would imply u is constant. According to these defini-
tions, the shape of a connecting orbit u can be very complicated. However, we
will give sufficient conditions on W and ∂Ω to ensure that the limits of u at ±∞
exist (cf. Section 6). In this case, we obtain the usual notion of a heteroclinic orbit
converging at ±∞ to two distinct points a± ∈ ∂Ω where ∇W(a±) = 0.

Assuming that ∂Ω is partitioned into two compact subsets A±, we establish in
one step the following, by particularizing an abstract theorem (cf. Section 4):

(i) The existence of a heteroclinic orbit connecting A± (when ∇W(u) = 0
on A±),

(ii) The existence of a homoclinic orbit connecting A± (when ∇W(u) = 0
on A−, and ∇W(u) ≠ 0 on A+),
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(iii) The existence of a periodic orbit connecting A± (when ∇W(u) ≠ 0 on
A±).

As far as we know, (ii) and (iii) have not appeared in the literature. We can see
that the conditions that for system (1.2) ensure the existence of connecting orbits
are similar to the corresponding ones for the scalar equation (1.1). Despite this
analogy, the vector case is much more complex, and we mention in Section 2 some
new phenomena that may occur.

We also emphasize the relation between local minimizers and heteroclinic con-
nections (cf. Section 3). We show that bounded local minimizers exist only for
potentials possessing a global minimum, supposed to be 0 without loss of gen-
erality. In addition, nontrivial local minimizers take their values in a connected
component Ω of the set {u : Rm | W(u) > 0}, and approach at ±∞ two dis-
tinct portions of ∂Ω. Thus, they are heteroclinic connections according to our
definition.

The plan of the remaining sections is as follows. In Section 4, we prove our
main theorem. Assuming that ∂Ω is partitioned into two compact subsets A±,
we construct a minimizer of the Action in the class of maps satisfying a constraint
similar to (1.3). We follow the approach in [3], and utilize a comparison argument
in [10] (cf. Lemma 4.3) to remove the monotonicity assumption in [3]. In Section
5, we particularize the previous result, according to which of the two hypotheses
∇W(u) = 0 or ∇W(u) ≠ 0 holds on A±. Then, the existence of the aforemen-
tioned connecting orbits is straightforward. Finally, in Section 6, we study the
asymptotic convergence of these solutions, and establish an exponential estimate
under a convexity assumption on W . From this estimate, it follows that the limits
of the heteroclinic and homoclinic connections exist at ±∞. As a consequence, in
many standard situations, these orbits connect two points of ∂Ω.

We point out that phase transition problems for potentials vanishing on sub-
manifolds of Rm have recently been examined in the literature (cf. [4] and [7]).
In particular, Section 2 of [7] is dedicated to minimal connecting orbits of (1.2).
However, in their setup, the authors focus on potentials depending on the distance
from the set {W = 0}.

2. PRELIMINARIES

Let W ∈ C2(Rm,R) be a general potential, and let Ω ≠ Rm be a connected
component of the set {u ∈ Rm | W(u) > 0}. Clearly, W = 0 on ∂Ω. We also
consider the sets

∂Ω0 := {u ∈ ∂Ω | ∇W(u) = 0},
∂Ω≠ := {u ∈ ∂Ω | ∇W(u) ≠ 0},
Z := {u ∈ Rm | W(u) = 0},

and denote by d the Euclidean distance in Rm, by | · | the Euclidean norm,
by · the Euclidean inner product, and by u′ or u̇ the first derivative of a map



1506 PANAGIOTIS ANTONOPOULOS & PANAYOTIS SMYRNELIS

u : R → Rm. In analogy with the scalar case, we give the following definitions of
the heteroclinic, homoclinic, and periodic orbits.

Definition 2.1. Assuming that K± are two closed subsets of ∂Ω0 with K+ ∩
K− = 0, we say that a bounded solution u ∈ C2(R;Ω) to system (1.2) such that
d(u(x),K±)→ 0 as x → ±∞ is a heteroclinic orbit connecting K±.

In particular, if W ≥ 0 and Z := {a1, a2, . . . , aN}, then Ω = Rm \ Z and
∂Ω = ∂Ω0 = Z. By taking, for instance, K− = {a1} and K+ = {a2}, we obtain
the usual notion of a heteroclinic orbit connecting a1 and a2.

Definition 2.2. We use homoclinic orbit to refer to every bounded solution
u ∈ C2(R; Ω̄) to system (1.2) that is even, and such that the following hold:

• u(0) ∈ ∂Ω≠.
• u(x) ∈ Ω⇔ x ≠ 0.
• d(u(x), ∂Ω0)→ 0 as |x| → ∞.

Definition 2.3. Assuming that a± ∈ ∂Ω≠, a+ ≠ a−, we consider a solution
u ∈ C2(R; Ω̄) to system (1.2) such that the following hold:

• u(0) = a−, u(T/2) = a+.
• ∀x ∈ R: u(x + T) = u(x), u(x + T/2) = u(−x + T/2), for some
T > 0.

• u(x) ∈ Ω⇔ x ∉ (T/2)Z.

Here, then, this solution is a periodic orbit connecting a±.

The most typical situations allowing the existence of homoclinic and periodic
orbits are represented in Figure 2.1 (see also Section 5).

ΩΩ

W
W

A− A+A+
a−

a+a+a−

FIGURE 2.1. On the left is a homoclinic orbit connecting a−,
a local minimum ofW , and a+ = u(0) ∈ A+ := ∂Ω≠. Note that
in this picture A− := ∂Ω0 = {a−}. On the right is a periodic
orbit connecting a− and a+. Here, ∂Ω = ∂Ω≠ = A− ∪A+.

We recall that the Hamiltonian H := 1
2 |u′(x)|2 −W(u(x)) of a solution u

to (1.2) is a constant. Clearly, H = 0 for homoclinic and periodic orbits, since
u′(0) = 0 by symmetry, andW(u(0)) = 0. Now, we show that heteroclinic orbits
also satisfy the equipartition relation (2.1).
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Proposition 2.4. Let u ∈ C2(R; Ω̄) be a bounded solution to system (1.2) such
that d(u(x), ∂Ω0)→ 0 as x → −∞. Then,

(2.1)
1
2
|u′(x)|2 = W(u(x)), ∀x ∈ R.

As a consequence of this relation, u(x) ∈ Ω∪ ∂Ω≠, ∀x ∈ R, if the solution u is not
constant.

Proof. SinceW(u(x))→ 0 as x → −∞, we immediately see thatH ≥ 0. Now,
suppose by contradiction that H > 0, and define the function ϕ(x) := |u(x)|2.
By differentiating ϕ, we obtain

ϕ′′(x)=2|u′(x)|2+2u(x)·∇W(u(x))=4H+4W(u(x))+2u(x)·∇W(u(x)).
Since by assumption ∇W(u(x)) → 0 as x → −∞, we deduce that ϕ′′ ≥ 2H
in some interval (−∞, α). As a consequence, ϕ′(x) → −∞ and ϕ(x) → ∞ as
x → −∞, which is impossible. Thus, the equipartition relation is proved. Finally,
if for some x0 ∈ R we have W(u(x0)) = 0 and ∇W(u(x0)) = 0, it follows that
u′(x0) = 0, and by the uniqueness result for O.D.E., u is constant. ❐

Remark 2.5. As we mentioned in the Introduction, new kinds of connecting
orbits may appear in the vector case. The most surprising is the construction in [9]
of a periodic solution to (1.2) connecting the two zeros a± of a nonnegative po-
tential W : R2 → R at finite time (i.e., u(kT) = a+ and u(kT + T/2) = a−,
∀k ∈ Z) and for some period T > 0. This is possible since the inequality
|u′(x)|2 ≤ 2W(u(x)) does not hold in general for bounded solutions to sys-
tem (1.2) (cf. [8], [9]), and consequently it may happen that u′(0) ≠ 0 even if
W(u(0)) = 0. Otherwise, if u′(0) = 0 and u(0) = a+ with W(a+) = 0, the
uniqueness result for O.D.E. implies that u is constant.

Remark 2.6. In a similar way, one can construct a nonnegative potential
W : R2 → R possessing a unique zero a, and a nontrivial solution u to (1.2) such
that u(x) → a, as |x| → ∞. Thus, the condition lim|x|→±∞ d(u(x),Ω0) → 0
does not guarantee that the limits of u at ±∞ are different. This is the reason
why in the definition of the heteroclinic orbit, we imposed the convergence at
±∞ to two distinct portions K± of ∂Ω0. In the scalar case, a nontrivial solution
satisfying limx→−∞u(x) = a (with W(a) = 0 and W(u) > 0, ∀u ≠ a) is strictly
monotonous because of the equipartition relation.

Remark 2.7. The conclusion of Proposition 2.4 does not remain true if we
weaken the hypothesis limx→−∞ d(u(x), ∂Ω0)→ 0 and assume only that

(2.2) lim
x→−∞d(u(x), ∂Ω) → 0.

Indeed, we construct below a bounded solution u ∈ C2(R;Ω) to (1.2) satisfying
(2.2), and such that H > 0. Let us consider the Hamiltonian system

(2.3) u′′ = (|u|2 − 1)u,
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corresponding to the potential G : R2 → R, G(u) = 1
4(|u|2 − 1)2. Its solutions

u : R → R2 ∼ C of the form u(x) = r(x)eiθ(x), with r : R → (0,∞) and
θ : R→ R, are easy to describe since they satisfy

r ′′ = F ′c(r), with Fc(r) = r
4

4
− r

2

2
− c2

2r 2
,(2.4a)

θ′ = c

r 2
,(2.4b)

for a constant c ∈ R. In (2.4a), we recognize the scalar equation (1.1). After
studying the variations of the function Fc , we can deduce the existence of a solu-
tion u(x) = r(x)eiθ(x) to (2.3) such that the following hold:

• r is even, and strictly increasing in the interval [0,∞).
• r(0) > 0 and limx→∞ r(x) = ρ, with ρ < 1 close to 1.
• limx→±∞

1
2 |u′(x)|2 =

1
2(ρ

2 − ρ4) > 0.

Finally, we setW(u) = G(u)− 1
4(ρ

2−1)2, and check that the ball Ω = {u ∈ R2 :
|u| < ρ} is a connected component of the set {W > 0}. Clearly, u is a solution
to u′′ = ∇W(u) satisfying (2.2), and such that H = 1

2 |u′(x)|2 − W(u(x)) =
1
2(ρ

2 − ρ4) > 0.

3. NECESSARY CONDITIONS FOR THE EXISTENCE OF

BOUNDED LOCAL MINIMIZERS

We recall that the solutions u ∈ C2(R;Rm) to system (1.2) are the critical points
of the Action functional:

J[α,β](v) :=
∫ β

α

{
1
2
|v′(x)|2 +W(v(x))

}
dx (with α < β),(3.1)

that is,

d

dλ

∣∣∣
λ=0
J[α,β](u+ λξ) =

∫ β

α
u′(x)ξ′(x)+∇W(u(x))ξ(x)dx = 0,

∀ξ ∈ W 1,2
0 ([α,β];Rm). This is the weak formulation of (1.2).

Local minimizers of (1.2) are solutions satisfying the stronger condition:

J[α,β](u) ≤ J[α,β](u+ ξ), ∀ξ ∈ W 1,2
0 ([α,β];Rm), ∀α < β.

In what follows, we establish necessary conditions for the existence of nontrivial
bounded local minimizers.1

Proposition 3.1. If there exists a local minimizer u ∈ L∞(R;Rm) for system
(1.2), then the potential W has a global minimum that is supposed to be 0 with-
out loss of generality. In addition, JR(u) < ∞, lim|x|→∞W(u(x)) = 0, and
lim|x|→∞ d(u(x), Z) = 0, where Z := {u ∈ Rm | W(u) = 0}.

1Sufficient conditions will be given in Theorem 5.2 below.
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Proof. Since u is bounded, there exists a sequence xn → ∞ (n ∈ N) such
that u(xn) → b ∈ Rm. Suppose by contradiction that W does not have a global
minimum. This implies there exists a ∈ Rm such that W(a)+ ε ≤ min{W(v) :
|v| ≤ ‖u‖L∞(R;Rm)}, for some ε > 0. Next, define
(3.2)

vn(x) =





(1+ x0 − x)u(x0)+ (x − x0)a, for x0 ≤ x ≤ x0 + 1,

a, for x0 + 1 ≤ x ≤ xn − 1,

(xn − x)a+ (x − xn + 1)u(xn), for xn − 1 ≤ x ≤ xn.

On the one hand, we have

J[x0,xn](vn) ≤ W(a)(xn − x0 − 2)+M,

for some constant M independent of n, and on the other hand

J[x0,xn](u) ≥ (W(a)+ ε)(xn − x0).

Since by construction u(x0) = vn(x0) and u(xn) = vn(xn), we deduce (thanks
to the minimality of u) that

(W(a)+ ε)(xn − x0) ≤ W(a)(xn − x0 − 2)+M
-⇒ ε(xn − x0) ≤ −2W(a)+M,

which is impossible. This proves the first statement of the proposition. Next,
assuming that minRmW = 0, we are going to show that JR(u) < ∞. To see this,
consider again the sequence defined in (3.2), with a ∈ Rm such that W(a) = 0.
Since J[x0,xn](u) ≤ J[x0,xn](vn) ≤ M , it is immediate that J[x0,∞)(u) < ∞,
and by a similar argument at −∞ it follows that JR(u) < ∞. Furthermore, u is
uniformly continuous. Indeed, for every x ≤ y we have

|u(y)−u(x)| ≤
∫ y

x
|u̇(t)|dt ≤ (2JR(u))1/2|y − x|1/2.

Finally, if W(u(x)) or d(u(x), Z) do not converge to 0 as |x| → ∞, there exists
a sequence xn → ±∞ such that u(xn)→ b ∈ Rm with W(b) > 0. Thanks to the
uniform continuity of u, we can also see that

∀n ≥ N, ∀x ∈ [xn − δ,xn + δ] : W(u(x)) ≥ W(b)

2
,

for some δ > 0 independent of n. Therefore, we have

∀n ≥ N : J[xn−δ,xn+δ](u) ≥ δW(b).

Since, by passing to a subsequence if necessary, we can assume that the intervals
[xn − δ,xn + δ], n ≥ N are disjoint, this contradicts JR(u) <∞. ❐
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Remark 3.2. If W ≥ 0, every solution u to (1.2) such that JR(u) < ∞
satisfies the equipartion relation (2.1). Indeed, if H = 1

2 |u′(x)|2 −W(u(x)) is a
non-zero constant, writing

JR(u) =
∫

R

{2W(u(x))+H}dx =
∫

R

{|u′(x)|2 −H}dx,

we immediately see that JR(u) is not finite.

Now, we assume that 0 is the global minimum of W . Let us then define
on Z := {u ∈ Rm | W(u) = 0} the equivalence relation u ∼ v, if and only if
there exists a path γ ∈ W 1,2([α,β];Rm) such that γ([α,β]) ⊂ Z, and γ(α) = u,
γ(β) = v. According to the following proposition, if a local minimizeru connects
at −∞ and +∞ the same equivalence class of Z, then it is constant.

Proposition 3.3. LetW be a potential so that minRm W = 0. Ifu ∈ L∞(R;Rm)
is a local minimizer for system (1.2), and if there exist two sequences xn → −∞ and
yn → +∞ such that u(xn) → a− and u(yn) → a+, with a± ∈ Z, a− ∼ a+, then
u is constant.

Proof. Let γ ∈ W 1,2([0, ℓ];Rm) be a path connecting a− = γ(0) and a+ =
γ(ℓ) in Z. We define
(3.3)

vn(x) =





(1+ xn − x)u(xn)+ (x − xn)a−, for xn ≤ x ≤ xn + 1,

γ

(
ℓ(x − xn − 1)
yn − xn − 2

)
, for xn + 1 ≤ x ≤ yn − 1,

(yn − x)a+ + (x −yn + 1)u(yn), for yn − 1 ≤ x ≤ yn,

and compute

J[xn,yn](vn) = o(1) +
ℓ2

2(yn − xn − 2)2

∫ yn−1

xn+1

∣∣∣∣∣γ̇
(
ℓ(x − xn − 1)
yn − xn − 2

)∣∣∣∣∣

2

dx

= o(1) + ℓ

2(yn − xn − 2)

∫ ℓ

0
|γ̇(y)|2 dy = o(1).

Since by construction u(xn) = vn(xn) and u(yn) = vn(yn), we deduce by the
minimality of u that J[xn,yn](u) = o(1). As a consequence, JR(u) = 0 and u is
constant. ❐

Corollary 3.4. IfW is a potential such that minRm W = 0, then every nontrivial,
bounded, local minimizer for system (1.2) is a heteroclinic connection in the sense of
Definition 2.1.

Proof. Let u be a nontrivial, bounded, local minimizer. Because of the equi-
partition relation (cf. Remark 3.2), we know that u takes its values in a connected
component Ω of the set {W > 0}. Let K± be the sets of limit points of u at
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±∞, which are compact since u is bounded. By Proposition 3.1, K± ⊂ ∂Ω. In
addition, since u is not constant, the sets K± are disjoint (cf. Proposition 3.3).
Finally, by the definition of K±, d(u(x),K±) → 0 as x → ±∞, and thus u is a
heteroclinic connection. ❐

Remark 3.5. For m ≥ 2, the 0 level set of the Ginzburg-Landau potential

W(u) = 1
4(|u|2 − 1)2 is the unit sphere that is obviously path connected. By

Proposition 3.3, it follows that, for this potential, the only one-dimensional local
minimizers are the constants of modulus 1. In particular, we see that the solution
u : R → Rm, u(x) = (tanh(x/

√
2),0, . . . ,0) that connects at ±∞ the points

(±1,0, . . . ,0) is minimal only when m = 1.

Remark 3.6. According to Propositions 3.1 and 3.3, nontrivial bounded lo-
cal minimizers u connect at ±∞ distinct components of the zero set of W . The
converse, however, is not true: heteroclinic connections are not always minimal so-
lutions. In what follows, we explain how to construct such a counterexample for a
nonnegative potential H ∈ C∞(R2,R) vanishing only at the points a± = (±1,0),
and such that D2H(a±) is a positive definite matrix. We therefore consider again

the Ginzburg-Landau potential W(u) = 1
4(|u|2 − 1)2 for u ∈ R2 ∼ C. Next,

we compute the Action of the solution u(x) = (tanh(x/
√

2),0) in the interval
[−R,R]:

J[−R,R](u) =
√

2

[
u(R)− (u(R))

3

3

]
→ 2

√
2

3
as R →∞.

We also define the map v(x) = −u(R)eiπ(x+R)/(2R) for x ∈ [−R,R]. By con-
struction, v(±R) = u(±R), and we can see that

J[−R,R](v) = 2RW(u(R))+ |u(R)|2π
2

4R
→ 0 as R →∞.

Thus, for R big enough, J[−R,R](u) > J[−R,R](v), and to complete the proof, we
just have to modify W outside the closed ball of radius u(R) < 1 centered at the
origin. We set H(u1, u2) := W(u) + u2

2ϕ(|u|2), where ϕ ∈ C∞(R, [0,∞)) is
such that

ϕ(t) =
{

0 for t ≤ |u(R)|2 + ε,
1 for 1− ε ≤ t,

and ε > 0 is small enough. Since H(u1,0)=W(u1,0) and (∂H/∂u2)(u1,0)=0,
we can check thatH has all the desired properties, and that u′′ = ∇H(u). Clearly,
u is not a minimal solution of u′′ = ∇H(u), since its action over [−R,R] is
bigger than the action of the competitor v.

4. THE MAIN THEOREM

Recall that Ω ≠ Rm is a connected component of the set {u ∈ Rm | W(u) > 0},
and assume the following:
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(H1) The potential W ∈ C2(Rm,R)2 is such that ∂Ω is partitioned into two
disjoint compact subsets A− and A+. In addition, Rm \ Ω is partitioned
into two disjoint closed sets F±, with ∂F± = A±.

(H2) lim infu∈Ω, |u|→+∞W(u) > 0, if Ω is not bounded.

Ω

Ω

a+ a+

a−a−

A+

A+
A+

A−

A−

FIGURE 4.1. The sets Ω and A±, and the trajectory of the min-
imizer ū. For the sake of simplicity, we assumed that the limits
of ū exist at ±∞.

Let q̄ ∈ (0, d(A−, A+)/2), where d denotes the Euclidean distance, and let
A be defined by

A=
{
u ∈ W 1,2

loc (R; Ω̄) | d(u(x),A−) ≤ q̄, for x ≤ x−u ,
d(u(x),A+) ≤ q̄, for x ≥ x+u , for some x−u < x

+
u

}
.

Remark 4.1. Note that in the definition of A no limitation is imposed on
the numbers x−u < x+u that may largely depend on u.

We are going to prove the existence of a connecting minimizer in the classA.

Theorem 4.2. Assume W : Rm → R satisfies (H1), (H2). Then, JR(u) admits
a minimizer ū ∈ A:

JR(ū) = min
u∈A

JR(u) < +∞.

Moreover, the result is that lim
x→±∞d(ū(x),A

±) = 0.

Proof.
Step 1. There exists u0 ∈A that satisfies

(4.1) JR(u0) < +∞.

2Note that the C2 smoothness of W is only used in the proof of Theorems 5.2, 5.4, and 5.5.
To prove Theorem 4.2 (respectively, Proposition 5.1) it is sufficient to assume that W is continuous
(respectively, C1).
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Indeed, let a± ∈ A± be such that d(a−, a+) = d(A−, A+). We can check that the
line segment [a−, a+] is included in Ω̄. Next, we set

u0(x) =





a−, for x ≤ 0,

a− + x(a+ − a−), for 0 ≤ x ≤ 1,

a+, for 1 ≤ x.

From (4.1), it follows that

inf
u∈A

JR(u) = inf
u∈Ab

JR(u) < +∞,

where

Ab = A∩ {JR(u) ≤ JR(u0)}.

Step 2. Given A∗ = A+ or A−, and 0 < q′ < q/2 < q ≤ q̄, we let Uq′
q be the set

of W 1,2 maps u : [α,β] → Ω̄ that satisfy

d(u(α),A∗) ≥ q, 0 < d(u(β),A∗) ≤ q′,

for some α < β that may depend on u. For each u ∈ Uq′
q , we shall define

vu : [β− 1, β]→ Ω̄ by setting

(4.2) vu(x) = a∗ + (x − β+ 1)(u(β) − a∗),
where a∗ ∈ A∗ and d(u(β),A∗) = d(u(β),a∗).

Lemma 4.3. For each q ∈ (0, q̄], there exists q′ ∈ (0, q/2) such that

J[α,β](u) ≥ J[β−1,β](vu), for u ∈ Uq′
q , A

∗ = A±.
Proof. Define

ϕ(q) =min{W(u) | u ∈ Ω, q ≤ d(u,A∗) ≤ q̄}, q ∈ (0, q̄],
Φ(q) =max{W(u) | u ∈ Ω, d(u,A∗) ≤ q}, q ∈ (0, q̄].

From these definitions, it follows that

J[α,β](u) ≥
∫ β

α

√
2W(u)|u̇|dx ≥

√
2ϕ

(
q

2

)
q

2
,

J[β−1,β](vu) ≤ Φ(q′)+ 1
2
|u(β) − a∗|2 ≤ Φ(q′)+ 1

2
(q′)2.

Therefore, to conclude the proof it suffices to observe that, given q ∈ (0, q̄], for
q′ ∈ (0, q/2) sufficiently small, we have the inequality

Φ(q′)+ 1
2
(q′)2 <

√
2ϕ

(
q

2

)
q

2
. ❐
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Step 3. Given q ∈ (0, q̄] let ℓq = 2JR(u0)/ϕ(q′) where q′ is as in Lemma 4.3.
Then, for each u ∈Ab we have the implication

(x1, x2) ⊂ (−∞, x−u) and x2 − x1 ≥ ℓq -⇒ d(u(x0),A
−) < q′,

for some x0 ∈ (x1, x2). This follows from the fact that

min{d(u(x),A−) | x ∈ (x1, x2)} ≥ q′

implies
ϕ(q′)(x2 − x1) ≤ J(x1,x2)(u) ≤ JR(u0).

Similarly, for each u ∈ Ab we have the implication

(x1, x2) ⊂ (x+u ,+∞) and x2 − x1 ≥ ℓq -⇒ d(u(x0),A
+) < q′,

for some x0 ∈ (x1, x2).

Step 4. There is M > 0 such that, for each u ∈ Ab, there is û ∈ Ab with the
properties

‖û‖L∞(R;Rm) ≤ M,(4.3a)

JR(û) ≤ JR(u).(4.3b)

Let q̄′ be the number given by Lemma 4.3 in correspondence to q̄. From Step 3,
for each u ∈ Ab there is x0 ∈ (−∞, x−u) such that d(u(x0),A−) < q̄′, and
therefore there exists

x̄−u = max{x | d(u(x),A−) ≤ q̄′}.

Assume there exists α ∈ (−∞, x̄−u) such that d(u(α),A−) = q̄, and define û by
setting

(4.4)





û(x) = a−, for x < x̄−u − 1,

û(x) = vu(x), for [x̄−u − 1, x̄−u],
û(x) = u(x), for x > x̄−u ,

where vu : [x̄−u − 1, x̄−u] → Ω̄ is the map associated by (4.2) with the restric-
tion of u to the interval [α, x̄−u], and a− ∈ A− is such that d(u(x̄−u),A−) =
d(u(x̄−u), a−). From (4.4) and Lemma 4.3, it follows that

|û(x)− a−| ≤ q̄′ < q̄, for x ∈ (−∞, x̄−u],
J(−∞,x̄−u](û) = J[x̄−u−1,x̄−u](vu) ≤ J[α,x̄−u ](u) ≤ J(−∞,x̄−u](u).
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By similar arguments, one proves the existence of

x̄+u =min{x | d(u(x),A+) ≤ q̄′},

and concludes that û can be constructed so that there holds

d(û(x),A+) ≤ q̄, for x ∈ [x̄+u ,∞),

together with (4.3b).
To complete the proof of (4.3a), we show that

(4.5) x̄+u − x̄−u ≤
JR(u0)

w
,

where w = min{W(u) | u ∈ Ω, d(u, ∂Ω) ≥ q̄′}. This follows from the defini-
tion of x̄±u and

w(x̄+u − x̄−u) ≤ J(x̄−u ,x̄+u)(u) ≤ JR(u0).

From (4.5) we obtain

|u(x)−u(x̄−u)| ≤ (x − x̄−u)1/2
(∫ x

x̄−u
|u̇|2 dx

)1/2

≤
(

2
w

)1/2

JR(u0),

for x ∈ [x̄−u , x̄+u], which completes the proof of (4.3a).

Step 5. For each u ∈ Ab, we have

lim
x→±∞d(u(x),A

±) = 0.

Suppose there exists a sequence xk → +∞ and q0 ∈ (0, q̄) such that we have
d(u(xk),A+) ≥ q0 for k = 1,2, . . . . Then, since u ∈ Ab implies u is uniformly
continuous, we have

d(u(x),A+) ≥ q0

2
, for x ∈ (xk − δ,xk + δ),

for some δ > 0 independent of k. Therefore, we have

J(xk−δ,xk+δ)(u) ≥ 2δϕ
(
q0

2

)
, k = 1,2, . . . .

Since, by passing to a subsequence if necessary, we can assume that the intervals
(xk − δ,xk + δ), k = 1,2, . . . are disjoint, this contradicts JR(u) ≤ JR(u0).
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Step 6. From

|u(x1)−u(x2)| ≤ |x1 − x2|1/2
(∫ x2

x1

|u̇|2 dx
)1/2

≤ |x1 − x2|1/2
√

2JR(u0),

it follows that Ab is an equicontinuous set. From Step 4 , if {uk} ⊂ Ab is a min-
imizing sequence, then we can also assume that {uk} ⊂ L∞(R,Rm) is uniformly
bounded.

Step 7: Conclusion. Let {uk} ⊂ Ab be a minimizing sequence. By Step 6 , we
can assume {uk} is equibounded and equicontinuous. By (4.5) in Step 4, and the
translation invariance of JR and A, we can assume

x̄−uk = 0, x̄+uk ≤
JR(u0)

w
, k = 1, . . . .

By passing to subsequences if necessary, we can also assume the following:

(i) The sequence uk converges to a continuous map ū uniformly in
compact intervals, and from the embedding

‖u‖L2([−K,K];Rm) ≤
√

2K‖u‖C([−K,K];Rm), also in L2
loc(R;Rm).

This follows from the Ascoli-Arzelá theorem via a diagonal argument.
(ii) The sequence u̇k converges weakly in L2(R;Rm) : u̇k ⇀ v, for some

v ∈ L2(R;Rm). This is a consequence of the bound
∫

B

|u̇k|2 ≤ 2JR(u0).

Here, (i) and (ii) imply that (uk, u̇k) converges weakly in (L2
loc(R;Rm))2 to

(ū, v). This and the fact that the derivative operator is weakly closed yield v = ˙̄u,

and therefore we conclude that ū ∈ W 1,2
loc (R;Rm).

From the lower semicontinuity of the L2 norm, we have

lim inf
k→+∞

∫

B

|u̇k|2 ≥
∫

B

| ˙̄u|2,

and since, from (i), uk converges pointwise to ū, we can apply Fatou’s lemma to
the sequence of nonnegative functions {W(uk)} to conclude that

lim inf
k→+∞

∫

B

W(uk) ≥
∫

B

W(ū).

These inequalities imply that

JR(ū) ≤ lim inf
k→+∞

∫

B

1
2
|u̇k|2 + lim inf

k→+∞

∫

B

W(uk)(4.6)

≤ lim
k→+∞

JR(uk) = inf
u∈Ab

JR(u) ≤ JR(u0).
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That is, ū is a minimizer. Moreover, (4.6), and the uniform convergence in (i)
imply ū ∈Ab; thus, from Step 5 we have lim

x→±∞d(ū(x),A
±) = 0. This concludes

the proof. ❐

5. HETEROCLINIC, HOMOCLINIC AND PERIODIC ORBITS

We first establish that the minimizer ū from Theorem 4.2 satisfies the Euler-
Lagrange equation and the equipartition relation on the interval whereW(ū) > 0.

Proposition 5.1. There exist L− and L+, −∞ ≤ L− < 0 < L+ ≤ +∞ such
that (L−, L+) = {x ∈ R | ū(x) ∈ Ω}, and if L− ∈ R (respectively, L+ ∈ R), then
we have x ≤ L− -⇒ ū(x) = ū(L−) ∈ A− (respectively, x ≥ L+ -⇒ ū(x) =
ū(L+) ∈ A+). In addition, on the interval (L−, L+), ū satisfies the Euler-Lagrange
equation

d
2ū

dx2
= ∇W(ū),

and the equipartion relation

1
2

∣∣∣∣
dū

dx
(x)

∣∣∣∣
2

= W(ū(x)).

Proof. Since the Action functional J is translation invariant, we assume with-
out loss of generality that ū(0) ∈ Ω, and define

L− = inf{x < 0 | ū((x,0]) ⊂ Ω}, L+ = sup{x > 0 | ū([0, x)) ⊂ Ω}.

We can see that if L− ∈ R (respectively, L+ ∈ R), then ū(L−) ∈ A− (respec-
tively, ū(L+) ∈ A+), and by construction, ū is constant on the interval (−∞, L−]
(respectively, [L+,∞)). In addition, ū satisfies the Euler-Lagrange equation on
(L−, L+). Now, let us prove the equipartion relation. We recall that the Hamil-
tonian of the solution ū

H := 1
2

∣∣∣∣
dū

dx
(x)

∣∣∣∣
2

−W(ū(x))

is constant on the interval (L−, L+). Since limx→L± W(ū(x)) = 0, we immediately
see that H ≥ 0. It remains to show that H ≤ 0. Indeed, we have

J(0,+∞)(ū) =
∫ L+

0

(
1
2

∣∣∣∣
dū

dx
(x)

∣∣∣∣
2

+W(ū(x))
)
dx =

∫ L+

0
(H + 2W(ū(x)))dx,

and since J(0,+∞)(ū) ∈ [0,∞), it is clear that L+ = +∞ ⇒ H = 0. Now, suppose
L+ < +∞, and define

v(x) =





ū(x), for x ≤ 0,

ū

(
x

k

)
, for x ≥ 0,
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where k > 1. We compute

J(0,+∞)(v) =
∫ kL+

0

(
1

2k2

∣∣∣∣
dū

dx

(
x

k

)∣∣∣∣
2

+W
(
ū

(
x

k

)))
dx

=
∫ L+

0

(
1

2k

∣∣∣∣
dū

dx
(t)

∣∣∣∣
2

+ kW(ū(t))
)
dt

=
∫ L+

0

(
H

k
+ k

2 + 1
k

W(ū(t))

)
dt,

and note that

J(0,+∞)(ū) ≤ J(0,+∞)(v) -⇒ HL+ ≤ (k− 1)
∫ L+

0
W(ū(x))dx.

Letting k→ 1+, we deduce that H ≤ 0. ❐

Next, given A∗ = A+ or A−, we assume that one of the following is true:

(He) ∇W(u) = 0, ∀u ∈ A∗.
(Ho) ∇W(u) ≠ 0, ∀u ∈ A∗.

According to which of the hypotheses (He) and (Ho) holds on A− and A+,
we distinguish the following cases, and prove the existence of the heteroclinic,
homoclinic, and periodic orbits.

Theorem 5.2. If (He) holds on A− and A+, then the minimizer ū constructed
in Theorem 4.2 is a heteroclinic connection:

d2ū

dx2
= ∇W(ū), on R,

lim
x→±∞d(ū(x),A

±) = 0, and ū(x) ∈ Ω, ∀x ∈ R.

In particular, if W ≥ 0, then3 ū is also a local minimizer.

Proof. Suppose for instance that L+ < +∞. By the equipartition relation and
(He), we see that ū is C2 smooth and solves the Euler-Lagrange equation on the
interval (0,+∞). Since (dū/dx)(L+) = 0 and ∇W(ū(L+)) = 0, we deduce
by the uniqueness result for O.D.E. that ū coincides with the constant solution
v(x) ≡ ū(L+), which is a contradiction. Thus, L± = ±∞, and ū solves the
Euler-Lagrange equation on all R. When W ≥ 0, let z ∈ W 1,2

loc (R;Rm) be a map
coinciding with ū outside a compact interval [α,β]. If z(R) ⊂ Ω̄, it is clear by
the definition of ū that JR(ū) ≤ JR(z). Otherwise, there exists s ∈ R such that
z(s) ∉ Ω̄. Without loss of generality, we suppose that z(s) ∈ F−, and define
s− = max{s ∈ R | z(s) ∈ F−}. Now, if there exists t > s− such that z(t) ∈ F+,

3Clearly, W ≥ 0 implies that (He) holds on A±.
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we set s+ = min{t > s− | z(t) ∈ F+}. Since s− < s+, z(s±) ∈ ∂F± = A±,
and z([s−, s+]) ⊂ Ω̄, we deduce that JR(ū) ≤ J[s−,s+](z) ≤ JR(z). Finally, if
z(t) ∈ Ω̄, ∀ t ≥ s−, then we have again JR(ū) ≤ J[s−,+∞)(z) ≤ JR(z). Thus, for
every choice of z, JR(ū) ≤ JR(z) holds, and therefore ū is a local minimizer. ❐

Corollary 5.3. Assume W : Rm → [0,∞) has N zeros a1, . . . , aN , and satisfies
(H2). Then, for every i ∈ {1, . . . , N}, there exists j ∈ {1, . . . , N}, j ≠ i, and a
minimal solution ū of

d2ū

dx2
= ∇W(ū), on R,

such that
lim
x→−∞ |ū(x)− ai| = 0, and lim

x→+∞ |ū(x)− aj| = 0.

Proof. Take Ω = Rm \ {a1, . . . , aN}, A− = {ai}, and A+ = {a1, . . . , aN} \
{ai}. ❐

Theorem 5.4. Assume W satisfies (H1), (H2), (He) on A−, and (Ho) on A+;
then, there exists a homoclinic connection v:

d2v

dx2
= ∇W(v) on R, v(x) = v(−x) ∀x ∈ R,

lim
x→±∞d(v(x),A

−) = 0 and v(x) ∈ A+ ⇐⇒ x = 0, v(x) ∈ Ω, ∀x ≠ 0.

Moreover, v is a minimizer of the Action JR in the class

A(Ho) =
{
u ∈ W 1,2

loc (R; Ω̄) |
d(u(x),A−) ≤ q̄, for |x| ≥ xu, for some xu, u(0) ∈ A+

}
.

Proof. Let ū be the minimizer given by Theorem 4.2. As in the proof of
Theorem 5.2, we show that L− = −∞. We now prove that L+ < +∞. Sup-
pose by contradiction that L+ = +∞. Then, ū satisfies the equipartition relation
1
2 |ūx(x)|2 = W(ū(x)), ∀x ∈ R, and we can ensure that for x > M big enough,

d2W(ū)

dx2
(x) = |∇W(ū)|2 +D

2W(ū(x))(ū′(x), ū′(x)) ≥ ε > 0.

As a consequence, W(ū(x)) → +∞ as x → +∞, which is a contradiction. Thus,
L+ < +∞. Now, define

v(x) =
{
ū(x + L+), for x ≤ 0,

ū(−x + L+), for x ≥ 0.

Clearly, v ∈ A(Ho), and again by the equipartition relation, we see that the deriv-
ative of v at x = 0 exists and vanishes. By symmetry, we also check that v is C2
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smooth and satisfies the Euler-Lagrange equation on all R. Finally, it is obvious
that JR(v) = 2JR(ū), and that v minimizes the Action in the class A(Ho). ❐

Theorem 5.5. Assume W satisfies (H1), (H2), and (Ho) on A±; then, there
exists a periodic solution v̄ of the Euler-Lagrange equation

d2v̄

dx2
= ∇W(v̄) on R, v̄(x) = v̄(−x), ∀x ∈ R,

such that for every x ∈ R,

v̄(x + T) = v̄(x), and v̄
(
x + T

2

)
= v̄

(
−x + T

2

)
for some T > 0,

and

v̄(0) ∈ A−, v̄
(
T

2

)
∈ A+, v̄(x) ∈ Ω ⇐⇒ x ∉

T

2
Z.

Moreover, v̄ is characterized variationally as follows:

J[0,T/2](v̄) = min{J[0,ℓ](u) | u ∈ Bℓ, ℓ > 0},

where Bℓ := {u ∈ W 1,2([0, ℓ]; Ω̄) | u(0) ∈ A−, u(ℓ) ∈ A+}.
Proof. Let ū be the minimizer given by Theorem 4.2. Proceeding as in the

proof of Theorem 5.4, we show that L± ∈ R. Next, we set T := 2(L+ − L−), and
define

v̄(x) =





ū(x + L−), for 0 ≤ x ≤ T
2
,

ū(−x + 2L+ − L−), for
T

2
≤ x ≤ T .

Since v̄(0) = v̄(T), v̄ can be extended periodically on all R. By the equipar-
tition relation, we see that the derivative of v̄ exists and vanishes at the points
x = 0 and x = T/2. By symmetry, we also check that v̄ is C2 smooth and satisfies
the Euler-Lagrange equation on all R. Finally, the variational characterization of
v̄ is straightforward. ❐

Remark 5.6. From Proposition 5.1, we have the following:

• When L− = −∞ and L+ = +∞, ū is a heteroclinic orbit connecting
A±. Indeed, since ū′(x) → 0 and ū′′′(x) = D

2W(ū(x))ū′(x) → 0
as x → ±∞, we can see that ū′′(x) = ∇W(ū(x)) → 0 as x → ±∞
(cf. Section 3.4 in [6]). Thus, d(ū(x),A± ∩ ∂Ω0) → 0 as x → ±∞, in
accordance with Definition 2.1.

• When L− = −∞ and L+ ∈ R (respectively, when L± ∈ R), there exists
a homoclinic (respectively, a periodic) orbit (see the proofs of Theorems
5.4 and 5.5).
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The uniform conditions (He) and (Ho) have only been imposed to determine
when L± is finite, and to ensure the existence of the corresponding orbits. Un-
der the assumptions of Theorem 4.2, there always exists either a heteroclinic, a
homoclinic, or a periodic orbit connecting A± at ±∞.

6. ASYMPTOTIC CONVERGENCE

A natural question arises in the case of Theorems 5.2 and 5.4. Does the solution
ū (respectively, v) converge to a point of A± (respectively, A−) at ±∞? Before
answering this question, we establish the following exponential estimate.

Proposition 6.1. Assume that A− ⊂ Rm is a C2 compact orientable surface with
unit normal n, and that W satisfies (He) and (∂2W/∂n2)(u) > 0, ∀u ∈ A−.
Then, the heteroclinic connection ū of Theorem 5.2 satisfies d(ū(x),A−) ≤ Kekx ,
∀x ≤ 0, for some constants K,k > 0.4

Proof. First, we consider a tubular neighborhood V of A− (cf. [5]) such that

(6.1) md2(u,A−) ≤ W(u) ≤ Md2(u,A−), ∀u ∈ V ,

and for some constants 0 < m < M . Let x0 be such that ū(x) ∈ V for all
x ≤ x0. For x ≤ x0 fixed, let a− ∈ A− be the point such that d(ū(x), a−) =
d(ū(x),A−), and define the map

(6.2) z(t) =
{
ū(x)+ (x − t)(a− − ū(x)), for x − 1 ≤ t ≤ x,
a−, for t ≤ x − 1.

By the variational characterization of ū and (6.1), we can see that

m

∫ x

−∞
d2(ū(t),A−)dt ≤ J(−∞,x](ū) ≤ J[x−1,x](z)(6.3)

≤ (M + 1)d2(ū(x),A−).

Setting

θ(x) :=
∫
−∞xd2(ū(t),A−)dt,

we deduce that cθ(x) ≤ θ′(x), ∀x ≤ x0, and for some constant c > 0. Inte-
grating this inequality, it follows that

(6.4) θ(x) ≤ θ(x0)e
c(x−x0).

4Clearly, the homoclinic connection v of Theorem 5.4 satisfies the same estimate at −∞.
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Now, we note that by (6.1), the constant q′ in Lemma 4.3 can be chosen to be
proportional to q; that is, q′ = λq for some λ > 0. As a consequence,

t ∈ [x − 1, x] -⇒ λd(ū(x − 1),A−) ≤ d(ū(t),A−),(6.5)

and

λ2d2(ū(x − 1),A−) ≤
∫ x

x−1
d2(ū(t),A−)dt ≤ θ(x).(6.6)

From (6.4) and (6.6), we conclude that d2(ū(x),A−) = O(ecx). ❐

Remark 6.2. Here, the exponential estimate of Proposition 6.1 also holds
for bounded local minimizers ū such that d(ū(x),A−) → 0 as x → −∞. Some
adjustments have to be done in the proof. Instead of (6.2), define a comparison
map as in (3.3). Then, (6.3) remains true at the limit. To prove (6.5), a similar
argument is used.

Corollary 6.3. Under the assumptions of Proposition 6.1, there exists ℓ ∈ A−

such that ū(x)→ ℓ, as x → −∞.

Proof. From the exponential estimate of Proposition 6.1, and by (6.1) and the
equipartition relation, we also have

W(ū(x)) = O(e2kx) and
∣∣∣∣
(
dū

dx

)
(x)

∣∣∣∣ = O(ekx).

In particular, |(dū/dx)(x)| is integrable in a neighborhood of −∞. Suppose by
contradiction that ū(x) does not have a limit at −∞. Then, there exist two
sequences xn → −∞ and yn → −∞ such that limn→∞ ū(xn) = ℓ1 ∈ A−,
limn→∞ ū(yn) = ℓ2 ∈ A−, and ℓ1 ≠ ℓ2. This implies that the length of the
curve defined by ū is infinite, and thus |(dū/dx)(x)| is not integrable in a neigh-
borhood of −∞. ❐

Remark 6.4. The shape of minimal connecting orbits can be very compli-
cated (cf. [12]). In general, the limit of ū at −∞ cannot be determined.5. Indeed,
the presence of an “obstacle” where W is big near a portion of A− may prevent
the minimizer ū from approaching certain points of A−. Recall (cf. [3]) that the
curve described by ū minimizes the functional

L(Γ ) =
∫

I

√
2W(γ(t))|γ′(t)|dt

5We would, however, like to mention two interesting particular cases. For the class of potentials
considered in [7], which are functions of distance to the target manifolds, the connecting orbits are
straight line segments. For potentials W : R2 ∼ C → R such that W(u) = |f(u)|2 with f = g′
holomorphic, it is shown in [2] that the image under g of the trajectories of heteroclinics are also
straight line segments.
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in the class of curves Γ : I ∋ t → γ(t) ∈ Ω connecting A− and A+. Therefore, for
certain potentials that do not satisfy the convexity assumption of Proposition 6.1,
a curve describing a spiral around A− may also minimize the functional L.

Now, assuming that the surface A− bounds a convex set S, we prove that the
results of Proposition 6.1 and Corollary 6.3 remain true, for every solution to
(1.2) approaching A− in the complement of S.

Proposition 6.5. Let S be a compact and convex set, with C2 boundary and
outer unit normal n, and let u : (−∞, α) → Rm \ S be a solution to (1.2) such
that δ(x) := d(u(x), S) → 0 as x → −∞. Assume that W satisfies W(u) = 0,
∇W(u) = 0, and (∂2W/∂n2)(u) > 0, ∀u ∈ ∂S. Then, in a neighborhood of
−∞, the function x → δ(x) is increasing, and moreover, δ(x) = O(ekx) for some
constant k > 0 6. As a consequence, the limit of u at −∞ exists.

Proof. For every u ∈ Rm \ S, let p be the projection of u onto S, and n
the outer unit normal at p. Then, we have u = p + d(u, S)n and d(u, S) =
(u − p) · n. By differentiating twice the function δ, we obtain after some easy
simplifications

δ̇ = u̇ · n,
δ̈ = ü · n− p̈ ·n+ δ|ṅ|2.

Furthermore, since S is convex, we have p̈ · n ≤ 0 and δ̈ ≥ (∂W/∂n)(u). Next,
using the properties of W , we can see that δ is convex in a neighborhood of −∞,
and since limx→−∞ δ̇(x) = 0 by the equipartition relation (cf. Proposition 2.4), δ
is increasing in a neighborhood of −∞. Finally, the convexity assumption on W
implies that δ̈ ≥ (∂W/∂n)(u) ≥ k2δ in a neighborhood of −∞, for a constant
k > 0. Integrating this inequality, and taking into account the limits of δ and δ̇ at
−∞, it follows that δ̇ ≥ kδ and δ(x) = O(ekx), for x in a neighborhood of −∞.
The convergence of u to a point of ∂S is established as in Corollary 6.3. ❐
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and (∂W/∂n)(u) ≥ 0 for 0 < d(u, S) ≤ ε, with ε > 0 small. We point out that the statement of the
proposition also holds if S is reduced to a point.
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