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Abstract. We prove a general theorem on the existence of heteroclinic or-
bits in Hilbert spaces, and present a method to reduce the solutions of some

P.D.E. problems to such orbits. In our first application, we give a new proof in

a slightly more general setting of the heteroclinic double layers (initially con-
structed by Schatzman [20]), since this result is particularly relevant for phase

transition systems. In our second application, we obtain a solution of a fouth
order P.D.E. satisfying similar boundary conditions.

1. Introduction and statements. Functional Analysis methods are often useful
to solve efficiently P.D.E. problems. We refer to [9, Ch. 10] and [12, Ch. 7 and 9]
for some classical applications to evolution equations. The idea is to view a solution
R2 3 (t, x) 7→ u(t, x) of a P.D.E. as a map t 7→ [U(t) : x 7→ [U(t)](x) := u(t, x)]
taking its values in a space of functions, and reduce the initial P.D.E. to an O.D.E.
problem for U . For instance, in the case of the heat equation and the wave equation,
this reduction is based on the theorem of Hille-Yosida [9, Ch. 10] .

In this paper, we apply this viewpoint to the elliptic system

∆u(t, x) = ∇W (u(t, x)), u : R2 → Rm (m ≥ 2), (t, x) ∈ R2, (1)

where W : Rm → R is a function such that

W ∈ C3(Rm;R) is nonnegative, and has exactly 2 zeros a− and a+, (2a)

D2W (u)(ν, ν) ≥ c, ∀u ∈ Rm: |u− a±| ≤ r, ∀ν ∈ Rm: |ν| = 1, with r, c > 0, (2b)

lim inf
|u|→∞

W (u) > 0. (2c)

That is, W is a double well potential (2a), with nondegenerate minima (2b), satis-
fying moreover the standard asymptotic condition (2c) to ensure the boundedness
of finite energy orbits. To clarify the notation, we point out that ∇W (u(t, x)) is
the gradient of W evaluated at u(t, x), while D2W (u)(ν, ν) stands for the quadrat-

ic form
m∑

i,j=1

∂2W (u)
∂ui∂uj

νiνj , ∀u = (u1, . . . , um) ∈ Rm, ∀ν = (ν1, . . . , νm) ∈ Rm. We
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also denote respectively by | · | and ·, the Euclidean norm and inner product. Fi-
nally, given smooth maps u : R2 → Rm, u = (u1, . . . , um), and φ : R2 → Rm,

φ = (φ1, . . . , φm), we set |∇u|2 :=
m∑
i=1

|∇ui|2, and ∇u · ∇φ :=
m∑
i=1

∇ui · ∇φi.

System (1) as well as the corresponding O.D.E.

v′′(x) = ∇W (v(x)), v : R→ Rm (m ≥ 2), x ∈ R, (3)

have variational structure. We denote by

EΩ(u) :=

∫
Ω

[1

2
|∇u|2 +W (u)

]
, Ω ⊂ R2, (4)

and

JI(v) :=

∫
I

[1

2
|v′|2 +W (v)

]
, I ⊂ R, (5)

the associated energy functionals. We also recall that a heteroclinic orbit is a
solution e ∈ C2(R;Rm) of (3) such that lim

x→±∞
e(x) = a±. A heteroclinic orbit is

called minimal if it is a minimizer of the Action functional (5) in the class A := {v ∈
W 1,2

loc (R;Rm) : limx→±∞ v(x) = a±}, i.e. if JR(e) = min
v∈A

JR(v) =: Jmin. Assuming

(2), we know that there exists at least one minimal1 heteroclinic orbit e (cf. for
instance [7, 14, 23, 4], for a general theorem about the existence of heteroclinic
connections). In addition, since the minima a± are nondegenerate, the convergence
to the minima a± is exponential for every heteroclinic orbit e, i.e.

|e(x)− a−| ≤ Kekx,∀x ≤ 0, and |e(x)− a+| ≤ Ke−kx,∀x ≥ 0, (6)

where the constants k,K > 0 depend on e (cf. [7, Proposition 6.5.]. Clearly, if
x 7→ e(x) is a heteroclinic orbit, then the maps

x 7→ eT (x) := e(x− T ),∀T ∈ R, (7)

obtained by translating x, are still heteroclinic orbits.

1.1. Heteroclinic orbits in Hilbert spaces. In the first part of this paper, we
establish the existence of minimal heteroclinic orbits in a Hilbert space H, under
very mild assumptions (cf. Theorem 1.1 below). Indeed, the potential W : H →
[0,+∞] is assumed to be weakly lower semicontinuous and to satisfy the standard
asymptotic condition (13). For the sake of the applications to P.D.E. (1), we only
consider the standard case of a double well potential W vanishing at e− and e+,
but clearly our approach can be applied to more general potentials vanishing either
on finite sets or on manifolds (cf. [7] in the finite dimensional case). Denoting by
〈·, ·〉 (resp. ‖ · ‖) the inner product (resp. the norm) in H, the minimal heteroclinic
U will be obtained as a minimizer of the Action functional:

JR(V ) :=

∫
R

[1

2
‖V ′(t)‖2 +W(V (t))

]
dt, (8)

in the constrained class A defined by:

A=
{
V ∈ H1

loc(R;H) :
〈V (t)− e−,n〉 ≤ 3l0/4, for t ≤ t−V ,
〈V (t)− e−,n〉 ≥ l0/4, for t ≥ t+V ,

for some t−V < t+V

}
,

where n := e+−e−
‖e+−e−‖ , and l0 := ‖e+ − e−‖. Note that in the definition of A no

limitation is imposed on the numbers t−V < t+V that may largely depend on V . We

1Note that heteroclinic orbits are not always minimal: cf. [7, Remark 3.6.].
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refer to [17, 15, 11, 8], for the general theory of Sobolev spaces of vector-valued
functions.

For nonsmooth potentials, the minimizer U may be considered as a heteroclinic
orbit in a generalized sense, since U(t) converges weakly to e±, as t → ±∞ (cf.
(15a)), and furthermore U satisfies the equipartition relation (15b). To illustrate
Theorem 1.1 let us take for example W = χH\{e−,e+}, where χ is the characterictic
function. Then, one obtains in view of (15b) that (up to translations):

U(t) =


e− for t ≤ 0,

e− +
√

2tn for 0 ≤ t ≤ l0/
√

2,

e+ for t ≥ l0/
√

2.

(9)

We refer for instance to [10, 19] or [6], for the study of phase transition problems
involving nonsmooth potentials.

In the case whereW ∈ C1(H;R) is smooth, the minimizer U is a classical solution
of the system

U ′′(t) = ∇W(U(t)),∀t ∈ R, (10)

where given u ∈ H, ∇W(u) is the element of H corresponding to DW(u) ∈ H′ by
identifying H with H′ via the isomorphism:

〈∇W(u), v〉 = DW(u)v, ∀v ∈ H. (11)

After these explanations, we give the complete statement of Theorem 1.1:

Theorem 1.1. Let H be a Hilbert space2, and assume that W : H → [0,+∞] is a
weakly lower semicontinuous function satisfying

W has exactly 2 zeros e− and e+, (12)

and

lim inf
‖v‖→∞

W(v) > 0. (13)

Then, the condition

inf
V ∈A
JR(V ) < +∞, (14)

implies that JR admits a minimizer U ∈ A i.e. JR(U) = min
V ∈A
JR(V ), such that

U(t) ⇀ e±, as t→ ±∞, (15a)

1

2
‖U ′(t)‖2 =W(U(t)) for a.e. t ∈ R (equipartition relation). (15b)

Assuming moreover that W ∈ C1(H;R), then (14) holds and U ∈ C2(R;H) is a
classical solution of (10).

The method of constrained minimization to construct the minimal heteroclinic
goes back to [5]. However, most of the arguments used in finite dimensional spaces,
fail in the infinite dimensional case due to the lack of compactness. Thus, in order
to recover compactness on closed balls, the idea is to work with the weak topology.
On the other hand, the convergence in (15a) is established thanks to an argument
first introduced in the context of fourth order O.D.E. (cf. [21, Lemma 2.4.]). In
what follows, we will see that for some specific potentials, the convergence to the
minima e± may hold in the strong sense (cf. (25a)).

2The existence of a minimizer U satisfying (15a) and (15b) also holds if H is a reflexive Banach
space.
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To apply Theorem 1.1 to P.D.E. problems, one may consider the solution R ×
Ω 3 (t, x) 7→ u(t, x) ∈ Rm (with Ω ⊂ Rn) of a P.D.E., as a connecting orbit
t 7→ U(t) ∈ H, U(t) : x 7→ [U(t)](x) := u(t, x), taking its values in a Hilbert space
H of functions, defined according to the boundary conditions satisfied by u. Of
course, this can be done if the initial equation can be reduced to an O.D.E. similar
to (10), and if the boundary conditions satisfied by u are appropriate. The scope of
this paper is to provide a method for performing such a reduction, and constructing
various kinds of solutions of P.D.E. problems.

1.2. First application: heteroclinic double layers. As a first application of
Theorem 1.1 we give a new proof, in a slightly more general setting, of the existence
of heteroclinic double layers (established by Schatzman [20]), since this result is
particularly relevant for the phase transition system (1). Indeed, this construction
provides for system (1) the first examples of two-dimensional minimal solutions, in
the sense that

Esuppφ(u) ≤ Esuppφ(u+ φ), ∀φ ∈ C1
0 (R2;Rm). (16)

This notion of minimality is standard for many problems in which the energy of a
localized solution is actually infinite due to non compactness of the domain. Assum-
ing that for system (1), with W as in (2), there exist (up to translations) exactly two
minimal heteroclinic orbits e− and e+ which are also nondegenerate3, Schatzman
constructed a solution of (1) such that

∀x ∈ R : lim
t→±∞

u(t, x) = e±(x−m±), for some constants m± ∈ R, (17a)

∀t ∈ R : lim
x→±∞

u(t, x) = a±. (17b)

Moreover, the convergence in (17b) as well as in (17a) is exponential, due to the
nondegeneracy of a± and e±. This construction has initially been performed by
Alama, Bronsard and Gui [1] for potentials W invariant by the reflexion which
exchanges a±. The symmetry assumption enabled the authors to control the trans-
lation parameters m±, since they considered only solutions which were equivariant
by the reflexion. In [2], the Alama-Bronsard-Gui solution was constructed under
the weaker assumption (22), and the existence of an infinity of periodic solutions of
(1) was established (cf. also [3]). Recently, new proofs of Schatzman’s result were
given in [13] (where a Gibbon’s type conjecture was also proved), and in [18] via
minimization of the Jacobi functional.

In Theorem 1.2 below we obtain Schatzman’s solution as a minimal heteroclinic
orbit U connecting e± in the appropriate Hilbert space. This construction highlights
the real nature of the heteroclinic double layers, and provides a clear interpretation
of the equipartition property (34) (already observed in the aforementioned works).
The boundary conditions (17b) suggest to set

e0(x) =


a−, for x ≤ −1,

a− + (a+ − a−)x+1
2 , for − 1 ≤ x ≤ 1,

a+, for x ≥ 1.

(18)

3The heteroclinic orbits e± are nondegenerate in the sense that 0 is a simple eigenvalue of the
linearized operators T : W 2,2(R;Rm)→ L2(R;Rm), Tϕ = −ϕ′′ + D2W (e±)ϕ.
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and work in the affine subspace4 H := e0 + L2(R;Rm) = {u = e0 + h : h ∈
L2(R;Rm)} which has the structure of a Hilbert space with the inner product

〈u, v〉H := 〈(u− e0), (v − e0)〉L2(R;Rm), ∀u, v ∈ H. (19)

We denote by ‖ · ‖H the norm in H, and by dH(u, v) := ‖u− v‖L2(R;Rm) the corre-

sponding distance. We shall also consider the Hilbert space H̃ := e0 +H1(R;Rm) =
{u = e0 + h : h ∈ H1(R;Rm)} with the inner product

〈u, v〉H̃ := 〈(u− e0), (v − e0)〉H1(R;Rm), ∀u, v ∈ H̃. (20)

Similarly, ‖·‖H̃, and dH̃(u, v) := ‖u−v‖H1(R;Rm) stand for the norm and the distance

in H̃. In view of (6), it is clear that e ∈ H̃, for every minimal heteroclinic e.
Next, we define in H the effective potential W : H → [0,+∞] by

W(u) =

{
JR(u)− Jmin, when the distributional derivative u′ ∈ L2(R;Rm),

+∞, otherwise,

(21)
where Jmin = minv∈A JR(v). Note that W ≥ 0, since u′ ∈ L2(R;Rm) implies that

lim
x→±∞

u(x) = a± i.e. u ∈ A, and thus JR(u) ≥ Jmin. It is also obvious that W
only vanishes on the set F of minimal heteroclinics. More generally than in [20],
we assume that this set satisfies

F = F− ∪ F+, with F− 6= ∅, F+ 6= ∅, and dmin := dH(F−, F+) > 0 (22)

(where dH(F−, F+) := inf{‖e− − e+‖L2(R;Rm) : e− ∈ F−, e+ ∈ F+}). For instance,
if F contains (up to translations) a finite number of elements e1,...,eN , one may take
F− = {x 7→ e1(x−T1) : T1 ∈ R}, and F+ = {x 7→ ek(x−Tk) : Tk ∈ R, k = 2, . . . , N}
(cf. [1] and [20]). In this case it is easy to check that dH(F−, F+) > 0, since the
map R 3 T 7→ eT (x) = e(x− T ) ∈ H is continuous for every e ∈ F , and the images
of two distinct minimal heteroclinics do not intersect. In Lemma 3.3 below, we give
explicit examples of potentials for which (22) holds.

Finally we define the constrained class

A=
{
V ∈ H1

loc(R;H) :
dH(V (t), F−) ≤ dmin/4, for t ≤ t−V ,
dH(V (t), F+) ≤ dmin/4, for t ≥ t+V ,

for some t−V < t+V

}
,

and the functional5

JR(V ) :=

∫
R

[1

2
‖V ′(t)‖2L2(R;Rm) +W(V (t))

]
dt. (23)

Since the effective potential W has been normalized by substracting the constant
Jmin from JR, it follows that infA JR < ∞. All variational constructions of the
heteroclinic double layers are based on the minimization of this renormalized energy
(cf. also [6] for some other applications). Proceeding as in Theorem 1.1 we are going
to show that this solution is actually a minimizer of JR in A:

4To stress the analogy with Theorem 1.1, we denote again by H, A, W, and J , the Hilbert

space, the constrained class, the potential, and the action functional, which are relevant in this
subsection.

5In the proof of Theorem 1.2, it will appear how the energy functional E of system (1) is related
to J , and why the definition of W is relevant.
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Theorem 1.2. Assume the potential W satisfies (2), (22), and one of the following

either there exists ρ > 0 such that W (su) ≥W (u) for s ≥ 1 and |u| = ρ. (24a)

or lim sup
|u|→∞

|∇W (u)|
|u|q

<∞, for some q ≥ 2. (24b)

Then, JR admits a minimizer U ∈ A i.e. JR(U) = minV ∈A JR(V ), which is such
that

(i) u ∈ C2(R2;Rm) where u(t, x) := [U(t)](x), t 7→ U(t) ∈ H.
(ii) u solves (1) together with the boundary conditions

lim
t→±∞

dH(U(t), F±) = 0, (25a)

lim
x→±∞

u(t, x) = a±, uniformly when t remains bounded. (25b)

(iii) For every t ∈ R, u satisfies the equipartition relation 1
2‖U

′(t)‖2H = W(U(t)),
or equivalently:

1

2

∫
R
|ut(t, x)|2dx =

∫
R

[1

2
|ux(t, x)|2 +W (u(t, x))

]
dx− Jmin. (26)

(iv) u is a minimal solution of (1) (cf. (16)).

In addition, if (24a) holds and W satisfies the nondegeneracy condition

lim inf
dH(u,F )→0

W(u)

(dH(u, F ))2
> 0, (27)

then there exist e± ∈ F±, and constants k,K > 0 such that

‖U(t)− e+‖H̃ ≤ Ke
−kt, ∀t ≥ 0, ‖U(t)− e−‖H̃ ≤ Ke

kt, ∀t ≤ 0, (28a)

|u(t, x)− a+| ≤ Ke−kx,∀t ∈ R,∀x ≥ 0, |u(t, x)− a−| ≤ Kekx,∀t ∈ R,∀x ≤ 0.
(28b)

To establish Theorem 1.2, the arguments in the proof of Theorem 1.1 need to be
adjusted, since the set F is unbounded. However, W and F have nice properties,
that allow us to address the lack of compactness issue. Indeed, F intersected with
closed balls of H is compact (cf. Lemma 3.2 (i)), and dH̃(u, F )→ 0, as W(u)→ 0
(cf. Lemma 3.1 (ii)).

Theorem 1.2 outlines the hierarchical structure of solutions of (1), since by taking
the limit of u(t, x) as t → ±∞ (resp. x → ±∞), lower dimensional solutions are
obtained. There is also a striking analogy between the functionals J (cf. (5)) and
J . On the one hand, the zeros a± of W (i.e. the global minimizers of J) have their
counterparts in the minimal heteroclinics e ∈ F , which are the zeros of W (and
the global minimizers of J ). On the other hand, the heteroclinic orbits of (3) (one
dimensional solutions) have their counterparts in the heteroclinic orbit U provided
by Theorem 1.2 which corresponds to a two dimensional solution of (1).

Finally, we point out that the shape of heteroclinics can be very complicated (cf.
[22]), and that a nondegeneracy assumption similar to (27) is needed to ensure the
convergence of the orbit U at±∞, even in finite dimensional spaces (cf. [7, Corollary
6.3.]). The nondegeneracy assumption considered in [20] implies the existence of
α, β > 0 such that dH̃(u, F ) ≤ β ⇒ W(u) ≥ α(dH̃(u, F ))2 (cf. [20, Lemma 4.5.]).
Clearly, this assumption is stronger than (27).
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1.3. Second application. In Theorem 1.2 we constructed a heteroclinic orbit U
connecting at ±∞ the subsets F± in the Hilbert space H. Going further one may
ask: what kind of solution is obtained if instead of H, we consider another space?
Assuming that W satisfies (2) as well as

F = F− ∪ F+, with F− 6= ∅, F+ 6= ∅, and d̃min := dH̃(F−, F+) > 0, (29)

(cf. subsection 1.2 for the definition of H̃, F , and W), we shall construct in this

subsection a heteroclinic orbit Ũ connecting at ±∞ the subsets F± in H̃. This new
orbit Ũ produces a heteroclinic double layers solution ũ to the fourth order system

ũttxx(t, x) = ∆ũ(t, x)−∇W (ũ(t, x)), ũ : R2 → Rm. (30)

Proceeding as in Theorems 1.1 and 1.2, we shall establish that Ũ is a minimizer of
the functional

J̃R(V ) :=

∫
R

[1

2
‖V ′(t)‖2H1(R;Rm) +W(V (t))

]
dt, (31)

in the constrained class

Ã=
{
V ∈ H1

loc(R; H̃) :
dH̃(V (t), F−) ≤ d̃min/4, for t ≤ t−V ,
dH̃(V (t), F+) ≤ d̃min/4, for t ≥ t+V ,

for some t−V < t+V

}
.

Theorem 1.3. Assume the potential W satisfies (2) and (29). Then, J̃R admits a

minimizer Ũ ∈ Ã i.e. J̃R(Ũ) = minV ∈Ã J̃R(V ), which is such that

(i) Ũ ∈ C2(R; H̃) is a classical solution of system Ũ ′′(t) = ∇W(Ũ(t)), where

W ∈ C1(H̃; [0,∞)) (cf. Lemma 3.1 (iii)).

(ii) Setting ũ(t, x) := [Ũ(t)](x), t 7→ Ũ(t) ∈ H̃, we have ũ ∈ H1
loc(R2;Rm),

ũt, ũtx ∈ L2(R2;Rm), ũx ∈ L2((α, β) × R;Rm), ∀[α, β] ⊂ R, and ũ is a
weak solution of system (30):∫

R2

(ũtx · φtx +∇ũ · ∇φ+∇W (ũ) · φ) = 0, ∀φ ∈ C2
0 (R2;Rm), (32)

satisfying the boundary conditions

lim
t→±∞

dH̃(Ũ(t), F±) = 0, (33a)

lim
x→±∞

ũ(t, x) = a±, uniformly when t remains bounded. (33b)

(iii) For every t ∈ R, ũ satisfies the equipartition relation 1
2‖Ũ

′(t)‖2H̃ = W(Ũ(t)),
or equivalently:

1

2

∫
R

(|ũt(t, x)|2 + |ũtx(t, x)|2)dx =

∫
R

[1

2
|ũx(t, x)|2 +W (ũ(t, x))

]
dx− Jmin. (34)

(iv) u is a minimal solution of system (30) in the sense that

Ẽsuppφ(ũ) ≤ Ẽsuppφ(ũ+ φ), ∀φ ∈ C2
0 (R2;Rm), (35)

where ẼΩ(u) :=
∫

Ω

[
1
2 (|utx|2 + |∇u|2) +W (u)

]
(Ω ⊂ R2), is the energy func-

tional associated to (30).

In addition, if W satisfies the nondegeneracy condition

lim inf
dH̃(u,F )→0

W(u)

(dH̃(u, F ))2
> 0, (36)

then there exist e± ∈ F±, and constants k,K > 0 such that

‖Ũ(t)− e+‖H̃ ≤ Ke
−kt, ∀t ≥ 0, and ‖Ũ(t)− e−‖H̃ ≤ Ke

kt, ∀t ≤ 0, (37)
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and the convergence in (33b) is uniform for t ∈ R.

1.4. Other possible applications. The previous method applies directly to con-
struct heteroclinic double layers for the systems associated to the energy func-
tionals EΩ(u) =

∫
Ω

[∣∣∂u
∂t

∣∣q +
∣∣∂u
∂x

∣∣p + W (u)
]
, with p, q ∈ (1,∞), u : R2 → Rm,

Ω ⊂ R2, and W as in (2). On the other hand, we expect that Theorem 1.1
can be extended to fourth order systems by considering the functional JR(V ) =∫
R
[

1
2‖V

′′(t)‖2 +W(V (t), V ′(t))
]
dt (cf. [21] for the corresponding result in finite

dimensional spaces). As a consequence, a heteroclinic double layers solution should
be obtained for the system

∆2u− β∆u+∇W (u) = 0, u : R2 → Rm, β ≥ 0, W : Rm → [0,∞),

which is called the extended Fisher-Kolmogorov equation. Finally, due to the variety
of choices for the space H, several types of boundary conditions may be considered
in the applications of Theorem 1.1.

2. Proof of Theorem 1.1. We first notice that since W : H → [0,+∞] is weakly
lower semicontinuous, the function t 7→ W(V (t)) is lower semicontinuous (thus

measurable), for every V ∈W 1,2
loc (R;H). Assumption (14) is satisfied for instance if

W is bounded on the line segment [e−, e+]. Indeed, in this case the map V0 ∈ A
defined by

V0(t) =


e−, for t ≤ 0,

e− + t(e+ − e−), for 0 ≤ t ≤ 1,

e+, for t ≥ 1,

(38)

is such that JR(V0) < +∞. In what follows we assume that

inf
V ∈A
JR(V ) < J0, for a constant J0 < +∞,

and we set Ab = {V ∈ A : JR(V ) ≤ J0}. It is clear that

inf
V ∈A
JR(V ) = inf

V ∈Ab
JR(V ) < +∞.

Our next claim is that finite energy orbits are equicontinuous and uniformly bound-
ed:

Lemma 2.1. There exist M,M ′ > 0 such that supR ‖V (t)‖ ≤ M , and ‖V (t2) −
V (t1)‖ ≤M ′|t2−t1|1/2, ∀t1, t2 ∈ R, ∀V ∈ Ab. Moreover every map V ∈ Ab satisfies
V (t) ⇀ e±, as t→ ±∞.

Proof. It is clear that for every t1 < t2, and every V ∈ Ab, we have

‖V (t2)−V (t1)‖ ≤
∫ t2

t1

‖V ′(s)‖ds ≤
∣∣∣ ∫ t2

t1

‖V ′(s)‖2ds
∣∣∣1/2|t2−t1|1/2 ≤M ′|t2−t1|1/2,

with M ′ =
√

2J0. Next, in view of (13), ‖v‖ ≥ R implies that W(v) ≥ m for some
constant m > 0, and R > 0 sufficiently large. Thus, for every V ∈ Ab, we have

mL1({t ∈ R : ‖V (t)‖ ≥ R}) ≤
∫
R
W(V (t))dt ≤ J0,

where L1 stands for the one dimensional Lebesgue measure. Assuming that ‖V (t)‖ >
R, for some t ∈ R, it follows that there exists t0 < t such that ‖V (t0)‖ = R, and
‖V (s)‖ ≥ R, ∀s ∈ [t0, t]. According to what precedes we can see that m(t−t0) ≤ J0.

Hence we deduce that ‖V (t) − V (t0)‖ ≤ M ′(t − t0)1/2 ≤
√

2/mJ0, and ‖V (t)‖ ≤
R+

√
2/mJ0 =: M .
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Now, we recall that the ball BM := {v ∈ H : ‖v‖ ≤M} is compact for the weak
topology. Let V = {v ∈ H : 〈fj , v − e+〉 < 2δ, ∀j = 1, . . . , N} (with δ > 0 and
fj ∈ H \ {0}) be a neighbourhood of e+ for the weak topology. If we assume by
contradiction the existence of a sequence tk such that lim

k→∞
tk =∞, and V (tk) /∈ V

(i.e. 〈fjk , V (tk)− e+〉 ≥ 2δ for some jk ∈ {1, . . . , N}), we get

〈fjk , V (t)− e+〉 ≥ 〈fjk , V (t)− V (tk)〉+ 2δ ≥ 2δ −M ′‖fjk‖|t− tk|1/2 ≥ δ,
provided that |t− tk| ≤ η := min

1≤j≤N
(δ/M ′‖fj‖)2. Next, let µ be the infimum of W

on the set

Kδ := {v ∈ BM : 〈v− e−,n〉 ≥ l0/4, and 〈fj , v− e+〉 ≥ δ for some j ∈ {1, . . . , N}},
which is compact for the weak topology. The weakly lower semicontinuity of W
and (12), imply that µ > 0, thus according to what precedes we have W(V (t)) ≥ µ,
∀t ∈ [tk− η, tk +η], with tk ≥ t+V +η. Finally, since the intervals [tk−η, tk + η] may
be assumed to be disjoint, we obtain JR(V ) = ∞, which is a contradiction. This
establishes that V (t) ⇀ e+, as t → ∞. Similarly we can prove that V (t) ⇀ e−, as
t→ −∞.

Lemma 2.2. Given a sequence {Vk} ⊂ Ab, there exist a sequence {xk} ⊂ R, and
a map U ∈ Ab, such that JR(U) ≤ lim inf

k→∞
JR(Vk), and up to subsequence the maps

V̄k(t) := Vk(t− xk) satisfy

(i) ∀t ∈ R: V̄k(t) ⇀ U(t), as k →∞,
(ii) V̄ ′k ⇀ U ′ in L2(R,H), as k →∞.

Proof. By extracting if necessary a subsequence we may assume that JR(Vk) con-
verges to lim inf

k→∞
JR(Vk), as k →∞. For every k we define the sequence

−∞ < x1(k) < x2(k) < . . . < x2Nk−1(k) < x2Nk(k) =∞
by induction:

• x1(k) = sup{t ∈ R : 〈Vk(s)− e−,n〉 ≤ 3l0/4,∀s ≤ t} <∞,
• x2i(k) = sup{t ∈ R : 〈Vk(s)− e−,n〉 ≥ l0/4,∀s ∈ [x2i−1(k), t]} ≤ ∞,
• x2i+1(k) = sup{t ∈ R : 〈Vk(s) − e−,n〉 ≤ 3l0/4,∀s ∈ [x2i(k), t]} < ∞, if
x2i(k) <∞,

where i = 1, . . . , Nk. In addition, we set

• y2i−1(k) = sup{t ≤ x2i−1(k) : 〈Vk(t)− e−,n〉 ≤ l0/4},
• y2i(k) = sup{t ≤ x2i(k) : 〈Vk(t)− e−,n〉 ≥ 3l0/4}, if x2i(k) <∞.

Next, we notice that the set K := {v ∈ H : ‖v‖ ≤ M, l0/4 ≤ 〈v − e−,n〉 ≤
3l0/4} is compact for the weak topology. As a consequence of (12) and the lower
semicontinuity ofW, we haveW0 := minv∈KW(v) =W(v0), for some v0 ∈ K, thus
W0 > 0. Finally, since

J[yj(k),xj(k)](Vk) ≥
∫ xj(k)

yj(k)

√
2W(Vk(t))‖V ′k(t)‖dt ≥

√
W0/2 l0,

holds for every k ≥ 1 and j = 1, . . . , 2Nk−1, we can see that (2Nk−1)
√
W0/2 l0 ≤

J0, i.e. the integers Nk are uniformly bounded. By passing to a subsequence, we
may assume that Nk is a constant integer N ≥ 1.

Our next claim (cf. [21, Lemma 2.4.]) is that up to subsequence, there exist an
integer i0 (1 ≤ i0 ≤ N) and an integer j0 (i0 ≤ j0 ≤ N) such that
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Figure 1. The sequence −∞ = x0 < y1 < x1 ≤ y2 < x2 < . . . <
x2N =∞, (N = 2).

(a) the sequence x2j0−1(k)− x2i0−1(k) is bounded,
(b) lim

k→∞
(x2i0−1(k)− x2i0−2(k)) =∞,

(c) lim
k→∞

(x2j0(k)− x2j0−1(k)) =∞,

where for convenience we have set x0(k) := −∞.
Indeed, we are going to prove by induction on N ≥ 1, that given 2N+1 sequences

−∞ ≤ x0(k) < x1(k) < . . . < x2N (k) ≤ ∞, such that lim
k→∞

(x1(k)−x0(k)) =∞, and

lim
k→∞

(x2N (k)−x2N−1(k)) =∞, then up to subsequence the properties (a), (b), and

(c) above hold, for two fixed indices 1 ≤ i0 ≤ j0 ≤ N . When N = 1, the assumption
holds by taking i0 = j0 = 1. Assume now that N > 1, and let l ≥ 1 be the largest
integer such that the sequence xl(k) − x1(k) is bounded. Note that l < 2N . If l
is odd, we are done, since the sequence xl+1(k)− xl(k) is unbounded, and thus we
can extract a subsequence {nk} such that lim

k→∞
(xl+1(nk)−xl(nk)) =∞. Otherwise

l = 2m (with 1 ≤ m < N), and the sequence x2m+1(k) − x2m(k) is unbounded.
We extract a subsequence {nk} such that lim

k→∞
(x2m+1(nk)− x2m(nk)) =∞. Then,

we apply the inductive statement with N ′ = N − m, to the 2N ′ + 1 sequences
x2m(nk) < x2m+1(nk) < . . . < x2N (nk).

At this stage, we consider appropriate translations of the sequence {Vk}, by
setting V̄k(t) = Vk(t− x2i0−1(k)). Since {V̄ ′k} is uniformly bounded in L2(R,H), it
follows that up to subsequence V̄ ′k ⇀ V in L2(R,H), and moreover∫

R
‖V ‖2 ≤ lim inf

k→∞

∫
R
‖V̄ ′k‖2. (39)

On the other hand, we write V̄k(t) = V̄k(0) +
∫ t

0
V̄ ′k(s)ds, and notice that up

to subsequence V̄k(0) ⇀ u0 in H, since ‖V̄k(0)‖ ≤ M (cf. Lemma 2.1). Our

claim is that U(t) := u0 +
∫ t

0
V (s)ds has all the desired properties. Indeed, since
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0
V̄ ′k(s)ds ⇀

∫ t
0
V (s)ds holds in H for every t ∈ R, we also have V̄k(t) ⇀ U(t) for

every t ∈ R. In view of the weakly lower semicontinuity of W, this implies that
lim inf
k→∞

W(V̄k(t)) ≥ W(U(t)) for every t ∈ R, thus by Fatou’s Lemma we obtain∫
R
W(U(t))dt ≤ lim inf

k→∞

∫
R
W(V̄k(t))dt. (40)

Combining (39) with (40) it is clear that JR(U) ≤ lim inf
k→∞

JR(Vk). To conclude it

remains to show that U ∈ A. In view of the above property (b) it follows that
〈U(t) − e−,n〉 ≤ 3l0/4, for every t ≤ 0. Similarly, in view of (a) and (c), we have
〈U(t)− e−,n〉 ≥ l0/4, for t ≥ T > 0 large enough.

Applying Lemma 2.2 to a minimizing sequence i.e. {Vk} ⊂ Ab such that

lim
k→∞

JR(Vk) = inf
V ∈Ab

JR(V ),

we immediately obtain the existence of the minimizer U . To show that the minimizer
U satisfies the equipartition property (ii) we are going to check that

0 =

∫
R

(1

2
‖U ′(t)‖2 −W(U(t))

)
φ(t)dt, ∀φ ∈ C∞0 (R;R). (41)

Actually, since every φ ∈ C∞0 (R;R) is the uniform limit of step functions, we just
need to prove that ∫ b

a

1

2
‖U ′(t)‖2 =

∫ b

a

W(U(t))dt, ∀[a, b] ⊂ R. (42)

For every κ > 0, let

Vκ(t) =


U(t), for t ≤ a,
U(a+ t−a

κ ), for t ∈ [a, a+ κ(b− a)],

U(t+ (1− κ)(b− a)), for t ≥ a+ κ(b− a).

It is easy to see that Vκ ∈ A and,

JR(Vκ)− JR(U) =

∫ b

a

(1− κ)

2κ
‖U ′(t)‖2 + (κ− 1)

∫ b

a

W(U(t))dt. (43)

Since JR(Vκ)− JR(U) ≥ 0 by the minimality of U , letting κ→ 1+ and κ→ 1− in
(43), we obtain (42).

Finally we assume that W ∈ C1(H;R). Given ξ ∈ C∞0 (R;H), and λ ∈ R, we
compute

d

dλ

∣∣∣
λ=0
JR(U + λξ) =

∫
R

[
〈U ′(t), ξ′(t)〉+ 〈∇W(U(t)), ξ(t)〉

]
dt.

By the minimality of U , we have JR(U + λξ)− JR(U) ≥ 0, hence∫
R

[
〈U ′(t), ξ′(t)〉+ 〈∇W(U(t)), ξ(t)〉

]
dt = 0.

This implies that the derivative of t 7→ U ′(t) in D′(R;H) is t 7→ ∇W(U(t)) and that
U ∈ C2(R;H) is a classical solution of (10).
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3. Properties of the effective potential W and of the set of minimal het-
eroclinics F . We establish below some properties of the effective potential W
defined in subsection 1.2, assuming that the function W satisfies (2):

Lemma 3.1. (i) The potential W is sequentially weakly lower semicontinuous.
(ii) Let {uk} ⊂ H be such that lim

k→∞
W(uk) = 0. Then, there exist a sequence

{xk} ⊂ R, and e ∈ F , such that (up to subsequence) the maps ūk(x) :=
uk(x−xk) satisfy lim

k→∞
‖ūk−e‖H1(R;Rm) = 0. As a consequence, dH̃(u, F )→ 0,

as W(u)→ 0, and for every c1 > 0, there exists c2 > 0 such that dH(u, F ) ≥
c1(resp. dH̃(u, F ) ≥ c1)⇒W(u) ≥ c2.

(iii) W restricted to H̃ is a C1(H̃; [0,∞)) smooth function, and

DW(u)h =

∫
R

[u′ · h′ +∇W (u) · h], ∀u ∈ H̃, ∀h ∈ H1(R;Rm).

Proof. (i) Let {uk} ⊂ H be such that uk ⇀ u in H (i.e. uk − u ⇀ 0 in L2(R;Rm)),
and let us assume that l = lim inf

k→∞
W(uk) < ∞ (since otherwise the statement is

trivial). By extracting a subsequence we may assume that lim
k→∞

W(uk) = l. In

view of Lemma 2.1 (applied in the finite dimensional case with W instead of W),
the sequence {uk} is equicontinuous and uniformly bounded. Thus, the theorem of
Ascoli implies that uk → ũ in Cloc(R;Rm), as k → ∞ (up to subsequence). On
the other hand, since ‖u′k‖L2(R;Rm) is bounded, we have that u′k ⇀ v, in L2(R;Rm)

(up to subsequence). In addition, one can easily see that u = ũ ∈ H1
loc(R;Rm), and

u′ = v. Finally, by the weakly semicontinuity of the L2(R;Rm) norm and Fatou’s
Lemma (cf. the end of the proof of Lemma 2.2), we deduce that W(u) ≤ l, i.e.
W(u) ≤ lim inf

k→∞
W(uk).

(ii) We first establish that given u ∈ H such that u′ ∈ L2(R;Rm), and e ∈ F , we
have

W(u) =

∫
R

[1

2
|u′ − e′|2 +W (u)−W (e)−∇W (e) · (u− e)

]
. (44)

In view of (6), it is clear that e′′ = ∇W (e) ∈ L2(R;Rm), thus e′ ∈ H1(R;Rm). As
a consequence, we can see that

∫
R e
′′ · (u− e) = −

∫
R e
′ · (u′ − e′), and

W(u) =

∫
R

[1

2
|u′|2 − 1

2
|e′|2 +W (u)−W (e)

]
=

∫
R

[1

2
|u′|2 − 1

2
|e′|2 − e′ · (u′ − e′) +W (u)−W (e)− e′′ · (u− e)

]
,

from which (44) follows.
Now, we consider a sequence {uk} ⊂ H such that lim

k→∞
W(uk) = 0. According

to Lemma 2.2, there exist a sequence {xk} ⊂ R, and e ∈ F , such that (up to
subsequence) the maps ūk(x) := uk(x− xk) satisfy

lim
k→∞

ūk(x) = e(x), ∀x ∈ R. (45)

Having a closer look at the proof of Lemma 2.2, we can show that in the case of a
finite dimensional space, the convergence in (45) actually holds in Cloc(R;Rm)6.

6Indeed, when H = Rm, one can apply in the proof of Lemma 2.2 the theorem of Ascoli to the
sequence V̄k, since by Lemma 2.1 it is equicontinuous and uniformly bounded.
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Our claim is that

lim
k→∞

‖ūk − e‖H1(R;Rm) = 0. (46)

According to hypothesis (2b) we have

W (u) ≥ c

2
|u− a±|2,∀u : |u− a±| ≤ r, (47a)

W (v)−W (u)−∇W (u) · (v−u) ≥ c

2
|v−u|2,∀u, v : |u−a±| ≤ r, |v−a±| ≤ r. (47b)

Let µ > 0 be such that

W (u) ≤ µ

2
|u− a±|2,∀u ∈ Rm : |u− a±| ≤ r, (48)

let ε ∈ (0, r), and let ν be a unit vector of Rm. We notice using (48) that the map
[0, 1] 3 x 7→ z(x) = a± + ενx, is such that J[0,1](z) ≤ µ+1

2 ε2. As a consequence,

inf{J[α,β](v) : v∈H1([α, β];Rm), |v(α)−a−|=ε, |v(β)−a+|=ε}≥Jmin−(µ+1)ε2, (49)

since otherwise we can construct a map in A whose action is less than Jmin. On the
other hand we have

inf{J[α,β](v) : v ∈ H1([α, β];Rm), |v(α)−a±|=ε, |v(β)−a±|=r}≥
√
c(r−ε)ε. (50)

Indeed, for such a map v, we can check that

J[α,β](v) ≥
∫ β

α

√
2W (v)|v′| ≥

√
c(r − ε)ε.

Let ε0 ∈ (0, r) be such that (µ + 2)ε2 <
√
c(r − ε)ε, ∀ε < ε0. Next, for ε < ε0

fixed, choose an interval [λ−, λ+] such that |e(x) − a−| ≤ ε/2, ∀x ≤ λ−, and
|e(x)− a+| ≤ ε/2, ∀x ≥ λ+. According to (45), we have for k ≥ N large enough:

|ūk(λ±)− a±| < ε, (51a)∣∣∣ ∫
[λ−,λ+]

(W (ūk)−W (e)−∇W (e) · (ūk − e))
∣∣∣ < ε2, (51b)

‖ūk − e‖L2([λ−,λ+];Rm) < ε, (51c)

W(ūk) < ε2. (51d)

Then, combining (49) with (51d), one can see that

JR\[λ−,λ+](ūk) < (µ+ 2)ε2 <
√
c(r − ε)ε. (52)

Therefore, in view of (50) and (51a), it follows that |ūk(x)−a−| ≤ r (resp. |ūk(x)−
a+| ≤ r), ∀x ≤ λ− (resp. ∀x ≥ λ+). Furthermore, as a consequence of (47b) we get∫

R\[λ−,λ+]

(W (ūk)−W (e)−∇W (e) · (ūk − e)) ≥
c

2
‖ūk − e‖2L2(R\[λ−,λ+];Rm). (53)

To conclude, we apply formula (44) to ūk, and combine (51d) with (51b) and (53),
to obtain

‖ūk − e‖L2(R\[λ−,λ+];Rm) <
2ε√
c
, and ‖ū′k − e′‖L2(R;Rm) < 2ε. (54)

Finally, in view of (51c), we have ‖ūk − e‖L2(R;Rm) <
(
1 + 2√

c
)ε. This establishes

our claim (46), from which the statement (ii) of Lemma 3.1 is straightforward.
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(iii) We recall that σ := sup
e∈F
‖e‖L∞(R;Rm) < ∞ (cf. Lemma 2.1). Given u ∈ H̃,

set κ1 := max(‖u‖L∞(R;Rm), σ), and κ2 := sup{|D2W (v)(ν, ν)| : |v| ≤ 2κ1, |ν| = 1}.
From formula (44), it is clear that

W(u) ≤ 1

2
‖u′ − e′‖2L2(R;Rm) +

κ2

2
‖u− e‖2L2(R;Rm) <∞.

On the other hand, one can see that ∇W (u) ∈ L2(R;Rm). Furthermore, when
‖h‖H1(R;Rm) is small enough, such that ‖h‖L∞(R;Rm) < κ1, we have∣∣∣W(u+ h)−W(u)−

∫
R

[u′ · h′ +∇W (u) · h]
∣∣∣ ≤ 1

2
‖h′‖2L2(R;Rm) +

κ2

2
‖h‖2L2(R;Rm).

This proves thatW is differentiable at u, and DW(u)h =
∫
R[u′ ·h′+∇W (u) ·h].

From the arguments in the proof of Lemma 3.1, we deduce some useful properties
of the set F (defined in subsection 1.2).

Lemma 3.2. (i) Let {ek} ⊂ F be bounded in H, then there exists e ∈ F , such
that up to subsequence lim

k→∞
‖ek − e‖H1(R;Rm) = 0.

(ii) There exists a constant γ > 0, such that for every e ∈ F , we can find T ∈ R
such that setting eT (x) = e(x− T ), we have ‖eT ‖H̃ ≤ γ.

(iii) For every v ∈ H (resp. v ∈ H̃), there exists e ∈ F such that dH(v, F ) =
‖v − e‖H (resp. dH̃(v, F ) = ‖v − e‖H̃).

Proof. (i) Since {ek} ⊂ F is bounded in H, we have up to subsequence ek ⇀ e in
H, as k → ∞, for some e ∈ H. Proceeding as in the proof of Lemma 3.1 (i), we
first obtain that (up to subsequence) ek → e in Cloc(R;Rm), as k →∞, with e ∈ F .
Next, we reproduce the arguments after (46), with ek instead of ūk.

(ii) Assume by contradiction the existence of a sequence N 3 k 7→ ek ∈ F , such
that ‖eTk ‖H̃ ≥ k, ∀T ∈ R. Then, by Lemma 3.1 (ii), there exists a sequence {xk} ⊂
R, and e ∈ F , such that (up to subsequence) the maps exkk satisfy lim

k→∞
‖exkk −e‖H̃ =

0. Clearly, this is a contradiction.
(iii) Let {ek} ⊂ F be a sequence such that ‖v− ek‖H ≤ dH(v, F ) + 1

k , ∀k. Then,
in view of (i) we have (up to subsequence) ek → e in H, as k →∞, with e ∈ F . As
a consequence dH(v, F ) = ‖v − e‖H.

In Lemma 3.3 below, we give examples of potentials for which assumption (22)
holds.

Lemma 3.3. Let W ∈ C2(R2;R) be a potential satisfying (2). In addition we
assume that

• W (u1, u2) = W (u1,−u2),
• a± = (±λ, 0),
• the heteroclinic orbit η taking its values onto the open line segment (a−, a+)

is not minimal.7

Then, F is partitioned into two nonempty sets F±, such that dH(F−, F+) > 0.

Proof. By symmetry, if x 7→ (e1(x), e2(x)) ∈ R2 is a minimal heteroclinic orbit,
then x 7→ (e1(x),−e2(x)) is also a minimal heteroclinic orbit. Since the images of
two distinct minimal heteroclinic orbits do not intersect, and the heteroclinic orbit

7An explicit example of a potential satisfying all the above assumptions is constructed in [7,
Remark 3.6.].
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η is not minimal, it follows that a minimal heteroclinic orbit either takes its values
in the upper half-plane {u2 > 0} or in the lower half-plane {u2 < 0}. We denote
by F± the corresponding subsets. If dH(F−, F+) = 0, then there exists a sequence
ek = (fk, gk) ⊂ F+ such that lim

k→∞
‖gk‖L2(R) = 0. According to Lemma 2.2, there

also exists a sequence xk ∈ R, such that lim
k→∞

ek(x − xk) = (f(x), 0) =: u(x) ∈ A.

Furthermore, we have JR(u) ≤ Jmin. Therefore, u is a minimal heteroclinic orbit
coinciding up to translations with η. This is a contradiction, since the orbit η is not
minimal.

4. Proof of Theorem 1.2.

Proof of the existence of the minimizer U . To see that infV ∈A JR(V ) <∞, we take
V0 ∈ A as in (38), with e± ∈ F±. Since e− and e+ satisfy the exponential estimate
(6), it is clear that JR(V0) <∞. Next, we define the constants

• W1 := inf{W(v) : dH(v, F ) ∈ [dmin/8, dmin/4]} ∈ (0,∞) (cf. Lemma 3.1 (ii)),
• M > 0 such that W(v) ≤ 1 ⇒ ‖v‖L∞(R;Rm) ≤ M (cf. Lemma 2.1 applied to
W ),

• C > 0 such that |D2W (v)(ν, ν)| ≤ C, ∀v: |v| ≤M , ∀ν ∈ Rm: |ν| = 1,
• η ∈ (0, dmin/8) such that (1 + C)η2 <

√
2W1(dmin/8),

• W2 := inf{W(v) : dH(v, F ) ≥ η} ∈ (0,∞) (cf. Lemma 3.1 (ii)),
• ε ∈ (0, 1) such that ε <

√
2W1(dmin/8)− (1 + C)η2,

and consider a minimizing sequence i.e. {Vk} ⊂ A such that lim
k→∞

JR(Vk) =

inf
V ∈A
JR(V ). For every k, we set

λ−k := supS−k , where S−k := {t ∈ R :W(Vk(t)) ≤ ε, dH(Vk(t), F−) ≤ η},

λ+
k := inf S+

k , where S+
k := {t ≥ λ−k :W(Vk(t)) ≤ ε, dH(Vk(t), F+) ≤ η}.

Note that S±k 6= ∅, since JR(Vk) < ∞ implies that lim inf
|t|→∞

W(Vk(t)) = 0, and also

lim inf
|t|→∞

dH(Vk(t), F ) = 0 by Lemma 3.1 (ii). Moreover, one can see that actually

λ−k = maxS−k , and λ+
k = minS−k . Indeed, let {tj} ⊂ S−k be a sequence such

that tj → λ−k , as j → ∞. Then, there exists a sequence {ej} ⊂ F− such that
‖Vk(tj)−ej‖H ≤ η. In addition, in view of Lemma 3.2 (i), we have up to subsequence
ej → e in H, as j → ∞, for some e ∈ F−, thus ‖Vk(λ−k ) − e‖H ≤ η. On the other

hand, from Lemma 3.1 (i) we get immediately that W(Vk(λ−k )) ≤ ε.
By definition of λ±k , either W(Vk(t)) > ε or dH(Vk(t), F ) > η holds for t ∈

(λ−k , λ
+
k ). Thus, we have W(Vk(t)) ≥ min(ε,W2), ∀t ∈ (λ−k , λ

+
k ), and as a con-

sequence of the boundedness of the sequence k 7→ JR(Vk), it follows that Λ :=
supk(λ+

k − λ
−
k ) ∈ (0,∞). Our next claim is that we may assume that the minimiz-

ing sequence {Vk} satisfies (cf. [7, Lemma 4.3.]):

dH(Vk(t), F−) ≤ dmin/4,∀t ≤ λ−k , and dH(Vk(t), F+) ≤ dmin/4,∀t ≥ λ+
k . (55)

Indeed, if a map Vk is such that for instance dH(Vk(t0), F−) > dmin/4, for some

t0 < λ−k , we can construct a competitor Ṽk ∈ A, such that JR(Ṽk) ≤ JR(Vk),

and (55) holds for Ṽk. To see this, let e− ∈ F− be such that ‖Vk(λ−k ) − e−‖H =
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dH(Vk(λ−k ), F−) ≤ η, and set

Ṽk(t) :=


Vk(t), for t ≥ λ−k ,
e− + (t− λ−k + 1)(Vk(λ−k )− e−), for t ∈ [λ−k − 1, λ−k ]

e−, for t ≤ λ−k − 1.

(56)

One can see that
∫ λ−k
−∞ ‖Ṽ

′
k‖2H = ‖Vk(λ−k ) − e−‖2H. Next, applying formula (44) to

e = e− and u = Vk(λ−k ) together with W(Vk(λ−k )) ≤ ε, we obtain
∫
R

1
2 |(Vk(λ−k ) −

e−)′|2 ≤ ε+ C
2 ‖Vk(λ−k )− e−‖2H. Finally, a second application of formula (44) to e−

and e− + s(Vk(λ−k )− e−), with s ∈ [0, 1], gives W(Ṽk(t)) ≤ ε+ C‖Vk(λ−k )− e−‖2H,

∀t ∈ [λ−k −1, λ−k ]. Thus we have checked that J(−∞,λ−k ](Ṽk) ≤ ε+(C+1)‖Vk(λ−k )−
e−‖2H ≤ ε+ (C + 1)η2. On the other hand, assuming that dH(Vk(t0), F−) > dmin/4
holds for some t0 < λ−k , we have

J[t0,λ
−
k ](Vk) ≥

∫
[t0,λ

−
k ]

√
2W(Vk)‖V ′k‖H ≥

√
2W1(dmin/8).

Therefore, by definition of ε and η we deduce that J(−∞,λ−k ](Ṽk) ≤ J(−∞,λ−k ](Vk).

This proves our claim (55).
To show the existence of the minimizer U , we shall consider appropriate transla-

tions of the sequence vk(t, x) := [Vk(t)](x) (R 3 t 7→ Vk(t) ∈ H), with respect to the
variables x and t. Then, we shall establish the convergence of the translated maps to
the minimizer U . Given T ∈ R, and V ∈ H = e0 +L2(R;Rm), we denote by LT (V )
the map of H defined by R 3 x 7→ V (x− T ) ∈ Rm. It is obvious that W(LT (V )) =
W(V ). Similarly, if t 7→ V (t) belongs to H1

loc(R;H), we obtain that t 7→ LT (V (t))
also belongs to H1

loc(R;H), with ‖(LTV )′(t)‖L2(R;Rm) = ‖V ′(t)‖L2(R;Rm).

In view of Lemma 3.2 (ii), for every k, we can find Tk ∈ R and ek ∈ F− such
that ‖ek‖H ≤ γ and ‖|LTkVk(λ−k ) − ek‖H ≤ η. We set V̄k(t) := LTk(Vk(t + λ−k )).
Clearly, V̄k ∈ H1

loc(R;H) satisfies JR(V̄k) = JR(Vk), as well as

dH(V̄k(t), F−) ≤ dmin/4,∀t ≤ 0, and dH(V̄k(t), F+) ≤ dmin/4,∀t ≥ Λ. (57)

Since ‖V̄k(0)‖H ≤ η+γ holds for every k, we have that (up to subsequence) V̄k(0) ⇀
u0 in H, as k → ∞, for some u0 ∈ H. Next, proceeding as in the proof of Lemma
2.2 we can see that (up to subsequence) V̄ ′k ⇀ V in L2(R;L2(R;Rm)) as k → ∞,

and moreover setting V̄k(t) = V̄k(0) +
∫ t

0
V̄ ′k(s)ds, and U(t) = u0 +

∫ t
0
V (s)ds, we

have V̄k(t) ⇀ U(t) in H, as k →∞, ∀t ∈ R. The fact that JR(U) ≤ lim inf
k→∞

JR(Vk)

follows as in the proof of Lemma 2.2 from the sequentially weakly lower semicon-
tinuity of W (cf. Lemma 3.1 (i)). To conclude that JR(U) = min

V ∈A
JR(V ), we are

going to check that U satisfies (57). Indeed, given t ≤ 0, let {ek} ⊂ F− be such
that ‖V̄k(t) − ek‖H ≤ dmin/4, ∀k. Since {ek} is bounded in H, we have (up to
subsequence) lim

k→∞
ek = e in H, for some e ∈ F− (cf. Lemma 3.2 (i)). Thus, it is

clear that dH(U(t), F−) ≤ dH(U(t), e) ≤ lim inf
k→∞

‖V̄k(t)− ek‖H ≤ dmin/4. Similarly,

dH(U(t), F+) ≤ dmin/4 holds for t ≥ Λ.

Proof of (i), (ii), (iii) and (iv). We first establish two lemmas:

Lemma 4.1. Writing U(t) = e0 +H(t), with

H ∈ H1
loc(R;L2(R;Rm)) ⊂ L2

loc(R;L2(R;Rm)),
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and identifying H with a L2
loc(R2;Rm) function via h(t, x) := [H(t)](x), we have

(i) h ∈ H1
loc(R2;Rm), ht ∈ L2(R2;Rm),

(ii) and ‖hx‖2L2((α,β)×R;Rm) ≤ C0(|β − α|), for a constant C0 > 0 depending only

on the length of the interval (α, β) ⊂ R.

Proof. We recall that given any interval (α, β), we can identify L2((α, β)× R;Rm)
with L2((α, β);L2(R;Rm)) via the canonical isomorphism

L2((α, β)× R;Rm) ' L2((α, β);L2(R;Rm))

f ' [(α, β) 3 t 7→ [F (t)] : x 7→ f(t, x)], F (t) ∈ L2(R;Rm).

Let g(t, x) := [U ′(t)](x), with g ∈ L2(R2;Rm), and let us prove that ht = g. Given
a function φ ∈ C∞0 (R2;Rm), we also view it as a map Φ ∈ C1(R;L2(R;Rm)),
t 7→ Φ(t), by setting [Φ(t)](x) := φ(t, x). Assuming that supp Φ ⊂ (α, β), we have∫

R2

[hφt + gφ] =

∫ β

α

(〈H(t),Φt(t)〉H + 〈Ht(t),Φ(t)〉H)dt,

and clearly the second integral vanishes if H ∈ C1([α, β];L2(R;Rm)). Since H
can be approximated in H1((α, β);L2(R;Rm)) by C1([α, β];L2(R;Rm)) maps, we
deduce that

∫
R2 [hφt + gφ] = 0, i.e. ht = g.

On the other hand,
∫
RW(U(t))dt < ∞ implies that for a.e. t ∈ R, we have

W(U(t)) <∞, and U(t) ∈ H̃. By using difference quotients, we can see that∫
R

∣∣∣h(t, x+ η)− h(t, x)

η

∣∣∣2dx≤k
∫
R
|hx|2≤4k(W(U(t))+Jmin)+2k‖e′0‖2L2(R;Rm), (58)

holds for a.e. t ∈ R, for η ∈ R \ {0}, and some constant k > 0. Thus, the

difference quotients h(t,x+η)−h(t,x)
η are bounded in L2((α, β) × R;Rm) for every

interval [α, β] ⊂ R, and as a consequence hx ∈ L2((α, β) × R;Rm). Finally, an
integration of (58) gives ‖hx‖2L2((α,β)×R;Rm) ≤ C0(|β − α|), with

C0 = 4k

∫
R
W(U(t))dt+ 2k|β − α|(2Jmin + ‖e′0‖2L2(R;Rm)).

Lemma 4.2. If (24a) holds, there exists a minimizer U of JR in A satisfying:

‖U(t)‖L∞(R;Rm) ≤ ρ, ∀t ∈ R. (59)

Proof. Let P : Rm → Rm be the projection onto the closed ball {u ∈ Rm :
|u| ≤ ρ}. Given V ∈ H, it is clear that the map PV : x 7→ P (V (x)) belongs
to H. In addition, given V1, V2 ∈ H, we have ‖PV1 − PV2‖H ≤ ‖V1 − V2‖H.
As a consequence, the map PU : t 7→ P (U(t)) ∈ H belongs to H1

loc(R;H), and
‖(PU)′(t)‖L2(R;Rm) ≤ ‖U ′(t)‖L2(R;Rm) holds for a.e. t ∈ R. On the other hand, it
is clear that W((PU)(t)) ≤ W(U(t)) holds for every t ∈ R. To deduce that PU is
a minimizer of JR in A, it remains to check that PU satisfies (57). Given t ≤ 0,
let e ∈ F− be such that ‖U(t) − e‖H ≤ dmin/4, and note that ‖e‖L∞(R;Rm) ≤ ρ,
since e is a minimal heteroclinic. This implies that for every x ∈ R, we have
|[PU(t)](x) − e(x)| ≤ |[U(t)](x) − e(x)|. Thus, it follows that dH(PU(t), e) ≤
dH(U(t), e) ≤ dmin/4. Similarly, dH(PU(t), F+) ≤ dmin/4 holds for t ≥ Λ.
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Given a function φ ∈ C1
0 (R2;Rm), we also view it as a map Φ ∈ C1

0 (R;L2(R;Rm)),
t 7→ Φ(t), by setting [Φ(t)](x) := φ(t, x). For every λ ∈ R, it is clear that

JR(U) ≤ JR(U + λΦ), (60)

and

d

dλ

∣∣∣
λ=0

∫
R

1

2
‖U ′(t) + λΦ′(t)‖2L2(R;Rm)dt =

∫
R
〈U ′(t),Φ′(t)〉L2(R;Rm)dt. (61)

On the other hand, since
∫
RW(U(t))dt <∞, it follows that for a.e. t ∈ R, we have

W(U(t)) <∞, and U(t) ∈ H̃. Our claim is that

d

dλ

∣∣∣
λ=0

∫
R
W(U(t) + λΦ(t))dt =

∫
R
ψ(t)dt, (62)

where ψ(t) :=
∫
R
[d[U(t)]

dx · ∂φ(t,x)
∂x +∇W ([U(t)](x)) · φ(t, x)

]
dx. We first notice that

for every λ 6= 0, the functions ψλ(t) := 1
λ [W(U(t) + λΦ(t))−W(U(t))] are defined

a.e. Moreover, we can see that ψλ(t) is equal to∫
R

[d[U(t)]

dx
· ∂φ(t, x)

∂x
+
λ

2

∣∣∣∂φ(t, x)

∂x

∣∣∣2+∇W ([U(t)](x)+cλ(t, x)λφ(t, x)) · φ(t, x)
]
dx,

(63)
with 0 ≤ cλ(t, x) ≤ 1. As a consequence, we obtain lim

λ→0
ψλ(t) = ψ(t) for a.e. t ∈ R.

Finally, setting u(t, x) := [U(t)](x), we have u ∈ H1
loc(R2;Rm) ⊂ Lqloc(R2;Rm),

∀q ≥ 2 (cf. Lemma 4.1), and moreover u ∈ L∞(R2;Rm) when (24a) holds (cf.
(59)). This implies that either under assumption (24b) or (24a), we can find a
function Ψ ∈ L1(R) such that |ψλ(t)| ≤ Ψ(t) holds a.e., when |λ| is small. Thus,
we deduce (62) by dominated convergence. Now, we gather the previous results
to conclude. In view of (60), (61) and (62), the minimizer U satisfies the Euler-
Lagrange equation ∫

R
(〈U ′(t),Φ′(t)〉L2(R;Rm) + ψ(t))dt = 0. (64)

which is equivalent to ∫
R2

(∇u · ∇φ+∇W (u) · φ) = 0. (65)

By elliptic regularity (cf. respectively [16, Theorem 8.34. and Corollary 4.14.] under
assumption (24a), and [16, Theorem 8.8. and Corollary 4.14.] under assumption
(24b)) it follows that u is a classical solution of (1). When (24a) holds it is clear that
u is uniformly continuous on R2, since |∇u| is bounded on R2. Similarly, when (24b)
holds, Lemma 4.1 implies that ‖u‖H1(D;Rm) and ‖∇W (u)‖L2(D;Rm) are uniformly
bounded on the discs D of radius 1 included in the strip [α, β]×R (with [α, β] ⊂ R).
Thus, in view of [16, Theorem 8.8.], u is uniformly continuous on the strip [α, β]×R.
To prove (25b), assume by contradiction the existence of a sequence (tk, xk) such
that lim

k→∞
xk =∞, tk ∈ [α, β], and |u(tk, xk)−a+| > ε > 0. As a consequence of the

uniform continuity of u, we can construct a sequence of disjoint discs of fixed radius,
centered at (tk, xk), over which W (u) is bounded uniformly away from zero. This
clearly violates the finiteness of E[α,β]×R(u) = J[α,β](U) + Jmin(β − α). To prove
(25a), assume by contradiction the existence of a sequence tk such that lim

k→∞
tk =∞,

and dH(U(tk), F+) > 2ε > 0. Since R 3 t 7→ U(t) ∈ H is uniformly continuous,
we can construct a sequence of disjoint intervals [tk − η, tk + η] of fixed length over
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which dH(U(t), F+) > ε > 0, and W(U(t)) is bounded uniformly away from zero
(cf. Lemma 3.1 (ii)). This again violates the finiteness of JR(U). Finally, the
equipartition property (iii) is established as in Theorem 1.1, and (iv) follows from
(60), since E[α,β]×R(u+φ) = J[α,β](U+Φ)+(β−α)Jmin, if suppφ ⊂ (α, β)×R.

Proof of (28). The proof proceeds as in [7, Proposition 6.1.]. In view of (27), let
t0 ∈ R and κ > 0 be such that

W(U(t)) ≥ κd2
H(U(t), F−), ∀t ≤ t0. (66)

For t ≤ t0 fixed, let e− ∈ F− be such that dH(U(t), e−) = dH(U(t), F−), and define
the map

Z(s) =

{
U(t) + (t− s)(e− − U(t)), for t− 1 ≤ s ≤ t,
e−, for s ≤ t− 1.

(67)

By reproducing the argument after (56) we obtain J[t−1,t](Z) ≤ W(U(t)) + (C +

1)d2
H(U(t), F−), with C = sup

|u|≤ρ,|ν|=1

|D2W (u)(ν, ν)|. Thanks to the variational

characterization of U and to (66), it follows that

κ

∫ t

−∞
d2
H(U(s), F−)ds ≤

∫ t

−∞
W(U(s))ds ≤ J(−∞,t](U) ≤ J[t−1,t](Z)

≤ W(U(t)) + (C + 1)d2
H(U(t), F−). (68)

Setting θ(t) :=
∫ t
−∞(d2

H(U(s), F−) +W(U(s)))ds, we deduce that θ ∈ W 1,1
loc ((−∞,

t0]), and γθ ≤ θ′ holds a.e. on (−∞, t0] for some constant γ > 0. By integrating
this inequality, it follows that

θ(t) ≤ θ(t0)eγ(t−t0). (69)

Now, we notice that by the equipartition property, we have∫ t

−∞
‖U ′(s)‖2L2(R:Rm)ds ≤ 2θ(t0)eγ(t−t0), ∀t ≤ t0, (70)

and for every j ∈ N:∫ t−j

t−j−1

‖U ′(s)‖L2(R:Rm)ds≤
(∫ t−j

t−j−1

‖U ′(s)‖2L2(R:Rm)ds
) 1

2 ≤
√

2θ(t0)e
γ
2 (t−t0)e−

γ
2 j .

(71)
Therefore, ∫ t

−∞
‖U ′(s)‖L2(R:Rm)ds ≤

√
2θ(t0)

1− e− γ2
e
γ
2 (t−t0) <∞, (72)

and U(t) → e− in H, as t → −∞, for some e− ∈ F−. Similarly, we establish the
existence of e+ ∈ F+ such that U(t)→ e+ in H, as t→∞.

Next, we choose ε ∈ (0, r/2) such that (µ+1)ε2 <
√
c(r−2ε)ε, where µ is defined

in (48). Let L > 0 be such that |e±(x) − a−| < ε/4 (resp. |e±(x) − a+| < ε/4)
holds for every x ≤ −L (resp. x ≥ L). Our claim is that |u(t, x) − a−| ≤ r
(resp. |u(t, x)− a+| ≤ r) holds for x ≤ −L− 1 (resp. x ≥ L+ 1) and |t| ≥ T large
enough. Without loss of generality we are only going to check that |u(t, x)−a−| ≤ r
holds for x ≤ −L − 1 and t ≥ T large enough. Indeed, otherwise there exists a
sequence (tk, xk) such that lim

k→∞
tk = ∞, xk ≤ −L − 1, and |u(tk, xk) − a−| > r.

Up to subsequence, we have lim
k→∞

u(tk, x) = e+(x) for a.e. x ∈ R. Let T > 0

be such that |u(tk, L0) − a−| ≤ ε/2 holds for some L0 ∈ (−L − 1,−L), when
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tk ≥ T . By the uniform continuity of u, there exists η > 0 (independent of k)
such that |u(t, xk) − a−| ≥ r − ε/2 and |u(t, L0) − a−| ≤ ε hold for t ∈ [tk −
η, tk + η]. In view of (49) and (50) we deduce that W(U(t)) ≥

√
c(r − 2ε)ε− (µ+

1)ε2 > 0, ∀t ∈ [tk − η, tk + η], with tk ≥ T . Thus we obtain
∫
RW(U(t))dt = ∞

which is a contradiction. This establishes our claim, and now (28b) follows easily
from a standard comparison argument. Moreover, using elliptic estimates we also
obtain that |∇u(t, x)| ≤ K ′e−k

′|x| holds for some constants k′,K ′ > 0, and |D2u|
is bounded on R2. As a consequence, the function R 3 t 7→ ψ(t) := W(U(t)) is
Lipschitz, since ψ′(t) =

∫
R[ux(t, x) ·utx(t, x) +∇W (u(t, x)) ·ut(t, x)]dx is uniformly

bounded by a constant β > 0. We infer that

W(U(t)) ≤ 2
√
βθ(t0)e

γ
2 (t−t0), ∀t ≤ t0. (73)

To see this, let t ≤ t0 be fixed and let λ := ψ(t). For s ∈ [t − λ
2β , t], we have

ψ(s) ≥ ψ(t) − β|s − t| ≥ λ
2 . Thus, we get λ2

4β ≤
∫ t
t− λ

2β
ψ(s)ds ≤ θ(t0)eγ(t−t0), from

which (73) is straightforward. Finally, (72) implies that

‖U(t)− e−‖L2(R:Rm) ≤
√

2θ(t0)

1− e− γ2
e
γ
2 (t−t0), ∀t ≤ t0, (74)

while according to (44) we have

‖ux(t, ·)− (e−)′‖2L2(R:Rm) ≤ 2W(U(t)) + C‖U(t)− e−‖2L2(R:Rm). (75)

Gathering the previous results, we deduce that ‖U(t) − e−‖H1(R:Rm) converges ex-
ponentially to 0.

5. Proof of Theorem 1.3. To prove the existence of the minimizer Ũ , just replace
in the proof of Theorem 1.2, H, dmin, J and A, by H̃, d̃min, J̃ and Ã. Next, given
a function Φ ∈ C1

0 (R;H1(R;Rm)) such that supp Φ ⊂ [α, β] ⊂ R, it is clear that for
every λ ∈ R, we have

J̃R(Ũ) ≤ J̃R(Ũ + λΦ), (76)

and

d

dλ

∣∣∣
λ=0

∫
R

1

2
‖Ũ ′(t) + λΦ′(t)‖2H1(R;Rm)dt =

∫
R
〈Ũ ′(t),Φ′(t)〉H1(R;Rm)dt. (77)

On the other hand, proceeding as in the proof of Theorem 1.2 we obtain

d

dλ

∣∣∣
λ=0

∫
R
W(Ũ(t) + λΦ(t))dt =

∫
R
ψ(t)dt, (78)

with ψ(t) =
∫
R
[d[Ũ(t)]

dx · d[Φ(t)]
dx + ∇W ([Ũ(t)](x)) · [Φ(t)](x)

]
dx = DW(Ũ(t))Φ(t)

(cf. Lemma 3.1 (iii)). Indeed, in view of (63), the functions ψλ(t) := 1
λ [W(Ũ(t) +

λΦ(t)) − W(Ũ(t))] converge as λ → 0 to ψ(t), and are uniformly bounded when
|λ| ≤ 1, by the integrable function

Ψ(t) =(‖Ũ(t)‖H̃ + ‖e′0‖L2(R;Rm) + ‖Φ(t)‖H̃)‖Φ(t)‖H̃
+ κ1(‖Ũ(t)‖H̃ + ‖Φ(t)‖H̃)‖Φ(t)‖H̃ + 2κκ2χ[α,β](t),

where

• κ = sup
t∈[α,β]

(‖Ũ(t)‖L∞(R;Rm) + ‖Φ(t)‖L∞(R;Rm)),

• κ1 = sup
|u|≤κ,|ν|=1

|D2W (u)(ν, ν)|,
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• κ2 = sup
|u|≤κ

|∇W (u)|,

• and χ is the characteristic function.

Gathering the previous results we conclude that the minimizer Ũ satisfies the Euler-
Lagrange equation∫

R
(〈Ũ ′(t),Φ′(t)〉H1(R;Rm) +DW(Ũ(t))Φ(t))dt = 0, (79)

and thus Ũ ∈ C2(R; H̃) is a classical solution of system Ũ ′′ = ∇W(Ũ). Next, we
notice that the space L2((α, β);H1(R;Rm)) is imbedded in L2((α, β);L2(R;Rm))
which is isomorphic to L2((α, β) × R;Rm), while the space H1((α, β);H1(R;Rm))

is imbedded in H1((α, β);L2(R;Rm)), thus Lemma 4.1 also applies to Ũ . That

is, setting ũ(t, x) := [Ũ(t)](x), t 7→ Ũ(t) ∈ H̃, we have ũ ∈ H1
loc(R2;Rm), ũt ∈

L2(R2;Rm), and ũx ∈ L2((α, β) × R;Rm). Furthermore, we can see that ũtx ∈
L2(R2;Rm) by using difference quotients as in the proof of Lemma 4.1. In view of
the previous results, (79) and (76) read respectively (32) and (35), when φ(t, x) :=
[Φ(t)](x) is a C2

0 (R2;Rm) function. To prove (33b), we notice that ũ is uniform-

ly continuous on the strips [α, β] × R, since [α, β] 3 t 7→ Ũ(t) ∈ H̃ is Lipschitz

continuous, and |ũ(t, x) − ũ(t, y)| ≤ λ|x − y| 12 holds for t ∈ [α, β], x, y ∈ R, and

λ = sup[α,β] ‖Ũ(t)‖H̃. Then, we establish (33b), (33a) and the equipartition proper-

ty (34) as in the proof of Theorem 1.2. Finally, whenW satisfies the nondegeneracy
condition (36), the arguments in the proof of Theorem 1.2 still apply to show (37), s-

ince we have sup{‖e‖L∞(R;Rm) : e ∈ F} <∞ as well as supt∈R ‖Ũ(t)‖L∞(R;Rm) <∞.
On the other hand, it is clear in view of (37) that the uniform convergence in (33b)
holds for t ∈ R.
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