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Abstract. We consider a general multi-agent framework in which a set
of n agents are roaming a network where m valuable and sharable goods
(resources, services, information . . . .) are hidden in m di↵erent vertices
of the network. We analyze several strategic situations that arise in this
setting by means of game theory. To do so, we introduce a class of strate-
gic games that we call strategic search games. In those games agents
have to select a simple path in the network that starts from a prede-
termined set of initial vertices. Depending on how the value of the re-
trieved goods is splitted among the agents, we consider two game types:
finders-share in which the agents that find a good split among them
the corresponding benefit and firsts-share in which only the agents that
first find a good share the corresponding benefit. We show that finders-
share games always have pure Nash equilibria (pne). For obtaining this
result, we introduce the notion of Nash-preserving reduction between
strategic games. We show that finders-share games are Nash-reducible
to single-source network congestion games. This is done through a series
of Nash-preserving reductions. For firsts-share games we show the ex-
istence of games with and without pne. Furthermore, we identify some
graph families in which the firsts-share game has always a pne that is
computable in polynomial time.

1 Introduction

The aim of this paper is the study of resource discovery in distributed networks
from a game theoretical perspective. We are interested in analyzing the strategic
situation that arises when a set of hiders do not move and a set of searchers set
their strategies in a selfish way considering economical benefits and rewards.
We consider a general framework of strategic search in which a set of n mobile
agents are roaming a network where m valuable items are hidden in m di↵erent
vertices. We want to take into consideration di↵erent aspects that a↵ect the
agents decisions as well as their rewards in order to analyze the existence of Nash
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equilibria. This framework di↵ers from other resource sharing strategic games
considered in the literature and, in particular, from the well known framework of
congestion games [?,?] and classical search games [?,?]. In their classical setting,
search games are intended to look upon the situation as a game between a
searcher and a hider and the aim of the analysis is to provide optimal strategies
for the participants. That is strategies that allow the searcher to find the hider
and the hider to avoid the searchers.

In this initial work we concentrate in analyzing the existence or not of pure
Nash equilibria in a static draw of the proposed games.

Before defining the games, we consider the main parameters and take some
initial decision for the model.

Benefit? Benefit depends, on one side, on the cost that the agents have to pay
for traversing network links and, on the other, in the way in which the rewards
or the value of the goods found by the agent are distributed among the agents
that discover the same good. We consider two natural reward models. When the
good is non portable, any agent that discovers it will get some benefit. When
the good is portable, only agents that arrive first can benefit from the discovery.
We consider two game variants: The finders-share game in which the item value
is split equitably among all the players that discover it at some moment and the
firsts-share game in which the item value is shared only among all the agents
that discover the item first (all of them at the same time).

Where do the agents start their roaming? We consider two di↵erent possibilities:
Either players start their roaming at one initial vertex or they can choose one
from a set of initial vertices. In both cases we consider that the initial vertex (or
set of vertices) is the same for all the players.

What is the cost for the agents? It seems natural that they have to incur some cost
in traversing a link due to communication or movement. We assume that each
link in the network has associated a non negative cost. To any agent’s trajectory,
we associate as cost the sum of the cost of the edges present in it.

How the agents move? We consider di↵erent kinds of trajectories. Initially we
study the problems assuming that the players strategy is formed by the selection
of a simple path (without repeated nodes) in the network. We also analyze
finders-share games under two other trajectories: paths, where nodes can be
repeated but edges can not appear twice, and trees. When the trajectory is a
path, a player can pass more than once through one edge in order to access
additional valuable resources. The tree trajectory arises naturally assuming that
the agents are buying links, so that they can cross them as many times as they
wish without additional payment.

We show that finders-share games in which the players are restricted to se-
lect a simple path always have pure Nash equilibria (pne). This result is in-
dependent of the type of initial location or on whether the network is directed
or undirected. For doing so, we introduce the notion of Nash-preserving reduc-

tion between strategic games. This is an appropriate extension of traditional re-
ducibility among problems. Those reductions preserve the existence of pne and
the fact that a pne can be computed in polynomial time. We show that finders-
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share games are Nash-reducible to single-source network congestion games. This
is done through a series of Nash-preserving reductions. First, by a series of trans-
formations, we reduce the general case to the single-source finders-share game.
Finally, the single-source finders-share game is reduced to the single-source net-
work congestion game. These reductions guarantee also the property that a pne
can be computed in polynomial time.

For the firsts-share games in which the players are restricted to select a
simple path, we show the existence of games with and without pne, for di↵erent
variations of the type of game. Furthermore, we identify some graph families
in which the firsts-share game has always a pne. In those cases we provide
algorithms for computing a pne in polynomial time.

Finally, we consider two variations on the trajectories, one allowing paths
with repeated nodes and the other allowing trees. We show that in both cases the
finders-share games can be Nash-reduced to congestion games. This reduction
shows the existence of pne but leaves open the existence or not of a polynomial
time algorithm for computing a pne for such games.

2 Definitions and preliminaries

Throughout the paper we use the standard graph notation and in particular we
consider that for an undirected graph: A walk is a sequence of vertices such that
for each pair of consecutive vertices the corresponding edge is present in the
graph. A path is a walk in which none of the edges appears twice. A simple path

is a walk in which none of the vertices appears twice.
In the case of considering arcs instead of edges we add to the name of these

sequences the adjective directed (directed walk, directed path and directed simple
path, respectively).

A strategic game � = (N, (⇧
i

)
i2N

, (u
i

)
i2N

) is defined by a finite set of players
or agents N = {1, . . . , n}, a finite set of strategies (or actions) ⇧

i

, for each
agent i 2 N , and a payo↵ function u

i

: ⇧ ! R, for each player i 2 N , where
⇧ = ⇥

i2N

⇧
i

. Every element (p1, . . . , pn) 2 ⇧ is known as a pure strategy profile

or configuration and represents a possible outcome of the game. We also denote
⇧ of � by ⇧(� ).

Given a profile ⇡ = (p1, . . . , pn), pi represents the strategy followed by agent
i 2 N . In addition, it is usual to denote by (⇡�i

, p), with i 2 N , the profile that
we obtain substituting the i-th element of ⇡ (p

i

) by p. A Pure Nash Equilibrium

(pne, for short) is a configuration ⇡ = (⇡1, . . . ,⇡n

) such that for each agent
i 2 N u

i

(⇡) � u
i

((⇡�i

, p)) for any p 2 ⇧
i

. We denote as pne(� ) the set of pure
Nash equilibria of game � .

A congestion game is defined by a tuple � = (N,E, (⇧
i

)
i2N

, (d
e

)
e2E

) where
N = {1, . . . , n} is the set of players, E is a finite set of resources,⇧

i

⇢ P(E) is the
set of allowed actions for each player i 2 N , and d

e

: N ! R is the delay function
of each resource e 2 E, which is assumed to be polynomial-time computable and
models the delay d

e

(k) provoked by resource e under a congestion k 2 {1, . . . , n}.
d
e

(k) is non-decreasing in k. Let ⇧ = ⇥
i2N

⇧
i

. For all ⇡ = (p1, . . . , pn) 2 ⇧ and
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for every e 2 E, let !
e

(⇡) be the number of users of resource e according to the
configuration ⇡, !

e

(⇡) = |{i 2 N : e 2 p
i

}|. Each player i 2 N has associated a
cost function c

i

: ⇧ ! R defined by

c
i

(⇡) =
X

e2pi

d
e

(!
e

(⇡)).

We can also say that each player i has a payo↵ function u
i

and it is defined in
terms of the cost function, as usual, as u

i

(⇡) = �c
i

(⇡).
Using the definition coming from [?], a network congestion game � is a con-

gestion game defined in a directed graph using the arcs as resources. Formally, it
is defined by a tuple � = (N,G, (s

i

, t
i

)
i2N

, (d
e

)
e2E(G)) where N = {1, . . . , n} is

the set of players, G = (V,E) is a directed graph, (s
i

, t
i

) 2 V ⇥ V is the pair of
origin and destination nodes (or source and target nodes) for each player i 2 N ,
and d

e

: N ! R is the delay function of every edge e 2 E, which is assumed to
be polynomial-time computable.

The strategy set of player i consists of simple paths in the directed graph G.
In fact, ⇧

i

is the set of all simple paths from s
i

to t
i

, denoted as all (s
i

-t
i

) paths,
where the notation (s-t) path refers to a simple path between the nodes s and t.
Since only simple paths are considered, the set formed by all the (s

i

-t
i

) paths is
finite. In the case in which all the pairs (s

i

, t
i

) coincide with a unique pair (s, t),
the game is said to be a single-commodity network congestion game, (otherwise
it is called multi-commodity) and since all players share the same strategy-set
the game is said to be symmetric.

There is a rich literature on congestion games [?,?,?,?,?,?,?,?,?], here are
some results concerning pne that we use.

Theorem 1 (Rosenthal [?]). Every congestion game has a pne.

Theorem 2 (Fabrikant, Papadimitriou, Talwar [?]). There is a polynomial

time algorithm to compute a pne in symmetric network congestion games (single-

commodity network congestion games).

It is useful to define a suitable notion of reduction among strategic games
that preserves the existence of pne and, if this is the case, the complexity of
finding a pne.

Let G1, G2 be two classes of strategic games. We say that G1 is Nash-preserving
reducible or reducible to G2 (in polynomial-time) if there exist two (polynomial-
time) computable functions f and g such that for any strategic game � , if � 2 G1

then

i) f(� ) 2 G2,
ii) if ⇡ is a strategy profile of the game f(� ) then g(⇡) is a strategy profile of

� , and
iii) if ⇡ is a pne of f(� ) then g(⇡) also is a pne of � .

The following result follows from the definition.
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Theorem 3. Let G1, G2 be two classes of strategic games. If any game in G2 has

a pure Nash equilibrium and G1 is reducible to G2 then any game in G1 has a pure

Nash equilibrium. If any game in G2 has a pure Nash equilibrium computable in

polynomial time and G1 is reducible to G2 in polynomial time then any game in

G1 has a pure Nash equilibrium computable in polynomial time.

In what follows we consider that a network N is a tuple consisting of a
weighted graph G = (V,E) with non-negative weights a

e

associated to each
edge e 2 E(G) (the toll of traversing edge e) and non-negative weights b

v

associated to each vertex v 2 V (G) (the value of the hidden item), this is,
N = (G, (a

e

)
e2E(G), (bv)v2V (G)). In the case that the graph is directed, we use

the term directed network and for undirected graphs the term undirected net-

work.

3 Finders-share games

We start introducing the first family of strategic search games in which the
benefit obtained from a node is split evenly among all the agents that have
discovered the node.

A finders-share game is a tuple � = (N,N , (s
i

)
i2N

) representing the strategic
game in which N is a set of n players and N = (G, (a

e

)
e2E(G), (bv)v2V (G)) is a

network. For each player i there is a special vertex s
i

of the graph which is its
starting point (its source or origin). The strategies ⇧

i

for player i are the set of
simple paths in G starting at s

i

.
Given a configuration ⇡ = (p1, . . . , pn), the payo↵ or utility function u

i

for
player i is defined as follows.

u
i

(⇡) =
X

v2pi

b
v

l
v

(⇡)
�

X

e2pi

a
e

.

where l
v

(⇡) = |{i|v 2 p
i

}| is the number of players whose strategy contains
vertex v.

Without lost of generality, throughout this article, we consider that the
weight associated to each starting point is zero. This fact does not a↵ect any of
the results as we can consider the following transformation of the graph. We add
an additional vertex per each source. The new source is connected only to the
original source. Assigning weight zero to the new sources and to the connecting
links we have a polynomial reduction to the variant in which the sources have
always zero weight.

In the case in which all the s
i

coincide with a unique vertex s the game is
said to be a single-source, denoted as � = (N,N , s). Otherwise the game is
multi-source.

In the case of strategic search games in which the source point for a player is
a set of vertices instead of a single vertex, the game is said to be multi-start and
can be single or multi-source, depending on whether the starting set is common
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or not for all the players. Observe that, the most general class is formed by the
multi-start multi-source games that include all the other classes.

Given an undirected network with associated graph G, we consider the di-
rected network with associated graph Gd. Gd is obtained by transforming every
edge {u, v} 2 V (G) with the same associated weight a{u,v} to the two arcs (u, v),
(v, u) each with associated weight a{u,v}. Observe that there is a one-to-one cor-
respondence between the set of simple paths in G and the set of simple paths in
Gd. Using this argument and taking into account that the node and edge weights
do not change, we obtain the following result.

Lemma 1. For undirected networks, the class of finders-share games is polyno-

mial time reducible to the class of finders-share games for directed networks.

Now we show the reduction from multi-start to multi-source finders-share
games.

Lemma 2. For directed networks, the class of multi-start multi-source finders-

share games is polynomial time reducible to the class of multi-source finders-share

games.

Proof. Given � = (N,N , (S
i

)
i2N

) a multi-start multi-source finders-share game,
we define the corresponding multi-source finders-share game � 0 = f(� ) as fol-
lows. Assume that N = (G(V,E), (b

v

)
v2V

, (a
e

)
e2E

). Then � 0 = (N,N 0, (s
i

)
i2N

)
where N 0 = (G(V 0, E0), (b0

v

)
v2V

, (a0
e

)
e2E

) with:

– V 0 = V [ {s
i

|i 2 N}, where s
i

is a new vertex for player i. For each vertex
v 2 V , b0

v

= b
v

and, 8i 2 N, b0
si

= 0.
– E0 = E [ {(s

i

, u)|i 2 N ^ u 2 S
i

} where for each player i we add one edge
from s

i

to each di↵erent starting node u 2 S
i

. For each e 2 E, a0
e

= a
e

and
8i 2 N, u 2 S

i

, a0(si,u) = 0.

Finally, (s
i

)
i2N

is the set of added vertices and s
i

is the source of each player
i 2 N .

In order to distinguish the utility functions of both games, let us denote by
u
i

(u0
i

) the utility function of player i in � (� 0).
Additionally, for any simple path p0 of G(V 0, E0) starting at a source node of

s
i

, we define its corresponding simple path p of G(V,E) as follows:

i) If p0 = s
i

, v0, . . . , vm then p = v0, . . . , vm. Notice that s
i

is a new node of � 0

and p0 = s
i

, p where p is a simple path in G(V,E) starting at v0 2 S
i

.
ii) If p0 = s

i

then p = v for some arbitrary node v 2 S
i

We define a mapping g : ⇧(� 0) ! ⇧(� ) such that for every strategy pro-
file ⇡0 = (p01, . . . , p

0
n

) 2 ⇧(� 0), g(⇡0) = ⇡ where ⇡ = (p1, . . . , pn). Note that
g(⇡0

�i

, p0
i

) = (⇡�i

, p
i

). If we consider the load of each v 2 V �
S

1in

S
i

in both
profiles ⇡0 and ⇡ = g(⇡0) we have that l

v

(⇡0) in � 0 coincides with l
v

(⇡) in � .
The load of the source nodes v 2

S
1in

S
i

in � may be di↵erent from the load
in � 0 but in both games the benefit b

v

= 0 as well as b
si = 0 for each new s

i

.
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Finally, note that for the new added edges a(si,u) = 0. Hence, for each player i,
u0
i

(⇡0) = u
i

(g(⇡0)) = u
i

(⇡).
Therefore, if ⇡0 = (p01, . . . , p

0
n

) is in pne(� 0) then for every player i and every
p0 starting at s

i

u0
i

(⇡0) = u
i

(⇡) � u0
i

((⇡0
�i

, p0)) = u
i

((⇡�i

, p)) implying that
⇡ = g(⇡0) is in pne(� ).

Since f and g are polynomial-time computable, the result follows. ut

Finally we reduce to the class of single-source finders-share games.

Lemma 3. For directed networks, the class of multi-source finders-share games

is polynomial time reducible to the class of single-source finders-share games.

Proof. Given a multi-source finders-share game � = (N,N , (s
i

)
i2N

) we define
the corresponding single-source finders-share game f(� ) = � 0 = (N,N 0, s) as
follows:

Assume that N = (G(V,E), (a
e

)
e2E

, (b
v

)
v2V

) and that s
i

is the starting
vertex of k

i

players. Let b =
P

v2V (G) bv, k = max{k
i

|i 2 N} and a = (k + 1)b.
Then we define N 0 = (G(V 0, E0), (b0

v

)
v2V

, (a0
e

)
e2E

) where V 0 = V [ {s} and
E0 = E [ {(s, s

i

)|i 2 N}. The weights are defined as:

– b0
s

= 0, for each player i, b0
si

= k
i

a, and for each v in V \ {(s
i

)
i2N

}, b0
v

= b
v

.
– For each player i, a0(s,si) = a and, for each e 2 E, a0

e

= a
e

.

Let us denote by u
i

the utility function of player i in � and by u0
i

the utility
function of player i in � 0. Notice that, by the definition of � 0, each simple path
p0 in � 0 starts at s and then continues visiting some of the original source nodes
s
i

of � . Hence p0 = s, p where p is a simple path of � . By definition of a and
b, in any strategy profile ⇡0 of � 0, if a node s

i

in V 0 is visited by more than k
i

players then u0
i

(⇡0) < 0. Hence it can not be a pne since u0
i

(⇡0
�i

, s) = 0.
We define a mapping g : ⇧(� 0) �! ⇧(� ) such that, for every strategy profile

⇡0 = (p01, . . . , p
0
n

) 2 ⇧, g(⇡0) = ⇡ where ⇡ = (p1, . . . , pn) where

i) If p0
i

= s, s
i

, p (p may be empty), then p
i

= s
i

, p, and
ii) If p0

i

= s, s
j

, p (p may be empty) and j 6= i, then p
i

= s
i

.

Notice that 8i 2 N ,

u
i

(⇡) =

⇢
u0
i

(⇡0) if p0
i

= s, s
i

, p,
0 otherwise (u0

i(⇡
0) < 0 and then ⇡0 is not a pne.)

Therefore, if ⇡0 is in pne(� 0) we have that u0
i

(⇡0) = u
i

(⇡) � u0
i

((⇡0
�i

, p)) =
u
i

(g(⇡0
�i

, p)) for any strategy p of player i 2 N of � 0, implying that ⇡ is in
pne(� ).

Since f and g are polynomial-time computable, the result follows. ut

Next result shows the reduction to single-commodity network congestion
games.
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Lemma 4. For directed networks, the class of single-source finders-share games

is polynomial time reducible to the class of single-commodity network congestion

games.

Proof. Given a single-source finders-share game � = (N,N , s), we define the
corresponding network congestion game � 0 = f(� ) as follows. Assume that
N = (G(V,E), (a

e

)
e2E

, (b
v

)
v2V

). G0 = (V 0, E0) where:

– V 0 = V [ {t} [ {u0|u 2 V \ {s}}.
– E0 = E [ {(u, u0)|u 2 V \ {s}} [ {(u0, t)|u0 2 V 0 \ {V [ {t}}}

[{(u0, v)|(u, v) 2 E}.
– We define the non-decreasing delay function d

e

(x) as follows.

d
e

(x) =

8
>><

>>:

a
e

if e 2 E

� bu
x

if e = (u, u0)
0 if e = (u0, t),
a(u,v) if e = (u0, v)

Finally, � 0 = (N,G0, (s, t), (d
e

)
e2E(G)).

Additionally, for every strategy profile ⇡0 = (p01, . . . , p
0
n

) in ⇧(� 0) such that
p0
i

= s, v0, v
0
0, . . . , vk, v

0
k

, t is a simple path, we define ⇡ = g(⇡0) of ⇧(� ) as
⇡ = (p1, . . . , pn) with p

i

= s, v0, . . . , vk. Notice that 8i 2 N , p
i

is a simple path
and that c

i

(⇡0) = u
i

(⇡). Therefore, if ⇡0 is in pne(� 0) we have that c
i

(⇡0) =
u
i

(⇡) � c
i

((⇡0
�i

, p)) = u
i

(g(⇡0
�i

, p)) for any strategy p of player i 2 N of � 0,
implying that ⇡ is in pne(� ).

Since f and g are polynomial-time computable, the result follows. ut

As a consequence of the previous results and Theorems ?? and ?? we can
state the following.

Theorem 4. Every multi-start multi-source finders-share game on a directed or

undirected network has a pne that can be computed in polynomial time.

Recall that multi-start multi-source finders-share game includes all the sub-
classes of finders-share games considered in this section.

4 Firsts-share games

Now we introduce the second family of strategic search games in which the
benefit obtained from a node is split evenly only among all the agents that
discover it for the first time. We assume uniformity on the time to traverse a
link and measure time by the number of traversed links.

A firsts-share game is a tuple � = (N,N , (s
i

)
i2N

) representing the strategic
game in which strategies are the same as for the finders-share games, but given
a configuration ⇡ = (p1, . . . , pn), the utility function u

i

for player i is defined as:

u
i

(⇡) =
X

v 2 p
i

dist(v, p
i

) = d
min

(v,⇡)

b
v

l
v

(⇡)
�

X

e2pi

a
e
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where, dist(v, p
i

) denotes the distance from the source to v in p
i

(and it is defined
as the length of the path from the source to v if v is in p

i

and as 1 otherwise),
d
min

(v,⇡) = min{dist(v, p
i

) | p
i

2 ⇡}) is the minimum distance of v over every
p
i

in the strategic profile ⇡ and, l
v

(⇡) = |{i 2 N |dist(v, p
i

) = d
min

(v,⇡)}| is
the number of players whose strategy contains vertex v with minimal distance
to the source.

Let us observe that the di↵erence between firsts-share games and finders-
share games relies on the definition of l

v

(⇡). As we shall see in what follows, this
di↵erence in the splitting of discoveries has relevant implications on the existence
of pne as the games have very di↵erent properties.

(v1, 4)

(e1, 2)

(e3, 3)

(s, 0)

(v1, 4)

(e2, 2)(e1, 2)

(e3, 3)

(s, 0)

(e2, 2)(e1, 2)

(e3, 3)

(s, 0)

(v2, 7) (v2, 7)(v2, 7) (v1, 4)

(e2, 2)

Fig. 1. Examples of firsts-share games for 2 players that do not have pne.

Theorem 5. In the class of firsts-share games there are games with pne and

games without pne.

Proof. The games with two players associated to the graphs in Fig. ?? do not
have a pne. Examples of firsts-share game with pne can be obtained from the
graphs in Figure ?? changing the weights of vertices v1 and v2 to 2, of edges e1
and e2 to 1 and of edge e3 to 0. In all the cases, the proof of existence or not of
pne is by inspection of all the possible strategy profiles for the two players. ut

Using a construction inspired in the examples in Fig. ?? we can state conditions
under which the family of search games that are played on a fixed graph does
not always have a pne.

Theorem 6. Let G be a graph in which there are vertices s, v 2 V (G) with two

paths of di↵erent length from s to v. There is a weight assignment to G such that

the firsts-share game on G with at least two players and source s has no pne.

Now we identify some subfamilies of games, defined by properties of the net-
work, with pne. According to the previous results we have to restrict our sub-
families to guarantee some equidistance properties for the sources. Observe that
the reduction from the multi-source to the single-source version of the finders-
share game given in Lemma ?? is not valid anymore as this reduction might
generate paths of di↵erent lengths from the new source.
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Observe that an undirected graph that contains a cycle accessible from a
source verifies the conditions of Theorem ??. Therefore, for having always a pne,
independently of the weights, we must restrict to acyclic undirected graphs. In
such a case the graph is a forest and therefore there is a unique simple path from
every potential source to any other vertex of the same tree. Therefore, firsts-share
and finders-share benefits are the same and, according to Theorem ??, we have
the following result.

Theorem 7. Every multi-source firsts-share game played in a forest with at

most one source per tree has a pne that can be computed in polynomial time.

For the case of directed graphs we introduce three graph families: equidistant
graphs, hierarchical-equidistant graphs and asymmetric tree coupling, and show
the existence of pne for their associated firsts-share games.

An equidistant graph is a directed network with a set of k � 1 sources
s1, . . . , sk in which: (a) For any vertex u and any source s

i

all the simple paths
from s

i

to u have the same length. (b) For any vertex u and any two sources s
i

and s
j

such that there is a path from s
i

to u and from s
j

to u, both paths have
the same length.

Observe that, in such a graph, the distances from any source are equal. In
consequence the utility function for every player is the same for firsts-share game
as for finders-share game and we obtain the following result.

Theorem 8. Every single and multi-source firsts-share game played in an equi-

distant graph has a pne that can be computed in polynomial time.

A hierarchical-equidistant graph is a directed network with set of vertices
V and set of sources S, such that, for some k there are subsets V1, . . . , Vk

,
V = [1ik

V
i

, and S1, . . . , Sk

, S = [1ik

S
i

, in such a way that:

(a) The subgraph of G restricted to V
i

and S
i

, for every 1  i  k, is an
equidistant graph.

(b) For all i, j with 1  i < j  k and every vertex u 2 V , if there is a path
from a source s

i

2 S
i

to u and a path from a source s
j

2 S
j

to u then it
follows that the path from s

i

to u is shorter than the path from s
j

to u.

We provide a polynomial time algorithm for computing a pne for firsts-share
games on hierarchical-equidistant graphs. The algorithm uses self-reducibility
and the polynomial time algorithm for equidistant graph. The recursion relies
on the hierarchical structure of the sources.

Theorem 9. Every single and multi-source firsts-share game played in a hierar-

chical-equidistant graph has a pne that can be computed in polynomial time.

Proof. Consider the following algorithm in which players from di↵erent sources
play among them on a particular subgraph that is determined by the strategies
of the previously considered players.

In round 1 the players whose source is in S1 select their strategy according
to a pne ⇡1 in the graph induced by V1. This Nash equilibrium is computed
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in polynomial time using the algorithm in Theorem ??. Since all the players
whose source is not in S1 arrive later to nodes in V1, there is no conflict with the
hidden items in these nodes and therefore players starting in S1 won’t have any
incentive to change their strategy. Players starting from other sources cannot get
any benefit from the discovered places. Therefore the selections of the players in
S1 remain fixed for forthcoming rounds. For doing so we modify the node weights
of the nodes in the paths selected in ⇡1 to zero. The same procedure is repeated
for rounds 2 to k. At round i the players in S

i

compute a pure Nash equilibrium
⇡
i

on the graph modified according to the selected strategies ⇡1, . . . ,⇡i�1.
Since, for every round, the selection of strategies is performed in polynomial

time and there are k such rounds, the pne is computed in polynomial time. ut

An asymmetric tree coupling is a directed network composed by two rooted
trees which intersect only on the set of leaves, oriented from the root to the leaves,
such that each common leaf has a di↵erent distance from the two roots. We
provide a polynomial time algorithm based on a conquer and retreat paradigm
combined with a greedy algorithm for computing a pne in a single-source firsts-
share game played on a tree.

Theorem 10. Every 2-source firsts-share game played in an asymmetric tree

coupling has a pne that can be computed in polynomial time.

Proof. Our algorithm for computing an equilibrium is based on a conquer and
retreat paradigm. Initially the players with source s

i

(i = 1, 2) play the search
game on a subtree that contains only those leaves that are closer to their source.
Along the algorithm players in turn reconsider whether it its convenient for
them to change their strategy. They can use paths that lead to leaves that were
not used by the players that start in the other source. Before describing the
algorithm we need a procedure that solves the problem of recomputing a pne
on a single-source tree with additional accessible leaves.

Assume that we have a tree T . Assume also that we have a strategy profile ⇡
which is a pne in the subtree in which a subset of the leaves L is removed. The
following greedy rule computes a pne for T .

GreedyNash(T,⇡) Select a path p
m

in ⇡ with minimum benefit. Let i be
one of the players selecting p

m

. Compute the path p
M

which is the best
response of i to ⇡�i

. If the benefit obtained in p
m

is strictly smaller than
that of p

M

, set ⇡ = (⇡�i

; p
M

). Repeat the process until no changes can
be made any more.

Observe that the algorithm finalizes in polynomial time. The number of con-
sidered paths is polynomial, as the graph is a tree. Besides the minimum and
strictly increasing rule guarantees that an abandoned path will provide benefit
below the minimum path benefit on the new profile and, therefore, will never be
reconsidered again. At the end of the algorithm we have that all the non used
paths have a benefit of at most the minimum over the selected paths, so the
resulting strategy is a pne.
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Let G = (V,E) be an asymmetric tree coupling formed by the two trees
T1 = (V1, E1) and T2 = (V2, E2). Let L1 be the set of leaves whose distance to
the root of T1 is smaller than their distance to the root of T2 and L2 be the set
of leaves in which this distance is greater. For a set of leaves A, let T \A denote
the subtree in which the vertices in A are removed.

Consider the following algorithm in which initially we compute separately
pnes for the two firsts-share games in which the two trees are separated and the
players have access only to the leaves at shortest distance to their source. The
algorithm will refine this situation by allowing the conquest of the leaves that
do not appear in the paths selected by the players starting on the other source.

Set A1 = L1 and A2 = L2.
Compute ⇡1, that is a pne for the game played on the tree T1 \A2.
Compute ⇡2, that is a pne for the game played on the tree T2 \A1.
Let A0

1 be the set of leaves occupied by ⇡1

Let A0
2 be the set of leaves occupied by ⇡2

found = (A1 = A0
1 or A2 = A0

2).
while not found do

A1 = A0
1; A2 = A0

2.
⇡1 = GreedyNash(T1 \A2,⇡1).
Let A0

1 be the set of leaves occupied by ⇡1

If A1 = A0
1, found = true

otherwise,
⇡2 = GreedyNash(T2 \A0

1,⇡2).
Let A0

2 be the set of leaves occupied by ⇡2

If A2 = A0
2, found = true

endif
endwhile
return (⇡1,⇡2).

In the first steps the algorithm computes a pne for the set of players with
source s

i

, in the graph formed by the subtree of T
i

that results from subtracting
the set of leaves closed to the other source. Observe that, if either ⇡1 or ⇡2 occupy
the whole sets L1 or L2 respectively, then the strategic profile ⇡ = (⇡1,⇡2), is a
pne for the game in which the whole network G is considered.

In the forthcoming rounds, the algorithm starts with a set of leaves L0
i

, for
each player i, that has been occupied by the pne computed in the previous step.
In the next round, we allow, first, players from s1 to play in the tree with their
closest leaves and the other source players unused leaves. Let ⇡0

1 be the resulting
pne that doesn’t occupy the set of leaves E0

1 ✓ L1. Then, either E0
1 = L0

1 and, in
this case, ⇡ = (⇡1,⇡2) is a pne, or E0

1 � L0
1 since the unique way a player from

s1 can ameliorate their strategy is by means of a new path, one not considered
in previous round, and therefore using at least an additional leaf closer to s2.
Observe that either we found a pne or the subset of leaves used by players from
source s1 in L2 has increased at least by one.

The process continues in alternative rounds until the set of occupied leaves
doesn’t change. The final strategic profiles of the two set of players will conform
then a pne for the game in the whole network G.
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Since the size of the sets of conquered leaves from s1 in L2 and from s2 in
L1 increases at each complete round, the maximum number of possible rounds
is O(|L1|+ |L2|) and therefore a pne can be computed in polynomial time. ut

All along this section we have taken the number of edges as the measure of
the length of a path. The results in this section also hold when we associate to
each edge a positive integer distance of polynomial length.

5 Finders-share games under other strategy definitions

We consider now the case in which the strategy for each player is selected from
the set of all paths (instead of the set of all simple-paths) of the network starting
at the designated origins. Recall that in a path the agent can pass more than
once through a node but cannot use twice the same link (edge or arc). We have
the following result.

Theorem 11. Every finders-share game played in a directed or undirected net-

work, where the set of strategies consists of paths, always has a pne.

Proof. We show that when the set of possible strategies ⇧ consists of a set
of paths of a directed or undirected network, every finders-share game can be
reduced to a congestion game. Thus, as a consequence of Theorem ??, we get
the claimed result.

Consider a finders-share game � = (N,N , (S
i

)
i2N

) on an undirected network
N , where agent i 2 N is allowed to follow any path starting at some vertex in
the set S

i

. For any agent i 2 N , set P(i) to be the set of allowed trajectories for
i, that is all paths in N that start in a vertex in S

i

. For any path p in N define
R(p) to be the set formed by all the nodes and edges that appear in p. We define
the corresponding congestion game � 0 = f(� ) = (N,R, (⇧

i

)
i2N

, (d
e

)
e2R) as

follows. Assume that N = (G(V,E), (a
e

)
e2E

, (b
v

)
v2V

), an then set R = V [ E.
For any i 2 N , set ⇧

i

= {R(p) | p 2 P(i)}. For any r 2 R, we define the
non-decreasing delay function d

r

(x) as follows.

d
r

(x) =

⇢
a
r

if r 2 E

� br
x

if e 2 V

For every strategy for agent i in � 0, we associate, in a unique way, a valid
path for agent i in N . Observe that when the set of edges form a cycle, there
might be more that one path giving raise to this set. To break ties we will use the
lexicographic order of edges going out of a node. In a cycle of an undirected graph
we select the first edge in lexicographic order to start traversing the cycle. When
the trajectory have more than one cycle, we traverse cycles in lexicographic
order. In this way we define, for any strategy profile, ⇡0 2 ⇧(� 0) a strategy
profile g(⇡0) 2 ⇧(� ). Observe that f and g can be computed in polynomial time
and that c

i

(⇡0) = u
i

(g(⇡0)) and the result follows for undirected networks.
For the case of a directed network, the proof follows the same lines but we

have to consider as resources in the congestion game the union of nodes and
arcs. ut
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We can also consider the case in which the cost per edge corresponds to
buying the right to traverse the edge as many times as wished. It is easy to
show that, under such cost interpretation for the finders-share search game pne
happens on strategies that correspond to a subtree rooted at the associated
starting vertex of the graph. The proof of the following result is similar to the
one for path strategies.

Theorem 12. Every finders-share game played in a directed or undirected search

network where the set of trajectories consists of trees always has a pne.

Proof. Consider a finders-share strategic search game � = (N,N , (S
i

)
i2N

) on an
undirected network N , where agent i 2 N is allowed to select any tree rooted at
some vertex in the set S

i

. For any agent i 2 N , set T (i) to be the set of allowed
trajectories for i, that is all trees inN rooted in a vertex in S

i

. For any tree t inN ,
define R(t) to be the set formed by all the nodes and edges that appear in t. We
define the corresponding congestion game � 0 = f(� ) = (N,R, (⇧

i

)
i2N

, (d
e

)
e2R)

as follows. Assume that N = (G(V,E), (a
e

)
e2E

, (b
v

)
v2V

), then R = V [ E. For
any i 2 N , set ⇧

i

= {R(p) | p 2 P(i)}. For any r 2 R we define the non-
decreasing delay function d

r

(x) as follows.

d
r

(x) =

⇢
a
r

if r 2 E

� br
x

if e 2 V.

Observe that for every strategy for agent i in � 0, we can associate, in a unique
way, a valid tree for agent i in N . In this way we define, for any strategy profile,
⇡0 2 ⇧(� 0) a strategy profile g(⇡0) 2 ⇧(� ) with c

i

(⇡0) = u
i

(g(⇡0)). Since f and
g are polynomial-time computable, the result for undirected networks follows.

For the case of a directed network, the proof is the same, considering as set
of resources the union of the set of nodes and arcs. ut

The previous results guarantee only the existence of pne but it remains open
whether a polynomial time algorithm for computing one pne exists in those
particular cases.

6 Conclusions and open problems

We have defined a new class of strategic games, those games have been motivated
by the study of resource discovery in distributed networks. We believe that
this framework is general enough to incorporate other mechanisms for splitting
benefits and costs in other settings. We have also introduced the notion of Nash-
preserving reduction that could be used to derive further results in the study
of other strategic games. Our results show a close connection between network
congestion games and finders-share games while the class of firsts-share games
behaves di↵erently from the point of view of the existence of a pne.

There are still many open problems concerning the firsts-share model. It will
be of interest to obtain a characterization of the networks on which firsts-search
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games have always a pne. Observe that in some cases this might be di�cult as
the existence of a pne depends on the edge and node weights. Another problem of
interest is to determine whether the existence of pne can be solved in polynomial
time for non-equidistant networks. Finally, we point out that in the asymmetric
tree coupling, all the common leaves are dominated by exactly one of the two
sources, but we do not know whether the existence of pne can be established for
a tree coupling in which a subset of the common leaves are at the same distance
from the two sources.

For the finders-share cost model we have shown the existence of pne equilibria
and that a pne can be obtained in polynomial time, independently of the number
of sources. It will be of interest to analyze further properties on the structure of
the pne in regard to some topological graph property.

There are many ways of defining a social cost in this context, some of them
clearly contradictory with the player utility functions, as for example trying to
maximize the total value of the recovered items or trying to get the maximum
benefit due to the toll paid by the agents. For those two cases it is straightfor-
ward to show that the price of anarchy is unbounded. It is of interest to find
an adequate and natural definition of the social benefit that provides bounded
anarchy price.
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