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1 Introduction

A recurrent theme in structural graph theory is the study of specific properties that arise
in graphs when excluding a fixed pattern. The notion of appearing as a pattern gives
rise to various graph containment relations. Maybe the most famous example is the
minor relation that has been widely studied, in particular since the fundamental results
of Kuratowski and Wagner who proved that planar graphs are exactly those graphs that
contain neither K5 nor K3,3 as a (topological) minor. A graph G contains a graph H as
a topological minor if H can be obtained from G by a sequence of vertex deletions,
edge deletions and replacing internally vertex-disjoint paths by single edges. Wagner
also described the structure of the graphs that exclude K5 as a minor: he proved that
K5-minor-free graphs can be constructed by “gluing” together (using so-called clique-
sums) planar graphs and a specific graph on 8 vertices, called Wagner’s graph.
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Wagner’s theorem was later extended in the seminal Graph Minor series of papers
by Robertson and Seymour (see e.g. [23]), which culminated with the proof of Wag-
ner’s conjecture, i.e., that graphs are well-quasi-ordered under minors [24], and ended
with the proof of Nash-Williams’ immersion conjecture, i.e., that the graphs are also
well-quasi-ordered under immersions [25]. Other major results in graph minor theory
include the (Strong) Structure Theorem [23], the Weak Structure Theorem [22], the
Excluded Grid Theorem [17,21,26], as well as numerous others, e.g., [5,15,28]. More-
over, the structural results of graph minor theory have deep algorithmic implications,
one of the most significant examples being the existence of cubic time algorithms for
the k-Disjoint Paths and H-Minor Containment problems [22]. For more applications
see, e.g., [1, 3, 6, 16, 18].

However, while the structure of graphs that exclude a fixed graph H as a minor
has been extensively studied, the structure of graphs excluding a fixed graph H as a
topological minor or as an immersion has not received as much attention. While a gen-
eral structure theorem for topological minor free graphs was very recently provided
by Grohe and Marx [14], finding an exact characterization of the graphs that exclude
K5 as a topological minor remains a notorious open problem. Recently, Wollan gave a
structure theorem for graphs excluding complete graphs as immersions [29]. A graph
G contains a graph H as a immersion if H can be obtained from G by a sequence of
vertex deletions, edge deletions and replacing edge-disjoint paths by single edges. Ob-
serve that if a graph G contains a graph H as a topological minor, then G also contains
H as an immersion, as vertex-disjoint paths are also edge-disjoint. In 2011, DeVos et
al. [7] proved that if the minimum degree of a graph G is at least 200t then G contains
the complete graph on t vertices as an immersion. In [10] Ferrara et al. provided a lower
bound on the minimum degree of any graph G in order to ensure that a given graph H
is contained in G as an immersion.

A common drawback of such general results is that they do not provide sharp struc-
tural characterizations for concrete instantiations of the excluded graph H. In the par-
ticular case of immersion, such structural results are only known when excluding both
K5 and K3,3 as immersions [11]. In this paper, we prove a structural characterization
of the graphs that exclude W4 as an immersion and show that they can be constructed
from graphs that are either subcubic or have treewidth bounded by a constant. We de-
note by W4 the wheel with 4 spokes, i.e., the graph obtained from a cycle on 4 vertices
by adding a universal vertex. The structure of graphs that exclude W4 as a topological
minor has been studied by Farr [9]. He proved that these graphs can be constructed via
clique-sums of order at most 3 from graphs that are either subcubic or have diameter at
most 3. However, this characterization only applies to simple graphs. In our study we
exclude W4 as an immersion while allowing multiple edges.

As with the minor relation, many algorithmic results have also started appearing
in terms of immersions. In [13], Grohe et al. gave an cubic time algorithm that decides
whether a fixed graph H immerses in any input graph G. This algorithm, combined with
the well-quasi-ordering of immersions [25], implies that the membership of a graph in
any graph class that is closed under taking immersions can be decided in cubic time.
However, the construction of such an algorithm requires the ad-hoc knowledge of the
finite set of excluded immersions that characterizes this graph class (which is called



obstruction set). While no general way to compute an obstruction set is known, in [12],
Giannopoulou et al. proved that the obstruction set of an immersion-closed graph class
can be computed when an upper bound on the treewidth of the obstructions and a de-
scription of the graph class in Monadic Second Order Logic are given. Another example
of explicit construction of immersion obstruction sets is given by Belmonte et al. [2],
where the set of immersion obstructions is given for graphs of carving-width 3.

Our paper is organized as follows: in Section 2, we give necessary definitions and
previous results. In Section 3, we show that containment of W4 as an immersion is
preserved under 1, 2 and 3-edge-sums. Then, in Section 4, we provide our main result,
i.e., a decomposition theorem for graphs excluding W4 as an immersion. Finally, we
conclude with remarks and open problems.

2 Preliminaries

For undefined terminology and notation, we refer to the textbook of Diestel [8]. For
every integer n, we let [n] = {1, 2, . . . , n}. All graphs we consider are finite, undirected,
and without self-loops but may have multiple edges. Given a graph G we denote by
V(G) and E(G) its vertex and edge set respectively. Given a set F ✓ E(G) (resp. S ✓
V(G)), we denote by G \ F (resp. G \ S ) the graph obtained from G if we remove
the edges in F (resp. the vertices in S along with their incident edges). We denote
by C(G) the set of the connected components of G. Given two vertices v, u 2 V(G),
we also use the notation G � v = G \ {v} and the notation uv for the edge {u, v}. The
neighborhood of a vertex v 2 V(G), denoted by NG(v), is the set of vertices in G that
are adjacent to v. We denote by EG(v) the set of the edges of G that are incident with
v. The degree of a vertex v 2 V(G), denoted by degG(v), is the number of edges that
are incident with it, that is, degG(v) = |EG(v)|. Notice that, as we are working with
multigraphs, |NG(v)|  degG(v). Given two vertices v and u with u 2 N(v) we say that
u is an i-neighbor of v if E(G) contains exactly i copies of the edge {u, v}. Let P be a
path and v, u 2 V(P). We denote by P[v, u] the subpath of P with endpoints v and u. The
maximum degree of a graph G, denoted by �(H) is the maximum of the degrees of the
vertices of G, that is, �(G) = maxv2V(G) degG(v).

We denote by Wk�1 the wheel on k vertices, that is, the graph obtained from the cycle
of length k � 1 after adding a new vertex and making it adjacent to all of its vertices.
We call the new vertex center of the wheel.

Definition 1. An immersion of H in G is a function ↵ with domain V(H) [ E(H), such
that:

– ↵(v) 2 V(G) for all v 2 V(H), and ↵(u) , ↵(v) for all distinct u, v 2 V(H);
– for each edge e of H, ↵(e) is a path of G with ends ↵(u),↵(v);
– for all distinct e, f 2 E(H), E(↵(e) \ ↵( f )) = ;.

We call the image of every such function ↵ in G model of the graph H in G and the
vertices of the set ↵(V(H)) branch vertices of ↵.

An edge cut in a graph G is a non-empty set F of edges that belong to the same
connected component of G and such that G \ F has more connected components than



G. If G \ F has one more connected component than G and no proper subset of F is an
edge cut of G, then we say that F is a minimal edge cut. Given a connected set S such
that G \ S is also connected, we denote by (S ,G \ S ) the cut between S and G \ S . Let
F be an edge cut of a graph G and let G be the connected component of G containing
the edges of F. We say that F is an internal edge cut if it is minimal and both connected
components of G \ F contain at least 2 vertices. An edge cut is also called i-edge cut if
it has order at most i.

Definition 2. Let G,G1, and G2 be graphs. Let t � 1 be a positive integer. The graph
G is a t-edge-sum of G1 and G2 if the following holds. There exist vertices vi 2 V(Gi)
such that |EGi (vi)| = t for i 2 [2] and a bijection ⇡ : EG1 (v1) ! EG2 (v2) such that G is
obtained from (G1 � v1)[ (G2 � v2) by adding an edge xy for every pair of edges e1 and
e2 such that e1 = xv1, e2 = yv2, and v2 = ⇡(v1). We say that the edge-sum is internal
if both G1 and G2 contain at least 2 vertices and denote the internal t-edge-sum of G1
and G2 by G1�̂tG2.

Note that if G is the t-edge-sum of graphs G1 and G2 for some t � 0, then the set of
edges {{u, v} 2 E(G) | u 2 V(G1), v 2 V(G2)} forms a minimal edge cut of G of order t.

Let r be a positive integer. The (r, r)-grid is the graph with vertex set {(i, j) | i, j 2
[r]} and edge set {{(i, j), (i0, j0)} | |i�i0|+ | j� j0| = 1}. The (elementary) wall of height r is
the graph Wr with vertex set V(Wr) = {(i, j) | i 2 [r+ 1], j 2 [2r+ 2]} in which we make
two vertices (i, j) and (i0, j0) are adjacent if and only if either i = i0 and j0 2 { j�1, j+1}
or j0 = j and i0 = i + (�1)i+ j, and then remove all vertices of degree 1; see Figure 1 for
some examples. The vertices of this vertex set are called original vertices of the wall.
A subdivided wall of height r is the graph obtained from Wr after replacing some of its
vertices by internally vertex-disjoint paths.

Fig. 1. Elementary walls of height 2, 3, and 4.

Let r be a positive integer and notice that the wall of height r is contained in the
((2r + 2) ⇥ (2r + 2))-grid as a subgraph. This implies that any graph containing the
((2r + 2) ⇥ (2r + 2))-grid as a minor also contains the wall of height r as a minor.
Furthermore, from a folklore result, for any simple graph H such that �(H)  3 it holds
that H is a minor of a graph G if and only if H is a topological minor of G.

Theorem 1. [19] Let G and H be two graphs, where H is connected and simple, not a
tree, and has h vertices. Let also g be a positive integer. If G has treewidth greater than
3(8h(h � 2)(2g + h)(2g + 1))|E(H)|�V(H) + 3h

2 then G contains either the g ⇥ g-grid or H
as a minor.



Theorem 1, in the case where g = 2r + 2 and H is the wall of height r, can be
restated as the well known fact that large treewidth ensures the existence of a large wall
as a topological minor:

Theorem 2. [19] Let G be a graph and r � 2 be an integer. If the treewidth of G is
greater than 218r2 log r then G contains the wall of height r as a topological minor.

3 Invariance of W
4

containment under small edge-sums

In this section, we show that immersion of W4 is completely preserved under edge-sums
of order at most 3, i.e., that W4 immerses in a graph G if and only if it immerses in at
least one of the graphs obtained by decomposing G along edge-sums. Theorem 3 will
be necessary in Section 4 to ensure that our decomposition does not change whether
the graphs consider contain W4 as an immersion or not. We first prove the following
general lemma.

Lemma 1. If G, G1, and G2 are graphs such that G = G1�̂tG2, t 2 [3], then both G1
and G2 are immersed in G.

Proof. Notice that it is enough to prove that G1 is an immersion of G. Let v1 and v2
denote the unique vertex of V(G1) \ V(G) and V(G2) \ V(G) respectively. In the case
where G = G1�̂1G2, let ui be the unique neighbor of vi in Gi, i 2 [2]. Then the function
{(v, v) | v 2 V(G1�v1)}[ {v1, u2} is an isomorphism from G1 to the graph G \V(G2�u2)
(by the definition of the edge-sum u2u1 2 E(G)) which is a subgraph of G. Therefore,
G1 ✓ G and thus G1 also immerses in G.

We now assume that G = G1�̂tG2, t = 2, 3. Let e j, j 2 [|EG1 (v1)|], be the edges
of EG1 (v1) and let u j be the (not necessarily distinct) endpoints of the edges e j, j 2
[|EG1 (v1)|], in G1 � v1. Notice that in both cases, in order to obtain G1 as an immersion
of G, it is enough to find a vertex u in V(G) \V(G1) and for each edge e j of EG1 (v1) find
a path Pj from u to e j in E(G) \ E(G1) such that these paths are edge-disjoint. In what
follows we find such vertex and paths. We distinguish the following cases.

Case 1. NG2 (v2) = {y}. Then, by the definition of the edge-sum, G contains the edges
ye1

j , j 2 [|EG1 (v1)|]. Notice that neither the vertex y belongs to V(G1) nor the edges yu1
j ,

j 2 [|EG1 (v1)|], belong to E(G1) and therefore the claim holds for u = y.

Case 2. NG2 (v2) = {x, y}. First notice that in the case where G = G1�̂3G2 one of the x, y,
say x, is a 2-neighbor of v2. As the edge-sum is internal, the set E = E(G) \ (E(G1) [
E(G2)) of edges created after the edge-sum is a minimal separator of G. Without loss
of generality let yu1

1, xu1
2, and (in the case where G = G1�̂3G2) xu1

3 be its edges. By the
minimality of the separator E, G2 � v2 is connected. Therefore there exists a (x, y)-path
P in G2 � v2. Observe that the path P [ {yu1

1}, the path consisting only of the edge xu1
2

and (in the case where G = G1�̂3G2) the path consisting only of the edge xu1
3 are edge-

disjoint paths who do not have any edge from E(G1) and share x as a common endpoint.
Then the claim holds for u = x.



Case 3. NG2 (v2) = {x, y, z}. In this case, it holds that G = G1�̂3G2. As above, consider
the set E = E(G) \ (E(G1) [ E(G2)) of the edges created by the edge-sum and without
loss of generality, let E = {xu1, yu2, zu3}. Since E is a minimal separator, the graph
G2 � v2 is connected. Therefore, there are a (x, y)-path P and a (y, z)-path Q in G2 � v2.
Let z0 be the vertex in V(P) \ V(Q) such that V(Q[z, z0]) \ V(P) = {z0} and consider the
paths Q[z, z0], P[x, z0], and P[z0, y] (in the case where z0 = y the path P[z0, y] is the graph
consisting of only one vertex). Observe that these graphs are edge-disjoint. Therefore
the paths P[x, z0] [ {xu1}, P[y, z0] [ {yu2}, and Q[z, z0] [ {zu3} are edge-disjoint, do not
contain any edge from E(G1), and share the vertex z0 as an endpoint. Thus, the claim
holds for u = z0. It then follows that G1 is an immersion of G and this completes the
proof of the lemma. ut
Theorem 3. Let G, G1, and G2 be graphs such that G = G1�̂tG2, with t 2 [3]. Then, G
contains W4 as an immersion if and only if G1 or G2 does as well.

Proof. If G1 or G2 contains W4 as an immersion, then G does as well due to Lemma 1.
It remains to prove the converse direction.

Let ↵ be an immersion of W4 in G. We first prove that either |↵(V(W4)) \ (V(G1) �
v1)| � 4, or |↵(V(W4)) \ (V(G2) � v2)| � 4. Indeed, this is due to the fact that any cut
(S ,G \ S ) of W4 with |S | = 3 has order at least 4, whereas the cut F = E(G) \ (E(G1) [
E(G2)) in G between V(G1) � v1 and V(G2) � v2 has order at most 3. Moreover, the
same argument implies that the image of the center of W4, that is, the unique vertex
of degree 4 of W4, say x0, belongs to the connected component of G � F that contains
at least 4 of the branch vertices of the immersion ↵. Let us assume without loss of
generality that x0 2 V(G1) � v1.

Assume first that ↵(V(W4))\ (V(G1)�v1) = 5. If for every edge e of W4 it holds that
↵(e) \ V(G2 � v2) = ;, then clearly ↵ is an immersion of W4 in G1 � v1, and therefore
in G1. Moreover, it is easy to observe that there cannot be two distinct edges e, e0 of W4
whose image path in G contains vertices of G2 � v2, since each such path must contain
at least 2 edges of F, and |F|  3. Hence we may assume that there exists a unique edge
e with ↵(e)\V(G2 � v2) , ;. Note that ↵(e) must intersect the cut F in an even number
of edges, since otherwise the path would end in G2 � v2, contradicting our assumption
that all branch vertices of ↵ lie in G1 � v1. Let P be the maximum subpath of ↵(e) such
that E(P0) \ E(G1 � v1) = ;. Notice that the first and the last edge of such a path are
edges of F. Let u1 and u2 be the endpoints of P. This implies that we may obtain an
immersion ↵0 of W4 in G1 by replacing in ↵ the path P by the path u1v1u2.

Now, we assume that ↵(V(W4)) \ (V(G1) � v1) = 4, and denote by x the unique
branch vertex of ↵ lying in V(G2�v2). We claim that it is possible to create an immersion
function ↵0 of W4 in G1 by replacing the vertex x in ↵ with v1. To show this, we apply
the following operations to G: let P1, P2, P3 be the paths of ↵ whose associated edges
in W4 are incident with ↵�1(x4), and let P01, P

0
2, P

0
3 be the subpaths of P1, P2, and P3

that do not contain edges of G1 � v1. The paths P01, P
0
2, P

0
3 are easily observed to be

edge-disjoint, and therefore we may lift the edges in each of these paths. We complete
the construction by deleting the vertices in V(G2) � {v2, x4}. The graph obtained from
this construction is readily observed to be isomorphic to G1 by mapping every vertex of
G1 � v1 to itself, and v1 to x. Therefore W4 immerses in G1. This concludes the proof of
the theorem. ut



4 Structure of graphs excluding W
4

as an immersion

In this section, we prove the main result of our paper, namely we provide a structure
theorem for graphs that exclude W4 as an immersion. We first provide a technical lemma
that will be crucial for the proof of Theorem 5.

Lemma 2. There exists a function f such that for every integer r � 60000 and every
graph G that does not contain W4 as an immersion, has no internal 3-edge cut, and
has a vertex u with d(u) � 4, if tw(G) � f (r), then there exist sets Z = {z1, . . . , zr},
S 1, . . . , S r, and X, that satisfy the following properties:

(i) zi 2 S i,8i 2 {1, . . . , r};
(ii) zi 2 S j,8i , j 2 {1, . . . , r};

(iii) u 2 Ti2{1,...,r} S i;
(iv) @(S i)  6;
(v) G[S i] is connected, 8i 2 {1, . . . , r};

(vi) X \ S i = ;,8i 2 {1, . . . , r};
(vii) For every Z0 ✓ Z such that |Z0| � 7, there is a 7-flow from Z0 to X;

Proof. Assume that G has treewidth at least 218(6r)2 log(6r), Then, from Theorem 2, G � u
contains an elementary wall of height 6r as a topological minor. We define the cycles
C1, . . . ,C6r as the ones formed by vertices w5+20i,3+2 j to w11+20i,3+2 j and w11+20i,4+2 j to
w5+20i,4+2 j, for every i, j 2 {0, . . . , d

p
6re � 1}. Observe that C1, . . . ,C6r is a set of vertex

disjoint cycles of length 14 in G � u. For every i 2 [6r], we denote by GCi the graph
obtained from G by removing the edges of Ci and adding a vertex vi adjacent exactly to
the vertices of Ci. Since W4 does not immerse in G, there exists an edge cut Fi of order
at most 3 that separates u and vi, and since both u and vi have degree at least 4, this edge
cut is internal. We now define the set Ti, for every i 2 [6r], as the set of vertices that lie
in the same connected component of GCi � Fi as u.

Claim 1 For every i 2 {1, . . . , 6r}, 1  |Ti \ V(Ci)|  3.

Proof of Claim 1. The fact that |Ti \ V(Ci)| � 1 follows from the observation that if
Ti \ V(Ci) = ;, then the cut Fi is not only a cut in GCi , but also in G, which contradicts
the assumption that G is internally 4 edge-connected. On the other hand, observe that
for every vertex w 2 V(Ci) \ Ti, the edge vw must belong to the cut Fi. Hence no more
than 3 vertices of Ci may lie in Ti, which concludes the proof of the claim. ⇧

We now define the set Z = {z1, . . . , z6r}: for every i 2 [6r], we choose arbitrarily one
vertex of Ti \ V(Ci) to be the vertex zi. The existence of the vertices zi follows from
Claim 1. Observe that, by construction of Z, it holds that zi 2 Ti,8i 2 [6r], i.e., the sets
Ti satisfy property (i).

Observe that, by construction, G[Ti] is connected. Moreover, the only edges of G
that are not edges of GCi are the edges of the cycle Ci. Thus, the only edges in the cut
(Ti,G \ Ti) of G that are not edges of the cut Fi in GCi are the edges of Ci incident with
the vertices of Ti \ V(Ci). Furthermore, for every vertex w of Ti \ V(Ci), the edge wvi
belongs to the cut Fi in GCi , but not to the cut (Ti,G \ Ti) in G. Hence, the number of



edges of the cut (Ti,G \Ti) in G is at most |Fi|+2|Ti\V(Ci)|� |Ti\V(Ci)|. Since Fi and
Ti \V(Ci) both have order at most 3, it follows that the cut (Ti,G \ Ti) in G has order at
most 6. We have therefore proved that properties (iii)-(v) hold for the sets Ti, i 2 [6r].

We may now define the set X. We first start with the subwall formed by vertices wi, j,
with 6r+1�36(d

p
6re+1)  i  6r+1+36(d

p
6re+1) and 6r+1� (d

p
6re+1)  j 

6r + 1� 73(d
p

6re+ 1). This set, denoted X0, contains at least 72(
p

6r + 1)2 � 72r + 73
vertices, due to r � 1. We now need the following:

Claim 2 For every i 2 [6r], |X0 \ Ti|  72.

Sketch of proof of Claim 2. We prove the claim by showing that for every i 2 [6r] and
every subset X00 of X0 such that |X00| � 73, there are 7 disjoint paths from vertices of
Ci \ Ti to vertices of X00 in G. Together with property (iv), this will imply validity of
Claim 2. Consider a subset X00 of X0 of cardinality at least 73. Observe that there must
be 13 vertices that lie on the same horizontal path, or 7 vertices that lie on di↵erent
horizontal paths. From there, taking into account the dimensions of the wall and the
position of the vertices of Ci and X0, it is easy to observe that there always exist vertices
y1, . . . , y7 in Ci \ Ti and x1, . . . , x7 in X00 such that there are 7 disjoint paths between
y1, . . . , y7 and x1, . . . , x7. ⇧

Therefore, the set X0 \
S

Ti contains at most 72r vertices, which implies that there
exists a subset X of X0 containing at least 73 vertices such that X \ Ti = ; for every
i 2 [6r]. This proves property (vi) for the sets Ti, i 2 [6r]. The validity of property (vii)
follows from arguments similar to those given in the proof of Claim 2.

Finally, we show how to select sets S 1, . . . , S r among T1, . . . ,T6r so that property (ii)
holds, namely that for every 1  i , j  r, zi < S j. In order to find such sets, we proceed
as follows: let H be a directed graph such that V(H) = {T1, . . . ,T6r}, and (Ti,T j) is an
arc of H if and only if zi 2 S j. We now claim that vertices of H have indegree at most 6.
This is shown by combining properties (iv), (vi), and (vii). Assume for contradiction
that there is a vertex in H having indegree at least 7, then there exist distinct indices
i1, . . . , i7 and j such that zi1 , . . . , zi7 2 S j. However, we know that there exist 7 disjoint
paths from {zi1 , . . . , zi7 } to X by property (vii). Together with property (vi), we obtain
a contradiction with property (iv). Therefore, we conclude that the directed graph H
has maximum indegree at most 6. Thus, |E(H)|  36r, which implies that the average
degree of H is at most 6. Hence, H is 6-degenerate and thus contains an independent
set of size at least |V(H)|

6 = r. The vertices of such an independent set correspond to sets
Ti1 , . . . ,Tir such that, for every 1  p , q  r, zip < Tiq . Therefore, we choose S p := Tip

for every p 2 [r] and observe that the set S 1, . . . , S r as defined indeed satisfy property
(ii).

Finally, since every set Ti satisfies properties (i) and (iii)-(vi), and for every j 2 [r]
there exists i 2 [6r] such that S j = Ti, we obtain that the sets S i satisfy these properties
as well. This concludes the proof of the lemma. ut

Lemma 2 essentially states that large treewidth yields a large number of vertex dis-
joint cycles that are highly connected to each other, and an additional disjoint set that
is highly connected to these cycles. However, this, together with the assumption that
W4 does not immerse in G, implies that there cannot be a large flow between a vertex



of degree at least 4 and one of the cycles. We will combine this fact with the notion of
important separators to obtain Lemma 3.

Definition 3. Let X,Y ✓ V(G) be vertices, S ✓ E(G) be an (X,Y)-separator, and let
R be the set of vertices reachable from X in G \ S . We say that S is an important
(X,Y)-separator if it is inclusion-wise minimal and there is no (X,Y)-separator S 0 with
|S 0|  |S | such that R0 ⇢ R, where R0 is the set of vertices reachable from X in G \ S 0.

Theorem 4. [4,20] Let X,Y ✓ V(G) be two sets of vertices in graph G, let k � 0 be an
integer, and let S k be the set of all (X,Y)-important separators of size at most k. Then
|S k |  4k and S k can be constructed in time |S k | · nO(1).

Theorem 4 states that the number of important separators of a certain size is bounded.
The next lemma combines this fact with Lemma 2.

Lemma 3. Let G be a graph such that G does not contain W4 as an immersion, has no
internal 3-edge cut and has a vertex u with d(u) � 4. Then the treewidth of G is upper
bounded by a constant.

Proof. If G has treewidth at least 218(6r)2 log(6r) for r � 60000, then there exist sets
Z = {z1, . . . , zr}, S 1, . . . , S r and X that satisfy the properties of Lemma 2. Recall that F
is an important separator if there is no separator F0 such that |F0|  |F| and the connected
component of G�F that contains u is properly contained in the connected component of
G � F0 that contains u. Additionally, observe that for every set S i, there is an important
separator F or order at most 6 such that S i lies in the same connected component as
{u} in G � F. Moreover, for any cut F of order at most 6 such that S i is contained in
the same connected component as u in G � F, there cannot be 7 disjoint paths from u
to X through F. Combined with property (vii) of Lemma 2 and the fact that every set
S i contains a vertex zi, this implies that for every important separator F, there are at
most 6 sets S i1 , . . . , S ip , p  6, that are contained in the same connected component as
u in G � F. However, Theorem 4 ensures that there are at most 46 important (X, {u})-
separators of size at most 6 in G. Therefore, if r � 60000 > 6 · 46, there is a set S i such
that the cut (S i,G � S i) has order at least 7. Thus, we conclude that either G has an
internal edge cut of order at most 3, or it has no vertex of degree at least 4, or it contains
W4 as an immersion. Hence the lemma holds. ut

We are now ready to prove the main theorem of our paper.

Theorem 5. Let G be a graph that does not contain W4 as an immersion. Then the
prime graphs of a decomposition of G via i-edge-sums, i 2 [3], are either subcubic
graphs, or have treewidth upper bounded by a constant.

Proof. Let us consider a decomposition of G via i-edge-sums, i 2 [3], and let H be a
prime graph of such a decomposition. Note first that, since G does not contain W4 as an
immersion, then H does not contain it either, due to Theorem 3. Now, assume that H is
not subcubic. Then there is a vertex u of degree at least 4 in H. Moreover, it is clear from
Theorem 3 that H is internally 4 edge-connected. Hence, we may apply Lemma 3 and
conclude that H has treewidth at most 2213·36·58·log(26·32·54). Thus, the theorem holds. ut



We conclude this section by noting that Theorem 5 is in a sense tight: indeed, both
the fact that we decompose along edge-sums of order at most 3 and the requirement that
a unique vertex of degree at least 4 is su�cient to enforce small treewidth are necessary.
The fact that decomposing along internal 3-edge-sums is necessary can be seen from
the fact that there are internally 3 edge-connected graphs that have vertices of degree
at least 4 and yet do not contain W4 as an immersion, e.g., a cycle where every edge is
doubled.

5 Concluding remarks

Following the proof of Theorem 5, the first task is to improve the bound on the treewidth
of internally 4 edge-connected graphs that exclude W4 as an immersion and have a ver-
tex of degree at least 4. Our proof of Theorem 5 relies on the fact that large treewidth
ensures the existence of a large number of vertex disjoint cycles that are highly con-
nected to each other. In order to obtain these cycles, we use the fact that graphs of large
treewidth contain a large wall as a topological minor. However, the value of treewidth
required to find a su�ciently large wall is currently enormous. Avoiding to rely on the
existence of a large wall would be an e�cient way to drastically reduce the constants in
Lemma 2 and Theorem 5.

Another question that we leave open is to prove a similar result for larger wheels,
i.e., Wk for k � 5. Providing a decomposition theorem for larger wheel seems to be a
challenging task, as edge-sums no longer seem to be the proper way to proceed, since, as
argued in Section 4, k edge connectivity is necessary, but Wk-immersion is not preserved
under edge-sums of order k � 1, as seen in Figure 2 and 3.

G2

e2 e2 e4e1e1 e2 e3 e4

G1G

Fig. 2. G1 contains W5 as an immersion but G = G1�̂4G2 does not. The unique vertex in Gi

incident with dotted edges is the vertex vi, and the edge-sum maps to each other edges of G1 and
G2 with the same label.

Decomposition theorems exist when small wheels are excluded as topological mi-
nors [9, 27], however these results do not apply when excluding wheels as immersions,
as in this case we must consider multigraphs. A similar important question is to charac-
terize graphs excluding K5 as an immersion.

Finally, note that the general algorithm to test immersion containment runs in cubic
time for every fixed target graph H. We believe that Theorem 5 can be used to devise



e�cient algorithms to recognize graphs that exclude W4 as an immersion. A direct
application of the construction of Theorem 5 implies that this can be done in time Õ(n2).
However, we believe that this can be further improved.

GG2

G1

e1

e3

e2

e4

e1

e2 e3

e4

Fig. 3. Neither G1 nor G2 contain W4 as immersion but G = G1�̂4G2 does. The unique vertex in
Gi incident with dotted edges is the vertex vi, and the edge-sum maps to each other edges of G1

and G2 with the same label.
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