National and Kapodistrian University of Athens
School of Science, Department of Mathematics

Cyclability: Combinatorial Properties,

Algorithms and Complexity

Spyridon Maniatis

PhD Thesis

Supervised by
Prof. Dimitrios M. Thilikos

June, 2018

NEPIAHWH

‘Eva ypadnua G KaAeital k-KUKAWOIUO, av yla KABe k amod TIC KOPLUPES
TOUL UTIAPXEL €vag KUKAOG OTO G TIOUL TIG TiepEXel. H kukAwoiuotnta evog
ypadnuatog G eival 0 PEYIOTOG aKEPALOG & yla TOV OTIoio TO G €ival k-KUKAWOLO
Kat gival pia mapAueTpog mou oXeTI(ETAL PE TN OULVEKTIKOTNTA. Z€ AUTH TN
S16aKTOopPIKN dlatpIPr) peAeTdue, Kupiwg anod tn okorid tng NapapeTtpikig MoAuv-
nAokotTnTag, 1o MPEOPANUa KYKAQZIMOTHTA: Aebopévou evog ypadpriuatog
G = (V, E) ka1 evog pn apvnTikoL akepaiou k (N apapetpog), va anodaolotei
av n KukKAwolpotnTa Tou G eivat ion pe k.

To MPWTO pag armoTeEAeoua eival apvnTiko Kal deixvel OTL n LTIAPEN evOg
FPT-ahyopiBuou yia tnv eniivon tou npofAnpatog KYKAQZIMOTHTA eivat
armiBavn (ektdg av FPT = co-W(1], To omoio Bewpeitat anibavo). Mo cuykekplué-
va, arodeikvooupe 0TL To PoRAnua KYKAQZIMOTHTA eival co-W[1]-8uokoAo,
akopa Kat av replopioovpe TNV €icodo oto va eival xwpllduevo ypddnua.

AMo tnv aiAn, divouue €évav FPT-aAyopiBuo yia 1o idlo mpdPAnua mepl-
OpPIoPEVO otnv KAdon Twv ermtinedwv ypadnudtwv. MNa va to metvxoupye avtod
arodelkvOoLE Hla oelpd amd ouVOUACTIKA ATIOTEAECHUATA OXETIKA HE TNV
KLUKAwootnTa Kat epappolouvpe pia ekdoxr) SVo BNUATwY NG TiePiPNUNG TEXVI-
KNG TNG AoXeTNG Kopudric, TIou elonxOn amnod toug Robertson kat Seymour otn
oelpa epyaclwv Toug yia EAAdcova Mpadruata, wg éva Kpioluo cuotatiko Tou
aAyopiBuou toug ywa tnv emiAuon tou TpoPAnuatog Twv AIAKEKPIMENQN
MONOITATIQN. lNa va arnodei€oupe TNV 0pBOTNTA TOL AAyOoPIBHOL pag eloAyou-

HE €vvoleg, OTIWG auTr TwV (WTIKWV KUKAIKWV OUVOECHWY, Kal artodelkvOouE
arnoteAeopata pe ave€apTnTou ypadobewpnTIKoL evolapEPOVTOG.

KAeivoupe Tn HEAETN pag pe Eva SeUTEPO APVNTIKO AOTEAECUA: ATTOSEIKVD-
oupe OTL yia 1o PORANua tng KYKAQZIMOTHTAZ dev umtdpxouv TTOALWVUHIKOI
TIUPIVEG, AKOPA KAl av TIEPIOPLOTOVHE o KLPIKA ertineda ypadnriuarta, eKToq
kal av dev 1oxVel pla undBeon TG KAAOOIKNG Otwpiag MNMoAumAokdtnTag (OTL
NP C co-NP/poly).

ABSTRACT

A graph G is called k-cyclable, if for every k of its vertices there exists a
cycle in G that contains them. The cyclability of G is the maximum integer &
for which G is k-cyclable and it is a connectivity related graph parameter. In
this doctoral thesis we study, mainly from the Parameterized Complexity point
of view, the Cyclability problem: Given a graph G = (V, E) and an integer k
(the parameter), decide whether the cyclability of G is equal to k.

Our first result is a negative one and shows that the existence of an FPT-
algorithm for solving Cyclability is unlikely (unless FPT = co-W[1], which is
considered unlikely). More specifically, we prove that Cyclability is co-W[1]-
hard, even if we restrict the input to be a split graph.

On the other hand, we give an FPT-algorithm for the same problem when
restricted to the class of planar graphs. To do this, we prove a series of com-
binatorial results regarding cyclability and apply a two-step version of the so
called irrelevant vertex technique, which was introduced by Robertson and
Seymour in their Graph Minors series ([83]) as a crucial ingredient for their al-
gorithm solving the Disjoint Paths problem. To prove the correctness of our
algorithm, we introduce notions, like the one of vital cyclic linkages, and give
results of independent graph-theoretic interest.

We conclude our study with a negative result: We prove that Cyclability ad-
mits no polynomial kernel, even when restricted to cubic planar graphs, unless
a classical complexity theoretic assumption (that NP C co-NP/poly) fails.

MPOAOI O

2e autov Tov mPoAoyo Ba nbela va euxaploTriow KATOLOLG avlpwrtoug
XWpIC TN cLPPBOANA TwV oTtoiwv, N OAOKANPWAN ALTHG TNG S1IAdAKTOPIKAG dlaTpl-
BNg Ba Nrav apdifoAn.

Mpwta, Ba nbeAa va evxaplotnow tov Kabnynt Anunitplo M. OnAuko,
EMIPAE- TTOVTA KABNYNTH TWV SIGAKTOPIKWY OTIOLSWV oL, Yl TIG YVWOELG TIOU
pHou PETESWOE, TNV UTIOWOVH], TNV KATavonan, Kal Tn otabepr) otrplfn Tou.
Oewpw Nwg eival €vag Xaplopatikog SAoKAAOG Kal, CNUAvTIKOTEPQ, £VAG YEV-
valddwpog dvBpwTtog o TipoodEpel TTOAUTIAEVpaA otnv Emiotrun.

Euxaplotw 1baitepa ta dAAa SVo PEAN TNG TPIWEAOVG ETIITPOTING HUOL, TOUG
KaBnyntég Ztavpo I'. KoAhorovAo kat Aeutepn M. Kupouon. Eixa tnv toxn
va yvwpiow 600 evoladEPOVTEG QVOPWTIOUG, UE EVPEIEG ETIIOTNHOVIKEG YVWOELG
Kal EVTOVEG KOIVWVIKEG evaloBnaoieg, onwe apuolel oe AveTIoTNHIaKoLg 6a-
OKAAOUG.

Me Tipd 1blaitepa n cuppetoxr Tou Kabnyntr Xpriotou A. ABavaaotadn otnv
entapen erutpornn tng dlatpPng pouv. Ta pabruata ZuvouaoTikhg Oswpiag
TIoU €ixa TNV TOXN VA TIapAaKoAoLBrow, KPATNoAV APEIWTO TO eviladEPOV LoV
KAl TIIoTeLW TG arnoTteAoLy Tiapddelypa tnG opopdlac Kal KoppotnTasg Twv
MaBnpatikwv. Evxaplotw emiong tov Enikovpo Kabnynt MixdaAn X. Apaké-
TIOUAO Kat Tov KaBnyntr Evayyeho Parttn, 1600 yia Tn CUPUETOXN OTnV EMTape-
AN erutportr) aAAd kat yia tnv mpoodopd toug oto Turiua Mabnuatikwy, diaite-
pa 6cov adopd tn ovvdeon TNG MaBNUATIKAG ETIOTAKNG HE TNV ETUOTAMUN TWV

Yroloylotwy. TéAog, euxaplotw Beppd tov Avarinpwtr Kabnyntr lwdvvn
MoUpToO, TIoUL pE TINA Kal auTdG PE TN CUPPETOXA TOL OTNV ETITPOTIN Kal, OVTAG
pENOG ToL TuNPaTog AloknTiKAG Ermotrung kat Texvohoyiag Tou OIKOVOUIKOU
Maveriotnuiov ABnvwv, GUPPBAAAEL OTNV ETTIKOIVWVIA KAl cuvepyaoia Twv dUo
TUNUATWV.

Aev Ba priopolaoa va pnv avagpepdbw GTOLG CUPPOITNTES oL, e TOUG OTIOi-
0UG, EKTOC artod TaA MAVETIOTNUIOKA £€86pava, HOoLPACTAKAUE OKEYPELS, AVNOLXIEG
Kal xapeg. Me apketoug avantuéape oxEoelg Tou Eedelyouv anod Ta mAaiola
Twv omnouvdwv Kat polpaldpacte dpopdeg avapvrioel. Evxaplotw 1dlaitepa
TouG Pidouvg pou, Apxovtia, Ndavvn kKat AnuAten ywati TWoLv Thv ouadia NG
AEENG QlAia.

‘Eva peydAo euxaplotw odpeilw Kal oToug yoveig pou, MNavayiwtn kat EAev-
Bepia, kal otn cuvTpodo pouv Mapia, yia TNV aydrn Kat TN oTPLEN, LAIKN Kal
NBIKr}, TIou TIAVTA TTPOCHEPOUV ATTAOXEPA.

©a nbeAa, TENOG, va avadepbw WBlaitepa oto Turpa Mabnuatikwv Tou
E.K.T.A., yiati Bewpw mnwg amoteAei umodelyua Anudolou MaverotnuiakoL
TUApatog. Mapd TG avTIKEPEVIKEG SUOKOAIEG, N TTOIOTNTA TWV OTIoLSWV eival
vPnAn kat poadEpeTal aglokPATIKA Kal Xwpig Stakpioelg. O xwpog Tou TUrpa-
T0¢ MaBnuatikwv aroteAei eatia eAelBepnc okeEPNG Kal dnulovpyiag, Tou
Oev neplopifovrtal atn YEAETN TNG eMOTAPNG Twv Mabnuatikwv. Me Tipd rou
QAMOTEAW KOPUATL TOL TUNAHATOG Kal eATIICW va ouveyioel va TIPoodEPEL, YE TN
OLVEIoPOPA OAWV TWV PEAWV TOU, TO €PYO TOU, P TNV idla urevbuvoTtnTa TOCO
arnévavtt otn Mabnuatikn emotriun 000 Kat arévavtl aTnv Kowvwvia.

Skeptouaote Sev onuaiver Byaivoupe amd to omnriAaio, oute OTL
avtikabiotoUue tnv aBeBaldTnTa TWV OKIWV UE TA VSIAKPITA MEPIyPALATA
TwV iSlwv TWV NMEayudTwy, TO TPEUOUAIAoTO PEYYOG yiag pAdyaq LE TO pwe
TOoU aAnBivou ridiou. Znuaivel urtaivoupe otov AaBuptvo, Mo OUYKEKPIUEVA
Kdvoupe va gaiveral kat va gival évag Aafupivlog, evw Ba puropovoape va

eiyape peivel «€anAwpévol avdueoa ota AovAovdia ateviovrag Tov oupavo».

KopvnAlog Kaotoptadng,

Ta otavpodpopia Touv AaBupivBou

CONTENTS

i Introduction 1
f.1 Connectivity 1
(.2 GraphMinord e 5
1.3 Theresultsofthisthesid 8

1.31 Hardness 11
1.3.2 FPT for planar grapha 12
[.3.3 Combinatorialresulty 14
[.3.4 No polynomialkerneld 16

2 Basic definitions and preliminary results 19

................................ 19
P.1.1 Basic notions aboutgraphg 19
P.1.2 Graph operations and relations between graphg 25
P.1.3 Graphparameterd 28

P.2 Parameterized Complexity 30
P.2.1 Basicdefinitions 30

.2.2__Why Parameterized Complexity? 32
p.2.3 Fixed-parameter intractability and the W—hierarchy] ... 38
2.4 Kernelization 44
P.2.5 Kernelization lowerboundg 48

CONTENTS

P.3 Monadic second-orderlogid 56
P.4 Cycles,wallsandannuli 59

B __Combinatorics of cyclic linkages 65
B.1 Graph linkages and cheap graph linkaged 65
B.2 Cyclic linkagesinplanegraphg 70

@ _Algorithms for graphs of bounded treewidth 75
#.1 Using Courcelle's theorem for Cyclability 75
#.2 Treewidth and dynamic programming 78
#.2.1 Dynamic programming for Weighted Independent Sef . . 81

#.2.2 Dynamic programming for Hamiltonian Cycle 84

#.3 Dynamic programming for Cyclability 86

5 The Algorithm 95
5.1 ThealgorithmCompass 98
b.2 The Algorithm concentric cycles 99
b.3 Correctness of the algorithm 101

B Hardness of the Cyclability Problem 109
7 Kernelization lower bound for Cyclability 119
123
8.1 Ourresulty e 123
B.2 Complexity of Cyclability and better running timg 124
B.3 Generalizations 125

129

LIST OF FIGURES

f.1

Observe that the solution can be obtained in two ways: Eithel

by deploying a dynamic programming routine on a graph with
small treewidth or by exploiting the fact that the paths inter]
bect a big clique (described in Subcase 1). The algorithm alsd
jterates in two ways: Either after deleting an irrelevant vertex
located in a big clique (Subcase 1) or by deleting an irrelevant
vertex in an "almost flat" subgraph (Subcase 2)] 9

0.2

Given (G, R) as the input (upper circle), if the tw(G) is small

then we solve by using dynamic programming (mid-left circle)]

If tw(G) is large and the annotated vertices are distributed uniq
formly (mid-right circle), then we find an irrelevant vertex v (bottom4
right), delete it, update the input to (G \ {v}. R) and iterate. Elsg

(if the annotation is not uniform), find a vertex v whose colour ig
jrrelevant, uncolour it, update the input to (G, R\ {v}) and iterate] 14

p.1

Two different drawings of graph H. Observe that at the right

bne, the intersection of two edges is always a vertex] 21

p.2

An outerplanar graph at the left and its weak dual at the right)

Its simplicial faces are fi. f> and fs, ey is an internal edge, and
koisanexternaledagel 24

LIST OF FIGURES

p.3

A plane graph (black) embedded in the plane along with its dual

graph (red). There is one dual vertex (red square) for every facg
of the plane graph. Any edge of the black graph is on the bound
ary of exactly two of its faces which are connected by an edgeg
jnthedual (red)graph] 24

p.4

A (13 x 6)-grid is depicted. lts corners are the red vertices and

jts centers are the two blue vertices. The outer cycle is the bold
rectangle that contains the corners of thegrid] 25

R.5

The graph H; is a topological minor of the graph G (certified by

the circled vertices of G and the dashed edges of G) and theg
graph H, is a minor of G (consider the function ¢ : V(H) —
V(&) that sends a vertex of H, to the subset of vertices of G
of the same colour and observe that each "colour-class" in G
jnduces a connected subgraph) 28

p.6

An example of a graph of treewith 2 along with a tree-decomposition

of minimumwidth] 31

p.7

The circuit C' that corresponds to the 3-CNF formula ¢ = (21 M

b Vors) A (mxq Ve V—oxs) A (-2 V —xe V 2s). It is easy to sed
that, circuit C is satisfiable if and only if formula ¢ is satisfiable). 43

p.8

At the right: A graph with G with five vertices and eight edges|

At the left: A decision circuit C (constructed from G as ded
scribed by the reduction) satisfied by the independent sets of G|
More specifically an independent set of size k in G correspondg
to a satisfying assignment of weight k forC| 43

R.9

This figure gives an intuition about how we can create an OR-

distillation for language L, given a cross-composition A of L intd
(the parameterized language) @ and a polynomial compression
CofQintothelanguage Rl 55

P.10 A (10,15)-railed annulus) 61

P.11 A sequence of three tight concentric cycles. The addition of any|

of the dashed edges makes the sequence non-tight] 62

P.12 A subdivided wall of height 9. The white squares represent the

subdivision vertices. The bold curves are its layers and the
bold-dashed curve is its perimeter] 63

iv

LIST OF FIGURES

B.1_Three graphs G;. G5, and G;. In each graph the bold edges de{
finethe cycle C = ({vy,...,us}, {{vi,v9}. {vg,v5}, {vs. v} 1)
where T = V(C). Consider the cyclic linkage £ = {C, T} wherg
[= V(C). L is a weakly vital linkage in G; and G- while it i
hot a weakly vital linkage in G5. Moreover, £ is a strongly vital
linkage in G; while it is not a strongly vital linkage neither in G4

............................... 67

B.2 A CLG-configuration Q = (C, L) with £ = (H,T). Here, C is q
sequence of six concentric cycles, H (the bold curve) is a cyclg
(thus £ is a cyclic linkage) and T is represented by the set of
squares. The penetration of £ in C is 4 and Q is touch-free] . . . 68

B.3 The linkage that corresponds to the cyclic linkage depicted irf
............................... 69

B.4 On the left, a simplified £-tidy (4 x 4)-grid (corresponding td
graph H*) and on the right, a rerouting of the cycle of £ in the

#.1 A graph G is depicted at the left and at the right there is the
raph lift(G, v) that results from G after the edge lift from vertex vl 88

#.2 At the top we depict the neighborhood of node v in X, (at thg
left) and an element, P of P*“* at the right. In the middle w¢
depict the result, Q, of the union P U P, where P € P(X,). Af
the bottom we have the result, P’ ¢ P(X, U {v}) = P(X;), of
fitingoin @] 91

b.2 visualisation of proof of Lemma 5.3.2, case 1. The different lin4
ing on the parts of the cycle at the left indicates the different

coloursofthesepaths] 102
b.3 visualisation of proof of Lemma 5.3.2, case 2, subcase 2] 105

b.4 The squares of the right (resp. left) part represent the verticed
bf S1 (resp. S,). The connection between two cycles via railg
and through 2 and y is derived from a double application of

............................ 106

LIST OF FIGURES

B.1 A visualisation of how our algorithm, Planar_ Annotated_ Cy{
clability, operates on input (G. R, k) for the Cyclability problem)
where G = (V, E) is a planar graph, S is a subset of V, and k ig
B non-negative integer] 108

7.1 The gadget F; the edges of Hamiltonian cycles are shown by

heboldlines| 121
[7.2 _The construction of G for t = 3; the edges of a Hamiltoniar|
cycle in G are shown by the bold lines)] 122

Vi

cHAPTER 1

INTRODUCTION

1.1 Connectivity

In this first chapter, we give a brief outline of our work by discussing the
main notions and problems involved and by presenting some past research.
This chapter addresses the reader that is already familiar with some basic con-
cepts of graph theory and parameterized complexity. The reader that is ex-
posed to some of the notions for the first time is advised to quickly go through
this introduction and return for a second read after having studied Chapter B.

Undoubtedly, one of the most important pieces of information that some-
one would like to extract "easily" from a given graph G, is whether two specific
vertices communicate, i.e., if two given are joined by a path in G. Fortunately,
this problem which is widely known as

Reachability
Input: A graph G = (V, E) and two distinct vertices s,t € V.
Question: |s there a path in G with endpoints s and ¢?

can be solved "easily" (in polynomial time) using several well-known algo-
rithms, such as BFS and DFS, which can be found in any introductory book

1

1.1. CONNECTIVITY

about algorithms (for example see [24] and [61]). As a result, the problem of
deciding whether any two vertices of a graph communicate, more precisely

Connectivity

Input: A graph G = (V, E).

Question: s it true that for any two vertices in V, there is a path with
these vertices as endpoints?

can also be solved in polynomial time by several algorithms. But why is Con-
nectivity an important problem? Let us mention some examples:

+ Suppose that G = (V, F) represents a communication network N, where
each node in V works both as a transmitter and as a receiver, and for any
v,u € Vit holds that {v,u} € E if and only if there is a communication
channel between v and u in the network. Clearly, it is crucial to know
whether a piece of information can be made available to every node, if
it is initially announced to a single node and then is successively trans-
mitted using the channels of the network. The answer to the previous
question is exactly the answer for the Connectivity problem, when the
given graph is the one that represents the communication network N.

+ Imagine the previous example, where now the elements of F represents
a tube and each node in V represents a tank. We start by pumping
water into a tank. When a tank is full, it starts channeling the water that
it receives to all other tanks connected with it by a tube. The flow of
water stops when there is some tank that is full and all its neighbouring
tanks (connected with it via a tube) are also full. Can we know if all tanks
are full at the time when the flow stops? It is not hard to confirm that we
can, if we know whether the underlying graph of our tank/tube system
is connected.

+ Suppose that we have the communication network of the first exam-
ple but we additionally know that a node (can be any member of V) is
corrupted, meaning that it receives messages but it does not transmit
anything to its neighbours. Can we be sure that a message, initially
transmitted to one of the non-corrupted nodes, will be received by all
the nodes of the network? This question is equivalent to asking whether

2

CHAPTER 1. INTRODUCTION

the underlying graph of our communication networks is 2-connected (we
will formally define k-connectivity in Chapter B).

In the opening paragraph of his book Extremal Graph Theory, Béla Bollobas
notes: "Perhaps the most basic property a graph may posses is that of being
connected. At a more refined level, there are various functions that may be
said to measure the connectedness of a connected graph."

As we have already tried to illustrate with the previous three examples, it
seems that connectivity is a really important property for a graph. This is why
researchers have been studying variants of connectivity or other properties
that seem relevant to it. From the viewpoint of combinatorics there are many
known results but the algorithmic properties of most connectivity measures
remain fairly unexplored. In this thesis we study, mainly from an algorithmic
point of view, a connectivity related graph parameter, namely cyclability.

Cyclability. For a positive integer k, a graph G is k-cyclable if every k vertices
of GG lie on a common cycle; we assume that any graph is 1-cyclable trivially.
The cyclability of a graph G, introduced by Chvatal in [17], is the maximum
integer k for which G is k-cyclable. Clearly, a graph G is Hamiltonian if and
only if its cyclability equals |V (G)|. Therefore, we can think of cyclability as a
quantitive measure of Hamiltonicity or a tuning parameter between connec-
tivity and Hamiltonicity. Cyclability is a well studied parameter in the graph
theory literature. We give some references:

+ Dirac proved that the cyclability of a k-connected graph is at least &, for
k > 2 [30].

Watkins and Mesner ([92]) characterized the extremal graphs for the the-
orem of Dirac.

+ There is a variant of cyclability restricted only to a set of vertices of a
graph. Generalizing the theorem of Dirac, Flandrin et al. ([4Q]) proved
that if a set of vertices S in a graph G is k-connected, then there is a
cycle in G through any k vertices of S. (A set of vertices S is k-connected
in G if a pair of vertices in S cannot be separated by removing at most
k — 1 vertices of G.)

1.1. CONNECTIVITY

+ Another avenue of research is lower-bounds on cyclability of graphs in
restricted families

- Every k-connected and K 4-free graph has cyclability at least 2k

([a1).
- Every 3-connected claw-free graph has cyclability at least 6 ([77]).
- Every 3-connected planar graph has cyclability at least 23 ([4]).

- Every 3-connected and cubic planar graph has cyclability at least
9 ([64]) and the bound is tight (consider, for example, the Petersen

graph).

+ A graph G is hypohamiltonian if it is not Hamiltonian but all graphs ob-
tained from G by deleting one vertex are. Clearly, a graph G is hypo-
hamiltonian if and only if its cyclability equals |V (G)| — 1. Hypohamilto-
nian graphs appear in combinatorial optimization and are used to define
facets of the traveling salesman polytope [52]. Curiously, the computa-
tional complexity of deciding whether a graph is hypohamiltonian seems
to be open.

Although cyclability has been extensively studied as a graph parameter, it
has not been studied (to our knowledge) algorithmically so far: There are no
known (non-trivial) algorithms for computing the cyclability of a given graph
and there are no results about the computational complexity of Cyclability. In
this thesis we initiate this study. For this, we consider the following problem.

Cyclability

Input: A graph G and a non-negative integer k.

Question: |s every k-vertex set S in G cyclable, i.e., is there a
cycle C'in G such that S C V(C)?

We postpone the formal description of our results until subsection [1.3 and
proceed with a brief discussion of the ideas and results of the Graph Minors
series, focusing on the techniques that are of great importance for our study.

4

CHAPTER 1. INTRODUCTION

1.2 Graph Minors

In this subsection we discuss some parts of, probably, the most influen-
tial bodies of work in modern Combinatorics, the Graph Minor series of Neil
Robertson and Paul Seymour. In their work, which is comprised of 23 pa-
pers published between 1983 and 2011, they managed to prove the Wagner's
conjecture (nowadays known as the Robertson-Seymour theorem).

More specifically, they proved that the class of undirected graphs partially
ordered by the minor relationship forms a well-quasi-ordering (for every infinite
sequence of graphs there exists two such that on is a minor of the other). An
immediate consequence of this, which has important algorithmic applications,
is that every graph family closed under minors can be characterized by a set
of forbidden minors, the obstruction set (a graph G belongs to the class if and
only if it contains no member of the obstruction set as a minor).

Unfortunately, their proof is not constructive (and was proved later that
no constructive proof exists [39]) and therefore we cannot hope for an algo-
rithm that, given a minor-closed family of graphs produces the corresponding
obstruction set. On the positive side, Robertson and Seymour also gave a
polynomial time algorithm for checking whether a fixed graph H (whose size
is considered as a parameter) is a minor of a given graph G, or more specifi-
cally they proved that for every fixed graph H there is an O(n?) time algorithm
for solving the following problem

H-Minor Containment
Input: A graph G.
Question: |Is some minor of G isomorphic to H?

Looking at the problem from the parameterized complexity point of view
we can rephrase their result: The problem of checking whether a graph H is
contained as a minor in a graph G is in FPT, when parameterized by the size
of H.

Although the systematic study of Parameterized Complexity theory did not
start until the early 90s, the results of the Graph Minors series already con-
tained fruitful ideas, algorithms, and important results which have been re-
visited over and over and today are part of every book on computers and
algorithms. In fact, it can be argued that the notions and ideas introduced in

5

1.2. GRAPH MINORS

the series played an equally crucial role to the development of the theory as
the results themselves.

The Robertson-Seymour theorem combined with the FPT-algorithm for the
H-Minor Containment problem provide a "recipe" for designing FPT-algorithms
for deciding minor-closed properties for graphs:

Given a minor-closed graph property = and a graph G, explicitly compute
the corresponding obstruction set O() and check for every H € O(rn) whether
it is contained as a minor in G. If all the answers are negative, then graph G
satisfies property =, otherwise it does not.

Actually, the same strategy can also work for immersion-closed graph
classes as a result of the following two theorems from Robertson and Sey-
mour (in the last paper of the Graph Minors series which resolves a conjecture
of Nash Williams), and Gréhe, Kawarabayasi, Marx, and Wollan. Although
we will not concern ourselves with immersions in this thesis, we mention the
results:

Theorem 1.2.1 (Robertson and Seymour [84]). The class of all finite graphs is
well-quasi-ordered by the immersion relation.

Theorem 1.2.2 (Gréhe, Kawarabayasi, Marx, and Wollan [50]). The problem
of checking whether a graph H is contained as an immersion (or topological
minor) in a graph G is in FPT when parameterized by the size of H.

We will focus on a specific technique, the so called irrelevant vertex tech-
nique, that was introduced in the Graph Minors series as a crucial component
for studying the fundamental problem of deciding whether a given graph con-
tains vertex-disjoint paths with certain (given as an input) endpoints. More
precisely, Robertson and Seymour studied the following problem

Disjoint Paths

Input: A graph G and pairs (s1,t1),. .., (s, tg) of vertices of G
Question: Do there exist paths Py, ..., Py in G that are mutually vertex
disjoint and such that P, joins s; and t;, i € {1,...,k}?

The pairs (s1,t1),. .., (s, tx) of vertices that we want to link are also called
terminals. It is known that Disjoint Paths is NP-complete, along with its edge-
disjoint and directed variants, even when restricted to the class of planar
graphs ([66, 89, 91))).

CHAPTER 1. INTRODUCTION

Robertson and Seymour gave an algorithm that solves the Disjoint Paths
problem in f(k)-n> steps (later the dependance on n was improved to quadratic
in [67]), which means that the problem is fixed parameter tractable when pa-
rameterized by the number, &, of the requested paths.

Although they dealt with the problem in the 13th paper of the series ([80]),
the proof was completed only after the 22th paper ([83]) which was published
in 2012. The, crucial, missing part was the analysis of the so called irrelevant-
vertex technique, which has be widely used ever since for studying various
combinatorial problems (see for example [25], [26], [49], [56], [58], and [59]).

The Robertson-Seymour Algorithm. The algorithm of Robertson and Sey-
mour for solving the Disjoint Paths problem, strongly relies on the irrelevant
vertex technique. We demonstrate this by giving an outline of the algorithm.
Clearly, any graph either has bounded (by some function of k) treewidth or it
has "large" treewidth.

Case 1. The treewidth of G is bounded. In this case there are standard dynamic
programming arguments for solving the problem, given a tree decom-
position of bounded width.

Case 2. The treewidth of G is large.

Subcase 1. There exists a large clique minor in G. If there exist disjoint paths
from the terminals to the clique minor, then we can exploit the fact
that any two vertices of a clique are connected and link up the ter-
minals in any way we want.

If this is not the case, then the clique minor is, in a sense, cut off
from the terminals, and in it can be proved that some vertex v of
the clique minor is irrelevant, meaning that there exists a solution
for the problem in G if and only if there exists a solution in G \ {v}.

Subcase 2. There is no large clique minor in G. It can be proved that, after delet-
ing a bounded number vertices, we end up with a large subgraph,
that can be considered flat, of large treewidth. This means that the
subgraph contains a large grid minor or a subgraph that spreads in
two dimensions, called a wall. It can be proved that there exists a
"central" vertex of the wall that is irrelevant.

7

1.3. THE RESULTS OF THIS THESIS

Having analysed all the cases, the algorithm is simple: Iteratively delete
irrelevant vertices (either due to Subcase 1 or to Subcase 2) until the reduced
graph has bounded treewidth, at which point Case 1 applies. For a visualiza-
tion of the operation of the Robertson-Seymour algorithm see Figure 1.

However, it is the last subcase which requires almost all the main results
of the Graph Minors series for its analysis. The use of such "heavy" struc-
ture theorems, results to the algorithm having an immense running time (due
to the constants hidden in f(k)), making it practically inapplicable to actual
problems. Another proof that is much shorter and bypasses the involved
graph structure theorem of [81] was given by Kawarabayashi and Wollan in
[60], where they managed to prove an upper bound with f(k) being of mag-

29(k)

nitude 22° . Unfortunately, the dependence on the parameter is still huge
and renders the algorithm inefficient even for small values of k.

Another route is to try to obtain similar results for restricted graph classes.
A decisive step to this direction was made by Adler, Kolliopoulos, Krause,
Lokshtanov, Saurabh, and Thilikos in [3], where they proved that f(k) can be
just single exponential on k£ when the input is restricted to be a planar graph.
Note that planar graphs already exclude large clique minors (they exclude K,
for any n > 5) and the task is to prove that any, large enough, grid minor
contains an irrelevant vertex. As we have already pointed out, this is not an
easy task (it is one of the most deep results in the Graph Minor series) but the
structure of planar graphs proves to be helpful.

1.3 The results of this thesis

We are now ready to talk about the main contributions of this thesis. We
will present and discuss our results one by one and give an overview of the
underlying ideas and techniques. Some familiarity with classical and param-
eterized complexity is assumed (the reader can always return to this section
after studying Chapter B, where all necessary definitions are given).

From the classical complexity point of view, determining the cyclability of
a graph is a computationally hard problem as it is easy to see that Cyclability
with k£ = |V(G)| is Hamiltonicity and Hamiltonicity is NP-complete even for
planar cubic graphs ([46]). Hence, we have the following.

8

CHAPTER 1. INTRODUCTION

tw(G) small

tw(G) large

o] oo)

solution |

Y

irrelevant vertex use edges of irrelevant vertex
in W clique C' in C

solution

Figure 1.1: Observe that the solution can be obtained in two ways: Either by
deploying a dynamic programming routine on a graph with small treewidth
or by exploiting the fact that the paths intersect a big clique (described in
Subcase 1). The algorithm also iterates in two ways: Either after deleting an
irrelevant vertex located in a big clique (Subcase 1) or by deleting an irrelevant
vertex in an "almost flat" subgraph (Subcase 2).

Proposition 1.3.1. Cyclability is NP-hard for cubic planar graphs.

As cyclability can be thought of as a tuning parameter between connec-
tivity and hamiltonicity, it is interesting to study it from a parameterized com-
plexity point of view. In this thesis we treat the cyclability k£ of the input graph
as a parameter and when we mention Cyclability problem we will distinguish
between the standard problem and the parameterized one, unless it is un-
clear from the context. Before stating our results we briefly go through some
notions regarding parameterized complexity.

9

1.3. THE RESULTS OF THIS THESIS

Parameterized complexity. A parameterized problem is a language L C
¥* x N, where X is a finite alphabet. The instances of a parameterized problem
are pairs (1, k), where I C ¥* is the main part and k € N is the parameterized
part. Parameterized Complexity settles the question of whether a parame-
terized problem is solvable by an algorithm (we call it FPT-algorithm) of time
complexity f(k) - |I|°(") where f(k) is a function that does not depend on |I].
If such an algorithm exists, we say that the parameterized problem belongs to
the class FPT.

In a series of fundamental papers (see [33, 32, 34, 35]), Downey and Fel-
lows defined a series of complexity classes, such as W[1] C W[2] C --- C
W[SAT] C W[P] C XP and proposed special types of reductions such that
hardness for some of the above classes makes it rather impossible that a
problem belongs to FPT (we stress that FPT C W][1]). We mention that XP
is the class of parameterized problems such that there is an algorithm that
solves them in time O(|I|F(®)), for some function f (that does not depend on
|I]) and every k.

More notions of Parameterized Complexity are discussed in Section p.2 of
Chapter B. We also refer the reader to [22] (see also [31], [42], and [73]).

Algorithm for Cyclability. In this thesis we deal with the parameterized com-
plexity of Cyclability when parameterized by k. It is easy to see that Cyclability
is in XP:

For a graph GG, we can check all possible (Z) subsets X of V(@) of size
k. For each subset X, we consider k! orderings of its vertices, and for each
sequence of k vertices x4, ...,z of X, we use the main algorithmic result of
Robertson and Seymour in [80], to check whether there are k disjoint paths
that join x;_; and x; for i € {1,...,k} assuming that o = x;. We return a
yes-answer if and only if we can obtain the required disjoint paths for each
set X, for some ordering.

Thus, the running time of the previous algorithmis (}) - k! - t(n), where ¢(n)
is the running time for the Robertson-Seymour algorithm on a n-vertex graph.
This gives an O(f(k) - n**3) algorithm for solving Cyclability. This algorithm is
clearly inefficient: Not only the value of the parameter appears as an exponent
of n, but also the dependance of f on k is huge.

The first attempt to brute force towards a solution is not very successful.

10

CHAPTER 1. INTRODUCTION

Can we try something more sophisticated? Is it possible that Cyclability is
FPT when parameterized by £?

In this thesis we investigate the parameterized complexity of the Cyclability
problem. In the remaining of this Chapter we present our results along with
some brief discussion for each of them.

1.3.1 Hardness

The first thing one usually tries is either to design an FPT algorithm for the
problem of interest or demonstrate that the existence of such an algorithm is
unlikely. Our first result is that an FPT-algorithm for Cyclability is rather unlikely
as the problem is co-W[1]-hard even when restricted to split graphs, where a
split graph is any graph G whose vertex set can be partitioned into two sets
A and B such that G[4] is a complete graph and G[B] is an edgeless graph.
Specifically the following theorem is proved in Chapter B:

Theorem 1.3.1. /t is W[1]-hard to decide for a split graph G and a positive
integer k, whether G has k vertices such that there is no cycle in G that contains
these k vertices, when the problem is parameterized by k.

This theorem states that the complementary problem of Cyclability, i.e., the
problem of deciding if a given graph G contains k vertices such that no cycle
in G contains them all, is hard (unless FPT = W[1]) when parameterized by
k. In fact it is hard even for a class of graphs with relatively simple structure,
the class of split graphs (graphs that can be partitioned into a clique and an
independent set). In other words, the problem of refuting that a graph is k-
cyclable is hard when parameterized by k. This of course implies that the
problem of interest, Cyclability, is co-W/[1]-hard even for split graphs, when
parameterized by k.

The proof (which is presented in detail in Chapter B) is a (parameterized)
reduction of the natural parameterization of the Clique problem (given a graph
G and a positive integer k£ decide whether G contains a clique of size k) to the
complement of Cyclability.

This result suggests that (efficiently) solving the Cyclability problem in its
full generality is unlikely. Naturally, we focused our attention on a graph class
that is important and yet is "away" from the class of split graphs: The class of

11

1.3. THE RESULTS OF THIS THESIS

planar graphs, i.e., graphs that can be drawn in the plane in such a way that
any two edges do not intersect except on a common endpoint.

It is well-known that any planar graph excludes K; as a minor for every
t > 4, thus if a split graph is planar then its complete part should have at most
4 vertices. Moreover, any planar graph excludes K, , as a minor for every
t > 3 and thus a split graph that is planar can only be large if its edgeless part
is large. These arguments should be enough to justify that the class of planar
graphs and the class of split graphs do not share many important properties.

Additionally, planar graphs is one of the most studied graph classes in
Graph Theory, both from the combinatorial and the algorithmic point of view.
Reflecting their importance, researchers have created a very rich toolbox along
the years, which can be employed when trying to tackle problems on planar
graphs. Almost in every book on Graph Theory, such as [29, 12] and [11], there
is at least one chapter devoted on planar graphs. There are even entire books
devoted on algorithms on planar graphs (see [74]) or studying the more general
subject of graphs embeddable on surfaces (see for example [51, 88, 48]).

1.3.2 FPT for planar graphs

The positive result of this thesis is proving that the Cyclability problem is
fixed-parameter tractable when the input is restricted to be a planar graph.

Theorem 1.3.2. The Cyclability problem, when parameterized by k., is in FPT
when its input graphs are restricted to be planar. Moreover, the corresponding

2 1o s
FPT-algorithm runs in 22°" " . n2 steps.

Actually, our algorithm solves as slightly more general problem, where the
input comes with a subset R of annotated vertices and the question is whether
every k-vertex subset of R is cyclable. More specifically, we give an FPT-
algorithm for the following problem:

Planar Annotated Cyclability

Input: A graph planar G, a set R C V(G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C
of G such that S C V(C)?

Of course, by setting R to be equal with V(G) we get an instance of the
Cyclability problem with the input graph being planar.

12

CHAPTER 1. INTRODUCTION

Outline of the algorithm. The two key ingredients in the proof of Theorem
are a new, two-step, version of the jrrelevant vertex technique and a
new combinatorial concept of cyclic linkages along with a strong notion of
"cyclical" vitality on them (vital linkages played an important role in the Graph
Minors series, in [82] and [83]). The proof of Theorem is presented in
Chapter d. Next, we give a rough sketch of our method.

We work with a variant of Cyclability in which some vertices (initially all)
are coloured. We only require that every k coloured vertices lie on a common
cycle. If the treewidth of the input graph G is "small" (bounded by an appro-
priate function of k), we employ a dynamic programming routine (presented in
detail in Chapter H) to solve the problem.

Otherwise, there exists a cycle in a plane embedding of G such that the
graph H in the interior of that cycle is "bidimensional" (contains a large sub-
divided wall) but is still of bounded treewidth. This structure permits to distin-
guish in H a sequence C of, sufficiently many, concentric cycles that are all
traversed by some, sufficiently many, paths of H.

Our first goal is to check whether the distribution of the coloured vertices
in these cycles yields some "big uncoloured area" of H. In this case we de-
clare some "central" vertex of this area problem-irrelevant in the sense that its
removal creates an equivalent instance of the problem.

If such an area does not exists, then R is "uniformly" distributed inside
the cycle sequence C. Our next step is to set up a sequence of instances
of the problem, each corresponding to the graph "cropped" by the interior of
the cycles of C, where all vertices of a sufficiently big "annulus" in it are now
uncoloured.

As the graphs of these instances are subgraphs of H and therefore have
bounded treewidth, we can get an answer for all of them by performing a
sequence of dynamic programming (using the algorithm we present in Chapter
M) calls, each taking a linear number of steps. At this point, we prove that if
one of these instances is a no-instance then initial instance is a no-instance,
so we just report it and stop.

Otherwise, we pick a coloured vertex inside the most "central" cycle of C
and prove that this vertex is colour-irrelevant, i.e., an equivalent instance is
created when this vertex is not any more coloured.

In any case, the algorithm produces either a solution or some "simpler"
equivalent instance that either contains a vertex less or a coloured vertex less.

13

1.3. THE RESULTS OF THIS THESIS

This permits a linear number of recursive calls of the same procedure. For a
visualization of the described procedure see Figure [1.2

tw(G) small

solution

Figure 1.2: Given (G, R) as the input (upper circle), if the tw(G) is small then
we solve by using dynamic programming (mid-left circle). If tw(G) is large and
the annotated vertices are distributed uniformly (mid-right circle), then we find
an irrelevant vertex v (bottom-right), delete it, update the input to (G \ {v}, R)
and iterate. Else (if the annotation is not uniform), find a vertex v whose colour
is irrelevant, uncolour it, update the input to (G, R \ {v}) and iterate.

1.3.3 Combinatorial results

To prove the existence of irrelevant vertices when the treewidth of the input
graph is large, we have to introduce several combinatorial tools. One of them
is the notion of strongly vital linkages, a variant of the notion of vital linkages
introduced in [82], which we apply to terminals traversed by cycles instead of
terminals linked by paths, as it has been done in [82]. This notion of "cyclical"
vitality permits a significant restriction of the expansion of cycles which certify
that sets of k vertices are cyclable and is able to justify both critical steps of

14

CHAPTER 1. INTRODUCTION

our algorithm. The proofs of the combinatorial results that support our algo-
rithm are presented in Chapter [§ and we believe that they are of independent
combinatorial importance. To give a brief overview we introduce the notion of
graph linkages (formal definitions are given in B).

Graph Linkages. A graph linkage of a graph G is a pair £ = (H,T) such that
H is a subgraph of G and T is a subset of the vertices of H, called terminals
of L, such that every vertex of H with degree different than 2 is contained in
T. The set P(L), the path set of the graph linkage £, contains all paths of H
whose endpoints are in T" and do not have any other vertex in T'.

The pattern of L is the graph

(T, {{s,t} | P(L) contains a path from sto t in H}).

Two graph linkages of G are equivalent if they have the same pattern and are
isomorphic if their patterns are isomorphic.

A graph linkage £ = (H,T) is called strongly vital in G if V(H) = V(G)
and there is no isomorphic graph linkage in G that is different from £. We
call a graph linkage £ = (H,T) linkage (resp. cyclic linkage) if its pattern is a
collection of paths (resp. a single cycle). We sometimes denote such a linkage
just by writing L.

We say that a linkage £ in a graph G is unique if for all linkages £’ in G
equivalent to £, we have that V' (£) = V(£').

The main result of Graph Minors XXI [82] is the following structural theorem:

Theorem 1.3.3 (The Unique Linkage Theorem [82]). For all k > 1, there exists a
value w(k) such that the following holds. Let L be a linkage of G with |P(L)| =
kand V(G) =V (L). If L is unique, then the treewidth of G is at most w(k).

As we have already mentioned, the dependance of the value w(k) on k is
immense, as the proof in [82] needs the full power of the graph minor structure
theorem. It was substantially improved by Kawarabayashi and Wollan in [60]
(the dependance on k£ becomes triple exponential) and their proof is also much
shorter.

Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, and Thilikos gave an
improvement for the class of planar graphs [3]. In their work w(k) = O(k%/2.2F)
which is radically better than the bounds known for general graphs.

15

1.3. THE RESULTS OF THIS THESIS

Our contribution towards this direction, concerning cyclic linkages, is the
following

Theorem 1.3.4. If a planar graph G contains a strongly vital cyclic linkage
L = (C,T), then tw(G) = O(|T|*/?).

By thinking of the strong vitality property of a graph linkage as uniqueness
(for more details see chapter), we can observe something interesting: The
dependence on the number of the terminals (that corresponds to k) becomes
polynomial (almost linear) when the pattern of the graph linkage is a cycle.
This can lead to improved running times for algorithms on problems where
cyclic linkages can be used.

Unfortunately, this is not the case for Cyclability but the reason is not this
bound. The dynamic programming routine (which we present in chapter @])
causes the double exponential dependence on k which, we do not believe that
can be substantially improved (see the discussion in the conclusion, Chapter

B.

1.3.4 No polynomial kernels

The last result is another negative one. It states that it is unlikely, even
for the case of cubic planar graphs, that Cyclability admits any polynomial
kernel. Before presenting the result we have to talk about kernelization (for a
much more detailed introduction we refer the reader to Section R.9 of Chapter

p.

Kernelization. The notion of kernelization, which has been proposed as a
formalization of the idea of preprocessing, has recently grown to be a separate
research area in the field of Parameterized Complexity. The main idea is that,
before trying to solve a problem on a given input, we can try to reduce the input
to a smaller one by taking rid of parts that are not relevant for the problem.
This idea, in the framework of Parameterized Complexity, has evolved to the
following definition:

Let L C ¥* x N be a parameterized problem. A kernelization (or kernel)
for a parameterized problem L is an algorithm that given an instance (I, k)
outputs, in time polynomial in |I| and &, an instance (I’, k') such that

16

CHAPTER 1. INTRODUCTION

* (I,k) e Lifand only if (I’ k') € L,

I’| is bounded by a computable function f in k and &’ is bounded by a
computable function g in k.

The output (I’, k') of the kernelization is called a kernel and the function f is
the size of the kernel. We say that a kernel is polynomial if f is a polynomial
function.

A somewhat surprising result, is that a parameterized problem is in FPT if
and only if it admits a kernelization algorithm (see Section P.9 of Chapter P).
However, when we actually want to implement a preprocessing algorithm we
usually need the polynomial, or even better linear, kernels.

In Chapter [, we prove that this is unlikely for Cyclability, even for cubic
planar graphs (a graph G is called cubic if deg(v) = 3 for every v € V(Q)),
unless some widely believed complexity theoretic assumption fails:

Theorem 1.3.5. Cyclability, parameterized by k, admits no polynomial kernel
unless NP C co-NP/poly, even when restricted to cubic planar graphs.

The above result indicates that the Cyclability does not follow the kernel-
ization behaviour of many other problems (see, e.g., [9]) for which surface
embeddability enables the construction of polynomial kernels. For the proof
we use the cross-composition technique introduced by Bodlaender, Jansen,
and Kratsch in [10], and specifically we show that the NP-hard Hamiltonicity
with a Given Edge problem AND-cross-composes to Cyclability.

17

1.3. THE RESULTS OF THIS THESIS

18

CHAPTER 2

LBASIC DEFINITIONS AND PRELIMINARY RESULTS

In this section we give some basic definitions regarding Complexity Theory,
some basic notions about Graph Theory as well as some preliminary results
to be used in latter sections. Any definition or lemma that is only used at a
particular section is presented in the corresponding section.

Let n € N and let X be a set. We denote by P(X) the powerset of X, i.e.
P(X) is the set that contains all the subsets of X and for every k < n we say
that Y C X is a k-subset of X if |Y| = k. We denote by X =* all the i-subsets
of X, foreveryi € {1,2,...,k}.

2.1 Graphs

2.1.1 Basic notions about graphs

Graphs. An undirected graph, usually denoted by G, is an ordered pair com-
posed by a finite set V(G) and a set of 2-subsets, E(G), of V(G). The ele-
ments of V(G) are called the vertices of the graph and the elements of E(G)
its edges. Sometimes, when it is clear to which graph we refer to, we will write
V and E without denoting the corresponding graph. For an edge e = {u, v} €
E(G), we say that the vertices v and v are the endpoints of e. Given a graph G

19

2.1. GRAPHS

we will also assume that it is undirected, unless stated otherwise. We denote
by G the class of all undirected graphs.

We say that two graphs, G and H, are isomorphic if there exists a bijection
f:V(G) —» V(H) such that {u,v} € E(G)ifand only if f(u), f(v) € E(H). We
call such a function an isomorphism between G and H and we think of these
two graphs as the same graph.

The usual way to visualise a graph G is to depict each of its vertices as a dot
in the plane and connect two dots with a line if the corresponding vertices are
the endpoints of an edge in E(G). Such a visualisation is called a drawing of
graph G and, obviously, it is not unique (for an example see the two drawings
of graph H = ({z,y, z,u.v}, {{z,y}, {x, 2}, {w,u}, {y. 2}, {y, u}, {y. 0}, {z, 0},
{u,v}}) in Figure R.1).

For every vertex v € V (@), the neighbourhood of v in G, denoted by N¢(v),
is the subset of vertices that are adjacent to v (v is not included), i.e. Ng(v) =
{u e V(GQ) | {v,u} € E(G)}, and its size is called the degree of v in G, denoted
by deg(v). The maximum (respectively minimum) degree A(G) (respectively
0(@)) of a graph G is the maximum (respectively minimum) value taken by
deg(v) over v € V(QG).

For any set U C V(G) we define Ng(U) = U,y Na(u) \ U. For every
integer n, we denote by K, the k-clique which is the graph on n vertices which
contains all possible (’2‘) edges. Let S C V(G) be a subset of the vertices of
graph G. We define the subgraph of G induced by S as G[S] = (S, {{u,v} €
E(G) | u,v € S}) and we define the boundary of S, denoted by 0, to be the
set of all vertices v € S such that there exists some edge {v, u} withu € G\ S.

For a subset I C V(G) we say that I forms an independent set in G if the
induced subgraph G[I] is edgeless, i.e. E(G[I]) = 0.

We also denote by E(v) all the edges of GG that have v as an endpoint (or
are adjacent to v), i.e. Eg(v) = {e € E(G) | env # 0}.

Paths and cycles. Apath P = (V, E) is a non-empty graph where, for some
ke{1,2,3...}
V ={v1,v9,...,v;} and E = {{vl,vg}, {vo,v3},..., {vk,l,vk}}

and v; are all distinct. The vertices v; and v, are called the endpoints of P
and we say that P links or connects v, and vi. The vertices of P that are not

20

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

U v U, v

Figure 2.1: Two different drawings of graph H. Observe that at the right one,
the intersection of two edges is always a vertex.

endpoints are the inner vertices of the path. The length of a path equal to the
number of its edges (we allow paths of length 0 which are just a single vertex).
The distance of vertices v and v in G, denoted by dists (u, v), is the minimum
length of a path in G which links v and .

By v; ...v, we denote the path comprised of the vertices vy,...,v, and
the edges {v1,v2},...,{vp—1,v,}. Forapath P = v;...v, and a vertex u,
uP (Pu resp.) is the path wvy...up (u1...upv resp.). If P, = uy...u, and
P, = vy ...v, are paths such that V(P,) NV (P) = {up} = {v1}, then P, + P,
is the concatenation of P; an P, i.e., the path u; ... up_1v1...vq.

Let P ={P, P,..., P} be aset of paths, for some [> 2. We say that the
paths in P are vertex-disjoint (resp. internally vertex-disjoint) if no two of them
have any common vertices (resp. if two of them have common vertices then
these vertices are their endpoints).

If P=wuy...uisapaththen C = (V(P), E(P)U{ug,u1}) isacycle, ie. a
cycle is obtained from a path by adding an edge between its endpoints. We
use u; .. .ugu; to denote the cycle with the vertices uq, ..., u; and the edges
{ur, zu}, ..o {up—1,up}, {up,u1 }. The length of a cycle is the number of its
edges (which is equal to the number of its vertices). Let C be a cycle in a
graph G. An edge e € E(G) \ E(C) which joins two vertices of C is called a
chord of C. A cycle in G that has no chords is called an induced cycle in G.

21

2.1. GRAPHS

Graph connectivity. We say that a graph G is connected if for any two ver-
tices u,v € V(G), there exists at least one path in G with « and v as its end-
points. If G is not connected, we define the connected components of G to
be the induced subgraphs G[V;], where V1, ..., V}, are the maximal (under the
subset relation) vertex sets that induce connected subgraphs of G.

Let k be a positive integer. We say that a graph G is k-connected if for ev-
ery pair u, v of vertices in G, there exist at least k internally vertex disjoint paths
in G that connect u and v. Actually, the above definition is a result from Karl
Menger [68] (known as Menger's theorem) and gives an equivalent character-
isation of k-connected graphs. The original definition says that a (connected)
graph G is k-connected, if the removal of any k vertices of G results to a con-
nected graph or in other words in order to undermine the connectivity of G
one has to remove at least k + 1 of its vertices.

Trees and forests. Let G be a graph. We say that G is a forest if it does not
contain any cycle as a subgraph. If G is a forest and is also connected, then
we say that G is a tree. It is now easy to observe that a graph is a forest if and
only if all its connected components are trees, which also justifies the names
of these graph classes.

Let T' be a tree. We say that a vertex ¢t € V(T') is a leaf of T if deg.(t) < 1.
A vertex of T' that is not a leaf is called a non-leaf vertex. It is easy to prove
that any two vertices v and v in a tree T are linked via a unique path of T,
which we denote by uTv.

Due to their "simple" structure, trees enjoy some nice algorithmic proper-
ties. This is one of the reasons why researchers tried to expand the class of
trees into wider graph classes which, in a way, possess a tree-like structure
and thus share the nice algorithmic properties of trees. We will give more de-
tails about this vague statement later, when we will talk about treewidth and
dynamic programming on graphs of bounded treewidth.

The class of planar graphs is of special importance for us, as one of the
main results of this work is an algorithm solving Cyclability in FPT-time for
this particular class of graphs. Next we define the class of planar graphs and
mention some of the most important notions related to them

22

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Planar, plane, and outerplanar graphs. A graph G is called planar if it can
be embedded in the plane R? (or equivalently in the sphere 2 = {(x,y,z2) €
R® : x +y + 2z = 1}) in such a way that there are no two edges of it whose
embeddings intersect (they can meet only at their endpoints). Such an embed-
ding is called a planar embedding of G and we say that such an embedding
is a plane graph (observe that a planar graph can have more than one planar
embeddings that can also be different from a topological point of view). Given
a plane graph G we denote its faces by F(G), i.e. F(G) is the set of the con-
nected components of R? \ G (in the operation R? \ G we treat G as the set of
points of R? corresponding to its vertices and its edges).

The dual, G*, of a plane (resp. planar) graph G is also a plane (resp. planar)
graph and has one vertex for each face of G. There is an edge between two
vertices of G* if and only if the boundaries of their corresponding faces share
an edge (observe that if a plane graph is not connected it can have, two or
more, different (from a topological point of view) dual graphs). For an example
of a plane graph and its corresponding dual graph see Figure P.1.1.

An outerplanar graph is a plane graph whose vertices are all incident to
the infinite face. If an edge of an outerplanar graph is incident to its infinite
face then we call it external, otherwise we call it internal. The weak dual of an
outerplanar graph G is the graph obtained from the dual of G after removing
the vertex corresponding to the infinite face of the embedding.

Grids. Let m,n > 1. The (m x n)-grid is the Cartesian product of a path of
length m — 1 and a path of length n — 1. In the case of a square grid where
m = n, we say that n is the size of the grid. Given that n, m > 2, the corners of
an (m x n)-grid are its vertices of degree 2. When we refer to a (m x n)-grid we
will always assume an orthogonal orientation of it that classifies its corners to
the upper left, upper right, down right, and down left corner of it.

Given that T is an (m x n)-grid, we say that a vertex of G is one of its centers
if its distance from the set of its corners is the maximum possible. Observe
that a square grid of even size has exactly 4 centers. We also consider an
(m x n)-grid embedded in the plane so that, if it has more than 2 faces then
the infinite one is not a square. The outer cycle of an embedding of a (m x n)-
grid is the one that is the boundary of its infinite face. We also refer to the
horizontal and the vertical lines of a (m x n)-grid as its paths between vertices

23

2.1. GRAPHS

Figure 2.2: An outerplanar graph at the left and its weak dual at the right. Its
simplicial faces are fi, fo and f3, e; is an internal edge, and e is an external
edge.

of degree smaller than 4 that are traversing it either "horizontally" or "vertically"
respectively. We make the convention that an (m x n)-grid contains m vertical
lines and n horizontal lines. The lower horizontal line and the higher horizontal
line of T are defined in the obvious way (for an example see Figure R.1.1).

Figure 2.3: A plane graph (black) embedded in the plane along with its dual
graph (red). There is one dual vertex (red square) for every face of the plane
graph. Any edge of the black graph is on the boundary of exactly two of its
faces which are connected by an edge in the dual (red) graph.

24

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

vertical line

horizontal line

r4---4--

17
[L L 2 L L L L L J 9
[P N Bl i i et i et it e e et et
I
|
[4 - L4 L d L4 L4 L4 4
I
I
I
‘I
I
I
I

[]

RN [U U N I A R

Figure 2.4: A (13 x 6)-grid is depicted. lts corners are the red vertices and its
centers are the two blue vertices. The outer cycle is the bold rectangle that
contains the corners of the grid.

2.1.2 Graph operations and relations between graphs

Operations between graphs. Let G and H be two graphs. We define the
union of G and H as the graph

GUH = (V(G)UV(H),E(G)U E(H)),
their intersection as the graph
GNH=(V(G)NV(H),E(G) N E(H)),
and, finally, we define the product of G and H as the graph
GxH = (V(G)xV(H), {{(u,0), (uz,v2)} |

({ur,u2} € E(G) Avy =wv2) V ({v1,v2} € E(H) ANug = ug)})

Next we define some basic operations (or transformations) on graphs. Let

25

2.1. GRAPHS

G beagraphandletv € V(G) and e € E(G):

+ Vertex removal (deletion): We denote by G — v (or by G \ v) the graph
obtained from G after removing (deleting) vertex v, i.e. V(G—v) = V(G)\
{v}and E(G —v) ={e € E(G) | v ¢ e}. For S C V(G), we denote by
G \ R the graph obtained from G after deleting from it all vertices in R.

+ Edge removal (deletion): We denote by G — ¢ (or by G \ ¢) the graph
obtained from G after removing (deleting) edge e, i.e. V(G —e) = V(G)
and E(G —v) = E(G) \ {e}. For F C E(G), we denote by G \ E the
graph obtained from G after deleting from it all edges in F.

+ Vertex dissolution: Suppose that degg(v) = 2 and {u,v}, {v,w} € E(G).
We denote by G/v the graph obtained from G after deleting vertex v
and adding the edge {u, w} (if this edge does not already exist in G), i.e.

V(G/v) =V(G)\ {v} and E(G/v) = E(G) \ {{u,v}, {v,w}} U {{u,w}}

+ Edge subdivision: The operation of removing an edge ¢ = {u,v} € E(G)
from G and adding a path of length 2 whose endpoints are v and v is
called a subdivision of edge e in G.

+ Edge contraction: Let e = {u,v} € E(G) and let v* ¢ V(G). We denote
by G/e the graph obtained from G after removing vertices « and v and
adding the (new) vertex v* and an edge between v* and every vertex in
Ne({u,w}), ie., V(G/e) = V(G) \ {u,w} U {v*} and E(G/e) = E(G) \
Eg(u)\ Ec(w) U {{v*,z} |z € Na({u,w})}.

Let G and H be two graphs. Using the, previously defined, graph opera-
tions we define some relations on the class of graphs:

« Subgraph: If H can be obtained by applying vertex and edge deletions
on G, we say that H is a subgraph of G and write H C G.

* Induced subgraph: If H can be obtained by applying vertex deletions on
G, we say that H is an induced subgraph of G and write H C;,, G.

+ Spanning subgraph: If H can be obtained by applying edge deletions
on G, we say that H is a spanning subgraph of G and write H C,, G.

26

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Subdivision: If H can be obtained by applying edge subdivisions on G,
we say that H is a subdivision of G and write H C., G.

+ Contraction: If H can be obtained by applying edge contractions on G,
we say that H is a contraction of G and write H <. G.

Topological minor: If H can be obtained by applying vertex deletions,
edge deletions and vertex dissolutions on G, we say that H is a topo-
logical minor of G and write H <;,,, G.

* Minor: If H can be obtained by applying vertex deletions, edge deletions
and edge contractions on G, we say that H is a minor of G and write
H <, G.

The most well-studied from the previous relations are C, C;,, C,,, which
are known as the main subgraph relations and <,,,, <;.,, which are known as
the main topological relations. As it will become obvious later, the topological
relations play a special role in our work, that is why we give an alternative def-
inition for the minor relation, which is probably more intuitive (for an example

see Figure p.5).
Alternative definition of minor relation. Let G and H be two graphs. H is
a minor of G if there exists a function f : V(G) — V(H) such that:

- For every v € V(H), the reverse image of v through f, i.e. f~1(v), isa
connected set in G, and for any « € V(H) \ {v} it holds that f~(v) N
FMu) = 0.

« For every edge {v,u} € E(H), there exists at least one edge with end-
points in f~!(v) and f~!(u) in G.

If such a function exists we also say that G contains H as a minor.

Definition 2.1.1. Let G be a graph class and let C € {C, C;,,, Cs, Ces, <o,
<tm, <m}. We say that G is closed with respect to C if for every graph G

GeGandG'CG = G ¢

27

2.1. GRAPHS

\/

H,

H,y

Figure 2.5: The graph H; is a topological minor of the graph G (certified by
the circled vertices of G and the dashed edges of) and the graph H; is a
minor of G (consider the function ¢ : V(H) — 2V(%) that sends a vertex of
H, to the subset of vertices of G of the same colour and observe that each
"colour-class" in G induces a connected subgraph.

2.1.3 Graph parameters

In this subsection we talk about graph parameters in general and focus on
a specific well known width-parameter, namely treewidth, which is relevant to
our work.

Graph parameters. A graph parameter is a (partial) functionp: G — N, i.e,,
a function that maps graphs to non-negative integers. We say that a parameter
p is computable if there exists an algorithm that given a graph G as an input,
either outputs the value p(G).

Some well known graph parameters are the A (resp. ¢) denoting the max-
imum (resp. minimum) degree of a graph, the maximum independent set, the
minimum vertex cover, the feedback vertex set, the chromatic number, the
girth etc.

Given a graph parameter p and a relation C on graphs, we say that p is C-
closed if for every two graphs G and H with H C G it holds that p(H) < p(G).

In this thesis we will often refer to a certain parameter, which is the main

28

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

representative of the class of width parameters and, in a way, reflects the re-
semblance of a graph with a tree. That is why it is called treewidth and one of
the several existing definitions is the following:

Treewidth. A tree decomposition of a graph G is a pair D = (X, T) in which
Tisatreeand X = {X; | i € V(T)} is a family of subsets of V(G) such that:

¢ UieV(T) X =V(G)

- for each edge e = {u, v} € E(G) there exists an i € V(T) such that both
u and v belong to X;

« forall v € V, the set of nodes {i € V(T') | v € X,} forms a connected
subtree of T

The width of a tree decomposition is defined to be the number max{|X;,]| |
i € V(T)} — 1. The treewidth of a graph G (denoted by tw(G)) is the minimum
width over all possible tree decompositions of G. At Figure @ there is a
graph on 10 vertices and a tree decomposition of it with width 3. It is easy to
confirm that any tree decomposition of this graph has width at least 3, thus
the treewidth of this graph its is 2. We give some examples of the values of
treewidth for some specific graph classes.

Trees and forests have, as expected, treewidth 1 and cycles have treewidth
2. The treewidth of an outerplanar graph is at most 2, but the treewidth of a
planar graph can be arbitrarily large (for example the (n x n)-grid has treewidth
n) but still it is sublinear to the number of vertices, more precisely O(y/n). On
the other hand, every graph G that excludes a planar graph H as a minor has
treewidth at most ¢y, where ¢y is a constant that depends on graph H.

The concept of treewidth was originally introduced by Umberto Bertelé
and Francesco Brioschi (1972) under the name of dimension. It was later re-
discovered by Rudolf Halin (1976), and it was rediscovered for a third time
by Neil Robertson and Paul Seymour in [78], and played a crucial role to the
developments of the Graph Minors series papers.

Branchwidth. A branch decomposition of a graph G is a pair (T, 1), where
T is a tree with vertices of degree one or three and 7 is a bijection from E(G)
to the set of leaves of T. The order function w : E(T) — 2V(%) of a branch

29

2.2. PARAMETERIZED COMPLEXITY

decomposition maps every edge e of T' to a subset of vertices w(e) C V(G)
as follows. The set w(e) consists of all vertices v € V(G) such that there exist
edges f1, fo € E(G) with v € f1 N f», and such that the leaves 7(f1), 7(f2) are
in different components of T' — {e}.

The width of a branch decomposition (7', 7) is equal to max.cg(r) |w(e)]
and the branchwidth of G, denoted by bw(G), is the minimum width over all
branch decompositions of G.Branchwidth was introduced by Robertson and
Seymour in [79]. For any graph G, bw(G) and tw(G) are within a constant
factor of each other, however, unlike treewidth, branchwidth is computable in
polynomial time on planar graphs.

The following two results combined, imply a relation between the treewidth
of a planar graph and the minimum size of the largest grid-minor that it con-
tains.

Result 1. ([63)) If G is a planar graph and bw(G) > 3k + 1, then G contains a
(k x k)-grid as a minor.

Result 2.([79)) If G is a graph, then bw(G) <tw(G) +1< 2 - bw(G).

Proposition 2.1.1. If G is a planar graph and tw(G) > 4.5 -k + 1, then G
contains a (k x k)-grid as a minor.

2.2 Parameterized Complexity

2.2.1 Basic definitions

Let X be an alphabet (we usually think of X as the set {0,1}) and let X* (the
Kleene star of ¥) be the set of all finite sequences with elements from . An
element of X* is called a word on the alphabet X.

Parameterized languages and problems. We will call every subset L of
¥* x N a parameterized language, and for every element (z, k) € L C ¥* x N
we will say that k is the parameter and = the main input. For every k € N, we
call Ly, = {(z, k) : (z, k) € L} the kth slice of L.

A decision problem 11 is called a parameterized problem if any instance of
is encoded as a pair (z, k) C X* x N. We will say that (z, k) is a yes-instance

30

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

at

10

Figure 2.6: An example of a graph of treewith 2 along with a tree-
decomposition of minimum width.

for IT if (z, k) encodes an instance for which the question imposed in problem
IT is answered positively, and will write (x, k) € II. Otherwise we will say that
(z, k) is a no-instance for II and will write (x, k) ¢ II. If II is a parameterized
problem then it naturally defines the parameterized language

Ln = {{(z,k) € ¥* xN| (z,k) is a yes-instance for IT} =
= {(z,k) e * x N| (z,k) € IT}
and conversely, a parameterized language L can be associated with the prob-
lem II, for which (z, k) is a yes-instance if (x, k) € L and a no-instance oth-

erwise. In what follows we will not distinguish between a parameterized lan-
guage and its corresponding parameterized problem unless it is necessary.

Fixed-parameter tractability (the class FPT). We say that a parameterized
problem II is fixed-parameter tractable if there exists an algorithm (or more

31

2.2. PARAMETERIZED COMPLEXITY

formally a deterministic Turing Machine) A, a constant ¢, and a computable i
function f such that, for all (z, k) € £* x N, A((z, k)) runs for at most f (k) |z|*
steps (where |z| is the length of the encoding of z) and

(z,k) € Ln <= A((z,k)) =1

where we suppose that the output of algorithm A is 1 if it accepts its input
and 0 otherwise. The class of all fixed-parameter tractable problems is called
FPT and is considered to be the class of efficiently solvable problems in the
framework of Parameterized Complexity (class FPT can also be thought of as
the analog of P in terms of classical complexity).

For a problem in FPT, we sometimes say that it can be solved in FPT-time
or that there exists an FPT-time algorithm for solving it, meaning that there
exists an algorithm that solves it in f(k) - |z|° time (where k is the parameter,
|z| is the length of the encoding of the input, f is a computable function, and
c is a constant).

2.2.2 Why Parameterized Complexity?

The idea of finding a solution to a problem, which can be described as a
series of concrete and "easy" to perform steps, is very old and can be tracked
far back in the history of Mathematics. We are referring, of course, to the idea
that is nowadays widely known as an algorithm. One of the oldest and most
well known algorithms (although at that point this notion did not yet exist) is
the euclidean algorithm (given by the "father of Geometry", Euclid) for finding
the greatest common divisor of two given integers.

The systematic study of algorithms and problems that admit algorithmic
solutions started less than 100 years ago, in the 1930s, as a branch of Math-
ematics named Computability Theory. One of the main objects of this field is
to study whether there exists an algorithmic solution for a given problem or
any solution is provably non-constructive. But what does "algorithmic" even
mean? Is it possible to formally define such a notion?

"The weak demand for f to be just computable can be quite alerting. After all, parameterized
complexity is supposed to be related to practical computation. Of course the same issue arises
also with the definition of P and additionally it turns out that, most of the times, constant the c is
small and function the f is tolerable, e.g. is an exponential function of k.

32

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

A widely accepted answer to the previous, nearly philosophical, question
is given from the Church-Turing thesis which, roughly, states the following:

There exists an algorithmic solution for a problem if and only if there exists
a Turing machine that solves it.

A Turing machine is a computation model introduced by Alan Turing in
1936 [89] and is the predecessor of todays personal computer. As the topic
of computational models is out of the scope of this thesis, for an extensive
introduction see [67] and [86]. Of course the Church-Turing thesis is not a
conjecture that can be proved or disproved in some axiomatic system. It is
more like a meta-conjecture whose "credibility" has been tested throughout
the years.

Having established a framework for arguing about computability and moti-
vated by the rapid improvement of "real" computational models (not just theo-
retical constructions as the Turing machines) who could execute complicated
tasks increasingly fast, researchers took a step forward and started to explore
the notion of efficiency. Efficiency refers to the resources needed for solving
a problem algorithmically. The two main such resources, which are usually
considered as measures of efficiency of an algorithm, are space and time. In
this thesis we will focus on the latter.

Given these new parameters, computational problems can be classified
further in complexity classes based on the efficiency of algorithms that solve
them. Undoubtedly, the most well known complexity classes are P and NP,
where P contains the problems that can be solved efficiently (there exist de-
terministic algorithms that solve them in time that is bounded by a fixed poly-
nomial on the size of the input) and NP contains the problems which require
nondeterminism in order to be solved in polynomial time. It is widely believed
that P # NP, which can be roughly translated to the fact that there exist com-
putational problems for which any algorithm solving them needs exponential
time. Consequently, most computer scientists face at some point the follow-
ing question when studying a computational problem:

Is there an efficient algorithm solving the problem of interest? If not, is it pos-
sible to provide some evidence that it cannot be solved efficiently?

The natural approach to address this type of questions is either trying to
come up with a polynomial time algorithm that solves the problem (which
places it in P) or proving that, assuming P # NP, it is in NP but not in P. This

33

2.2. PARAMETERIZED COMPLEXITY

can be done by reducing an NP-complete problem to the problem of interest.
Roughly speaking, NP-complete problems are the hardest in the class NP and
the reduction of such a problem to another problem suggests that the latter is
at least as hard, thus characterised as intractable. For more information about
the theory of NP-completeness we refer the reader to the monumental work
of Garey and Johnson in [45] and to all introductory Complexity Theory books
such as [75] and [g].

The construction of a polynomial time algorithm is usually the best out-
come one can hope for (although nowadays this claim becomes more and
more inaccurate as we need to solve problems where the input is huge; the
running time of a polynomial n* algorithm when the input is the web network
does not seem appealing at all! In many cases even a linear algorithm can
be practically useless and this means that the desired algorithm will not even
have the opportunity to access all of its input. For some more information on
the subject we refer the reader to [85]). But what happens if we prove that our
problem is NP-complete? Is this the end of the story? Fortunately, the answer
is no and we briefly present the main side roads one can choose from:

+ Approximation: A very important class of problems that attracts much
attention (mainly due to applications in Operational Research) is the one
of optimization problems where the task is to find the best solution from
all feasible solutions. Unfortunately, many optimization problems have
proved to be NP-complete. When the need for an exact solution is not
imperative, a way to overcome this difficulty is trying to design efficient
algorithms that find a solution which is guaranteed to be "close" to the
optimal.

Of course an analogue of intractability arises in this setting too and much
work has been done in the direction of obtaining innaproximability and
lower bounds results. Approximation algorithms have been developed
rapidly in the last decades and proved to be a very fruitful area. For an
extensive introduction we refer the reader to [93] and [90].

+ Use of randomness: Another tool that can be used to cope with an
NP-complete problem is randomness and the study of randomized al-
gorithms was spurred by the discovery of a randomized primality test
[87]. The main idea of this approach is roughly the following: In or-
der to "prune" some of the branches of computation, which seem to

34

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

be unavoidably exponential (under worst-case analysis) when trying to
solve an NP-complete problem, the randomized algorithm makes some
random choices and based on them, and probably other deterministic
computation, produces an answer.

One has to distinguish between algorithms that use randomness in order
to reduce the expected running time and always terminate in bounded
time producing the right answer (called Las Vegas algorithms) and algo-
rithms that terminate in polynomial time but there is a chance that they
produce a wrong answer or no answer at all (called Monte Carlo algo-
rithms).

Having designed a randomized algorithm for a problem, it is sometimes
possible to produce a deterministic algorithm for solving the same prob-
lem. This procedure is known as derandomization and has attracted
much attention recently. More information about randomized algorithms
can be found in [71] and [70] and for some information about the com-
plexity classes that arise from randomized algorithms see [75] and [5].

+ Parameterization: When a problem is NP-complete, any exact deter-
ministic algorithm that solves it needs (in the worst case) exponential
(or at least superpolynomial) to n time, where n is the length of the in-
put. The parameterized complexity point of view examines whether this
exponential explosion on the running time unavoidably "spreads" to a
large part of the input (meaning a part whose length depends on n) or
there are some particular parameters of the problem that cause the in-
crease on the running time. For some NP-complete problems that are of
great importance in other areas, such as biology, there were algorithms
that, although being exponential in the worst case, worked efficiently in
practice. Then a natural question arose:

Are there some parameters in these particular problems which happen to
be bounded and this way "soften" the intractability? Can theory formalize
this phenomenon and study it methodically?

Research has shown that such parameterizations exist for many, previ-
ously classified as intractable, problems and when restricted to the case
where they are bounded, there exist algorithms that justify their place-
ment into the sphere of tractability. The related area, which has grown to

35

2.2. PARAMETERIZED COMPLEXITY

be an entire field in Computer Science, is called Parameterized Complex-
ity and the algorithms designed in this setting are called parameterized
(or multivariate) algorithms. The main introductory texts for Parameter-
ized Complexity are [31], [73], [42], [36], and [22], as they have appeared
chronologically.

All the previously mentioned methods have been studied extensively in
the last decades and each one of them constitutes a wide research area in the
frame of Theoretical Computer Science. Of course, ideas and techniques from
any of these areas "flow" between them and researches are always interested
in combining notions from some of or all the fields, as, for example, indicated
(already in the title) by [72]. In this thesis, we focus on the last suggestion for
"NP-completeness treatment" and we start by explaining, via concrete exam-
ples, why this approach is promising.

Why Parameterized Complexity? For an example consider the following
parameterized problem

p-Vertex Cover

Input: A graph G = (V, E) and an integer k.

Parameter: k

Question: Is there a set S C V such that |S| < k£ and G \ S has no
edges?

This problem is a parameterized version of the classical Vertex Cover prob-
lem (which is one of the first 21 problems proven to be NP-complete by R.
Karp in [45]), with the natural parameterization in the sense that the parameter
is chosen to be the size of the desired solution. The problem obtained when
using the natural parameterization of problem II, will be denoted by p-II and
when it is clear from the context, we will sometimes omit p.

It is not hard to prove that p-Vertex Cover can be solved in time 2* . (using
bounded search trees, see [22]), which places it in FPT. Great effort has been
made in order to improve on the parametric dependance for this important
problem and the state of the art algorithm (due to Chen, Kanj, and Xia [15])
runs in time O(1.2738% + k|G|) and uses a series of techniques reflecting the
development of parameterized algorithm design throughout the years. This

36

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

means that, even though Vertex Cover is known to be "hard" from a classic
complexity viewpoint, it becomes tractable even when the solution we are
looking for is big (as its natural parameterization admits an algorithm whose
dependence on the size of the graph is linear and the dependence on the size
of the solution, the parameter £, is low exponential).

But can we hope that the natural parameterization of any hard, say NP-
complete problem, is enough to place it in the sphere of tractability? Consider
the parameterized version of the well-known Clique problem

p-Clique

Input: A graph G = (V, E) and an integer k.

Parameter: k

Question: Is there a set S C V such that |S| > k and G[S] has no
edges?

The Clique problem is also one of the first important problems proven to
be NP-complete in [565]. An obvious algorithm for solving p-Clique is to check
all possible subsets of V(&) of size k (also called brute force), which results to
an O(|G|*)-time algorithm (as (}}) = O(n")). The observant reader can spot
the main difference between the running time of this algorithm and even the
simplest one for p-Vertex Cover. The difference is that the parameter k appears
at the exponent of |G| (size of the input) for the case of p-Clique, which makes
the algorithm less attractive. As we will shortly see, the p-Clique problem is
W(1]-complete and thus considered intractable, even from the parameterized
complexity point of view.

As we will see in the following section, class W[1] cannot encapsulate
all fixed-parameter intractable problems. The parameterized versions of two
well-known NP-complete problems that are not believed to be in W([1] are the
following

p-Dominating Set

Input: A graph G = (V, E) and an integer k.

Parameter: k

Question: Is there a set D C V such that every vertex in V\ D is adjacent
to some vertex in D?

37

2.2. PARAMETERIZED COMPLEXITY

p-Set Cover

Input: Afinite set U/, a set 7 C P(U), and an integer k.
Parameter: k

Question: Is there a C C F such that |C| = k and o C = U?

To sum up, even when we only consider natural parameterizations, it be-
comes obvious that the classical complexity landscape is getting refined. Some
of the intractable problems become tractable and some others are charac-
terised as fixed-parameter intractable and are classified in different hardness
classes. Things get even more interesting when more parameters, such as the
maximum degree, girth, treewidth, cutwidth, cliquewidth, chromatic number
etc. come in to play. It is often the case that the parameterized complexity of
a problem changes when we focus on different parameters.

The rapid increase of computational power, the exponential growth of in-
formation and the wide use of computers into pretty much every aspect of
human activity, made the classical complexity theory seem outdated (from
the viewpoint of actual implementation of algorithms). Researchers realised
that in order to design efficient algorithms in a highly structured world, one has
to take into account the structural characteristics of the available data. This
imperative need for exploitation of structure lead to the development fine-
grained analysis and parameterized complexity, which has become a rapidly
growing field of Computer Science, with many theoretical and practical ac-
complishments to show.

2.2.3 Fixed-parameter intractability and the W-hierarchy.

In order to introduce the theory of fixed-parameter intractability, we will first
present an overview of some basic concepts of classical intractability theory.
We will keep the formality simple, for now, as our main goal is develop some
intuition and not to present strict formalism. This chapter will work either as a
brief introduction or as a reminder of some fundamental notions. In any case,
the intention is to create a natural transition to the parameterized complexity
setting, which is essential for some parts of this thesis.

We will define the notion of polynomial reductions and the class of NP-
complete problems.

38

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Reductions. A polynomial-time many-one reduction (or Karp reduction) from
problem B to problem C is a polynomial time algorithm .4 which, given an
instance z of B, outputs an instance A(z) of C such that

x is a yes-instance of B <= A(z) is a yes-instance of C

This kind of reduction "transfers" computational intractability: If there is no
polynomial-time algorithm for solving problem B, then the same holds for
problem C. On the other hand, if C' can be solved in polynomial time then B
is also polynomial-time solvable. Obviously, in order to start benefiting from
this method of reducing a problem to another, one has to identify a "hard"
problem or a problem which is widely believed to be hard. After establishing
such a problem, any other problem reduced to our "hard" problem inherits
the "pessimism". In the late 1960s and early 1970s, Stephen Cook [18] and
Leonid Levin [63] worked (independedly) towards this direction and gave birth
to the theory of computational intractability.

Classical intractability theory. The first, and most widely studied, notion
of computational intractability is undoubtedly the theory of NP-completeness.
We give one of the several existing definitions of the class NP: a language
L belongs in the class NP if and only if there exists a polynomial p and a
polynomial relation R (meaning that R can be decided in polynomial time for
any (z,y) pair) such that

z €L < Jy(lyl < p(|z]) A R(z,y) =1)

A language L is NP-complete if and only if L € NP and for any language
L' € NP, L' is polynomially reducible to L, i.e. L' <P A. The definition of
a computational problem being NP-complete is completely analogous to the
one for languages. The most obvious, although somewhat "artificial", NP-

complete problem is the following

Turing Machine Acceptance

Input: A nondeterministic Turing machine M, a string =, and a natural
number n.

Question: Is there a computation path of M accepting = in at most n
steps?

39

2.2. PARAMETERIZED COMPLEXITY

Clearly, Turing Machine Acceptance is NP-complete, as a nondeterministic
Turing machine can guess y and then check if R(z,y) = 1, which roughly
describes a reduction of a problem in NP to Turing Machine Acceptance.

The first natural NP-complete problem is SAT ([18] and [63]), the problem
of deciding, given a boolean formula ¢, if there exists an assignment to its
variables that make ¢ true. Nowadays, several hundreds of interesting com-
putational problems are known to be NP-complete but the decisive step that
boosted research in this direction was the work of S. Karp [55] who proved the
NP-completeness of 21 important combinatorial problems, initiating a huge
list of results in this direction. Many of these problems have natural structure
which can be translated as hope for the existence of efficient (polynomial) al-
gorithms which are based on a clever exploitation of this structure.

Unfortunately, the NP-completeness of Turing Machine Acceptance, a such
generic and opaque problem, makes the existence of any such algorithm seem
really unreasonable, as this would imply that we could be able to decide in
polynomial time whether a given Turing machine on a given input has some ac-
cepting path. That is why the Cook-Levin theorem is considered to be strong
evidence for the P # NP hypothesis. Today, there is much more evidence to
support this hypothesis but this subject is out of the scope of this thesis.

Next, we define a notion that allows the transfer of "pessimism" in the
Parameterized Complexity framework, or, in other words, it allows the transfer
of fixed-parameter intractability from a parameterized language (or problem)
to another.

Definition 2.2.1 (Parameterized reductions). Let L,L' C ¥* x N be two pa-
rameterized languages. We say that L reduces to L’ by a standard parame-
terized m-reduction if there exist, a constant c and functions [: ¥* x N — X*,
g:N—=Nandh:N— N, such that

e f({z,k)) = 2’ can be computed in time h(k) - |x|¢ and
* (z,ky € L ifand only if (z',g(k)) € L.
Fixed-paramerer intractability. Following the method for establishing clas-

sical intractability results, researchers tried to prove that a number of combi-
natorial problems are of the same fixed-parameter complexity as a problem

40

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

about nondeterministic Turing machines. The problem of Turing Machine Ac-
ceptance can be naturally generalized by the following (somewhat artificial)
problem:

Short Turing Machine Acceptance

Input: A nondeterministic Turing machine M and a string .
Parameter: A positive integer k.

Question: Is there a computation path of M accepting = in at most &
steps?

It seems reasonable to support that, if someone accepts that the Turing
Machine Acceptance problem is intractable (in the classical way), then the
Short Turing Machine Acceptance problem is fixed-parameter intractable. In-
deed there are many problems that can be proved (via parameterized reduc-
tions) to have the same parameterized complexity as Short Turing Machine
Acceptance and this strengthens the hypothesis of Short Turing Machine Ac-
ceptance not being fixed-parameter tractable.

In order to define the main hardness classes for Parameterized Complexity,
namely the W-hierarchy, we need to introduce some definitions about circuits,
and more specifically, decision circuits.

Boolean circuits. A boolean circuit is a directed acyclic graph whose nodes
are labeled in the following way:

+ every node of indegree 0 is an input node
 every node of indegree 1 is a negation node (with — as a symbol)

+ every node of indegree at least 2 is either an and-node (with A as a sym-
bol) or an or-node (with Vv as a symbol)

Exactly one of the nodes with outdegree 0 is labeled as the output node.
The depth of a boolean circuit is the maximum length of a path from an input
node to the output node. Assigning boolean values, i.e., values in {0, 1}, to
the input nodes determines the value of every node in the obvious way: a
negation node turns 0 to 1 and vice versa, an end-node outputs 1 if and only
if all its inputs are 1, and an or-node outputs 1 if and only if it receives at least

41

2.2. PARAMETERIZED COMPLEXITY

one 1. If the value of the output node is 1 for an assignment « on the input
variables, then we say that assignment « satisfies the circuit. It can be easily
checked, in polynomial time, if a specific assignment satisfies a given circuit.
We say that a circuit C' is satisfiable if there exists an assignment on its input
variables that satisfies C', and the corresponding problem is the following:

Circuit Satisfiability
Input: A boolean circuit C.
Question: Is circuit C satisfiable?

It is not hard to prove that Circuit Satisfiability is NP-complete, as 3-SAT
is polynomially reducible to it (we do not describe the reduction in detail but
we give an example in Figure P.7). By defining the weight of an assignment to
be the number of input nodes receiving value 1 from the assignment, we can
define a parameterized version of Circuit Satisfiability:

Weighted Circuit Satisfiability (WCS)

Input: A boolean circuit C.

Parameter: A positive integer k.

Question: Is there an assignment of weight & that satisfies C?

The WCS problem can be solved in polynomial time for every fixed k using
brute force, i.e., by trying all the O(n*) assignments of weight k and checking
for each of them whether it satisfies the given circuit. The problem, though,
does not seem to be fixed-parameter tractable as many "hard" parameter-
ized, such as Clique, Independent Set and Dominating Set (all with the natural
parameterization) can be reduced to it.

For a concrete example, we give a reduction from Independent Set to WCS:
Let G = (V, E) be a graph, k be a positive and let (G, k) be an input for the
Independent Set problem. We construct one input node and one negation
node for every vertex of G. We also add an or-node with indegree 2 for every
edge in G. Finally, we add an and-node with indegree |E|. We connect every
input node with its corresponding negation node and every or-node with the
two negation nodes that correspond to the two vertices of G which form the
edge related to this particular or-node. Finally, we connect all or-nodes to the
and-node and we add an output node that gives the value of the and-node as
the output of the circuit. (see also Figure P.9).

42

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

out

Figure 2.7: The circuit C that corresponds to the 3-CNF formula ¢ = (z; V
—29 V —wg) A (mxy Vg V) A (mxy V oas V xg). Itis easy to see that, circuit
C is satisfiable if and only if formula ¢ is satisfiable.

U v

out

Figure 2.8: At the right: A graph with G with five vertices and eight edges. At
the left: A decision circuit C (constructed from G as described by the reduc-
tion) satisfied by the independent sets of G. More specifically an independent
set of size k in G corresponds to a satisfying assignment of weight & for C.

43

2.2. PARAMETERIZED COMPLEXITY

The W-hierarchy. We can define the levels of the W-hierarchy by restricting
the WCS problem to different classes of decision circuits. For this, we distin-
guish between the small nodes and the large nodes of a circuit, where a node
is characterised as small when its indegree is at most 2 and large otherwise.
The weft of a circuit is the maximum number of large nodes on a path from an
input node to the output node.

For a class of circuits C, we denote by WCS|C] the restriction of the problem
WCS where the input circuit is a member of C. We denote by C; 4 the class
of all circuits with weft at most ¢ and depth at most d. We are now ready to
define the levels of the W-hierarchy:

Definition 2.2.2. For a positive integer t, we say that a parameterized problem
IT belongs to the class W[t] if there is a parameterized reduction from 11 to
WCSIC, 4] for some positive integer d.

Corollary 2.2.1. Independent Set, parameterized by the size of the solution,
is in WI[1].

Proof. The corollary follows easily from Definition and the reduction from
Independent Set to WCS|C, 3] (as it was described previously and depicted in

Figure R.9). O

It is also possible to prove that any problem in W[1] can be reduced to
Independent Set but the proof (given in [35]) is nontrivial and out of the scope
of this thesis. Many other well-known problems can be proven to be complete
for some level of the W-hierarchy. We give some of the most important in the
next theorem. For a more extensive introduction to the W-hierarchy and fixed-
parameter intractable problems, we refer the reader to [42], [36], and [R2]. We
give some complete problems for the first two levels of the W-hierarchy.

Theorem 2.2.1 ([33], [32], [35]). Dominating Set, Set Cover, and Hitting Set
are W[2]-complete. Independent Set and Clique are W[1]-complete.

2.2.4 Kernelization

Another fundamental concept in the theory of Parameterized Complexity is
kernelization. The idea of preprocessing, or data reduction, was known several
years before the development of the theory of Parameterized Complexity. This

44

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

idea can be roughly described as follows: Efficiently solve the "easy" parts
of the instance (or even get rid of irrelevant parts) and reduce it to its hard
"core" structure (which is hopefully much smaller than the initial instance) and
then employ a slower (even exponential) exact algorithm to solve the reduced
instance and obtain an answer.

But how to measure the effectiveness of such preprocessing routines?
Suppose that we define such an algorithm as one that, given an instance, pro-
duces in polynomial time an equivalent instance that is at least one bit smaller
than the initial one. Then, the existence of such an algorithm for an NP-hard
problem would imply that P = NP, making the existence of such preprocessing
routines for any NP-hard problem very unlikely.

In the framework of Parameterized Complexity a robust definition of pre-
processing was given, by demanding that instances that are large compared
to their parameter should be "shrunk", while instances that are small com-
pared to the size of their parameter do not need any further preprocessing.
Next we provide some formal definitions and we start by giving, once again,
the formal definition of kernelization.

Definition 2.2.3. Let L C ¥* x N be a parameterized problem. A kernelization
(or kernel) for the parameterized problem L is an algorithm that given an in-
stance (I, k) outputs, in time polynomial in |I| and k, an instance (I, k') such
that

) (I,k) € Lifandonlyif (I' k') € L,
i) |I'| is bounded by a computable function f in k, and
iii) k' is bounded by a computable function g in k.

The output (I', k') of the kernelization is called a kernel and the function f is
the size of the kernel. We say that a kernel is polynomial (resp. linear) if f is a
polynomial (resp. linear) function.

Next, we present the proof of a, somewhat surprising result, which states
that a parameterized problem is in FPT if and only if it admits a kernel. This
means that kernelization is an equivalent way of defining fixed-parameter tractabil-

ity.

45

2.2. PARAMETERIZED COMPLEXITY

Theorem 2.2.2. A parameterized problem @ is in FPT if and only if it admits a
kernelization algorithm.

Proof. Suppose that @ admits a kernelization algorithm, say A, and let B;
be an algorithm for solving @ that runs in time h(n), where n is the size of the
input. We define algorithm B, which on input (I, k) operates as follows: It
runs algorithm .A; as a subroutine and obtains an equivalent instance (I’, k'),
where |I'| < f(k) and k' < g(k) for some polynomial functions f and g. Then
it runs algorithm B; with (I’, k') as an input and outputs the its answer. It is
easy to see that the running time of B, is O(h(f(k) + g(k)), which classifies
problem @ in FPT.

Suppose now that @) is in FPT. Then, there exists an algorithm A, decid-
ing whether (I,k) € @ in time f'(k) - |I|¢, for some computable function f’
and a constant c. A kernelization algorithm for Q operates as follows: It runs
algorithm A, on (I, k) for at most |7|°*! steps. If A, terminates it returns the
obtained answer (YES or NO) as the output. If A, does not terminate in |I]|*?
steps, then it returns (1, k) itself as an output. Observe that, A, not terminat-
ing in |I|“T! steps means that f/(k)-|I|© > |I|°"!, which gives that |I| < f'(k).
Thus, we have that |I| + k£ < f/(k) + k and the output of the kernelization
algorithm on this case is a kernel of size at most f/(k) + k. O

In order to make the notion of a kernelization more clear, we give a simple
kernel for the natural parameterization of the Vertex Cover problem.

Example 1 (Vertex Cover). Let G be a graph and S C V(G). We say that S is
a vertex cover of G if every edge of G has at least one endpoint in S and we
say that its size is |S|. Remember that the p-Vertex Cover problem asks, given
a graph G and a positive integer k as input, to check whether there exists a
vertex cover of size k in G.

We will describe a kernelization algorithm for p-Vertex Cover. We start by
giving two reduction rules that will be used as steps of the algorithm:

¢ R1. If G contains an isolated vertex v (a vertex v with degg (v) = 0), delete
v from G. The new instance is (G \ v, k).

* R2. If there is a vertex v in G such that degc(v) > k + 1, delete v from G
and decrement the value of the parameter by one. The new instance is
(G\ v, k—1).

46

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

The application of the reduction rules R1 and R2 on an input (G, k) results
in equivalent instances for the p-Vertex Cover problem: Obviously, an isolated
vertex covers no edges of G so it will never be in a vertex cover and thus it can
be removed. Additionally, if G contains a vertex v of degree more than k, then
v should be in every vertex cover of size at most k (otherwise all the, at least
k + 1, neighbours of v are needed to cover all the edges adjacent to v).

The exhaustive application of rules R1 and R2 completely removes the ver-
tices of degree 0 and degree at least k + 1. Based on the observation that, a
set of k vertices can cover at most k - d edges in a graph of maximum degree
d, we prove the following lemma:

Lemma2.2.1. If (G, k) is a yes-instance for p-Vertex Cover and reduction rules
R1 and R2 are not applicable to G, then |V (G)| < k? + k and |E(G)| < k2.

Proof. As rule R1 is not applicable, G contains no isolated vertices, thus for
any vertex cover S of G, every vertex in G \ S is adjacent to some vertex of
S. As rule R2 is not applicable, every vertex of G has degree at most £. It
follows that |V (G \ 9)| < (k+1)|S| < k? + k, where the last inequality holds as
the hypothesis of (G, k) being a yes-instance implies the existence of a vertex
cover S of size at most k in G. Finally, any vertex of a vertex cover can cover
at most k edges of G, thus |E(G)| < k- k = k% O

We are now in the position to give our last reduction rule:

* R3. Let (G, k) be an instance such that rules R1 and R2 are not appli-
cable. If k > 0and |V(G)| > k* + k or |E(G)| > k? then (G,k) is a
no-instance for p-Vertex Cover.

We have built up to the following

Theorem 2.2.3. Problem p-Vertex Cover admits a kernel with O(k?) vertices
and O(k?) edges.

Proof. We describe the steps of the kernelization algorithm: Apply reductions
rules R1 and R2 until they cannot be applied anymore. Apply rule R3 on the
reduced instance, say (G’, k'), and output a trivial no-instance if |V (G’)| >
k*+kor|E(G")| > k* and (G', k') otherwise. The correctness of the algorithm
is obvious from the previous analysis. O

47

2.2. PARAMETERIZED COMPLEXITY

The kernel for p-Vertex Cover that we just described is quadratic (as its
size is quadratic with respect to the parameter k). Of course, we can always
wonder if we can do better: Is it possible to construct a linear kernel for the
same problem? A kernel with 2k vertices and O(k?) edges has been con-
structed (for more on kernelization algorithms for Vertex Cover see [{], [16],
[14]) but there is complexity-theoretic evidence that these sizes cannot be
improved any further. One of the most recent achievements of Parameter-
ized Complexity, which will be briefly discussed in the subsequent section,
is the construction of a theoretical framework for proving kernelization lower
bounds.

2.2.5 Kernelization lower bounds

As we have proved in the previous section (Theorem P.2.9), the existence of
any kernelization algorithm is equivalent to the existence of a fixed-parameter
algorithm for a problem. But is every kernelization algorithm good? It would
be ideal if a linear (or even polynomial) sized kernel was guaranteed for every
fixed-parameter tractable problem. All kind of techniques (even brute force)
could then be applied to the shrunk instance, leading to an efficient solution.
Unfortunately, there are many important parameterized problems which, un-
der some plausible complexity theoretic assumptions, admit no polynomial
kernels. We will gradually build to some of the main theorems starting with a
concrete example, the natural parameterization of the Longest Path problem

p-Longest Path

Input: A graph G.

Parameter: A non-negative integer k.
Question: Is there a path of length & in G?

Assume that this problem admits a kernel with at most k3 vertices, i.e.,
there is an algorithm A that, given an instance (G, k) for p-Longest Path, out-
puts an equivalent instance (G, k') such that |V (G")|, k' < k3.

It is easy to observe that, the Longest Path problem has the following prop-
erty regarding connectivity: If our input graph G is not connected then we have
a positive answer if and only if we have a positive answer for at least one of
the connected components of G.

48

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

Suppose we are given k7 instances with the same parameter k, denoted by
(G1,k), (Ga,k),...,(Gy7, k), and let (H, k) be a new instance where H is the
disjoint union of G1, Gs, . . ., G7. From our previous observation, it is clear that
the answer to (H, k) is equal to the logical OR of the answers to the instances
(G1,k), (Ga, k), ..., (Gpr, k).

By applying the kernelization algorithm A to (H, k) we get an equivalent
instance (H', k') with |V(H')|,k’ < k3. We can encode H’ in (’“23) bits and
k' in 3log k bits, giving a total of roughly k5/2 + 3log k bits for the encoding
of our kernel (H’, k'). But this number is even less than the number of the k7
instances we started from, meaning that there exists at least one instance that
we discarded and that during the kernelization process we "forgot" information
about most of the instances. But is it possible, to evaluate and safely discard
in polynomial time, instances of an NP-hard problem such as the Longest
Path?

Next we provide some evidence that the behaviour of such a kernelization
algorithm would indeed be suspicious, as we will link our skepticism to some
well-established complexity-theoretic assumptions. We proceed with some
definitions.

Definition 2.2.4 (co-NP/poly). We say that a language L belongs to the com-
plexity class co-NP/poly if there exists a Turing machine M and a sequence of
strings (an)n=01,2,... (known as the advice) such that:

e Machine M, when given x with |x| = n as an input, has access at a,,
and has to decide whether x € L. Machine M works in co-deterministic
polynomial time, meaning that x € L if and only if the algorithm derives
this conclusion for every possible run.

e The size of the advice is polynomially bounded by the size of the input,
i.e. |an| < p(n) for some polynomial p(-).

Note that the advice strings a,, depend only on the size of the input or, in
other words, inputs of the same size come with the same advice string.

Definition 2.2.5. Let [, R C ¥* be two languages. An OR-distillation of L into
R is an algorithm that, given a sequence of strings =1, xs,...,x; € ¥*, runs in
time polynomial in Zle |x;| and outputs one string y € ¥* such that

1. |y| < p(max!_, |x;|) for some polynomial p(-).

49

2.2. PARAMETERIZED COMPLEXITY

2. y € Rifand only if there exists at least one index i such that x; € L.

The second condition asserts that the answer to the output, y, instance of R
is equivalent to the logical OR of the answers to the input instances of L.

We are now ready to state and prove the crucial result of this section:

Theorem 2.2.4. Let L, R C ¥* be two languages. If there exists an OR-
distillation of L into R, then L € co-NP/poly.

Proof. We can assume, without loss of generality, that ¥ = {0,1}. Let .4 be an
OR-distillation of L into R and p(-) the polynomial (without loss of generality,
we assume that it is nondecreasing) that bounds the length of the output of
A.

Let K = p(n) so that algorithm .4 when running on a sequence of strings each
of length at most n, outputs a string of length at most K. Letalso ¢t = K + 1.
Thus, algorithm A maps the set D = (£=")! of t-tuples of input strings into
the set =K,

Let A = L N =" (the yes-instances of L of length at most n) and A =
Y=7\ L (the no-instances of L of length at most n). Similarly, let B = RNX<K
and B = 2=\ R. From the second condition in we have that A maps
(A)tinto Band D\ (A)! into B.

We will say that a string = € X=" is covered by a string y € ©<¥ if there
exists a t-tuple (z1,x9,...,z;) € D such that x = x; for some i € {1,... ¢},
and A(zy,x9,...,2¢) = y. We will say that a set X C X<" is covered by a
set Y C =K if every element of X is covered by at least one element of Y.
The following claim, which is the main argument of the proof, states that there
exists a "small" subset of B that covers all the elements of A.

Claim 2.2.1. ThereisasetY C Bsuch that |Y|<n+1andY covers A.

Proof of claim. We will consecutively choose strings 41, v2,vs,... € B until
(after at most n steps) the set Y; = {y1,v2,...,%;} covers A. Let S; C A be
the strings that are not covered by Y;. We initially have that S, = A. Our

construction will guarantee that |S;| < ‘;‘, for every i = 0,1,.... Obviously,

1So| = |A] < '210. Since A C ¥=" and therefore [A] < 2"*1, the construction
will terminate after at most n + 1 steps.

50

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

We now describe how we choose a string y; based on the knowledge of
Y;_1. As algorithm A maps (S;_1)* C (A)! into B and |B| < |SsK| < 2K+
there exists (by the pigeonhole principle) some y € B such that

A~ () N (Sima)'] 2 'fﬁ?ﬁf - <|Siz_1> .

If we set y; = y, then every string from every tuple from the set A~1(y) N
(S;_1)!is contained in S;_; \ S; since it gets covered by y. Therefore, A~ (y)N
(Si_l)t - (Si—l \ Sl)f and

('S’;) < AT Y) N (Sim1)! < (Siz1 \ o) = |Si—1 \ Sil.

Hence, we get that |5;_1 \ S;| > 'Sgll, which gives |S;| < [S;-1]/2 and

15| < '2@ (which is what we want) follows by induction. As the numbered
of uncovered elements gets halved after every step, the construction will ter-

minate after at most n + 1 steps and Y will be the current set Y. O

It remains to show how Claim implies Theorem P.2.4. As we want
to prove that L € co-NP/poly, we need to construct (a) an algorithm deciding
membership in L in co-nondeterministic polynomial time and (b) a sequence
of advice strings a,, forn =0, 1,2, ..., that will be given to the algorithm along
with an input of size n.

Advice a,, will be an encoding of the covering set Y which is of polynomial
size as Y contains at most n + 1 strings, each of length at most K = p(n). The
algorithm works as follows: Given an input = with |x| = n, it tries to prove that
X ¢ L. If this is the case, then there exists a tuple (x1,...,x¢) € D such that
x = x; forsome i € {1,...,¢} and A(z1,...,2;) = y € Y. The algorithm co-
nondeterministically guesses this tuple, computes A(x1,...,z;) and checks
whether the result is contained in the advice string a,,. If x ¢ L, then there
exists at least one guess for which a string in Y will be computed. This string
is a certificate that = ¢ L since Y C B. If » € L, then by the second condition
of the definition of an OR-distillation, every tuple containing = is mapped to a
string contained in B, so outside of Y whose encoding is the advice string a,,.

O

51

2.2. PARAMETERIZED COMPLEXITY

Now it is time to study the consequences of the theorem that we just proved:

Corollary 2.2.2. If an NP-hard language L C X* admits an OR-distillation into
some language R C ¥*, then NP C co-NP /poly.

Proof. Let L’ be a language in NP. We can check if € L’ in the following
way: We apply the NP-hardness reduction from L’ to L and obtain a string,
say f(x). We can now decide whether f(x) € L in co-NP/poly as implied by
Theorem P.2.4. As z € L' iff f(z) € L, we have constructed an algorithm
resolving membership in L’ in co-NP/poly and therefore NP C co-NP/poly. O

But why is NP C co-NP/poly considered unlikely? From a complexity-
theoretic point of view, the assumption that NP ¢ co-NP/poly may be viewed
as a stronger variant of the NP = co-NP hypothesis. It is known that NP C
co-NP/poly implies that £ = PH, i.e., the polynomial hierarchy collapses to
its third level. Even though this collapse is not as dramatic as P = NP, it is
widely considered implausible.

But we have not yet stated anything about parameterized languages. How
can these results be translated to kernelization lower bounds for parameter-
ized problems?

Definition 2.2.6. Let X be a finite alphabet. An equivalence relation ‘R on the
set of strings X* is called a polynomial equivalence relation if the following two
conditions hold:

1. There is an algorithm that given two strings x,y € ¥* decides whether x
and y belong to the same equivalence class in time polynomial in |z|+ |y|.

2. Relation R restricted in <" has at most p(n) equivalence classes, for
some polynomial p(-).

Definition 2.2.7. Let L C ¥* be a language and () C ¥* xN be a parameterized
language. We say that L cross-composes into @, if there exists a polynomial
equivalence relation R and an algorithm A (the cross composition), satisfy-
ing the following conditions: Algorithm A, when given as input a sequence
x1,Ta,. .., xs Of R-equivalent strings, runs in time polynomial in Zle |;|, and
outputs an instance (y, k) € ¥* x N such that:

1. k < p(max!_, |z;| + logt), for some polynomial p(-) and

52

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

2. (y,k) € Q if and only if there exists at least one index i such that x; € L.

Note that this definition is similar to the one of OR-distillation, but here it is
only the output parameter that has to be "small", while the string y can even
have the size of the concatenation of the input instances.

We need one last definition before stating the main theorem of this section.

Definition 2.2.8. A polynomial compression of a parameterized language Q C
¥* x Ninto a language R C ¥*, is an algorithm that takes as input an instance
(x,k) € &* x N, works in time polynomial in |x| + k, and outputs a string y such
that:

1. ly| < p(k), for some polynomial p(-) and
2. y € Rifandonly if (z,k) € Q.

This definition is similar to the one of a kernel, and indeed a polynomial
kernel is also a polynomial compression by treating the output kernel as an
instance of the unparameterized version of (). The main difference between
the two is that a polynomial compression is allowed to output an instance of
any language R, even an undecidable one.

In what follows, we prove that given a cross composition of a language L €
>* into a parameterized language @ C ¥* x N and a polynomial compression
of @ into some language R, we can construct an OR-distillation of L into R.
The proof, despite being a bit lengthy, does not contain any important ideas
and is just a careful application of the definitions.

Theorem 2.2.5. If an NP-hard language L cross-composes into a parame-
terized language @), then () does not admit a polynomial compression unless
NP C co-NP/poly.

Proof. Let A be a cross-composition of L into @, po(-) be the polynomial
bounding the parameter of the output instance of A and let R be the poly-
nomial equivalence relation used in the cross-composition.

Assume also that ¢ admits a polynomial compression, C, into some lan-
guage R and let OR(R) be the language consisting of strings of the form s; #s,#
...#s4, such that s; € R for at least one index i € {1,...,¢} (# is a special

53

2.2. PARAMETERIZED COMPLEXITY

character that is added to X). We will conclude that NP C co-NP/poly by
constructing an OR-distillation of L into OR(R) and using Corollary p.2.2.

Let 21, x9,. ..,z be the sequence of input strings and let n = max!_, |z;|.
We first apply some (polynomial) preprocessing: find and remove all duplicates
in the sequence z1, xs, . .., ;. The number of the remaining strings is at most
the number of different string over X of length at most n. Therefore,

t=> |9 < [Z*

=0

Hence, after the removal of duplicates, we have that logt = O(n).

Partition the sequence =1, z9, . . ., z; into equivalent classes, say C,Cs, . . ., Cg,
with respect to the relation R. By the Definition of a polynomial equiv-
alence relation, this can be done in polynomial time and ¢ < p;(n), for some
polynomial p; (+).

Forj =1,2,...,q, apply the cross-composition A to the strings that com-
prise the equivalence class @);, obtaining an instance (c;, k;) such that k; <
po(Maxeec, |z| +log|Cj[), polynomially bounded in » and log ¢, and (c;, k;) €
Q if and only if there exists some z € C; such that z € L. As t = O(n), there
exists some polynomial ps(-) such that k; < pa(n), forevery j € {1,2,...,¢}.

Now apply the compression algorithm C to each instance (c;, k;), thus ob-
taining a string s; such that s; € R if and only if (c;,k;) € Q. As k; < pa(n)
and |s;| < p3(k;) for some polynomial ps(-), we infer that |s; < ps(n) for some
polynomial p4(-).

We conclude the construction by merging all strings s; into one instance
s = si#tso#t .. #s,. Itis clear that, s €OR(R) if and only if there exists some
i € {1,2...,t} such that z; € L. This means that the second condition in the
Definition of OR-distillation is satisfied. For the first condition, we have
that ¢ < p1(n) and |s;| < ps(n) and therefore, |s| < pi(n) - (pa(n) +1) — 1 (for
a visualisation of the proof, see Figure ??

O

As we have already discussed, polynomial compression can be replaced
by polynomial kernel in the previous theorem, making it a useful tool for prov-
ing kernelization lower bounds for NP-hard problems (under the assumption
NP ¢ co-NP/poly).

54

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

ol Cy
L T1 Ty T3 | | T4 T T . e e
A A A
Q (c1, k1) (2, k2) c . (cqr kq)
c c c
R s 5 .. 50
OR(R) 5= s1#so# .. #s,

Figure 2.9: This figure gives an intuition about how we can create an OR-
distillation for language L, given a cross-composition A of L into (the param-
eterized language) and a polynomial compression C of @ into the language
R.

We conclude this section by applying Theorem for (formally now)
proving that it is unlikely that p-Longest Path admits a polynomial kernel.

Example 2. We will describe a cross composition of the NP-hard problem
Hamilton Path (which, given a graph G, asks whether there exists a path in G
that meets all of its vertices) to the parameterized problem p-Longest Path:
For the relation R, we put into one equivalence class, say Cy all the strings of
3* that do not encode any graph and we patrtition the remaining instances with
respect to the number of vertices of the graph, denoting by C,, the class that
includes the n-vertex graph, for every n > 1.

The cross-composition algorithm when given a sequence of graphs in C,
returns a trivial no-instance for the p-Longest Path. Given a sequence of n-
vertex graphs, it returns the encoding of their disjoint union together with the
parameter k = n.

It is not hard to construct an encoding such that condition 1| of Definition

55

2.3. MONADIC SECOND-ORDER LOGIC

holds. Condition Bis satisfied as well, as the disjoint union of any number
of n-vertex graphs has an path on n vertices if and only if at least one of the
input graphs contains a Hamiltonian path.

It turns out that we can define AND-distillation by replacing condition 2 in
Definition with the requirement that y € R if and only if for all i we have
x; € L. Similarly, AND-cross-composition can be defined by replacing con-
dition B in Definition by requiring that (y, k) € Q if and only if if for all i
we have z; € L. It is not hard to prove an analogue of Theorem where
OR-distillations are replaced by AND-distillations. However, the arguments in
the proof of Theorem break apart when trying to translate them to the
AND-setting. Fortunately, a, much more difficult, proof for this appears in [37].
We will give the formal definitions in Section A where we prove that it is un-
likely that Cyclability, parameterized by k, admits a polynomial kernel when
restricted to the class of planar graphs.

2.3 Monadic second-order logic

One way to classify a computational problem in a complexity class (either
a classical or a parameterized one) is to place it in the framework of Logic and,
more precisely, to express the problem in the formalism of some specific lan-
guage in the framework of Logic. One of the most well-known results, which
illustrates this parallelism between logic and complexity (the main subject of
descriptive complexity theory), is the following theorem which was proved by
Ronald Fagin in his doctoral thesis in 1973 (also appears in [75]).

Theorem 2.3.1 (Fagin's Theorem). The class of all graph-theoretic properties
expressible in existential second-order logic is precisely NP.

We do not go into any further details for explaining Fagin's theorem as it is
not directly related to this thesis. We mention it because we think that is can
work as an introduction to the concept of representing a problem as a formula
in the frame of some logic language.

We will instead present a result, namely Courcelle's theorem, that is strongly
related to Parameterized Complexity Theory and is similar to Fagin's theorem,
in the sense that it exposes the correlation between a variant of second-order

56

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

logic and the class FPT (a significant difference is that Courcelle's theorem is
algorithmic and is considered to be the archetype of algorithmic metathorems
[20]). For doing so, we next present a brief description of Monadic Second-
Order Logic (shorter MSQ,) for graphs.

Monadic Second-Order Logic. The syntax of Monadic Second Order Logic
(MSQ,) requires an infinite number of individual variables for vertices and edges
(we usually use letters z, y, z. . . .) and an infinite number of set variables for sets
of vertices and sets of edges (we usually use capital letters X, Y, Z,..). It also
includes the logical connectives A (conjunction), Vv (disjunction), — (negation)
(we can also include — (implication) and «> (bi-implication) to make the formal-
ism simpler when writing formulas) and the quantifiers 3 (existential quantifier)
and V (universal quantifier) that can be applied to the variables. MSO, addi-
tionally includes the following five binary relations:

1. uw € U, where u is a vertex variable, U is a vertex-set variable and the
interpretation is the obvious.

2. d € D, where u is a edge variable, D is a edge-set variable and the
interpretation is the obvious.

3. inc(d,u), where d is an edge variable, v is a vertex variable and the
interpretation is that the edge d is incident on the vertex u.

4. adj(v,u), where v and u are vertex variables and the interpretation is that
v and u are adjacent vertices.

5. x =y (resp. X =Y) and the interpretation is equality of variables (resp.
set variables).

The semantics of MSO-, are defined in the obvious way according to the inter-
pretations of the previous binary relations.

Let = be a graph property, G be a graph and G be the class of all graphs. If
G has property m we write 7(G). We say that = is expressible in MSO- if there
exists some MSO; formula ¢, such that

(VG €G)[GE ¢ & 7(G)]

57

2.3. MONADIC SECOND-ORDER LOGIC

To make this definition more clear we give an example of an MSO, expressible
graph property.

Example 3 (3-colourability). A graph G = (V, E) is called 3-colourable if its
vertex set V' can be partitioned into three subsets X1, X5, X3 such that there
exists no edge e = {u,v} € FE such that u,v € X, for some i € {1,2,3}, i.e.
if we consider the vertices of X, X, X3 to have three distinct colours there
exists no bichromatic edge in G.

To express this property in MSQ., it is sufficient to quantify the existence of
three subsets X, X2, X3 which form a partition of V and each of them is an
independent set.

3colourability = 3x, x, x,cv partition(X;, X, X3)
Aindp(X1) Aindp(X2) Aindp(X3)

In order for the 3colourability formula to be short and not too involved, we
used two auxiliary subformulas, namely partition (verifying that (X, X2, X3)
is a partition of the vertex set) and indp (verifying that a given vertex set is an
independent set) which we define as:

partition(Xl,Xg,Xg) =Viev [(’U e X1 Av ¢ Xo Aw ¢ X3)
V(U¢X1A06X2A0¢X3)
\/(U¢X1/\’U¢X2AU€X3)]

Indp(X) = vu,UEV —adj (U, U)

It is easy to confirm that these two last formulas express the desired properties
and 3colourablity formula is an expression of the property of a graph being
3-colourable, in MSQs.

We are now in the position to state the celebrated theorem of Courcelle
(see also [[7] and [{13])

Proposition 2.3.1 (Courcelle's theorem [21,, 20]). Given a graph G and an
MSO, formula ¢ describing a graph property «, and parameterizing by tw(G)
(the treewidth of G) and by |¢| (the size of the formula ¢), there exists a com-
putable function f such that it can be determined in time f(tw(G), |¢|) - n©M)
whether graph G has property .

58

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

The intuition behind Courcelle's theorem is that, if the property of interest
can be expressed in a special fragment of second-order logic, namely MSOs,
then the problem of deciding whether a graph G has this property admits an
algorithmic solution where any"heavy" time requirements depend only on the
treewidth of G (the size of the formula can be ignored because it is usually
small) and the contribution of the size of the whole input can be restricted to
be just linear. On the other hand, function f is huge (and this is unavoidable
unless P=NP, as indicated by Gréhe and Frick in [44]) and the theorem cannot
directly be used, at least in its full strength, for practical purposes.

There have been some efforts to construct practical algorithms for imple-
menting Courcelle's theorem (see [64], [65] for more details and [62] for some
evaluation data) and the future seems promising. For further details on the
topic, we refer the reader to Chapter 13 of [36] and to Chapter 7 of [22].

The reason why we introduced the Monadic Second Order Logic and pre-
sented the theorem of Courcelle, is that Cyclability is MSO,-expressible (as
we prove in Chapter f) and therefore is in FPT when parameterized by the
treewidth of the input graph. We remind that being able to solve Cyclability on
graphs of bounded treewidth is a crucial ingredient of our algorithm.

However, the heavy time requirements that arise from the use of Cour-
celle's theorem would render our algorithm completely impractical, even though
it would still be an FPT-algorithm. That is why, after giving a MSO, formula
that expresses the property of a graph being k-cyclable, we also construct (in
Chapter H) a dynamic programming routine for solving the Cyclability problem
given a tree decomposition of the corresponding graph. This allows the final
running time of our algorithm to be more attractive.

2.4 Cycles, walls and annuli

As we have already mentioned, when we gave an overview of our algorithm
for solving Cyclability on planar graphs (Section [1.3 of Chapter [i), we deal with
graphs having "large" treewidth by finding either a colour irrelevant vertex or
a problem irrelevant vertex. In order to do this we have to exploit that the
treewidth being large implies the existence of a large grid-minor in our graph.
This in turn, implies the existence of a large bidimensional subgraph (a wall)
and of another bidimensional structure, which we call railed annulus.

59

2.4. CYCLES, WALLS AND ANNULI

In this section, we give formal definitions for this structures, building to-
wards Chapter §, where we prove some combinatorial results about cyclic
linkages which we uses later (in the analysis of the algorithm) to justify the
existence of irrelevant vertices.

Concentric cycles. Let G be a graph embedded in the sphere 5, and let
D ={Ds,...,D,}, be asequence of closed disks in 5y. We call D concentric
if Dy C Dy C --- C D, and no point belongs to the boundary of two disks in
D. We call a sequence C = {C1,...,C,}, r > 2, of cycles of G concentric if
there exists a concentric sequence of closed disks D = {D,,..., D, }, such
that C; is the boundary of D;,i € {1,...,r}. Fori € {1,...,7},wesetC; = D;,
C; = C; \ C;, and C; = G N D; (notice that C; and C; are sets while C; is a
subgraph of G). Given i, j with i < j — 1, we denote by A; ; the graph C; \ C;.
Finally, given a ¢ > 1, we say that a vertex set R C V(G) is ¢-dense in C if, for
everyic {l,....,r —q+1}, V(A ;s 1) NR#0.

It is not hard to observe (we give a formal proof in Chapter [3), that the
existence of a large grid-minor in a planar graph G implies that there exists an
embedding of G such that a large sequence of concentric cycles is formed.
Actually, these concentric cycles are crossed by paths forming what we call a
railed annulus:

Railed annulus. Letr > 2 and ¢ > 1 be two integers and let G be a graph
embedded on the sphere Sy. A (r, ¢)-railed annulus in G is a pair (C, W) such
that C = {C1,Cs,...,C,} is a sequence of r concentric cycles that are all
intersected by a sequence W of ¢ paths W, W, ..., W, (called rails) in such
a way thatuw C 1211,7« and the intersection of a cycle and a rail is always
connected, that is, it is a (possibly trivial) path (see Figure for an example).

As it is more convenient to work with subgraphs rather than minors, we
translate the existence of a large grid-minor in a planar graph G to the exis-
tence of a large subgraph, which we call a subdivided wall, in G.

Walls and subdivided walls. Let h be a integer and h > 1. A wall of height
h is the graph obtained from a ((h + 1) x (2 - h + 2))-grid with vertices (x,y),
x e {l,...,2-h+4},y € {1,...,h + 1}, after the removal of the "vertical"

60

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

/
/
(
\I\/
N\
N\ |
'\ /
(
— N\
-)
V4
N
I

Figure 2.10: A (10,15)-railed annulus.

edges {(z,v), (z,y + 1)} for odd z + y, and then the removal of all vertices
of degree 1. We denote such a wall by W;,. A subdivided wall of height h is
a wall obtained from W, after replacing some of its edges by paths without
common internal vertices (see Fig. for an example). The perimeter Py, of
a subdivided wall W is the cycle defined by its boundary. Let C; = Py and
let C;1 be any cycle of W that has no common vertices with Py,. Notice that
C = {C1,Cy} is a sequence of concentric cycles in G. We define the compass
Kw of W in G as the graph Cs.

Layers of awall. Let W be a subdivided wall of height h > 2. The layers of W
are recursively defined as follows. The first layer, J;, of W is its perimeter. For
i€{2,..., %]}, thei-th layer, J;, of W is the perimeter of the subwall W’ ob-
tained from W by removing its perimeter and repetitively removing occurring
vertices of degree 1. We denote the layer set of W by Jyw = {J1,..., *]L%J}

Our last definition is a rather technical one that makes the treatment of

61

2.4. CYCLES, WALLS AND ANNULI

concentric cycles easier. The tightness of a sequence of concentric cycles in
a plane graph implies that it cannot be extended into a bigger one by adding
another cycle of the graph, which lies in the interior of the outer cycle.

Tight concentric cycles. Let G be a graph embedded in the sphere S5y. A
sequence C = {C,...,C,} of concentric cycles of G is tight in G, if

+ (1 is surface minimal, i.e., there is no closed disk D of 5, that is properly
contained in C; and whose boundary is a cycle of G;

- foreveryi € {1,...,7—1}, thereis no closed disk D suchthat C; C D C

C,;+1 and such that the boundary of D is a cycle of G.

See Figure for a an example of the tightness definition.

Figure 2.11: A sequence of three tight concentric cycles. The addition of any
of the dashed edges makes the sequence non-tight.

62

CHAPTER 2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

%- t
1
[o = 35—1
Lo % :
t |=|) Sulind
1 e
r—-—.i—u— O % =I O i
[-2
2 P f
. *=—ng
5 '
§=—0
i ? -
" .
1
e e - o= - o= o= - -

Figure 2.12: A subdivided wall of height 9. The white squares represent the
subdivision vertices. The bold curves are its layers and the bold-dashed curve
is its perimeter.

Given a graph G we denote by gw(G) the maximum integer h for which G
contains a subdivided wall of height h as a subgraph. The next lemma follows
easily by combining results in [43],[563], and [79] and relates the treewidth of a
planar graph with the maximum height of a subdivided wall in it.

Lemma 2.4.1. If G is a planar graph, then tw(G) <9 - gw(G) + 1.

We are now ready to proceed to the next chapter where we prove some
combinatorial results about cyclic linkages.

63

2.4. CYCLES, WALLS AND ANNULI

64

CHAPTER 3

‘—COMBINATORICS OF CYCLIC LINKAGES

In this section, we generalize the notion of a linkage that was introduced by
Robertson and Seymour in [82]. Specifically, we introduce the notion of graph
linkages and study some combinatorial properties of a specific kind of graph
linkage, namely a cyclic linkage. Cyclic linkages are important for us because
they represent the kind of structure we are looking for in a graph when trying
to estimate its cyclability.

Our goal is to find a relation between the existence of a unique (in a way)
cyclic linkage in a graph and the treewidth of this graph, proving an analogue
of the Unique linkage theorem (in [82]) of Robertson and Seymour, but for
cyclic linkages). This will enable us to justify the existence of irrelevant vertices
for the Cyclability problem on planar graphs, when the treewidth of the input
graph is sufficiently large.

3.1 Graph linkages and cheap graph linkages

Graph Linkages. Let G be a graph. A graph linkage in G isapair L = (H,T)
such that H is a subgraph of G without isolated vertices and T is a subset of
the vertices of H, called terminals of L, such that every vertex of H with degree
different than 2 is contained in T'. The set P(L), which we call path set of the

65

3.1. GRAPH LINKAGES AND CHEAP GRAPH LINKAGES

graph linkage £, contains all paths of H whose endpoints are in T" and do not
have any other vertex in T'. The pattern of L is the graph

(T, {{s,t} | P(L) contains a path from sto ¢t in H}).

Two graph linkages of G are equivalent if they have the same pattern and
are isomorphic if their patterns are isomorphic. A graph linkage £ = (H,T)
is called weakly vital (reps. strongly vital) in G if V(H) = V(G) and there is
no other equivalent (resp. isomorphic) graph linkage that is different from L.
Clearly, if a graph linkage L is strongly vital then it is also weakly vital. We call
a graph linkage L linkage if its pattern has maximum degree 1 (i.e., it consists
of a collection of paths), in which case we omit H and refer to the linkage just
by using £. We also call a graph linkage L cyclic linkage if its pattern is a cycle.
For an example of distinct types of cyclic linkages, see Figure B

Notice that there is a critical difference between equivalence and isomor-
phism of linkages. To see this, suppose that £ = (C,T) is a cyclic linkage of
a graph G and let A be the set of all cyclic linkages that are isomorphic to L,
while B is the set of all cyclic linkages that are equivalent to £. Notice that
the cycles in the cyclic linkages of Ag should meet the terminals in the same
cyclic order. On the contrary, the cycles of the cyclic linkages of Bs may
meet the terminals in any possible cyclic ordering. Consequently A¢ C Bg.
For example, if £L = (C,T) is the cyclic linkage of the graphs in Figure B,
then ‘AG1| =1, |BG1| =1, |AG2| =1, |BG2‘ =12, |AG2| =4, ‘BG%‘ = 28.

CGL-configurations. Let GG be a graph embedded on the sphere Sy. Then,
we say that a pair @ = (C, £) is a CGL-configuration of depth r if C = {C1,...,C,}
is a sequence of concentric cycles in G, L = (H,T) is a graph linkage in G,
and TNV (C,) = 0, i.e., all vertices in the terminals of £ are outside C,.. The
penetration of L in C, pc(L), is the number of cycles of C that are intersected
by the paths of £ (when £ = (C, S) is cyclic we will sometimes refer to the
penetration of L as the penetration of cycle C). We say that Q is touch-free if
for every path P € £, the number of connected components of P N C, is not

1. See figure .9 for an example of a CGL-configuration.

66

CHAPTER 3. COMBINATORICS OF CYCLIC LINKAGES

U1 ()] V1 V2 U1 Vo

Gl GQ Gg

V4 Uy Uy

Figure 3.1: Three graphs G1, G5, and G3. In each graph the bold edges define
the CyC|e C= ({Ul, ey U5}, {{’Ul,’l)g}, ceey {’U4,’U5}, {U5,’U6}}) where T' = V(C)
Consider the cyclic linkage £ = {C, T} where T = V(C). L is a weakly vital
linkage in G; and G4 while it is not a weakly vital linkage in G5. Moreover, L
is a strongly vital linkage in GG; while it is not a strongly vital linkage neither in
Gs norin Gs.

Cheap graph linkages. Let G be a graph embedded on the sphere Sy, let
C ={C,...,C.} beasequence of cycles in G, and let £ = (H,T) be a graph
linkage where T C V(G \ C,.) (notice that (C, £) is a CGL-configuration). We
define function ¢ which maps graph linkages of G to non-negative integers
such that
L) =B\ | E@)
ie{l,...,r}

A graph linkage £ of G is C-strongly cheap (resp. C-weakly cheap), if
T(E)ﬂ(fr = () and there is no other isomorphic (resp. equivalent) graph linkage
L' such that ¢(£) > ¢(L). Obviously, if £ is C-strongly cheap then it is also
C-weakly cheap.

Tilted grids. Let G be a graph. A tilted grid of G is a pair U = (X, Z) where
X ={Xy,...,X,.}and Z ={Z,,..., Z.} are both sequences of r > 2 vertex-
disjoint paths of GG such that

« foreachi,j € {1,...,r} I, ; = X; N Z; is a (possibly edgeless) path of
G,

« fori e {1,...,r}thesubpaths I, 1, I; o, ..., I, , appear in this order in X,

67

3.1. GRAPH LINKAGES AND CHEAP GRAPH LINKAGES

<\\\ —— /‘“v
N d
\ /
> N
4 ~~ N\ T |
() /
~_/ /

Figure 3.2: A CLG-configuration @ = (C,£) with £ = (H,T). Here, Cis a
sequence of six concentric cycles, H (the bold curve) is a cycle (thus L is a
cyclic linkage) and T is represented by the set of squares. The penetration of
LinCis 4 and Q is touch-free.

« for j € {1,...,r} the subpaths I ;, I ;,...,I,; appear in this order in
Zj

* E(ly,)=E(L,)=E.)=E.,)=0,

* the graph G, taken from the graph Gy = (U;c 1,y Xi)U(Uieqa,.. .y Zi)
after contracting all edges in J; ;)c(1,.... 42 1i.; is isomorphic to the (r x
r)-grid.

We refer to the cardinality » of X (or Z) as the capacity of U.
Tidy tilted grids. Given a plane graph G and a graph linkage £ = (H,T)
of G we say that a tilted grid & = (X, Z) of G is an L-tidy tilted grid of G if

TNDy =0 and Dy N L =VUZ where Dy, is the closed interior of the perimeter
of Gy, (for an example see Figure 6).

68

CHAPTER 3. COMBINATORICS OF CYCLIC LINKAGES

Dfac\fn\’\ —

\\ \ N /
&) d
D\\ N <
N
) —
d N\ /”/I
(] /
~JS [/
.7

Figure 3.3: The linkage that corresponds to the cyclic linkage depicted in Fig-

ure B.2.

In order to be able to use some of the known results for linkages for our
purposes, we associate any cyclic linkage with a linkage in the following way.

From graph linkages to linkages. Let G be agraphandlet £ = (H,T) be
a graph linkage of G. We denote by G the graph obtained by subdividing all
edges of GG incident to terminals and then removing the terminals. Similarly,
we define £* = (H*,T*) so that H* is the graph obtained by subdividing
all edges incident to terminals, removing the terminals, and considering as
terminals the subdivision vertices. Notice that £* is a linkage of G,. Notice
that if £ is strongly vital then £* is not necessarily strongly vital. However, if £
is weakly vital, then so is £* (see Figure B.3 for an example).

Vertex dissolving. Let G be a graph and v € V(G) with Ng(v) = {u,w}.
The operation of dissolving v in G is the following: Delete v from G and add
edge {u,w} to E(G), allowing the existence of multiple edges.

69

3.2. CYCLIC LINKAGES IN PLANE GRAPHS

3.2 Cyclic linkages in plane graphs

In this section we prove that the existence of a unique cyclic linkage in
planar graph G forces the treewidth of G to be small.

The following proposition follows from the combination of Lemma 5, Lemma
6, and Observation 3 of [3].

Proposition 3.2.1. Let G be a graph embedded on the sphere Sy and let Q =
(C, L) be a touch-free CGL-configuration of G, where C is tight in G and L is a
C-weakly cheap linkage whose penetration in C is at least r. Then G contains
some L-tidy tilted grid in G of capacity at least r/(4 - |P(L)]).

The following result is somehow surprising as the strongly vitality of a cyclic
linkage L in a plane graph excludes L-tidy tilted grids of any size greater than 3.
The interesting thing is that a similar theorem also holds for (see [3]) for unique
linkages but the size of the excluded tidy tilted grids for this case depends on
the number of the paths & of the linkage (and more specifically its exponential
on k).

Lemma 3.2.1. Let G be a graph embedded on the sphere Sy. If G contains
a strongly vital cyclic linkage £ = (C,T), then G does not contain an L-tidy
tilted grid of capacity 4.

Proof. Assume that £ = (C,T) is a strongly vital cyclic linkage in G and that
I is an L-tidy tilted grid of capacity 4 in G. Let also I'y be the (4 x 4)-grid.
Observe that 'y is the graph that we get after contracting all edges of I' with
at least one endpoint of degree 2. We contract I' to 'y in G and let G’ be the
resulting graph.

Let V(F4) = {vij | 1,] € {1, . 4}} and

E(Ty) = {{vij,virye } | i = 4| + 15— 5| = 1}

Observe that Ty is also an £-tidy tilted grid of capacity 4 in G’ and that L is
also strongly vital in G’ (if not, then it was not strongly vital in G). Let H = T'UC
and H’ be the contraction of H that we get after contracting all edges of H
whose ends have both degree 2.
Let also
H*=T4,UP,UP,UP3U Py,

70

CHAPTER 3. COMBINATORICS OF CYCLIC LINKAGES

where for every i € {1,2,3,4}, each P; is a path of length 2 such that P,
connects v1; with v12, P> connects v;3 with v14, P3 connects v4; with v44 and
P, connects v4o With vy3 (i.€. for every cyclic linkage £ = (C,T) if we contract
all edges of H = I'UC whose ends have degree 2, we get a graph isomorphic
to H* which is a (4 x 4)-grid in addition to some paths that are subgraphs of
Q).

It is not hard to confirm that for every possible H, its corresponding con-
traction, H’, is isomorphic to H*. It remains to show that there exists a cyclic
linkage £’ = (C’,T) in G’, where C’ is different from C. As H* is a unique
graph (up to isomorphism), a way of rerouting C (in order to obtain a different
cyclic linkage) is given in Figure B.4. O

Lemma 3.2.2. Let G be a graph embedded on the sphere S, that is the union
of r > 2 concentric cycles C = {C4,...,C,} and one more cycle C of G.

Assume that C is tight in G, T NV (C,) = 0, the cyclic linkage L = (C,T) is
strongly vital in G, and its penetrationin C is r. Then r < 16 - |T| — 1.

Proof. Let o : P(L£) — T be such that ¢ is a bijection that maps each path
of P(L) to one of its endpoints. For every i € {1,...,r}, we define Q1) =
(€@, £®) where C) = {C1,...,C;} and L) = (C,T?)) where

TW =T\ {o(P)| Pe P(£)and PNC; = }.

Notice that if some Q1) is not touch-free, then T() < T(+1) _ 1 (as, by
the definition of touch-free configurations, there exists at least one path P in
P(L) such that PN Ciy1 # 0 but PN C; =). In the trivial case where every
QW is not touch-free we derive easily that » < |T'| and we are done.

Otherwise, let Q' = (C’, L') be the touch-free CGL-configuration in { Q™)
..., Q"1 of the highest index, say i (as we excluded the trivial case we have
that i > 1). Certainly, ¢’ = C(Y) and Q' is tight in G. Moreover, £’ is strongly vital
in G. From Lemma B.2.1], G does not contain an £’-tidy tilted grid of capacity
4. Thus, G, as well does not contain an £*-tidy (remember how a linkage
L* is created from a graph linkage £ after the "duplication" of the terminals
of £) tilted grid of capacity 4. Recall now that, as £’ is strongly vital in G it is
also weakly vital in G and therefore £* is weakly vital in G .. Notice also that
Q™" = (C', L) is a CGL-configuration of G, where C’ is tight in G./. As £*
is weakly vital in G/, then, by its uniqueness, £'* is C'-weakly cheap. Recall

71

3.2. CYCLIC LINKAGES IN PLANE GRAPHS

. A . A ’ . ’ .
] 1 (] 1 (] 1] 1

1 [

T]

]]

1 1

1 1

T T

]]

1 1

1 1

T T

]]

1 1

1 1

] T
1)] 1 1)] 1
[} . 4 1) . 4 1
. “u? 4 . ‘u? 4

~ . - .’
~ L 4 ~ -

St mmm=" “emnm="

Figure 3.4: On the left, a simplified £-tidy (4 x 4)-grid (corresponding to graph
H*) and on the right, a rerouting of the cycle of £ in the grid.

that the penetration of £’ in C’ is r— (i — 1) and so is the penetration of L*inC’.
As Q’, and therefore Q’* as well, is touch-free we can apply Proposition
and obtain that G/ contains some £'*-tidy tilted grid of capacity at least

(r=@@=1)/(4-P(LT)]) < (r = (i = 1))/4(PL)] = (i — 1)).

We derive that
(r= (= 1))/@A(PL) - (i -1)) <4,
therefore r < 16 - |P(L)| — 15(¢ — 1) which implies that » < 16 - |T'| — 1. O

A corollary of Lemma is the following.

Corollary 3.2.1. If a plane graph G contains a strongly vital cyclic linkage £ =
(C,T), then tw(G) = O(|T}>/?).

This corollary is a combinatorial result of independent importance and we
think that it can be used to study more connectivity related problems. It states
that, the uniqueness of a vital cyclic linkage in a plane graph G implies that
the treewidth of G is bounded by ¢ - t3/2, where ¢ is a constant and ¢ is the
number of terminals of the cyclic linkage.

Notice that, according to what is claimed in [3], we cannot restate the
above corollary for weakly vital linkages, unless we change the bound to be an

72

CHAPTER 3. COMBINATORICS OF CYCLIC LINKAGES

exponential one. That way, the fact that treewidth is (unavoidably, due to [3])
exponential to the number of terminals for (weakly) vital linkages is caused by
the fact that the ordering of the terminals is predetermined.

Lemma 3.2.3. Let G be a graph embedded on the sphere S, that is the union
of r concentric cycles C = {C4,...,C,} and a Hamiltonian cycle C of G. Let

alsoTNV(C,)=0. If L= (C,T) is C-strongly cheap then L is a strongly vital
cyclic linkage in G.

Proof. Assume that £ is not strongly vital in G, i.e., there is a different, iso-
morphic to £ = (C,T), cyclic linkage £’ = (C',T) in G. As L # L' we have
that C" # C, therefore there exists an edge e € E(C’) \ E(C) (this is because
V(C) = V(C") which follows from the strong vitality of £ in G).

But, as

we derive that e € |J,_, E(C;) (observe that the only way C’ can be different
from C is by using extra edges from the cycles of C).
Thus, we get that

[E(CYn | JE(G)| > [E(C)n | E(C)]

i=1 i=1

and, by the definition of cheap graph linkages, ¢(£) > ¢(£’), which contradicts
the assumption that £ is C-strongly cheap. Therefore, £ = (C,T) is a strongly
vital cyclic linkage in G, as claimed. O

We are now able to prove the main combinatorial result that is used in our
algorithm for solving Cyclability on planar graphs.

Lemma 3.2.4. Let G be a plane graph containing some sequence of concen-
tric cycles C = {C1,...,C,}. Letalso L = (C,T) be a cyclic linkage of G where

TNV(C.) = 0. If L is C-strongly cheap, then the penetration of L in C is at
mostr <16 - |T| — 1.

Proof. Suppose that some path P € P(L£) intersects at least 16 - |T'| cycles of
C. Then, P intersects all cycles in C* = {C_16.7|4+1,- - -, Cr}-

73

3.2. CYCLIC LINKAGES IN PLANE GRAPHS

Let G’ be the graph obtained by C UUC* after dissolving all the vertices
of degree 2 that do not belong to T and let £’ = (C’, T) be the linkage of G’
obtained from L if we dissolve the same vertices in the paths of £. Similarly, by
dissolving vertices of degree 2 in the cycles of C* we obtain a new sequence
of concentric cycles which, for notational convenience, we denote by C' =
{C4,...,Cm}, where ' =16 - |T.

The cyclic linkage £’ is C’-strongly cheap because L is C-strongy cheap
(it is easy to observe that no edge of |J,_, E(C.) \ E(C) belongs to E(C")).
Notice that C’ is a Hamiltonian cycle of G’ and, from Lemma B.2.3, £’ is a
strongly vital cyclic linkage of G’. We also assume that C’ is tight (otherwise
we can replace it by a tight one and observe that, by its uniqueness, £’ will be
cheap to this new one as well). As £’ is C’-strongly cheap and C’ is tight, from
Lemma8.2.9, ' < 16 - |T| — 1; a contradiction. O

This result can be intuitively described as follows: Any cyclic linkage £ =
(C,T) that penetrates a sequence of concentric cycles C, that does not contain
any of the terminals of T', deep enough (deeper than 16 - |T'| — 1), can be
replaced by another linkage £’ = (C’, T') (specifically a C-strongly cheap one)
whose penetration in C is at most 16 - |T'| — 1.

Or to restate this, when trying to find a cyclic linkage that meets the ter-
minals in 7" we do not have to go deep into a sequence of concentric cycles
C that does not contain any element of 7. This, of course, means that the
vertices "in the central" part of C are irrelevant for our problem.

This is the basis of our application of the irrelevant vertex technique and
will be used for the analysis of our algorithm in Chapter B. In the next chapter,
we talk about dynamic programming algorithms for problems on graphs of
bounded treewidth and we design such an algorithm for the Cyclability prob-
lem.

74

CHAPTER 4

LALGORITHMS FOR GRAPHS OF BOUNDED
TREEWIDTH

4.1 Using Courcelle's theorem for Cyclability

We are now ready to show how we can "efficiently" (at the end of this
section, the use of brackets will become clear) solve instances of Cyclability,
when the input graph has bounded treewidth. Remember that this is a cru-
cial step of our algorithm: When the instance, after maybe some deletions of
irrelevant vertices, has sufficiently small treewidth, we solve it using dynamic
programming. More specifically:

We can prove that the Cyclability problem can be solved in FPT-time when
we restrict the treewidth of the input graphs to bounded by some function
of k, by expressing the property of a graph being k-cyclable in MSO, and
directly employing Courcelle's theorem (as described in Proposition of
subsection R.3). It suffices to prove the following lemma:

Lemma 4.1.1. The property of a graph G being k-cyclable can be expressed
in MSOs, for every integer k > 0.

75

4.1. USING COURCELLE'S THEOREM FOR CYCLABILITY

Proof. Let k be a positive integer. We define

cyclability, (G) = Vscv [cardy(S) — (3ccr connE(C) A
Vyev deg0or2(v,C) A V,csdeg2(v, C))],

where card(.S) is an auxiliary formula that checks whether the cardinality of
the set S C V is k. Formula connE(C) checks whether the graph (V(C),C)
(where V(C) is the set of all vertices that are endpoints of some edge in C)
is connected and formulas deg0or2(v,C) (resp. deg2(v,C)) verifies that a
vertex v has zero or two adjacent (resp. exactly two) edges belonging to C. It
is now clear that, the formula cyclabilityy is satisfied by a graph G = (V, E) if
and only if the following property holds:

For every subset S of V with cardinality k, there exists a cycle C in G that
contains all the vertices in S.

Of course this is equivalent to G being k-cyclable. It remains to define the
four auxiliary formulas.

cardk(S) = 35165 35265 R ElskES(U 7& s1 A\ 7é So N ...
Av#sy—viS)
connE(C) = Vygv(c) [(ElueV(C) ueyY A H’I}EV(C) veg V(C)\ Y) —
(HeEC Juey EUEV(C)\Y inc(u, 6) A inc(v, 8))]
deg2(v,C) = 3, cocc [(e1 # e2) A inc(v,e1) A inc(v,ez) A
(Ve3€c inc(v, 63) — (61 =e3Vey = 63))]

degOor2(v,C) = deg2(v,C) V Veee —inc(v, e)

O

The following theorem is a direct consequence of Proposition and Lemma

that we just proved

Theorem 4.1.1. Cyclability problem, when restricted to the class of graphs of
bounded treewidth and parameterized by k, belongs to the class FPT.

However, as we have already discussed in subsection @ the celebrated
metatheorem of Courcelle, despite its theoretical power, is used almost exclu-

76

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

sively as a classification tool due to the (unavoidably, [44]) immense running
times that result from the construction of the automaton described in the proof.
One way to unlock the door to efficient algorithms for a problem restricted to
graphs of bounded treewidth is to exploit the specific structure of the problem
and use dynamic programming on a "good" tree decomposition of the input
graph. Next, we provide some intuition on this technique and demonstrate
how it can be applied on the Cyclability problem.

4.2 Treewidth and dynamic programming

A very useful property of a tree decomposition, say D = (T, X), of a graph
G is that the intersection of any two bags that are endpoints of an edge in
T is a separator of G. When trying to solve a problem in graphs of bounded
treewidth, we can sometimes exploit (for example by deploying dynamic pro-
gramming) the fact that our graph can be decomposed into pieces which are
connected through sets of "small" size to obtain an efficient solution. We for-
mally state and prove the property we discussed

Lemma 4.2.1. Let D = (T, {X:}, v (T)) be a tree decomposition of a graph

G and let {a,b} be an edge of T. The forest T \ {a, b} obtained by deleting the
edge {a,b} from T, consists of two connected components T, (that contains
a) and T, (that contains b). If

A= |J X and B= |J X,

teV (Ty) teV(Ty)

then the set X, N X, C V(QG) separates A from B in G.

Proof. Both a and b belong to every path with endpoints ¢t; € T7 and t5 € T5.
Therefore, AN B C X, N X, and it now suffices to prove that G has no edge
{u,v} withu € A\ Band b € B\ A. If such an edge {u,v} exists in G then
there is at € T such that u,v € X,;. By the choice of v and v we have that
t ¢ T, and ¢ ¢ T}, a contradiction. O

In order to handle a tree decomposition more "smoothly" we would like it
to have some properties, which are presented in the next definition.

77

4.2. TREEWIDTH AND DYNAMIC PROGRAMMING

Definition 4.2.1. For a tree decomposition D = (T,{X;}cv(r)), we distin-
guish avertex r € V(T'), which is called the root of T, and this way introducing
parent-child and ancestor-descendant relations in T. We say that the rooted
(on r) tree decomposition D = (T,{X;},ev(r)) is nice if the following condi-
tions hold:

e The root r and any non-leaf vertex have exactly two children.

e The bags that correspond to the root and the leaves of T are all empty,
ie. X, = X; =0 forevery leafl of T.

e Every non-leaf node of T' has one of the following types:

- Introduce node: A node t with exactly one child t' such that X; =
Xy U{v} for some v ¢ X. For such a node we say that v is intro-
duced at t.

- Forget node: A node t with exactly one child t' such that X; =
Xy \{v} for some v € X.. For such a node we say that v is forgotten
at t.

- Join node: A node t with two children t1,ts such that X; = X;, =
Xy

It is not hard to prove the following Lemma (see for example [36] and [22]):

Lemma 4.2.2. If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover,
given a tree decomposition D = (T, {Xt}tEV(T)) of G of width at most k, one
can in time O (k* -max(|V (T)|, |V (G)|)) compute a nice tree decomposition of
G of width at most k that has at most O (k|V (G)|) nodes.

Of course, in order to algorithmically exploit the nice structure of tree de-
compositions we first need to, somehow, obtain a tree decomposition of op-
timum, or approximately optimum, width for the given graph.

It turns out that computing the treewidth of a given graph is an NP-hard
problem ([6]) but it is FPT to check whether its treewidth is at most w, where
w is considered to be the parameter. The later follows from the Robertson-
Seymour theory, as treewidth is a minor-closed parameter: If H is a minor of
a graph G then tw(H) < tw(G).

78

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

As we have already mentioned, this technique is not constructive. Fortu-
nately, here is an algorithm of Bodlaender ([8]), that given a n-vertex graph G
and an integer k, runs in time k2(**) . n, and either constructs a tree decompo-
sition of G of width at most k or concludes that tw(G) > k.

In this thesis we will not focus on the computation of treewidth and we will
usually assume that an optimal, or nearly optimal, tree decomposition is given.

We proceed by giving some concrete examples of applying dynamic pro-
gramming for problems on graphs of bounded treewidth.

Dynamic programming. One of the most well known techniques in the al-
gorithms design theory is dynamic programming. The general idea behind this
technique is that we can solve a complex problem by dividing it into simpler
subproblems, solving each one of them and combining the solutions (which
are stored and used whenever required). More details of these ideas can be
found in any introductory algorithms book such as [24] and [19].

A typical application of dynamic programming is solving problems on trees.
Consider for example the following problem

Weighted Independent Set on Trees

Input: A tree T = (V,E) rooted at a node » € V and a function
w:V — Ry

Goal: Find aset I C V such that G[I] is edgeless and), _; w; is max-
imum.

Let T = (V, E) be tree, r € V be the root of tree T'and w : V — R, be a
function that assigns a weight on every node of the tree. We say that a node
inv € Vis aleaf of T' if deg,(v) = 1. We denote by dep,(v) the depth of node
v in tree T and define the depth of the root r to be equal to zero and the depth
of a node v to be its distance from the root . For any v € V, we define

Np(v) = {u € V| depy(u) = depy(v) + 1}

N7 (v) = {u € V | depy(u) = depp(v) + 2}

We construct a dynamic programming routine for solving Weighted Indepen-
dent Set on Trees. We define

79

4.2. TREEWIDTH AND DYNAMIC PROGRAMMING

w(v) if visaleaf of T

clv] = maX{ Sowlu), Y w[u]+w[u]} otherwise

ueNL uENZ

Clearly, the value c[r] computed in a leaf-to-root manner, is the solution we
are looking for, i.e. ¢[r] is the value of a maximum independent set in T. The
formula for ¢[v] is valid, as node v will either be in the solution (excluding its
children in N1) or it will not and thus all nodes in N} can be in the solution.

This simple example demonstrates the power of dynamic programming:
The computation that we do on every step depends only on values of some
(usually one or two) of the prior steps. Of course, for this strategy to work
there has to be some special structure in our problem. The crucial property in
our example is that every inner node (different from the root and the leaves)
of a tree is a separator, i.e., the deletion of any inner node makes the graph
disconnected.

It turns out that this idea can be extended to problems on graphs of bounded
treewidth. If G = (V, E) isagraph and D = (T, {X;},cv) is a tree decomposi-
tion of G of width w then, by Lemma }.2.1], the vertices in X, form a separator,
of size at most w, in G. This property of tree decompositions is the basis for
designing dynamic programming routines for problems on graphs of bounded
treewidth, as we will become clear in the next two subsections.

4.2.1 Dynamic programming for Weighted Independent Set

Before presenting a (somewhat involved) dynamic programming algorithm
for solving Cyclability on graphs of bounded treewidth, we start with some
simpler applications. We first demonstrate how the technique can be applied
on the Weighted Independent Set problem.

Weighted Independent Set

Input: A graph G = (V, E) and a function w : V — Ry.

Goal: Find aset I C V such that G[I] is edgeless and), _; w; is max-
imum.

80

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

Let G = (V, E) be a graph with |V| = n, and let D = (T, {X;}+cv (1)) be
a tree decomposition of G that has width at most k. By Lemma §.2.2, we
can assume that D is a nice tree decomposition of G, rooted at some node
r € V(T). We define V; to be the union of all bags that belong to the subtree of
T that is rooted at ¢, including the bag, X, that corresponds to ¢. By applying
Lemma to any edge between some ¢ # r and its parent, we get that
OV; C X, (the same holds, trivially, for the root r as V,, = V and 9V,. = (}). This
fact is crucial because it demonstrates that the subgraph induced by V; can
communicate with the rest of the graph through X; which is "small" (as it is a
bag of the decomposition). This means that we can perform time consuming
computations on X; without getting inefficient and then producing a solution
by, either combining the solutions of the subproblems or by extending our
partial solution at every step. This, somewhat intuitive, strategy becomes clear
when applying it to the Weighted Independent Set problem.

Let G = (V,E) and w : V(G) — R, be an input for the problem and let
D = (T,{X:}tev(r)) be a nice tree decomposition of G with width k. An
important observation is that for two given independent sets, I; and I, in G,
if 1NX; =LNX;,and w(l; NV;) > w(la NV,), then I, is definitely not the
optimal solution (as we can replace I, N V; with I; NV, an independent set of
bigger weight). This holds because X, separates V; \ X; from the rest of the
graph and for this specific problem we can naturally extend a partial solution
for V; to the whole graph G, by making some "local" computation for each bag
of the decomposition. More specifically, for every t € V(T') and every S C X,
we define

clt,] = max {w(S) | S C S CV;, SN X, = S and S is independent }

If no such S exists (meaning that S is not an independent set) we set c[t, S] =
—oo. Observe that c[t, S] can be computed efficiently (with respect to the
treewidth of G) for every ¢, as there are at most 21Xt choices for the intersec-
tion of S with X; and we can efficiently check if a vertex set S is independent.
Moreover, it is clear that c[r, ()] is the maximum weight of an independent set,
asV,.=Vand X, = 0.

We now show how we can compute the values c[t, S]. As we will shortly
see, the notion of a nice tree decomposition will prove to be very beneficial
because it forces the relation between a bag and the bag of its children to be

81

4.2. TREEWIDTH AND DYNAMIC PROGRAMMING

"simple". We give recursive formulas for c[t, S], where leaf nodes correspond
to the base case of the recurrence:

+ Leaf node: If ¢ is a leaf of T, then we have c[t, §] = 0

- Introduce node: If ¢ is an introduce node with child ¢/, then we have
that X; = Xy U {v}, forsome v ¢ X,. Let S C X; and assume that S is
independent. Then we set

.5 = {c[t',S} ifo¢ S
ct’, S\ {v}] +w(v) otherwise

If S is not independent, then we set ¢[t, S] = —oco. It is easy to check
that our recurrence formula is true, as any partial solution of V4, when
extended to V; will either contain the introduced node v or it will not
contain it.

- Forget node: If ¢ is a forget node with child ¢/, then we have that X; =
Xy \ {v}, for some v € Xy. Let S C X, and assume that S is indepen-
dent. Then we set

clt, 8] = max {c[t’, S], c[t’, SU {v}]}
Again, if S is not independent then we set ¢[t, S] = —cc. If v € S, then
c[t’, S U {v}] > w(S) = ¢[t,S], and if v ¢ S then c[t’, S] > w(S) = ¢[t, S].
As exactly one of this happens we get that

clt, 8] < max {c[t', 5], c[t’, S U{v}]}.

On the other hand, each set considered in the maximization for c[t’, S] is
also considered for the maximization of c[t, S], and the same holds for
c[t’, S U{v}]. So we get that

clt, S] > max {c[t', S, c[t', S U {v}]}.

By combining the previous two inequalities we confirm that our recur-
rence relation is true.

82

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

+ Join node: Suppose now that ¢ is a join node with children ¢, ¢, such
that X; = X, = X,,. Let S C X, and assume that S is independent (if
not we set c[t, S] = —co as before). We claim that

clt, S| = c[t1, S] + c[t2, S] — w(S).

This follows from the observation that there is no edge between V,, \ X,
and V;, \ X; (by Lemma }.2.1). This means that we can "join" partial
solutions for the subproblems on V;, and V;, and take care only of the
common vertices in S.

It now remains to estimate the time needed in order to compute c[r,], which
the solution we are looking for: the maximum weight of an independent set
in G. As we are working on a tree decomposition of width &, we have, for
every t € V(T), that | X;| < k + 1 and therefore at every node ¢t we compute
21Xt < 2k+1 values of c[t, S] in time 2% - k(1) (using a data structure that allows
to perform adjacency queries in O(k) time). Finally, as the number of nodes
of the tree decomposition is O(kn), we obtain the following

Theorem 4.2.1. Let G = (V,E) with |V| = nand w : V(G) — Ry. Let
also D = (T, {Xt}teV(T)) be a nice tree decomposition of G of width at most
k. Then, the Weighted Independent Set problem in G can be solved in time
ok . LOM) . .

4.2.2 Dynamic programming for Hamiltonian Cycle

The previous example is a typical application of dynamic programming on
a tree decomposition. However, the Weighted Independent Set problem has
nothing to do with our problem, Cyclability.

Before proceeding to the presentation of the dynamic programming algo-
rithm for solving Cyclability we apply the technique on a well known problem,
which is clearly strongly related to Cyclability, namely the Hamiltonian Cycle
problem:

Hamiltonian Cycle
Input: A graph G = (V, E).
Question: Is there a cycle in C'in G such that V(C) =V ?

83

4.2. TREEWIDTH AND DYNAMIC PROGRAMMING

Let G = (V, E) be a graph of treewidth at most w and let D = (T, {X;}icv;)
be a nice tree decomposition of width w of G.
Let X be a node (or bag) of D, i.e., X = X; for some ¢t € V(¢). We define

Bx={veV|ve X}

Vx = {v € V | v appears in the subtree of T rooted at X'}

Suppose that H is a Hamiltonian cycle in G. Then, as the vertices in Vx com-
municate with the rest vertices of V' only through the vertices of X (follows
from Lemma }.2.1)), we have that the subgraph H[Vx] of H, is a set of paths
with endpoints in Bx. The vertices of Bx are partitioned into the three follow-
ing sets according to their degree in H[Vx]:

B% = {v e Bx | deg v, = 0}

Bk ={v € Bx | degyv,) = 1}

A subproblem for node X is a quadruple (B, B, B%, M), where M is a
matching of the vertices in B% (two matched vertices are the endpoints of
some path). Clearly, the number of different subproblems on a node X is at
most 3 - w", as every one of the at most w nodes belongs to exactly one part
of the partition and the different matchings of B}, (whose size is at most w)
are at most w".

We call each subproblem (B%, BY., B%, M) a pattern and what we want
to compute on every node X of the tree decomposition, is if there is a set of
paths with this pattern in G[Vx]. If there is such a set of paths, we say that this
particular subproblem is valid on node X. We assume, for technical reasons,
that the root and the leaves contain exactly one node (they are not empty as
defined in Definition #.2.9). We argue about the subproblem (B%, By, B%, M)
on node X according to its type:

* Node X is a leaf node: Only the trivial subproblem ({v}, 0,0, 0) is valid
on X, where Bx = {v}.

* Node X is a forget node: Suppose that the child of X is node Y
and Bx = By \ {v}. As each node is introduced only once in a nice

84

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

tree decomposition, for a solution H of (BY, BY, B%, M), vertex v has
degree 2 and therefore (B%, B, B%, M) is valid on X if and only if
(B%,BY,B% U{v},M)isvalidonY.

* Node X is an introduce node: Suppose that the child of X is node Y
and Bx = By U {’U}

- Case 1: v € B%. ltis easy to confirm that (B%, By, B%, M) is valid
on X if and only if (B \ {v}, B%, B%, M) is valid on Y.

- Case 2: v € Bk. Then, every neighbour of v in Vx has to be in
By C Byx. Suppose that v is adjacent with just one vertex of By..
Subproblem (B%, B, B%, M) is valid on X if there is a subprob-
lem (BY., B}, B2, M’) of node Y such that making a vertex of By
adjacent to v produces a solution to (B%, B, B%, M) on node X.
This can be checked in at most w steps.

- Case 2: v € B% and v is adjacent with two vertices of By. The
analysis is similar to Case 2 and the validity of (B%, B%, B%, M) on
X can be checked in w? steps (we check for every pair of vertices
in By if we can produce a solution by connecting them both with

V).

* Node X is a join node: Node X has two children, Y and Z, and Bx =
By = Byz. Asolution H on X is the union of a subgraph H; C G[Vy]and
a subgraph Hy C G[Vz]. For every solution H; for (BY., B, B, M;) of
node Y and every solution H, for (BY, B}, B, M,) of node Z, we check
whether their union H; U H; is a solution for (B%, B%, B%, M) of node
X.

Theorem 4.2.2. Given a graph G and a tree decomposition with width w of G,
the Hamiltonian Cycle problem on G can be solved in w®") . n, steps.

The dynamic programming approach for solving Hamiltonian Cycle (and
many other important connectivity problems) that we presented, can be im-
proved with the use of the so called Cut & Count technique (see [23] and [22]).
The improved running time, which is 2°(") . n, is single exponential on the
treewidth of the input graph and linear on the size of the whole input.

85

4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

After demonstrating the use of dynamic programming for solving problems
on graphs of bounded treewidth, we proceed by applying this technique on
the Cyclability problem, where things get more complicated

4.3 Dynamic programming for Cyclability

The construction of the following algorithm is the goal of this section.

Algorithm DP(G, R, k, q, D)

Input: A graph G, a vertex set R C V(G), two non-negative integers k and ¢,
where k < ¢, and a tree decomposition D of GG of width q.

Output: An answer whether (G, R, k) is a yes-instance of Planar Annotated
Cyclability problem, or not.

Running time: 227" .

We observe that the question of Planar Annotated Cyclability can be ex-
pressed in monadic second-order logic (MSO,). It is sufficient to notice that an
instance (G, R, k) is a yes-instance of Planar Annotated Cyclability if and only
if for any (not necessarily distinct) v1, ..., v, € R, there are sets X C V(G) and
S C E(G) suchthatwvy,...,u, € X and C = (X, S) is a cycle. The property of
C = (X, S) being a cycle is equivalent to asking whether

i) for any z € X, there are two distinct e;, e5 € S such that x is incident to
e; and €9,

ii) for any x € X and any three pairwise distinct e;,es,e3 € S, €1 is not
incident to x or e5 is not incident to x or e3 is not incident to z, and

iiiy forany Z,,Z, C X suchthat Z1NZs =0, Z; # 0, Z> # Pand Z;UZ, = X,
there is {z,y} € S such that x € Z; and y € Zs.

We have already seen (Lemma that we can express Cyclability in
MSO, and from Courcelle's theorem we infer that Planar Annotated Cyclability
can be solved in f(q, k) - n steps if the treewidth of an input graph is at most
q, for some computable function f.

As the general estimation of f provided by Courcelle's theorem is immense,
we proceed by giving a dynamic programming algorithm in order to achieve a
more reasonable running time.

86

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

First, we introduce some notation. For every two integers a and b, with
a < b, we denote by [a,b] the set of integers {a,a + 1,...,b}. Let S be a set
and i € N. We define Sl = {A C S| |A| = i}.

Sub-cyclic pairs. Let G be agraph, C'acyclein G, and {A, X, B} a partition
of V(@) such that no edge of G has one endpoint in A and the other in B. The
restriction of C' in G[A U X] is called a sub-cyclic pair of G (with respect to
A, X and C). We denote such a sub-cyclic pair by (Q, Z), where Q contains
the connected components of the restriction of C' in G[A U X] (observe that
Q can contain isolated vertices, a unique cycle, and disjoint paths) and Z =
VC)nX.

Pairings. Let W be a set. A pairing of W is an undirected graph H with
vertex set V(H) C W and where each vertex has degree at most 2 (a loop
contributes 2 to the degree of its vertex) and if H contains a cycle then it is
unique and all the vertices not in this cycle are of degree 0. Moreover, H may
also contain the vertex-less loop. We denote by P(W) the set of all pairings
of W. It is known that if [IW| = w then |P(W)| = 20(wlogw),

Edge lifts. Let G be a graph and v € V(G) such that deg.(v) = 2. Let also
N¢(v) = {u,w}. We say that the operation of deleting edges {v, u} and {v, w}
and adding edge {u, w} (if it does not exist, i.e. we do not allow double edges)
is the edge lift from vertex v. We denote by lift(G, v) the graph resulting from
G after the edge lift from v (for an example see Figure [.A).

For a vertex set L C V(G) and a vertex v € V(G) we say that graph
H=lift(G, v) is the result of an L-edge-lift if v € L.

The dynamic programming algorithm that we present in this section works
for the class of all graphs (not just the planar) so we consider the extension of
PAC to the class of all graphs

Annotated Cyclability

Input: A graph G, aset R C V(G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C
of G such that S C V(C)?

87

4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

Figure 4.1: A graph G is depicted at the left and at the right there is the graph
lift(G, v) that results from G after the edge lift from vertex v.

Let (G, R, k) be an instance of Annotated Cyclability. Let also D = (T, X, r)
be a nice tree decomposition of G of width w, where r is the root of T. For
every x € V(T) let T; be the subtree of T rooted at ¢ (the vertices of T} are ¢
and its descendants in 7). Then for every ¢t € V(T'), we define

G, = G[U Xt/} and V;, = V(G,).
t' eV (Ty)

For every i € Z, we set Ri = (V(G;) N R)l. We also denote R, = |J_, Ri.

If (Q, Z) is a sub-cyclic pair of G; where X, is thought of as the separator
and Z C X, we simply say that (Q, Z) is a sub-cyclic pair on t. Notice that
each sub-cyclic pair (Q, Z) on t corresponds to a pairing in P(X;), which we
denote by Py 7 (just dissolve all vertices of Q that do not belong in X;).

Let P be a pairing of X; and S be a subset of V(G,). We say that vertex
set S realizes P in G; if there exists a sub-cyclic pair (Q, Z) on ¢ such that
PQ,Z =Pand S - V(UQ)

We also define the signature of S in G to be the set of all pairings of X; that
S realizes and we denote it by sig,(S). Notice that sig,(S) C P(X;), therefore
sig, (5)| = 2009,

88

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

Tables. We describe the tables of the dynamic programming algorithm. For
each ¢t € V(T), we define C; = [0, k] x XF] x P(X;) and

Fi = {(,K,P)€C|3S € Risuchthat K = X; NS and sig,(S) = P}

We call F; the table at node t € V(T'). As |P(X;)| = 20(w1o9w) it follows that
90 (w-log w)
[F(B)] =2 :

Observe that (G, R, k) is a yes-instance of Annotated Cyclability if and only
if 7. = {(0,0,P.),(1,0,P,),...,(k,0,P.)}, where P, is the unique pairing of
P(X,), i.e., the pairing that is the vertex-less loop (i.e., contains no vertices
and a single edge with no endpoints).

New pairings from old. Before we describe the dynamic programming al-
gorithm we need some more definitions. Suppose that ¢ is an insert node of
D and X; = X, U {v}, where s is the only child of ¢t in T and v € V(G). Let
E! = {{v,u} € E | v € X;}. We denote by P2 the set of all graphs (V, E)
where V C Ng,(v) U {v} and E C E!. Forany P € P(X,), P € P3*, and
L C X,, we define

P& P = {P € P(X,) | P results from PUP after a sequence of L-edge-lifts}.

See Figure .3 for a visualization of the these definitions. For every P’ €
P(X:) and L C X;, we define

(L(P') ={P e P(X,)|IP € P such that P’ € P &, P}.

We are now ready to describe the dynamic programming algorithm. We
distinguish the following cases for the computation of table(¢), ¢t € V(G):

* Node tis a leaf node: As X, = (), we have that F(¢) = {(0,0, Gy)} where
G is the void graph.

+ Node ¢ is an insert node: Let X; = X, U{v}, where s is the unique child
oftinT.

We construct table(t) by using the following procedure:

Procedure make_join

89

4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

Figure 4.2: At the top we depict the neighborhood of node v in X (at the left)
and an element, P of Py“* at the right. In the middle we depict the result,
@, of the union P U P, where P € P(X,). At the bottom we have the result,

P e P(XsU{v}) = P(Xy), of lifting v in Q.

90

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

Input: a subset A of C,
Output: a subset B of C;
let B=10
for (i, K,P)e A
if v € Rand i < k then
let B=BU{(i+1,KU{v}, P}
where P’ = {P € P(Xy) | Cxa\x(P)NP # 0}
let B=BU{(i, K,P")}
where P = {P € P(X;) | Cx,\x (P) NP # 0}

Lemma 4.3.1. F7; = make_join(F;).

Proof. We first prove that make_join(F;) C F;. Let (i + 1, K U {v},P) €
make_join(F;) with v € R and ¢ < k (the other case is similar). We prove that
(i+1, KU{v},P) € F.

By the operation of the procedure make_join we have that there exists a
triple (i, K,P) € F, such that P' = {P € P(X,) | (x,\x(P) NP # 0}. Let
S C R be the annotated vertex set which justifies the existence of (i, K, P) in
F.,i.e. X,NS = K and sig,(S) = P. Now, let ' = SU{v}. Clearly, S’ C RiT!
(wherei+1<k)and X; NS = K U {v}.

It remains to show that sig,(S’) = P’ or, equivalently, VP € P(X,) it holds
that P € sig,(5") & (x.\x(P)NP # 0. Let P € sig,(S’). We distinguish three
cases:

- Case 1: deg,(v) = 0. Then, P* = P\ {v} € Xy and P = P* U ({v},0)
(notice that ({v},0) € Pg"*), which means that P* € (x \x(P). Itis not
hard to confirm that P* € P because S realizes P* in G;. It follows that
PeP.

« Case 2: degp(v) = 1. Let u be the only neighbor of v in P. Then,
P* =P\ {v} € Xy and P = P*U ({v}, {v,u}), which means that P* ¢
(x.\x (P). Again, P* ¢ P because S realizes P* in G, thus P € P'.

« Case 3: degp(v) = 2. Let Np(v) = {u,w}. Then, P* = P\ {v} € X,
and P = P* U ({v}, {{v,w}{v,u}}), which means that P* € (x \x(P).
As before, S realizes P* in G, thus P € P'.

91

4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

We have proved that sig,(S’) C P’. The converse, P’ C sig,(S’), is clear
from the definition of P’.

To conclude the proof, we have to show that 7; C make_join(F;). Let
(i, K,P) € F;. From the definition of F;, there exists a vertex set S C R! that
realizes every pairing of P and X; NS = K. Let P € P and assume that v ¢ R.
We consider three cases and the arguments are similar to the previous ones:

+ Case 1: degp(v) = 0. Then, P* = P\ {v} € X, and P = P* U ({v},0),
which means that P* € (x \x (P).

« Case 2: degp(v) = 1. Let u be the only neighbor of v in P. Then,
P* =P\ {v} € X;and P = P* U ({v}, {v,u}), which means that P* ¢
Cx \k(P).

+ Case 3: degp(v) = 2. Let Np(v) = {u,w}. Then, P* = P\ {v} € X;
and P = P*U ({v}, {{v,w}{v,u}}), which means that P* € (x \x(P).

Let P* = {P* € P(X,) | P € P}. Clearly, for S* = S\ {v} C Ri and
K* = X, N S*, we have that sig(S*) = P* and thus (i — 1, K*, P*) € F,.

The case where v € R is similar. We conclude that 7; C make_join(Fy),
which completes the proof. O

e Node ¢ is a forget node: Let X; = X, \ {v}, where s is the unique child
of tinT. Then

Fo={(, K\ {v},P)|3(,K,P) € Fs: VP € P(X;), P € P & lift(P,v) € P'}

The proof that the set at the right part is equal to F;, is similar to the one
of Lemma §.3.1.

e Node ¢ is a join node: Let s; and s; be the children of ¢ in T'. Thus,
X: = X, = X,, and clearly P(X,;) = P(X,,) = P(X,,). Given a pairing
P € P(X;), we define

E&P)={(P,) e P(Xy) xP(Xy) | PLUP, =P}

92

CHAPTER 4. ALGORITHMS FOR GRAPHS OF BOUNDED TREEWIDTH

Then, F; can be derived from F,, and F;, as follows:

Fi = {6, K,P)| i1, K1,Pr1) € Fs, (i, Ko, Pa) € Fy,
i =11 +iz — | K1 N Ky,
KiUKy =K
VP e P I(P,Pr) €&(P): P, € P1,P, € Pa}.

Lemma 4.3.2. In the case where t is a join node with children s, and ss, F; is
computed as described above, given F,, and Fs,.

Proof. Let Uy = {(i, K,P) | (i1, K1,P1) € Fs, Fia, K2, Pa) € Fs, 1 0 =
i1+i2—|K1ﬂK2|, KlquzKandVPEP EI(P17P2)E£(P)ZP1€
P, Py € Pg}

We will only prove the nontrivial direction: F; C U,. Let (i, K,P) € F;.
From the definition of F;, there exists a vertex set S C R that realizes every
pairing of P and X; NS = K. Let P be any pairing of P. Then, there exists
a sub-cyclic pair (Q, Z) on t that corresponds to pairing P. The restriction of
(Q,7)in Gy, (resp. G,) is a sub-cyclic pair (Q1, Z1) on sy (resp. (Qz, Z2) on
s9) and clearly Z; C X, (resp. Z2 C X,,). These sub-cyclic pairs meet some
subsets S; and S, of S respectively and correspond to parings P, € P; and
Py € Ps.

Let |S1| = 41 and |S2| = iy. It is now easy to confirm that ¢ = i; +i2 — |[K1 N
KQ‘, Ki\UKy=7Z1UZy =K and that (Pl,PQ) S f(P)

As P € P was chosen arbitrarily we conclude that (i, K, P) € U; and we
are done. O

The algorithm that we described runs in 22°"*" ., steps (where w is the

width of the tree decomposition) and solves the Annotated Cyclability prob-
lem.

We insisted on a detailed presentation of the dynamic programming routine
because (as we prove in Chapter f) Cyclability (from the classical complexity
point of view) can be classified to the second level of the polynomial hierarchy,
and specifically to I15. Actually we believe that it is TI5 -complete, thus it does
not belong to NP unless 15 = NP. To our knowledge this is one of few, maybe
the first, dynamic programming algorithm for such a problem.

93

4.3. DYNAMIC PROGRAMMING FOR CYCLABILITY

94

CHAPTER B

THE ALGORITHM

After constructing our combinatorial tools (Chapter E) and designing an
algorithm for efficiently solving Cyclability on graphs of bounded treewidth,
we are in the position to construct an FPT-algorithm for solving Cyclability for
planar graphs, as promised.

Thus, this section is devoted to the proof of Theorem [1.3.3. We consider
the following, slightly more general, problem.

Planar Annotated Cyclability

Input: A plane graph G, a set R C V(G), and a non-negative integer k.
Question: Does there exist, for every set S of k vertices in R, a cycle C
of G suchthat S C V(C)?

In this section, for simplicity, we refer to Planar Annotated Cyclability as prob-
lem PAC. Theorem follows directly from the following lemma.

220(k2 log k)

Lemma 5.0.1. There is an algorithm that solves PAC in n? steps.

The rest of this section is devoted to the proof of Lemma B.0.1].

Problem/colour-irrelevant vertices. Let (G, %, R) be an instance of PAC.
We call a vertex v € V(G) \ R problem-irrelevant if (G, k, R) is a yes-instance

95

if and only if (G \ v, k, R) is a yes-instance. We call a vertex v € R colour-
irrelevant when (G, k, R) is a yes-instance if and only if (G,k, R \ {v}) is a
yes-instance.

Before we present the algorithm of Lemma , we need to introduce
three algorithms that are used in it as subroutines.

Algorithm DP(G, R, k, q, D)

Input: A graph G, a vertex set R C V(G), two non-negative integers k and ¢,
where k < ¢, and a tree decomposition D of GG of width q.

Output: An answer whether (G, R, k) is a yes-instance of PAC or not.
Running time: 227" .

Algorithm DP is based on dynamic programming on tree decompositions
of graphs and is the algorithm that we presented in Section .3 of Chapter 4.

Algorithm Compass(G, q)

Input: A planar graph G and a non-negative integer q.

Output: Either a tree decomposition of G of width at most 18¢ or a subdivided
wall W of G of height g and a tree decomposition D of the compass Ky, of W
of width at most 18¢.

Running time: 20°" .

We describe algorithm Compass in Section B.1.

Algorithm concentric_cycles(G, R, k,q, W)

Input: A planar graph G, a set R C V(G), a non-negative integer k, and a
subdivided wall W of G of height at least 392k? + 40k.

Output: Either a problem-irrelevant vertex v or a sequence C = {C4,Cy, .. .,
Cysi+2} of concentric cycles of G, with the following properties:

(1) C1NR#0.
(2) The set R is 32k-dense in C.

(3) There exists a sequence W of 2k + 1 paths in Ky such that (C, V) is a
(98k + 2,2k + 1)-railed annulus.

Running time: O(n).

We describe Algorithm concentric_cycles in Subsection b.9. We now use
the above three algorithms to describe the main algorithm of this paper which
is the following.

96

CHAPTER 5. THE ALGORITHM

Algorithm Planar_Annotated_Cyclability(G, R, k)
Input: A planar graph G, a set R C V(G), and a non-negative integer k.
Output: An answer whether (G, R, k) is a yes-instance of PAC or not.

. . O (k2 log k
Running time: 227" . 2.

Step 1.

Step 2.

Step 3.

Step 4.

Let » = 98k? + 2k, y = 16k, and q = 2y + 4r. If Compass(G, ¢) returns
a tree decomposition of G of width w = 18¢, then return DP(G, R, k, w)
and stop. Otherwise, the algorithm Compass(G, ¢) returns a subdivided
wall W of G of height ¢ and a tree decomposition D of the compass Ky
of W of width at most w.

If the algorithm concentric_cycles(G, R, k,q, W) returns a problem-
irrelevant vertex v, then return Planar_Annotated_Cyclability(G \ v, R\
v, k) and stop. Otherwise, it returns a sequence C = {C4,Cs,...,C,} of
concentric cycles of G with the properties (1)—(3).

Forevery i € {1,...,7 — 98k — 2} let w; be a vertex in A, ;iy33., N R
(this vertex exists as, from property (2), R is 32k-dense in C), let R; =
(RNV(Ci))U{w;}, and let D; be a tree decomposition of C; of width at
most w - this tree decomposition can be constructed in linear time from
D as each C; is a subgraph of Ky .

If, forsome i € {1,...,r — 98k — 2}, the algorithm DP(C‘i, Ri,k,q,D;) re-
turns a negative answer, then return a negative answer and stop. Other-
wise return Planar_Annotated_Cyclability(G, R\v, k) where v € V(C;)n
R (the choice of v is possible due to property (1)).

For a visualisation of how our algorithm operates, see Figure 5.1.

Proof of Lemma B.0.1. The only non-trivial step in the above algorithm is Step

4. Its correctness follows from Lemma b.3.1, presented in Subsection b.3.
We now proceed to the analysis of the running time of the algorithm. Ob-

serve first that the call of Compass(G, ¢) in Step 1 takes 2k steps and,

in the case that a tree decomposition is returned, the DP requires 227

2Iog k)

steps. For Step 2, the algorithm concentric_cycles takes O(n) steps and if it
returns a problem-irrelevant vertex, then the whole algorithm is applied again
for a graph with one vertex less. Suppose now that Step 2 returns a sequence

97

5.1. THE ALGORITHM COMPASS

C of concentric cycles of G with the properties (1)~(3). Then, the algorithm DP
is called O(k2) times and this takes in total 22°*" " . 1, steps. After that, the
algorithm either concludes to a negative answer or is called again with one
vertex less in the set R. In both cases where the algorithm is called again we
have that the quantity |V (G)| + | R| is becoming smaller. This means that the
recursive calls of the algorithm cannot be more than 2n. Therefore, the total

. . . O (k2 log k) .
running time is bounded by 22 *Y . n2 as required.

5.1 The algorithm Compass

Before we start the description of algorithm Compass we present a result
that follows from Proposition P.4.1], the algorithms in [76] and [8], and the fact
that finding a subdivision of a planar k-vertex graph H that has maximum
degree 3 in a graph G can be done, using dynamic programming, in 20 (k109 %),
steps (see also [2]).

Lemma 5.1.1. There exists an algorithm A, that, given a graph G and an in-
teger h, outputs either a tree decomposition of G of width at most 9h or a
subdivided wall of G of height h. This algorithm runs in 2h?™ steps.

Description of algorithm Compass. We use a routine, call it As, that re-
ceives as input a subdivided wall W of G with height equal to some even
number h and outputs a subdivided wall W’ of G such that W’ has height h/2
and [V(Kw/)| < |[V(G)|/4. A, uses the fact that, in W, there are 4 vertex-
disjoint subdivided subwalls of W of height 4/2. Among them, A, outputs the
one with the minimum number of vertices and this can be done in O(n) steps.
The algorithm Compass uses as subroutines the routine A, and the algorithm

A, of LemmaB.1l.

Algorithm Compass(G, q)
[Step 1.1if A1 (G, 2q) outputs a tree decomposition D of G with

width at most 18¢ then return D,

otherwise it outputs a subdivided wall W of G of height 2¢
[Step 2.] Let W' = Ax(W)

if Ay(Kw~,2q) outputs a tree decomposition D of

98

CHAPTER 5. THE ALGORITHM

Ky of width at most 18¢ then return W’ and D,
otherwise W « W’ and go to Step 2.

Notice that, if A terminates after the first execution of Step 1, then it outputs
a tree decomposition of G of width at most 18¢q. Otherwise, the output is
a subdivided wall W’ of height ¢ in G and a tree decomposition of Ky of
width at most 18¢ (notice that as long as this is not the case, the algorithm
keeps returning to step 2). The application of routine A, ensures that the
number of vertices of every new Ky is at least four times smaller than the
one of the previous one. Therefore, the i-th call of the algorithm A; requires
o(2h"" . s0ry) steps. As 3% s = O(1), algorithm Compass has the
same running time as algorithm A;.

5.2 The Algorithm concentric_cycles

We need to introduce two lemmata. The first one is strongly based on the
combinatorial Lemma that is the main result of Section 3.

Lemma 5.2.1. Let (G, R, k) be an instance of PAC and let C = {C},...,C,}

be a sequence of concentric cycles in G such that V(C,.) N R = 0. If r > 16k,
then all vertices in V (C1) are problem-irrelevant.

Proof. We observe that for every vertex v € V(G), if (G \ v, R, k) € PAC then
(G, R, k) € PAC because G \ v is a subgraph of G and thus every cycle that
exists in G \ v also exists in G.

Assume now that (G, R, k) € PAC, letv € V(C,), and let S C R, |S| < k.
We will prove that there exists a cycle in G \ v containing all vertices of S.

As (G, R, k) € PAC, there is a cyclic linkage £ = (C,S) in G. Ifv ¢ V(C),
then C'is a subgraph of G\v and we are done. Else, ifv € V(C),let L' = (C’, S)
be a C-weakly cheap cyclic linkage in the graph H = G[V (C)U (U;_, V(C))],
and assume that v € V(C’) too. Then C’ meets all cycles of C and its pene-
tration in C is more than 16 - |S|, which contradicts Lemma [3.2.4.

Thus, v ¢ V(C') implying that there exists a cyclic linkage with S as its set
of terminals that does not contain v. As S was arbitrarily chosen, vertex v is
problem-irrelevant. O

99

5.2. THE ALGORITHM CONCENTRIC_CYCLES

Lemma 5.2.2. Let y,r, q, z be positive integers such that y +1 < z <r, G be
a graph embedded on Sy and let R C V(G) be the set of annotated vertices
of G. Given a subdivided wall W of height h = 2 - max{y, [£]} + 4r in G then
either G contains a sequence C' = {C1,Cs, ..., C, } of concentric cycles such
that V(C‘?’J) N R = () ora sequence C = {C41,Cs,...,C,} of concentric cycles
such that:

1. CiNR#0.
2. Ris z-dense in C.

3. There exists a collection W of q paths in Ky, such that (C,W) is a (r, q)-
railed annulus in G.

Moreover, a sequence C’ or C of concentric cycles as above can be con-
structed in O(n) steps.

Proof. Let p = max{y,[{]}. We are given a subdivided wall W of height
h = 2p + 4r and we define C = {C4,...,C,} such that C; = J%_p_%”,z’ €
{1,...,7}. Notice that there is a collection W of 8p vertex disjoint paths in W
such that (C,W) is a (r, ¢)-railed annulus. If C; N R = (), then

C'={Jn. sy Tn iy o}

is a sequence of concentric cycles where 7%+y_1 C C; and we are done.
Otherwise, we have that C satisfies property 7.

Suppose now that Property 2 does not hold for C. Then, there exists some
ie{l,...,r}suchthat A4; ;;._1NR = . Notice that A4, , .,_; contains 2z—1 >
2y layers of W which are crossed by at least 2y of the paths in W (these paths
certainly exist as 2y < 8p). This implies the existence of a wall of height 2y in
Ajiv-—1 which, in turn contains a sequence C' = {C1,...,C}} of concentric
cycles. As 5; C A;it+~—1 we have that V(C‘;) N R = () and we are done. It
remains to verify property 3 for C. This follows directly by including in W’ any
q < 8p of the disjoint paths of W. Then (C,W’) is the required (r, ¢)-railed
annulus. It is easy to verify that all steps of this proof can be turned to an
algorithm that runs in linear, on n, number of steps. O

100

CHAPTER 5. THE ALGORITHM

Description of algorithm concentric_cycles. This algorithm first applies
the algorithm of Lemma for

y = 16k, 7 = 98k* + 2k, ¢ =2k + 1, and z = 32k.

If the output is a sequence C’' = {C],C3,...,C}} of concentric cycles such
that V(C!) N R = 0, then it returns a vertex w of . As V(C,) N R = 0,
Lemma implies that w is problem-irrelevant. If the output is a sequence
C then it remains to observe that conditions 7-3 match the specifications of
algorithm concentric_cycles.

5.3 Correctness of the algorithm

As mentioned in the proof of Lemma p.0.1], the main step — [step 4] — of
algorithm Planar_Annotated_Cyclability is based on Lemma below.

Lemma 5.3.1. Let (G, R, k) be an instance of problem PAC and let b = 98k +2
and r = 98k? + 2k. Let also (C,W) be a (r, 2k + 1)-railed annulus in G, where
C = {C,...C,} is a sequence of concentric cycles such that C; contains
some vertex v € R and that R is 32k-dense in C. Forevery i € {1,...,r — b},
let
R, = (R n V(C'Z)) @] {wl} where w; € V(Ai+k+1,33k+i+1) N R.

If (C‘Hb, R;, k) is ano-instance of PAC, forsome i € {1,...,r—b},then (G, R, k)
is a no-instance of PAC. Otherwise vertex v is colour-irrelevant.

We first prove the following lemma, which reflects the use of the rails of a
railed annulus and is crucial for the proof of Lemma 5.3.1.

101

5.3. CORRECTNESS OF THE ALGORITHM

Cr’ Cr -1

Figure 5.2: visualisation of proof of Lemma 5.3.9, case 1. The different lining
on the parts of the cycle at the left indicates the different colours of these
paths.

Lemma 5.3.2. Let G be a graph embedded on the sphere Sy, r, k be two
positive integers such that r > 16k, and (C, W) be an (r, 2k + 1)-railed annulus
of G with C = {C1,...,C,} being its sequence of concentric cycles, W =
{W1, ..., Wapi1} its rails. Letalso S C V(G) such that SNC, = and |S| = k.
Then for every two vertices u,v € V(Cy), if there exists a cyclic linkage L =
(C,S), with penetration k + 1 < pc(L) < r — 1, in G, then there exists a path
P, ., with ends u and v that meets all vertices of S.

Proof. Let {s1,..., s} be an ordering of the set Sand let f. : L(P) — {1,...,k}
be a function such that for every i € {1,...k — 1}, f-(P) = ¢ if the endpoints
of P are s; and s;1 and f.(P*) = k for the unique path P* € P(L) whose
endpoints are s, and s;.

Moreover, as W; is a path with endpoints w; € V(C;) and v/ € V(C,.), we
define the ordering {w;, ..., w}} of V(WW;) and call it the natural ordering of ;.
Furthermore, for every W; € W, let m.(W;) = f.(P) if P is the first path (with
respect to the natural ordering of W;) of P(L£) that W; meets and m(W;) =0

102

CHAPTER 5. THE ALGORITHM

if W,; does not meet C.
Let C; € C. We pick an arbitrary vertex v € V(C;) and order V(C;) starting
from v{ and continuing in clockwise order. Let {v{,...,vf} .y} be such an

ordering of the vertices of C;. We assign to each vertex of v} € C; a “colour"
from the set {0, ...k} as follows: ¢ (v)) = 0if v/ ¢ V(C;)NV(C) and ¢ (v)) =
fe(P)ifv! € V(C;) N V(P), where P € P(L).

For the rest of the proof, if P, is a path, Py(v, w) is the subpath of P, with
endpoints v and w. We examine two cases:

1. Atleast k + 1 paths of W (i.e. rails of the railed annulus) meet C. Then,
as |P(L)| = k, there exist two rails W;,W; € W and a path P € P(L)
such that

me(Wi) = me(Wy) = fo(P).

Let V(Cy) N V(W;) be the vertices of path @), ; and V(C1) N V(W) the
vertices of path @)1 ;. Then, we let z € V(C1) be the endpoint of @, ; that
is not w; and y € V(C1) be the endpoint of @, ; that is not w’ (notice
that z and y can coincide with v and v). Let also z’ be the vertex of
V(P)NV(W;) with the least index in the natural ordering of W; and 3’ be
the vertex of V(P) NV (W;) with the least index in the natural ordering of
W;. We observe that there exist two vertex disjoint paths P, and P» with
endpoints either v,x and u,y or v,y and u, x, respectively. We define
path

Py = (C\ P(I/; y/)) U Wi(va/) U Wj(y; y/) UPUP;.
Path P, , has the desired properties. See also Figure 5.2,

2. There exist ¥’ = k + 1 paths, say W = {W,..., Wy}, of W that do
not meet C. As the penetration of C is at least k£ + 1, for every j €
{r—Fk,....r}, V(C; nC) # 0. Forevery i € {1,...,k'} and every
j e {r—k,...,r} weassign to the vertex w’ of V(W; N C;) with the least
index in the natural ordering of W;, a “colour" from the set {1,...,k}
as follows: ¢, (w!) = ¢, (v) if there exists a v € V(C) and a subpath
Cj(wz, v) (starting from wf and following C; in counter-clockwise order)
such that it does not contain any other vertices of V(C) as internal ver-
tices.

103

5.3. CORRECTNESS OF THE ALGORITHM

For every W; € W', we assign to I; a set of colours, y; = fill ce(w?).

Let P be the set of all maximal paths of C,. without internal vertices in
C. Certainly, any W; € W' intersects exactly one path of P. We define
the equivalence relation ~ on the set of rails W’ as follows: W; ~ W, if
and only if W; and W, intersect the same path of P. We distinguish two
subcases:

« The number of equivalence classes of ~ is k’. Then, there exist two
rails W;, W, € W' and j;,5i € {r — k,...,r} such that ¢z (w]") =
ce(w]') = ¢ (P) for some path P € P(L).

« The number of equivalence classes of ~ is strictly less than %’.
Then, there exist two rails W;, W; € W’ such that c.(w!) = cz(w])
for every j € {r — k,...,r}. Therefore, there exist j;,j; € {r —
k,...,r} with j; # j; such that

cc(w{i) = q(wlj’) =cc(P)

for some path P € P(L) (this holds because |{r —k,...,r}| =k+1
— see also Figure B.3).

For both subcases, as ¢ (w’) = ¢, (P), there exist a v; € V(P) and a
subpath C;(w!*,v;) of C; and, similarly, as c.(w]') = c.(P), there exist
av;, € V(P) and a subpath C;(w]',v;,) of C;. These two subpaths do
not contain any other vertices of C apart from v;, and v;,, respectively.
Moreover, let = be the vertex of V(IW; N Cy) of the least index in the
natural ordering of W, and y the vertex of V(W; N C}) of the least index
in the natural ordering of W,. As in case 1, observe that there exist two
vertex disjoint paths P; and P, with endpoints either v,z and u,y or v,y
and u, z, respectively. We define the path

P,, = (C\P(v,v;)) U C’j(wf“,zin) U C’j(wljl,vjl) U
UWi(wgi,m) U Wl(wlj‘,y) U P U Ps.

Path P, , has the desired properties.

104

CHAPTER 5. THE ALGORITHM

Figure 5.3: visualisation of proof of Lemma B.3.3, case 2, subcase 2.

Proof of Lemma B.3.1. We first prove that if (C;,;, R;, k) is a yes-instance of
PAC for every i € {1,...,r — b}, then (G, R, k) is a yes-instance of PAC iff
(G, R\ v, k) is a yes-instance of PAC.

For the non-trivial direction, we assume that (G, R \ v, k) is a yes-instance
of PAC and we have to prove that (G, R, k) is also a yes-instance of PAC. Let
S C Rwith |S| < k. We have to prove that S is cyclable in G. We examine two
cases:

1. v ¢ S. As (G,R \ v, k) is a yes-instance of PAC, clearly there exists a
cyclic linkage £ = (C, S) in G, i.e., S is cyclable in G.

2. ve S. Asr > k(98k+1)and S < k, there exists i such that A; ;195 NS =
(). We distinguish two sub-cases:

* Subcase 1. S - 61’—&-98!6-&-1- Then, as (éi+98k+1aRi+98k+17k) is a

yes-instance of PAC, then S is cyclable in C;. 95,11 and therefore
also in G.

+ Subcase 2. There is a partition {57, .52} of S into two non-empty
sets, such that S; € C; and S; N Cyiosk41 = 0. As R is 32k-dense

105

5.3. CORRECTNESS OF THE ALGORITHM

in C, there exist vertices

v1 € SN Ajgppt1,i+33k+1 @nd vy €S N Asofkt1,i+82k+1-
Fori e {1,2}, let S, = S; U {v;} and observe that |S;| < k. Let

Ci = {Citaor,...,C;} and Cy = {Citaok, - -, Cosi }-

As (Citosk+1, Rosk+1,k) is a yes-instance of PAC, S7 is cyclable
in C’i+98k+1. Also, (G, R\ v, k) is a yes-instance, S} is cyclable in
G. For each i € {1,2}, there exists a cyclic linkage £; = (C;, S})
that has penetration at least £ + 1 in C;. We may assume that £;
is C;-cheap. Then, By Lemma B.2.1], the penetration of £; in C;
is at most 49k. Let £, = (C;, S;),i € {1,2}. For notational con-
venience we rename C; and C; where C; = {C{,...,Cl,.,,} and
Cy = {C},...,Cly41} (notice that Cjy, ., = C7). Let z,y be two
distinct vertices in C;, 495. Fori € {1,2}, we apply Lemmap.3.9, for
r =49k+1, k,C;, W, and x and y and obtain two paths P;,i € {1, 2},
such that S; C V(P;) and whose endpoints are = and y. Clearly,
P, U P, is a cycle whose vertex set contains S as a subset. There-
fore S is cyclable in G, as required (see Figure b.4).

O

Figure 5.4: The squares of the right (resp. left) part represent the vertices of
S1 (resp. Ss). The connection between two cycles via rails and through « and
y is derived from a double application of Lemma .3.2.

106

CHAPTER 5. THE ALGORITHM

We have now concluded the presentation and analysis of the FPT-algorithm
for solving the Cyclability problem on planar graphs. The next two chapters
are devoted to our negative results:

In Chapter B we prove that Cyclability is hard (unlikely to be in FPT) when
we allow the input to be any graph (even if it is a split graph), and in Chapter[q
we show that it is unlikely that Cyclability admits any polynomial kernel, even
for the class of planar graphs.

107

5.3. CORRECTNESS OF THE ALGORITHM

Planar_Annotated_Cyclability (G, R, k)

Compass(G, q)

G =G\ {v}
small big wall -
decomposition w R I];Z\ {v}
DP(G, R, k,w) concentric_cycles(G, R, k,q, W)
C={C,Cs,...,C;} problem irrelevant v

DP(Cy, Ry, k,q,D1) DP(Cy, Ry k.q,Da) + + + DP(Cr Rik,q,D;)

G
R=R\{v}
k

NO YES

negative answer color irrelevant v

Figure 5.1: A visualisation of how our algorithm, Planar_ Annotated_ Cycla-
bility, operates on input (G, R, k) for the Cyclability problem, where G = (V, E)
is a planar graph, S is a subset of V, and k is a non-negative integer.

108

CHAPTER O

LHARDNESS OF THE CYCLABILITY PROBLEM

In this Chapter, we prove our first negative result, implying that Cyclability
is hard for general graphs. This, in way, justifies why our effort for designing
an FPT-algorithm for the planar case is worth making.

We show that it is unlikely that Cyclability is FPT by proving Theorem [i.3.1]
(mentioned in the introduction). For this, we first introduce some further nota-
tion.

A matching is a set of pairwise non-adjacent edges. A vertex v is saturated
in a matching M if v is incident to an edge of M. By z; ...z, we denote the

path with the vertices z1,...,z, and the edges {x1,z2},...,{zp—1,2,}, and
we use z; ...z,x; to denote the cycle with the vertices z1,...,z, and the
edges {z1,z2},...,{zp_1,2p}, {zp,z1}. Forapath P =z, ...z, and a vertex

y, yP (Py resp.) is the path yz; ...z, (x1...2py resp.). f P, = z;...x, and
Py = y; ...y, are paths such that V(P,) NV (P2) = {z,} = {y1 }, then P, + P,
is the concatenation of P, an P, i.e.,thepath ;... zp_1y1...yq-

We need some auxiliary results. The following lemma is due to Erdés [38].

109

Define the function f(n,) by

("3%) + o2 if n > 65 — 2,
f(n,8) = (("HD72) 4 (2524)2 ifn < 65 — 3 and n is odd,
((7L+22)/2) + (n_

>2)? ifn < 66 — 4 and n is even.

Lemma 6.0.1 ([38]). Let G be a graph with n > 3 vertices. If 5(G) > n/2 or
|E(G)| > f(n,6(G)), then G is Hamiltonian.

Lemma 6.0.2. Let k > 75 be an odd integer and let H be a graph such that
D (k—=2)(k—3)/2<|EH)| <k(k-1)/2+1,
i) §(H) > (k—1)/2,

iij) there is a set S C E(H) such that |S| > (k —2)(k — 3)/2 and G[S] has at
most k + 2 vertices.

Then H is Hamiltonian.

Proof. Let H be an n-vertex graph that satisfies the above three conditions.
Let S C E(H) be a set such that |S| > (k — 2)(k — 3)/2 and G[S] has at
most k + 2 vertices. Let also U = V(H) \ V(G[S]). Denote by R the set
of edges of G incident to vertices of U. Since |S| > (k — 2)(k — 3)/2 and
|E(H)| < k(k —1)/2 +1, |R| < 2k — 3. Because 6(H) > (k —1)/2, |R| >
|U|6(H)/2 > |U|(k — 1)/4. We have that |U| < 7, i.e., H has at most k& + 9
vertices. Then because k£ > 75, we obtain that n > 65(G) — 3,

<(n+1)/2> . (n71)2 . (kf2)2(k73) < |E(H)

2 2
and

<(n +22)/2> L2 s W < |EH)).

We have that |[E(H)| > f(n,(H)),and by Lemma.0.1, H is Hamiltonian. [
We are now in the position to prove Theorem [1.3.1]:

Proof of Theorem [1.3.1. We reduce the Clique problem. Recall that Clique
asks for a graph G and a positive integer k, whether G has a clique of size k.

110

CHAPTER 6. HARDNESS OF THE CYCLABILITY PROBLEM

This problem is well known to be W[1]-complete [35] when parameterized by
k. Notice that Clique remains W[1]-complete when restricted to the instances
where k is odd. To see it, it is sufficient to observe that if the graph G’ is
obtained from a graph G by adding a vertex adjacent to all the vertices of G,
then G has a clique of size k if and only if G’ has a clique of size k + 1. Hence,
any instance of Clique can be reduced to the instance with an odd value of
the parameter. Clearly, the problem is still W[1]-hard if the parameter k& > ¢ for
any constant c.

Let (G, k) be an instance of Clique where k > 75 is odd. We construct the
graph G/, as follows.

« For each vertex = € V(G), construct s = (k — 1)/2 vertices v, for i €
{1,...,s} and form a clique of size ns from all these vertices by joining
them by edges pairwise.

« Construct a vertex w and edges {w,v.} forz € V(G), i € {1,...,s}.

* For each edge {z,y} € E(G), construct the vertex u,, and the edges
{Uay, vE}, {Uay, v} } fori e {1,...,s}; we assume that u, = uy,.

Let £’ = k(k—1)/2+ 1. ltis straightforward to see that G’ is a split graph. We
show that G has a clique of size k if and only if there are &’ vertices in G}, such
that there is no cycle in G, that contains these &’ vertices.

Suppose that G has a clique X of size k. Let

Y = {uzy € V(G/)|I’,y € X,I 7& y}

and Z =Y U {w}. Because |X| =k, |Z| = k(k —1)/2+ 1 = k’. Observe that
Y is an independent set in G}, and |Y| = |N¢/(Y)|. Hence, for any cycle C'in
Gy, suchthat Y C V(C), V(C) C Y U Ng, (V). Because w ¢ Y U Ng, (Y), w
does not belong to any cycle that contains the vertices of Y. We have that no
cycle in G, contains Z of size k'.

Now we show that if G has no cliques of size k, then for any Z C V(G},)
of size k/, there is a cycle C' in G}, such that Z C V(C'). We use the following
claim.

Claim. Suppose that G has no cliques of size k. Then for any non-empty
Z C {ugylz,y € V(G)} of size at most k(k — 1)/2 + 1, there is a cycle C' in

111

G}, such that Z C V(C) C Z U Ng(Z) and C has an edge {v,,v]} for some
z,y € V(G)andi,je{l,...,s}

of Claim. For a set Z C {ugy|z,y € V(G)}, we denote by S(Z) the set of
edges {{z,y} € E(G)|ugy € Z},and H(Z) = G[S(Z)].

If Z = {ugy}, then the triangle uva;viuw is a required cycle, and the
claim holds. Let r = |Z| > 2 and assume inductively that the claim is fulfilled
for smaller sets.

Suppose that H(Z) has a vertex = with degy) (z) < (k — 3)/2. Let
Ny(zy(x) = {y1,...,y+}. Notice thatt < (k —3)/2 = s — 1. Denote by 7’
the set obtained from Z by the deletion of ugy, , ..., u.,,, and let H' = H(Z").
If Z' = (, then the cycle

C= v}cuwlvi .. v;uwtvfjlvi
satisfies the conditions and the claim holds. Suppose that Z’ # (). Then, by
induction, there is a cycle C” in G such that Z C V(C") € ZU N¢(Z) and ¢
has an edge {v},v]} for some a,b € V(G) and i,j € {1,...,s}. We consider

the path

2 t t+1

_ 1
P = 0 Uy, U - . Vg Ugy, Uy,

Then we delete {v?, ’ug} and replace it by the path vfvai. Denote the obtained
cycle by C. It is straightforward to verify that Z C V(C) € Z U N¢(Z) and
{vi,vl} € E(C), i.e., the claim is fulfilled.

From now we assume that §(H(Z)) > (k — 1)/2. We consider three cases.

Case 1. r < (k—2)(k—3)/2.

Consider the graph G)._,. We show that this graph has a matching M of
size r such that every vertex of Z is saturated in M. By the Hall's theorem (see,
e.g., [29)), it is sufficient to show that forany 2’ C Z, |Z'| < [Ng, _(Z')|. Letp
be the smallest positive integer such that |Z’| < p(p — 1)/2. By the definition
of G}._o, [Ng;_,(Z")| = p(k — 3)/2. Because p < k — 2, we have that

12 <p(p—1)/2 < p(k - 3)/2 < |Ng;_,(Z)].

Let M be a matching in Gj,_, of size r such that every vertex of Z is sat-
urated in M. Clearly, M is a matching in G}, that saturates Z as well. Let

112

CHAPTER 6. HARDNESS OF THE CYCLABILITY PROBLEM

z1,...,xq be the vertices of G such that fori € {1,...,¢}, {v}cl, ...,v5 } con-
tains saturated in M vertices. Because v, ,...,v5 have the same neighbour-
hoods, we assume without loss of generality that fori € {1, ..., ¢}, v}w Lok

» Y,

are saturated. Observe that since M is a matching in G}, _,, t; < s — 1. For
i € {l,...,q} and j € {1,...,t;}, denote by u] the vertex of Z such that
{vl u ul} € M. We define the path

Py =v, ulv? . uliolit foreveryie {1,...,q}
As all the vertices v; are pairwise adjacent, by adding the edges

{o v b o g b e,

we obtain from the the paths P, ..., P, a cycle. Denote it by C. We have that
Z CV(C)C ZUNg(Z) and {vii+! vl } € E(C),

and we conclude that the claim holds.
Case 2. (kK —2)(k—3)/2 < r and forany S C E(H(Z)) such that |S| >
(k—2)(k—3)/2, H(Z)[S] has at least k + 3 vertices.

We use the same approach as in Case 1 and show that G} _, has a match-
ing M of size r such that every vertex of Z is saturated in M. We have to show
that forany Z’' C Z, |Z'| < |Ng, _(Z")|. f|Z'| < (k —2)(k — 3)/2, we use ex-

actly the same arguments as in Case 1. Suppose that |Z’| > (k — 2)(k — 3)/2.
Then

1S(ZN)| =12"] > (k = 2)(k — 3)/2.
Hence, H(Z)[S(Z")] has at least k + 3 vertices. It implies that

Noy_,(Z)] > (k+3)(k - 3)/2.
Because k > 75and |Z/| <r < k(k—1)/2+ 1, we get that
INey,_(Z)| = (k+3)(k=3)/2> k(k—-1)/2+1>|Z|.

Given a matching M that saturates Z, we construct a cycle that contains Z in
exactly the same way as in Case 1 and prove that the claim holds.

113

Case 3. (k —2)(k —3)/2 < rand thereis S C E(H(Z)) such that |S| >
(k —2)(k —3)/2 and H(Z)[S] has at most k + 2 vertices.

By Lemma B.0.3, H(Z) is Hamiltonian. Let p = |V(H(Z))| and denote by
R =2, ...2,7, aHamiltonian cyclein H(Z). LetU = {uz, 2, - - -, Uz, 2z, } @nd
let 2/ = Z\U.

We again consider Gj,_,. We show that this graph has a matching M of
size |Z'| such that every vertex of Z’ is saturated in M. We have to prove that
forany 2" C 7', |2"| < |Ng,_,(Z")|. If|Z"] < (k—2)(k —3)/2, we use exactly
the same arguments as in Case 1. Suppose that |Z”| > (k—2)(k—3)/2. Let ¢
be the smallest positive integer such that | Z”| < ¢(q—1)/2. Clearly, ¢ > k — 2.
We consider the following three cases depending on the value of q.

Case a. ¢ = k— 1. Then H(Z") has at least kK — 1 vertices and at least
(k—2)(k—3)/2+ 1 edges. Because |Z| < k(k —1)/2+ 1, H(Z) has at most
2k — 3 edges that are not edges of H(Z"). Because §(H(Z)) > (k—1)/2 and
k > 75, H(Z) has at most 4 vertices that are not adjacent to the edges of
H(Z'"). Then at most 8 edges of the Hamiltonian cycle R in H(Z) do not join
vertices of H(Z") with each other. We obtain that at least £ — 9 edges of R
join vertices of H(Z") with each other.

Suppose that H(Z") has k — 1 vertices. Then
17" < (k—1)(k—2)/2 — (k—9) < (k* — 5k +20)/2.

Because H(Z") has k — 1 vertices, |[Ng; (Z")| = (k —1)(k — 3)/2. Since
k>175,12"| <|Ng,_(Z")].

Suppose that H(Z") has k vertices. If H(Z) has a vertex z that is not
adjacent to the edges of H(Z"), then at least (kK — 1)/2 vertices of Z that
correspond to the edges incident to x are not in Z”. Then

|1Z"| <|Z| - (k—1)/2 — (k—9) < (k* — 4k +21)/2.

Because [N, (Z”)| = k(k — 3)/2and k > 75, |2"| < |Ng,_(2")|. If H(Z)

has no vertex that is not adjacent to the edges of H(Z"), then[the edges of R
join vertices of H(Z") with each other. We have that
12" <k(k—1)/2 =k =k(k—3)/2 and |Z"| < |Ng;_,(Z")|.

114

CHAPTER 6. HARDNESS OF THE CYCLABILITY PROBLEM

Finally, if H(Z") has at least k + 1 vertices, then

Ney (2] > (k+1)(k—3)/2 > (k- 1)(k —2)/2 > |2"].

Case b. ¢ = k. Then H(Z") has at least k vertices and at least (k — 1)(k —
2)/2 + 1 edges. Because |Z| < k(k—1)/2+ 1, H(Z) has at most k — 1 edges
that are not edges of H(Z"). Because §(H(Z)) > (k—1)/2and k > 75, H(Z)
has at most 2 vertices that are not adjacent to the edges of H(Z”). Then at
most 4 edges of the Hamiltonian cycle R in H(Z) do not join vertices of H(Z")
with each other. We obtain that at least k — 4 edges of R join vertices of H(Z")
with each other.

Suppose that H(Z") has k vertices. If H(Z) has a vertex x that is not
adjacent to the edges of H(Z"), then at least (k — 1)/2 vertices of Z that
correspond to the edges incident to x are not in Z”. Then

12" <|Z] = (k—1)/2 — (k —4) < (k* — 4k + 11)/2.

Because |Ng;, ,(Z2")] = k(k —3)/2and k > 75, |Z2"| < |[Ng,_(Z")|. f H(Z)
has no vertex that is not adjacent to the edges of H(Z"), then the edges of R
join vertices of H(Z") with each other. We have that |Z"| < k(k —1)/2 — k =
k(k—3)/2and |Z"| < |Ng;_ (Z")].

Suppose that H(Z") has at least k + 1 vertices. Then R has at least k + 1
edgesand |Z'| < |Z|—(k+1) < k(k—3)/2. As |[Ng;, ,(Z")] = (k+1)(k—3)/2,
we get that [Z"| < [Ng, _(Z")|.

Casec). ¢ > k+ 1. Then H(Z") has at least k + 1 vertices. We have that
R has at least k + 1 edges and |Z'| < |Z| — (k+ 1) < k(k — 3)/2. Because
|Ng;_(Z")] = (k+1)(k —3)/2, we get that | Z"| < |[Ng; __(Z")|.

We conclude that for any 2" C 7', |Z"| < |Ng, _,(Z")|. Hence, Gj._, has
a matching M of size r such that every vertex of Z’ is saturated in M.

Clearly, M is a matching in Gj, as well. Recall that R = z1...z,z1 is a
Hamiltonian cycle in H(Z) and U = {ug 04, - - -, Uz, 2, }- FOri € {1,...,p}, let
t; be the number of vertices in {v} ,...,v: } that are saturated in M. Because
M is amatchingin G} _,,t; <s—1.

We prove that there is j € {1,...,p} such that ¢; < s — 1. Let ¢ be the
smallest positive integer such that |Z| < q(q — 1)/2. The graph H(Z) has at

115

least ¢ vertices. Suppose first that it has exactly ¢ vertices. Then p = ¢ and
Z'=Z\U has atmost p(p—1)/2—p = p(p—3)/2 vertices. Also |[Ng, (Z)| =
p(k —3)/2. If p < k, at least one vertex in Ng, (Z) is not saturated and the
statement holds. Let p = k. Then because G has no cliques of size k, |Z] <
k(k—1)/2and |Z’'| < k(k — 3)/2. We have that |Z’| < |NG/R:_2(Z)\ and at least
one vertexin Ng: (Z) is not saturated. If p > k+1, then [Z]| = k(k—1)/2+1.
We have that |Z’| < k(k—3)/2and \NG; 2()| > (k+1)(k —3)/2. Hence, the
there is a non-saturated vertex in NG;H(). Suppose now that H(Z) has at
least g+1 vertices. Thenp > g+1and|Z’| < q(¢—1)/2—(g+1) = q(¢—3)/2—1.
As |Ng: (Z2)| 2 (¢q+1)(k—3)/2,|Z'| < |Ng: (2)|ifq<k.lfqg>k+1,then

k—2 k—2

12" <|Z| - (k+2) < (k(k—1)/2+1) — (k+2) < k(k—3)/2— 1.

Because |[Ng; _(Z)| > (k+2)(k —3)/2, we again have a non-saturated vertex
in Ng: _(Z). We considered all cases and conclude that at least one vertex
of Ng; ,(Z) is not saturated in M. Hence, there is j € {1,...,p} such that
t; < s — 1. Without loss of generality we assume that j = p

Because v} ,...,v have the same neighbourhoods, we assume with-
out loss of generality that for i € {1,...,p}, va{i, .. .,vg are saturated. For
i€ {l,....,q} and j € {1,...,t;}, denote by u/ the vertex of Z’ such that
{vl ,u z} € M. Notice that |t can happen that ¢, = 0 and we have no such
saturated vertices. We define the path P; = v} ujv2 ... uj'vl ™ if t; > 1 and
let P, = ift;=0forie{1,...,p}. Let

_ t1+1 1 1+1 1
P =P +v " Up 0,0, + ...+ U, tp- Uz, 1a2,Vz,

and then form the cycle C from P by joining the end-vertices of P by

t+1 t+2

1
v Ugyay U

T1Yxq

using the fact that ¢, < s — 2. We have that Z C V(C) C Z U Ng(Z) and
v olr*? € B(C). It concludes Case 3 and the proof of the claim. O

Zp

Let Z C V(G),) be a set of size k. Let
Z" = Z 0 {uay{z, y} € E(G)}.

116

CHAPTER 6. HARDNESS OF THE CYCLABILITY PROBLEM

If Z" =0, then Z is a clique and there is a cycle C' in G}, such that Z C V(C).
Suppose that Z’ # (. By Claim, there is a cycle C’ in G}, such that Z’ C
V(C') € Z'UNg(Z') and C” has an edge {v, v]} for some z,y € V(G’) and
i,j € {1,...,s}. Let {wq,...,up} = Z\ V(C’). Notice that these vertices
are pairwise adjacent and adjacent to v¢, vg/'. We construct the cycle C from
C' by replacing {v;,v}} by the path viu; ... u,v]. It remains to observe that
Z CV(C)C ZUNg(2). O

It now remains to present our negative result, stating that Cyclability, re-
stricted to planar graphs, admits no polynomial kernels unless NP C co-NP/poly.

117

118

CHAPTER 1

KERNELIZATION LOWER BOUND FOR
CYCLABILITY

As we have showed in Chapter B, Cyclabilty becomes tractable, from the
Parameterized Complexity point of view, when we restrict the inputs to be
planar graphs. This is not the case for general graphs, as proved in Chapter

B.

We know (we also proved it in Section R.9 of Chapter P), that any problem
in FPT admits a kernelization algorithm. However, a more interesting question
is whether an FPT-problem admits a small sized kernel, meaning a kernel of
polynomial or even linear size.

In this Chapter we prove our second negative result: The Cyclability prob-
lem does not admit a polynomial kernel unless NP C co-NP/poly. The as-
sumption NP € co-NP/poly is widely believed and is often used in theoretical
computer science when trying to prove the unlikeliness of a statement. That
is why our results implies that it is very unlikely for Cyclability to admit any
polynomial kernel.

The above result indicates that the Cyclability problem does not follow the
kernelization behavior of many other problems (see for example [9]), for which
surface embeddability enables the construction of polynomial kernels.

Before proceeding to the proof of our last result, we need to introduce

119

some further notation regarding the kernelization lower bound theory, which
has been rapidly growing in the recent years (for more on kernelization lower
bounds see [22] and [36]).

Definition 7.0.1. Let L C X* be a language, let R be a polynomial equivalence
relation on ¥*, and let Q C ¥* x N be a parameterized problem. An AND-
cross-composition of L into @ (with respect to R) is an algorithm that, given t
instances x1, s, ...,x; € X.* of L belonging to the same equivalence class of
R, takes time polynomial in 22:1 |z;| and outputs an instance (y, k) € ¥* x N
such that:

1. the parameter value k is polynomially bounded in max{|z1|,. .., |z:|} +
logt,

2. the instance (y, k) is a yes-instance for Q) if and only each instance «; is
a yes-instance for L fori € {1,...,t}.

It is said that . AND-cross-composes into @ if a cross-composition algorithm
exists for a suitable relation R

In particular, Bodlaender, Jansen and Kratsch [10] proved the following
theorem, which is an analogue if the one that we presented in Section
of Chapter B, where the assumption of an OR-cross-composition is replaced
by that of an AND-cross-composition. Despite the relevance of the two state-
ments, the original proof of the latter (which relies on the main result of Dracker
[87]) is pretty involved and, thus, not presented here. A simpler proof of the
result in [37] was given by Dell in [27].

Theorem 7.0.1 ([10]). /fan NP-hard language L AND-cross-composes into the
parameterized problem Q, then Q does not admit a polynomial kernelization
unless NP C co-NP/poly.

In this section we present our last result, i.e., a proof that it is unlikely that
Cyclability, parameterized by &, admits a polynomial kernel when restricted to
planar graphs. The proof uses the cross-composition technique introduced
by Bodlaender, Jansen, and Kratsch in [[10].

We consider the auxiliary Hamiltonicity with a Given Edge problem, which
for a graph G and a given edge e € E(G), asks whether G has a Hamiltonian
cycle that contains e. We use the following lemma.

120

CHAPTER 7. KERNELIZATION LOWER BOUND FOR CYCLABILITY

Lemma 7.0.1. Hamiltonicity with a Given Edge is NP-complete for cubic pla-
nar graphs.

Proof. It was proved by Garey, Johnson and Tarjan in [46] that Hamiltonicity
is NP-complete for planar cubic graphs. Let G be a planar cubic graph, and
let v be an arbitrary vertex of G. Denote by x,y, z the neighbors of v in G.
We replace v by a gadget F shown in Fig. 7.1. More precisely, we delete v,
construct a copy of F' and add theedges {z,2'}, {y,y’} and {z,2’}. Denote
by G’ the obtained graph. Clearly, G’ is a cubic planar graph. We claim that G
is Hamiltonian if and only if G’ has a Hamiltonian cycle that contains the edge
e shown in Fig. [7.1.

Figure 7.1: The gadget F’; the edges of Hamiltonian cycles are shown by the
bold lines.

Suppose that G has a Hamiltonian cycle C. Then C contains two edges
incident to v. We construct the Hamiltonian cycle in G’ by replacing these two
edges by paths shown in Fig. 7.1]. If C contains {z,v} and {v,y}, then they
are replaced by the path shown in Fig. a), if C contains {z,v} and {v, z},
then they are replaced by the path shown in Fig. b) and if C' contains {y, v}
and {v, z}, then we use the path shown in Fig. c). It is easy to see that we
obtain a Hamiltonian cycle that contains e. If G’ has a Hamiltonian cycle, then
it is straightforward to see that G is Hamiltonian as well. O

We are now ready to prove Theorem [1.3.5.

Proof of Theorem [1.3.5. We construct an AND-cross-composition of Hamil-
tonicity with a Given Edge. By Lemma [7.0.1], the problem is NP-complete.

121

We assume that two instances (G, ¢) and (G’, ¢’) of Hamiltonicity with a Given
Edge are equivalent if |V (G)| = |V(G')|. Let (G, ¢;) fori € {1,...,t} be equiv-
alent instances of Hamiltonicity with a Given Edge, |V (G;)| = n. We construct
the graph G as follows (see Fig. [7.9).

i) Construct disjoint copies of G4, ..., G;.

i) Foreachi e {1,...,t}, subdivide ¢; twice and denote the obtained ver-
tices by u;, v;.

iy Fori e {1,...,t}, construct an edge {v;, u; 1} assuming that w, 1 = us.

It is straightforward to see that G is a cubic planar graph.

Figure 7.2: The construction of G for ¢t = 3; the edges of a Hamiltonian cycle
in G are shown by the bold lines.

We claim that G is n + 2-cyclable if and only if (G;,e;) is a yes-instance
of Hamiltonicity with a Given Edge for every i € {1,...,t}. If every G; has
a Hamiltonian cycle C; that contains e;, then G is Hamiltonian as well; the
Hamiltonian cycle in G is constructed from C1, . .., C; as it is shown in Fig. @
Since G is Hamiltonian, G is n + 2-cyclable. Suppose now that G is n + 2-
cyclable. Leti € {1,...,t}. Consider X = V(G;) U {u;,v;}. Because | X| =
n + 2, G has a cycle C that goes trough all the vertices of X. It remains to
observe that by the removal of the vertices of V(G)\ V(G;) and by the addition
of the edge ¢;, we obtain from C' a Hamiltonian cycle in G, that contains e;. [

We have proved that it is unlikely that we can apply any efficient prepro-
cessing routine for the Cyclability problem, even when restricted to the class
of planar graphs.

The next, and last, chapter of this thesis contains an overview of our results
and some suggestion for further research.

122

CHAPTER 8

CONCLUSION

As a conclusion of this thesis, we briefly review our results and suggest
some directions for further research.

8.1 Our results

Let us quickly review our results:

+ In Chapter B, we construct an algorithm for solving Cyclability on planar
graphs. Actually, we solve a slightly more general version with anno-
tated vertices, which we call PAC. For the analysis of our algorithm we
need the results presented in Chapters § and H, which we think are of
independent interest:

- In Chapter 8, we prove a series of combinatorial results about cyclic
linkages which enable us to use the irrelevant vertex technique.

- In Chapter 8, we design a, somehow unusual, dynamic program-
ming routine for efficiently solving the Cyclability problem on graphs
of bounded treewidth.

123

8.2. COMPLEXITY OF CYCLABILITY AND BETTER RUNNING TIME

» In Chapter f we prove that it is unlikely that Cyclability is in FPT by giving
a parameterized reduction from the Clique problem to the problem that
is complementary to Cyclability.

* In Chapter E we prove that Cyclability, even when restricted to pla-
nar graphs, admits no polynomial kernelization algorithm unless NP C
co-NP/poly.

8.2 Complexity of Cyclability and better running
time

Another way to define the class NP (besides using non-deterministic Turing
Machines), is in terms of existential quantification of polynomial relationships.
More specifically: Let L C ¥* be a language. L € NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such that

L= {m:ﬂy[(x,y) ER}},

where R is called polynomially decidable if there is a deterministic Turing ma-
chine deciding the language {x; y:(z,y) € R} in polynomial time and is called
polynomially balanced if (x,y) € R implies |y| < |z|* for some k > 1.

This, equivalent, definition supports the intuition that the class NP consists
of problems where, given an input (corresponding to z) and a short (of size
polynomial to |z|) witness or solution (corresponding to y) it is easy to decide
(in polynomial time) if the given solution verifies that the input is valid for the
problem.

For example, for the Hamiltonicity problem, given an input graph G =
(V,E) with V= {v1,...,v,}, @ withess w = (v;,,...,v;,), IS a permutation
of the vertices in V (w is clearly of polynomial size) and the relation R cor-
responds to checking whether the elements of the set {{v;;,v;,,,} | j =
1,...,n—1}U{v;,,v; } existin E. Clearly, this check can be done in polyno-
mial time and this way we can prove that Hamiltonicitye NP.

The classical complexity of Cyclability. Notice that we have no proof (or
evidence) that Cyclability is in NP. However, using a similar definition to the

124

CHAPTER 8. CONCLUSION

one we just gave for the class NP, we can directly place Cyclability to the
second level of the polynomial hierarchy, and more precisely to the class 115
(for detailed definitions see [75]).

Let L C ¥* be a language. L € NP if and only if there is a polynomially
decidable and polynomially balanced relation R, such that

L={z:(Vy)(32)[(z,(y,2)) € R)] }.

We can place Cyclability in II} as follows: Given a graph G = (V, E) and an
integer k, the term V y corresponds to every possible k-sized subset of ' and
the witness z corresponds to a permutation of some vertices of GG. The poly-
nomial relation, similarly to the the case of Hamiltonicity, checks whether there
exist edges in E between all vertices that are successive in the permutation
z (and between the last and the first vertex) and, additionally, whether z con-
tains all the vertices of y. If both conditions are met, then z is a YES-instance
for Cyclability. This classifies Cyclability in I15.

Although we do not have a proof, the previous arguments prompt us to
conjecture the following:

Conjecture 8.2.1. Cyclability is TI5-complete.

Moreover, while we have proved that Cyclability is co-W[1]-hard, we have
no evidence regarding which level of the parameterized complexity hierar-
chy it belongs to (lower than the XP class). We find it an intriguing question
whether there is some ¢ > 1 for which Cyclability is W[i]-complete (or co-W[i]-
complete).

Clearly, another challenging question is whether the, double exponential,
parametric dependance of our FPT-algorithm can be substantially improved.
We believe that this is not possible and we suspect that this issue might be
related to Conjecture B.2.1.

8.3 Generalizations

Another direction of research is to investigate whether Cyclability is in FPT
on more general graph classes.

Actually, all results that were used for our algorithm can be extended on
graphs embeddable on surfaces of bounded genus - see [47, 28, 80, 82, 60]

125

8.3. GENERALIZATIONS

— and yield an FPT-algorithm on such graphs (with worst time bounds). We
believe that this is still the case for graph classes excluding some fixed graph
as a minor. However, in our opinion, such an extension, even though possible,
would be too technically involved. Therefore, we state the following

Conjecture 8.3.1. Cyclability is in FPT when restricted to the class of graphs
embeddable on surfaces of bounded genus and to classes excluding some
fixed graph as a minor.

A research direction that is also very interesting is to define and study, both
from a combinatorial and from an algorithmic point of view, problems similar
to Cyclability, where the pattern of the linkages we look for is not a cycle but
some other graph H.

It would be interesting to study the following problem

H-Linkability

Input: A graph G (host), a graph H (pattern) and an integer k.
Question: Is it true that, for every k-element subset S of V(G), there
is a topological minor of G that contains all the vertices of S and is
isomorphic to H?

This, very general, problem can be associated with a cyclability-like pa-
rameter on graphs: We say that a graph G = (V, E) is (H, k)-linkable if for
every k-element subset S of V, there exists a topological minor of G that con-
tains all the vertices of S and is isomorphic to H. The H-linkability of G is
defined to be the greatest integer k for which G is (H, k)-linkable.

From the point of view of structural properties, the property of a graph
having H-linkability equal to k£ can provide various kinds of information about
the structure of G, depending on H and k. For example:

« If k is big (for example k& = Q(n)), graph G being (H, k)-linkable could
give some information (depending on the pattern H) of the global struc-
ture of G.

+ On the other hand, if k is very small, graph G being (H, k)-linkable could
tell something about local properties of G.

126

CHAPTER 8. CONCLUSION

+ Given two patterns H; and H, and two integers k; and k., we could
study a question of the following form: Given that graph G is (H1, k1)-
linkable, is it true that it is (H», k2)-linkable? It feels like answering this
kind of questions could give some insight about the structure of the
graph under study and one could try a variety of mixtures of patterns
and integers.

Of course, this problem is computationally hard when examined from the
classical complexity theory point of view, as for k = n and H being any cycle
of length at most n, it is equivalent to the Hamiltonicity problem.

It would be reasonable to study H-Linkability parameterized by k, as we
have done with Cyclability. Unfortunately, the structure of a cyclic linkage is
essential for some parts of our work and it seems that for studying the, much
more general, H-Linkability problem new ideas and techniques need to be
introduced.

127

8.3. GENERALIZATIONS

128

BIBLIOGRAPHY

[1] F Abu-Khzam, M. Fellows, M. Langston, W. Suters, Crown structures for
vertex cover kernelization, Theory Comput. Syst., 41(3), 411-430 (2007)

[2] 1. Adler, F. Dorn, F. Fomin, I. Sau, D. Thilikos, Fast minor testing in planar
graphs, ESA 2010, 18th Annual European Symposium (1). Lecture Notes
in Computer Science, vol. 6346, 97-109 (2010)

[3] I. Adler, S. Kolliopoulos, P. Krause., D. Lokshtanov, S. Saurabh, D. Thi-
likos, Irrelevant vertices for the disjoint paths problem, J. Comb. Theory,
Series B 122: 815-843 (2017)

[4] R. Aldred, S. Bau, D. Holton, B. McKay, Cycles through 23 vertices in 3-
connected cubic planar graphs, Graphs and Combinatorics 15(4), 373-
376 (1999)

[6] S. Arora, B. Barak, Computational Complexity : A Modern Approach,
Cambridge University Press (2009)

[6] S. Arnborg, D. Corneil, A. Proskurowski, Complexity of finding embed-
dings in a k-tree, SIAM Journal on Matrix Analysis and Applications, 8 (2),
277-284 (1987)

[71 S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-
decomposable graphs, Journal of Algorithms, 12, 308-340 (1991)

129

BIBLIOGRAPHY

[8] H. Bodlaender, A linear-time algorithm for finding tree-decompositions of
small treewidth, SIAM J. Comput., 25(6), 1305-1317 (1996)

[9] H. Bodlaender, F. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.
Thilikos, (meta)Kernelization, Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science. pp. 629-638. FOCS
'09, IEEE Computer Society, Washington, DC, USA (2009)

[10] H. Bodlaender, B. Jansen, S. Kratsch, Kernelization lower bounds by
cross—composition, SIAM J. Discrete Math., 28(1), 277-305 (2014)

[11] B. Bollobas, Modern Graph Theory Springer-Verlag New York Inc. (2002)

[12] A. Bondy, U. Murty, Graph Theory : An Advanced Course Springer Lon-
don Ltd (2011)

[13] R. Borie, R. Parker, C. Tovey, Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively
constructed graph families, Algorithmica, 7, 555-581 (1992)

[14] J. Chen, I.A. Kanj, W. Jia, Vertex cover: Further observations and further
improvements, J. Algorithms, 41(2), 280-301 (2001)

[15] J. Chen, I. Kanj, G. Xia, Improved upper bounds for Vertex Cover. Theor.
Comput. Sci., 411 (40-42), 27-88 (2010)

[16] M. Chlebik and J. Chlebikova, Crown reductions for the minimum
weighted vertex cover problem, Discrete Applied Mathematics, 156(3),
292-312 (2008)

[17] V. Chvatal, New directions in hamiltonian graph theory, New Directions in
the Theory of Graphs, Ed.: F. Harary, Academic Press, New York, 65 — 95
(1973)

[18] S. Cook, The complexity of theorem proving procedures, Proceedings
of the Third Annual ACM Symposium on Theory of Computing, 151-158
(1971)

[19] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms,
MIT Press & McGraw-Hill, 2nd edition (2001)

130

BIBLIOGRAPHY

[20] B. Courcelle, The monadic second-order logic of graphs I: Recognizable
sets of finite graphs, Information and Computation, 85(1), 12-75 (1990)

[21] B. Courcelle, J. Engelfriet, Graph Structure and Monadic Second-Order
Logic — A Language-Theoretic Approach, Encyclopedia of mathematics
and its applications, vol. 138. Cambridge University Press (2012)

[22] M. Cygan, FV. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer (2015).

[23] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J.M.M van Rooij, J.O
Woj- taszczyk, Solving connectivity problems parameterized by treewidth
in single exponential time, Proceedings of the 52nd Annual Symposium
on Foundations of Computer Science (FOCS), 150-159 (2011)

[24] S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithms, McGraw-Hill Ed-
ucation, Europe (2011)

[25] A. Dawar, M. Grohe, Stephan Kreutzer, Locally excluding a minor, Logic
in Computer Science (LICS'07), pages 270-279, IEEE Computer Society,
2007

[26] A.Dawar, S. Kreutzer, Domination problems in nowhere-dense classes,
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2009), pages 157-168, 2009.

[27] H. Dell, AND-compression of NP-complete Problems: Streamlined Proof
and Minor Observations, International Symposium on Parameterized and
Exact Computation (IPEC), 184-195 (2014)

[28] E. Demaine, M. Hajiaghayi, D. Thilikos, The bidimensional theory of
bounded-genus graphs, SIAM J. Discrete Math., 20(2), 357-371 (2006)

[29] R. Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg, 4th edition (2010)

[30] G. Dirac, n abstrakten Graphen vorhandene vollstdndige 4-Graphen und
ihre Unterteilungen, Math. Nachr. 22, 61-85 (1960)

[31] R. Downey, M. Fellows, Parameterized complexity, Springer—Verlag, New
York (1999)

131

BIBLIOGRAPHY

[32] R. Downey, M. Fellows, Fixed—-parameter tractability and completeness
lll: Some structural aspects of the W-hierarchy, Complexity theory, 191-
225. Cambridge Univ. Press, Cambridge (1993)

[33] R. Downey, M. Fellows, Fixed-parameter tractability and completeness,
21st Manitoba Conference on Numerical Mathematics and Computing
(Winnipeg, MB, 1991), vol. 87, pp. 161-178 (1992)

[34] R. Downey, M. Fellows, Fixed—parameter tractability and completeness I:
Basic results, SIAM J. Comput., 24(4), 873-921 (1995)

[35] R. Downey, M. Fellows, Fixed-parameter tractability and completeness
IIl: On completeness for W1], Theoretical Computer Science, 141(1-2),
109-131 (1995)

[36] R. Downey, M. Fellows, Fundamentals of Parameterized Complexity,
Texts in Computer Science, Springer (2013)

[37] A. Drucker, New limits to classical and quantum instance compression,
Proceedings of the 53rd Annual Symposium on Foundations of Computer
Science (FOCS), 609 618, IEEE (2012)

[38] P. Erdds, Remarks on a paper of Pésa, Magyar Tud. Akad. Mat. Kutat6
Int. Kozl. 7, 227-229 (1962)

[39] M. Fellows, M. Langston, Nonconstructive tools for proving polynomial-
time decidability, Journal of the ACM, 35 (3): 727-739 (1988)

[40] E. Flandrin, H. Li, A. Marczyk, M. Wozniak, A generalization of dirac's
theorem on cycles through k vertices in k-connected graphs, Discrete
mathematics, 307(7), 878-884 (2007)

[41] E. Flandrin, E. Gy®ori, H. Li, J. Shu, Cyclability in k-connected K, 4-free
graphs, Discrete Mathematics 310 (20), 2735-2741 (2010)

[42] J. Flum, M. Grbhe, Parameterized Complexity Theory, Springer (2006)

[43] F. Fomin, P. Golovach, D. Thilikos, Contraction obstructions for treewidth,
J. Comb. Theory, Ser. B 101(5), 302-314 (2011)

132

BIBLIOGRAPHY

[44] M. Frick, M. Grbéhe, The complexity of first-order and monadic second-
order logic revisited, Annals of Pure and Applied Logic, 130 (1-3), 3-31
(2004)

[45] M. Garey, D. Johnson, Computers and Intractability : A Guide to the The-
ory of NP-completeness, W.H.Freeman and Co Ltd (1979)

[46] M. Garey, D. Johnson, R. Tarjan, The planar Hamiltonian circuit problem
is NP-complete, SIAM J. Comput., 5(4), 704-714 (1976)

[47] J. Geelen, R. Richter, G. Salazar, Embedding grids in surfaces, European
J. Combin. 25(6), 785-792 (2004)

[48] P. Giblin Graphs, Surfaces and Homology Cambridge University Press
(2010)

[49] P. Golovach, M. Kaminski, D. Paulusma, D. Thilikos, Induced packing of
odd cycles in a planar graph, 20th International Symposium on Algorithms
and Computation (ISAAC 2009), Volume 5878 of LNCS, pages 514-523,
Springer, Berlin, 2009.

[50] M. Grohe, K. Kawarabayashi, D. Marx, P. Wollam, Finding topological
subgraphs is fixed-parameter tractable, Proceedings of 43rd ACM Sym-
posium on Theory of Computing (STOC '11), 79-88 (2011)

[51] J. Gross , T. Tucker, Topological Graph Theory, Dover Publications Inc.
(1987)

[62] M. Groétschel, Hypohamiltonian facets of the symmetric travelling sales-
man polytope, Zeitschrift flir Angewandte Mathematik und Mechanik 58,
469-471 (1977)

[63] Q.P. Gu, H. Tamaki, Improved bounds on the planar branchwidth with
respect to the largest grid minor size, Algorithms and Computation — 21st
International Symposium, (ISAAC 2010), 85-96 (2010)

[54] D. Holton, B. McKay, M. Plummer, C. Thomassen, A nine-point theorem
for 3-connected graphs, Combinatorica, 2, 53-62 (1982)

[55] R. Karp, On the computational complexity of combinatorial problems,
Networks, Volume 5, pages 45-68 (1975)

133

BIBLIOGRAPHY

[56] K. Kawarabayashi, Y. Kobayashi, The induced disjoint paths problem,
13th Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO 2008), volume 5035 of LNCS, pages 47-61, Springer, Berlin,
2008.

[57] K. Kawarabayashi, Y. Kobayashi, B. Reed, The disjoint paths problem in
quaratic time, J. Combin. Theory, Series B 102(2): 424-435 (2012)

[58] K. Kawarabayashi, Y. Kobayashi, Algorithms for finding an induced cycle
in planar graphs and bounded genus graphs, 20th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2009), pages 1146-1155, ACM-SIAM
2009.

[59] Ken-ichi Kawarabayashi, B. Reed, Odd cycle packing, 42nd ACM Sym-
posium on Theory of Computing (STOC 2010) pages 695-704, ACM
2010.

[60] K. Kawarabayashi, P. Wollan, A shorter proof of the graph minor algo-
rithm: The unique linkage theorem, Proceedings of the Forty—second
ACM Symposium on Theory of Computing. pp. 687-694. STOC '10,
ACM, New York, NY, USA (2010)

[61] J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education (US) (2005)

[62] A. Langer, F. Reidl, P. Rossmanith, S. Sikdar, Evaluation of an MSO-
solver, Proceedings of the Fourteenth Workshop on Algorithm Engineer-
ing and Experiments, ALENEX 2012, The Westin Miyako, Kyoto, Japan,
January 16, 2012, ed. by D. Bader, P. Mutzel (SIAM/Omnipress, Philadel-
phia, 2012), 55-63

[63] L. Levin, Universal search problems (in Russian), Problems of Information
Transmission (in Russian), 9 (3), 115-116 (1973)

[64] J. Kneis, A. Langer, A Practical Approach to Courcelle's Theorem, Elec-
tronic Notes on Theoretical Computer Science, vol. 251, Elsevier Ams-
terdam, 65-81 (2009)

[65] J. Kneis, A. Langer, P. Rossmanith, Courcelle's Theorem—a game theo-
retic approach, Discrete Optim., 8(4), 568-594 (2011)

134

BIBLIOGRAPHY

[66] M. Kramer, J. van Leeuwen, The complexity of wire-routing and finding
minimum area layouts for arbitrary VLSI circuits, Advances in Comp. Re-
search, 2: 129-146 (1984)

[67] R. Lewis, C. Papadimitriou, Elements of the Theory of Computation, Pear-
son Education (US), 2nd edition (1997)

[68] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae,
10, 96-115 (1927)

[69] M. Middendorf, F. Pfeiffer, On the complexity of the disjoint paths prob-
lem, Combinatorica, 13(1): 97-107 (1993)

[70] M. Mitzenmacher, E. Upfal, Probability and Computing : Randomized Al-
gorithms and Probabilistic Analysis, Cambridge University Press (2005)

[71] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995

[72] M. Mller, Randomized Approximations of Parameterized Counting Prob-
lems, Parameterized and Exact Computation, Volume 4169 of the series
LNSC, pages 50-59, Springer, Berlin (2006)

[73] R. Niedermeier, Invitation to fixed-parameter algorithms, Habilitation the-
sis (Sep 2002)

[74] T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, Dover Pub-
lications Inc. (2008)

[75] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley
(1994)

[76] L. Perkovic, B.A. Reed, An improved algorithm for finding tree decompo-
sitions of small width, Int. J. Found. Comput. Sci. 11(3), 365-371 (2000)

[77] M. Plummer, E. Gydri, A nine vertex theorem for 3-connected claw-free
graphs, Studia Scientiarum Mathematicarum Hungarica, 38(1), 233-244
(2001)

[78] N. Robertson, P. Seymour, Graph minors lll: Planar tree-width, J. Combin.
Theory, Series B, 36 (1): 49-64 (1984)

135

BIBLIOGRAPHY

[79] N. Robertson, P. Seymour, Graph Minors X: Obstructions to Tree-
decomposition, J. Combin. Theory, Series B 52(2), 153—-190 (1991)

[80] N. Robertson, P. Seymour, Graph Minors XliI: The disjoint paths problem,
J. Combin. Theory, Series B 63(1), 65-110 (1995)

[81] N. Robertson, P. Seymour, Graph minors XVI: Excluding a non-planar
graph, J. Combin. Theory, Series B 89, 43-76 (2003)

[82] N. Robertson, P. Seymour, Graph minors XXI: Graphs with unique link-
ages., J. Combin. Theory, Series B 99(3), 583-616 (2009)

[83] N. Robertson, P. Seymour, Graph minors XXII: Irrelevant vertices in linkage
problems, Journal of Combinatorial Theory, Series B 102(2), 530 — 563
(2012)

[84] N. Robertson, P. Seymour, Graph minors XXIII: Nash-Williams' immersion
conjecture, Journal of Combinatorial Theory, Series B 100(2), 181 — 205
(2010)

[85] R. Rubinfeld, A. Shapira, Sublinear Time Algorithms, SIAM Journal on
Computing, Volume 25, Issue 4, pages 1562-1588 (2011)

[86] M. Sipser, Introduction to the Theory of Computation, Cengage Learning,
3rd edition (2012)

[87] R. Solovay, V. Strassen, A Fast Monte-Carlo Test for Primality, SIAM Jour-
nal on Computing, Volume 6, Issue 1, pages 84-84 (1976)

[88] C. Thomassen , B. Mohar, Graphs on Surfaces, John Hopkins University
Press (2001)

[89] A.M. Turing, On Computable Numbers, with an Application to the
Entscheidungs problem, Proceedings of the London Mathematical So-
ciet,. 42, 230-265 (1937)

[90] V.V. Vazirani, Approximation Algorithms, Springer-Verlag Berlin and Hei-
delberg GmbH and Co. KG (2001)

[91] J. Vygen, NP-completeness of some edge—disjoint paths problems., Dis-
crete Appl. Math., 61(1): 83-90 (1995)

136

BIBLIOGRAPHY

[92] M. Watkins, D. Mesner, Cycles and connectivity in graphs, Canad. J.
Math, 19, 1319-1328 (1967)

[93] D. Williamson, D. Shmoys, The Design of Approximation Algorithms,
Cambridge University Press (2011)

137

	Introduction
	Connectivity
	Graph Minors
	The results of this thesis
	Hardness
	FPT for planar graphs
	Combinatorial results
	No polynomial kernels

	Basic definitions and preliminary results
	Graphs
	Basic notions about graphs
	Graph operations and relations between graphs
	Graph parameters

	Parameterized Complexity
	Basic definitions
	Why Parameterized Complexity?
	Fixed-parameter intractability and the W-hierarchy.
	Kernelization
	Kernelization lower bounds

	Monadic second-order logic
	Cycles, walls and annuli

	Combinatorics of cyclic linkages
	Graph linkages and cheap graph linkages
	Cyclic linkages in plane graphs

	Algorithms for graphs of bounded treewidth
	Using Courcelle's theorem for Cyclability
	Treewidth and dynamic programming
	Dynamic programming for Weighted Independent Set
	Dynamic programming for Hamiltonian Cycle

	Dynamic programming for Cyclability

	The Algorithm
	The algorithm Compass
	The Algorithm concentric_cycles
	Correctness of the algorithm

	Hardness of the Cyclability Problem
	Kernelization lower bound for Cyclability
	Conclusion
	Our results
	Complexity of Cyclability and better running time
	Generalizations

	References

