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Abstract

We define a variant of thid-coloring problem where the number of preimages of certain vertices is predetermined as part of
the problem input. We consider the decision and the counting version of the problem, nanreitribve H-coloringand the
restrictive#H -coloring problems, and we provide a dichotomy theorem determininglthér which the restrictivéd-coloring
problem is eitheNP -complete or polynomial time solvable. Moreover, we prove that the same criterion discriminageB the
-complete and the polynomially solvable cases ofrdsdrictive#H -coloring problem. Finally, we show that both our results
apply also for the list versions and other extensions of the problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider the following processing setting: we have a host netwoflprocessors with communication links between
them, and a set of jobs with communication demands between them, where these jobs and their restrictions in their concurrent
execution are modeled by a gra@hWe may have further restrictions, for instance in many practical cases, several qualitative
restrictions are imposed by the guest network concerning the types of processors that are able to carry out each of the jobs. In
this situation, each job may be accompanied by a list of the processors that are allowed to perform the task. In real systems, the
host network wants to keep bounded (or fixed) the load of some of its processors. Thus, some processors mayumaberthe
of jobs assigned to them as an additional quantitative restriction. The goal is to make a suitable assignment of jobs to processors
satisfying all the communication load and all the preference constrains. Historically;¢béoring problem has been a good
model to simulate these problems of assignation of paper we propose a model for the full generality problem, incorporating all
the above restrictions. In the best of our knowledge, it is the first time, such a model is proposed.

Given two graph$ andH, ahomomorphisnfrom G to H is any function mapping the vertices@to vertices irH, in such a
way that the image of an edge is also an edge. In the casid théditxed, such a homomorphism is calledrtoloring of G. For
a given grapt, theH-coloring problemasks whether there exists Bircoloring of the input grapks, while the #7-coloring
asks for the number of thid-colorings of the input grapls. The complexity of both problems depends on the choice of the
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particular graptH. It is known that theH-coloring problem is polynomial time solvablekf is bipartite or it contains a loop;
otherwise it iSNP -completg]12]. Its counting version, theH-coloring problem, is polynomially solvable if all the connected
components of are either complete reflexive graphs or complete irreflexive bipartite gfzphstherwise the problem igP
-complete.

The more general version in which a list of allowed processors is given for each job is knowrdissHheoloring problem.
The complexity of thdist H-coloring problem has been studied [&-10], and for its counting version, thist #H-coloring
problem, has been studied|[i3,4].

Variants of theH-coloring problem in which some quantitative restrictions are fixed independently of the graph have been
studied. Baik considers thequitable H-coloringoroblem([1]. An H-coloring is equitable if all the vertices 4 have approxi-
mately the same number of preimages. The problem was also extended by pre-fixing the minimum proportion of vertices to be
map into a given vertex. In the case that the grelphirreflexive without loops, it is shown that the equitable coloring problem
can be solved in polynomial time when all the connected componehtsf complete bipartite graphs, otherwise the problem
is NP -complete.

The (H, C, K)-coloring problem was considered [B6,4]. In this variant, the number of pre-images is fixed, independently
of the input graph, for a subset of the verticesis fixed. The complexity of the problem and of its list and counting versions
was studied if5,4]. See[6] and[3] for surveys on different problems basedktolorings.

In this paper we consider the case in which the additional restriction depends on th&geaqhthus form part of the input.
We call this new problem theestrictive H-coloringproblem. We examine the complexity of the restrictideoloring and its
variants (see definitions later). We prove that all these problems are polynomial time solvable if all the connected components
of the host grapi are either complete reflexive graphs or complete irreflexive bipartite graphs. Moreover, we prove that in any
other case, the decision problems B -complete and the counting problems gtB -complete. Observe that, in contrast to
the non restrictive problems, the dichotomy result attained for this problem is the same for both list and non list problems, as
well as, for counting and decision problems.

2. Definitions

All the graphs in this paper are finite, undirected, and cannot have multiple edges but can have loops. A graph with all its
vertices looped is calletkflexive If none of the vertices of a graph is looped then we call it irreflexive. We use the notations
V(G) and E(G) for the vertex and the edge set of a graphTrough all the paper let = |V (G)| be the number of vertices.

For a connected bipartite gragh we use the notatioi1(G), V2(G) to denote the corresponding (unique) partition, with
n1 = |V1(G)| andno = |V1(G)|. For a given grapltc and a vertex subset C V(G), the subgraph induced I&is the graph
G[S1=(S, E(G)US x S). We use standard notation for grapkg; is a reflexive clique om vertices and&, ,, is the complete
irreflexive bipartite graph, with partitions of sireandm.

For a given graplG, a functionw : V(G) — {0,...,|V(G)|, oo} is called aweight assignmendf G. Given aweight
assignmenof G, letn = |V (G)|, define the set ddounded functions

Bw)={f:V(H)—>{0,...,n}| foralla € V(H) f(a)<w(a)}
and the set ohcceptable functionas
Aw) ={f € B(w) | w(a) = f(a) foralla € H with w(a) # oo}.

Given two graph& andH, anhomomorphisnfrom G to H is any functions: V(G) — V (H), where for any edgév, u}
E(G), {o(v), a(u)} is also an edge dfl. For a fixed graph, we say that is anH-coloring of G.

For afixed grapi, theH-coloring problerasks for the existence of &hkcoloring of the input grap®, while the #H -coloring
asks for the number of thd-colorings of the input grap.

For a fixed graph, and given a grapis, alist of preferencess a functionL : V(G) — 2V #)_ Given the pairG, L) alist
H-coloring of (G, L) is an homomorphism from G to H such that for any € V(G), a(v) € L(v).

For a fixed graph, given an input formed by a graghand an associated list of preferenteshelist H-coloring problem
asks for the existence of a list-coloring of the input, while théist #H-coloring asks for the number of ligt-colorings of the
input.

For a fixed grapli, given an input grapls with n vertices and a weight assignmenof H, arestrictive H-coloringof (G, w)
is anH-coloringo of G such that for alk € V(H) with w(a) # oo, |o-*1(a)| = w(a). Whenw(a) = oo, ¢ 1(a) can have any
number of vertices. Notice thab is used to represent the lack of restrictions on the number of preimages of a vertex, as usual
we writen < oo for any naturah. Given a graplG, a preference lidt, and a weight assignmewt arestrictive list H-coloring
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Fig. 1. The four forbidden subgraphs of Lemma 2.

of the triple(G, L, w) is a listH-coloringe of (G, L) such that is also a(G, w) restrictiveH-coloring. The problems we will
treat in this paper are the following:

Name: Restrictive H-coloring problem

Input : A graphG and a weight assignmentonH

Question: Does(G, w) have a restrictivél-coloring?

Name: Restrictive H-coloring problem

Input : A graphG, a listL on G, and a weight assignmewton H

Question: Does(G, L, w) have a restrictive ligt-coloring?
Note that, by setting/(a) = oo for alla € H, the restrictiveH-coloring problems solves the correspondiigoloring problem,
therefore we can translate all the hardness results to the restrictive problem versions. In particglBr;liaedness results in
[7,13,4]translates in the following result.

Theorem 1. If H has a connected component that is not a complete irreflexive bipartite graph or a complete reflexive clique
then the restrictivétH -coloring and the restrictive listH-coloring problems both aré:P -hard.

In the remaining of the paper we will show that the condition in Theorem 1 discriminatésahd hard cases for the four
restrictive problems.

3. NP-completeness results

In this section we show that whet has a connected component which is not a complete irreflexive bipartite graph or a
complete reflexive clique, the restrictitecoloring problem, and therefore the restrictive stoloring decision problem, are
NP -complete. As the two problems are clearly\N® , we provide only the hardness proofs.

The following characterization of connected graphs is well kn{ilu.

Lemma 2. All the connected components of a graph H are either a complete reflexive graph or a complete irreflexive bipartite
graph iff H does not contain as induced subgraphs any of the graphs givég.ifh.

We will take advantage of the previous characterization to giBwhardness. Now we can state tHB -completeness result
in this section. Some of tHeP -hardness proofs can also be obtained by a Turing reduction from the equitable coloring problem,
using the hardness results[ifj. However, we present simplarany-to-oneeductions for all the cases.

Theorem 3. If H contains any of the graphs in Fid.as an induced subgrapkhen the restrictive H-coloring problem NP
-complete.

Proof. We will distinguish four cases, depending on which of the grapRsgnlappears as an induced subgraphioDbserve
that we can select a particular induced subgrapt by setting to zero the number of tasks that a processor can perform.
Casel: If {a, b} is an edge iH wherea is looped and is unlooped then we define

o fv=a,
W(U):{k if v=nb,
0 otherwise.

In this casg G, w) has a restrictivéd-coloring iff G has an independent set of size at ldast
Case2: If {a, b, ¢} form a triangle inH then we set

_Joo ifvefa,b,c}
wlv) = {0 otherwise.
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In this casg G, w) has a restrictivél-coloring iff G is 3-colorable.
Case3: Let now{a, b, ¢} be an induced reflexive pathh We will reduce the following problem to the restrictikecoloring
problem:

Name: Balanced Separator

Input : GraphG and positive integet <n.

Question: Is there a partition o¥/ (G) in three setsA, B, C, with
|C| = k, and such that the removal Gfleaves a graph with no edges betwéeandB, and max|A|, |B|}<|V]/2.

By a slight variation of thélP -hardness proof given if2] for the minimum B-vertex separat@roblem, the above problem
can be shown to bMP -complete

Let G be an input of the above problem, we construct a new géaptlith k + 1 new verticesy (G) = V(G) U {uo, ..., ux},
and with edge seE(G) = E(G) U {{ug, x} | x € V(G)}U {{ug, u;} | 1<i <k}.

For anyv € V(H), we set

n/2 ifv=a,
w(v) = k+1 ifv=b,

n/2 ifv=c,

0 otherwise.

Claim. G has a balanced separator if and only(&, w) has a restrictive H-coloring.

T. o prove the if part of the claim, assume tkahas a balanced separator, then map all the verticAsara, all the vertices in
B to b and all the vertices i€ to c. The vertex:q is mapped td, an the remaining vertices ifi are splitted betweeaandc to
attain the demanded sizes.

For the only if part, in the case thé®, w) has a restrictivéi-coloring o, by construction all the vertices must be mapped to
a, borc. Defined =6 1(@) N V(G), B=0"1(b) N V(G) andC = ¢~ 1(c) N V(G). As a andc are not connected, thdis a
balanced separator. HowevBrmight have less thakvertices. In such a case, we can move vertices #cand/orB to padC
to the demanded size. This completes the proof of the claim.

Cased: Let now{a, b, ¢, d} be an induced irreflexive path k. We consider the followin§!P -complete problenjl1]:

Name : Balanced Complete Bipartite Subgraph

Input : Bipartite connected grapfi = (V1, Vo, E) and positive integek, such thak <|V1| + |V2|.

Question: DoesG containky ; as an induced subgraph?

Let (G, k) be an input of the above problem. Let andus be two new vertices not i (G). We construct a new bipartite
graphG = (W, Wa, F) with Wy = V1(G) U {u1} andWa = Vo(G) U {u>}, and with edge set

F={{ug,x} | x € Va(G)} U {{x, uz} | x € V1(G)} U {{ug, uz}}
U{{x, y} | x € Vi(G), y € V2(G), and{x, y} ¢ E(G).}

Notice thatG is the bipartite complement @ with two new adjacent verticeg; anduy, such thai is connected with all the
vertices in one part angp with all the vertices in the other.
Forallv € V(H), we set

k ifv=a,

oo if v=>,
wv)=1{ o0 ifv=c,

kK ifv=d,

0 otherwise.

Claim. G containsKy ; as a subgraph if and only i has a restrictive H-coloring.
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Fig. 2. The six basic cases for countiHgcolorings.

T. o prove the if part of the claim, suppose ti@tontainsKy , as a subgraph and léfy < V1 andU, € V; be the partition
producing theKy . Define the functiow : V(G) — V(H) as

if ue Uy,
if u e Up,
if ueVy—Uq,
if u e Vo — Uy,
if u=uq,

a(u) =

OSSO AR

if u=us.

It is straightforward to verify that is a restrictiveH-coloring of (G, w).
For the only if part, suppose now that V(G) — V(H) is a restrictiveH-coloring of G. First we prove that({u1, us}) =
{b, c}. Indeed, if one, say1 € {u1, u2}, is mapped to one, say e {a, d}, then none of the vertices 6f can be mapped td,
as all the vertices of; are of distance at most 2 from_. W.l.0.g. assume that(u1) = b ando(up) = c.
Let U be the set formed with the neighborsigfthat are mapped ta. Notice thatUs C Vo and|Uz| = k. Similarly letUq
be the subset with the neighborsuafthat are mapped td. Observe that/1 C V4 and|U1| = k. As g is aH-coloring and{a, d}
is not an edge ofl, there is no edge i connecting a vertex i/, with a vertex inUs. Therefore, inG all the vertices of/;
are connected with all the verticesirp which implies thatG[Uq U Uz] is Ky k. This completes the proof of the claim, and the
proof of the theorem. OJ

Using the fact that the restrictive list-coloring problem can solve the restrictiMecoloring problem, we obtain the following
NP -hardness result.

Theorem 4. If H has a connected component that is neither a complete irreflexive bipartite graph nor a complete reflexive
clique then the restrictive H-coloring and the restrictive list H-coloring problems\ffecomplete.

4. Restrictive H-coloring: the connected case

In this section we solve in polynomial time the counting version of the restrietigeloring problem in the case thdtdoes
not contain as a subgraph any of the forbidden graplkégnland, furthermoreG is connected.

Let us first show that for any of the different graphs and weight assignments shdwig. i, the number of restrictive
H-colorings of a grapi® can be computed in polynomial time.

Given two graph§, H and a weight assignmewton V (H), letH(G, H, w) will denote the number of restrictidé-colorings
of (G, w). We setn = |V(G)|, and for a connected bipartite gragh we setnq, n, to be the sizes of the two partitions. We
start solving the counting problem for the six graphs depictdeign2 For each one of them we show a formula that allows to
compute in polynomial time the number of restrictive colorings. For sake of simplicim/;bet: 0 wheneven < k.

Lemma 5. Given a graph GH(G, H, wg) can computed in polynomial time for ayl, wy) € {(A, wg), (Bwp), (Cw,),
(Dwg), (Ewe), (Fw )} (given in Fig.2).

Proof. For the graptA, the unique restriction is the number of allowed pre-images, theréfee A, w,) = 1 whenn =k,
otherwiseH(G, A, w,) =0.

For the graplB, given the pairG, wp), the situation is similar to the previous one. TB«eolorings must mag vertices of
G to the vertex with weighk and the remaining vertices to the other vertex. Theretd(€, B, wy,) = (Z ).
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For the graplC, given the pailG, w.), asC is bipartite it is required thab is bipartite and that1 + np = k1 + k2. To
accommodat6&, we have to control the sizes of its partitions that must fill the allowed number of preimages. Therefore,

0 G is not bipartite andi1 + np # k1 + ko,
H(G,C,Wc)={2 ny=nz =k =ka,
1 otherwise.

For the grapltD, given the pairG, w,), the situation is similar to the previous one. Theolorings must mapq vertices in
one partition to the vertex with weigh and the remaining vertices in the same partition to the unbounded vertex. Therefore,

0 G is not bipartite and
n1+na<ky + ko,

ni np no ni .
<k1> <k2> + (kl) (k2> otherwise.

For the graph& andF the situation is simpler. For the existence of a coloring the g@&ptust be an isolated vertex. Furthermore,
itisneededthat =n (k=1). O

H(G, D,wy) =

The particular cases treated in the previous lemma are the main ingredient in the polynomial time algorithm to compute the
number of restrictivéd-colorings, wherG is a connected graph.

Lemma 6. Let H be a reflexive cliquaiven a connected graph G and a weight assignmean H, thenH(G, H, w) can be
computed in polynomial time.

Proof. LetC ={a € V(H) | w(a) # oo}, letk =" ,.c w(a), and letx = |V (H) — C|. We will consider two cases.

Casel: C = V(H). In this case, collapsing all the verticesHiinto a single vertex and assigning weiddtb it, we get the
graphAin Fig. 2, with a weight assignment, . Observe that any restrictivecoloring of (G, w,) can be extended itl ways to
obtain a valid restrictivél-coloring of (G, w), and any validH-coloring of (G, w) can be contracted to provide a valid restrictive
A-coloring of (G, w,). ThereforeH(G, H, w) = k! whenn = k, otherwiseH(G, H, w) = 0.

Case2: C # V(H). In this case by collapsing all the verticesGrto a vertex with weighk and all the remaining vertices in
V(H) — C to a vertex with weighto, we obtain the grapB in Fig. 2, with a weight assignmemi;,. Observe that any restrictive
B-coloring of (G, wp,) can be extended ikl —¥ ways to obtain a valid restrictivil-coloring of (G, w), and that any valid
H-coloring of (G, w) can be contracted to provide a valid restric@eoloring of (G, wp,). ThereforeH(G, H, w)=k! otk (Z).

O

Lemma 7. Let H be a complete irreflexive bipartite graph with more than one vertex., Hingn a connected graph G and a
weight assignment on H, H(G, H, w) can be computed in polynomial time.

Proof. Let H = (V1, Vo, E). Fori =1, 2, letC; ={a € V; | w(a) # oo}, letk; = ZaEC,-W(a)' and lety; =|V; — C;|. We will
consider two cases.

Casel: C1 = Vqp andC2 = V5. In this case collapsing all the vertices ¥ to a vertex with weighkq and collapsing all
the vertices inV, to a vertex with weighk, we obtain the graple in Fig. 2 and a weight assignmeni.. Observe that any
restrictiveC-coloring of (G, w.) can be extended ity ! k»! ways to obtain a valid restrictiid-coloring of (G, w), and any valid
H-coloring of (G, w) can be contracted to provide a valid restrict«eoloring of (G, w.). Therefore,

0 G is not bipartite andiy + no # k1 + ko,
k1!ko! otherwise.

Case2: C1 # Vy or C2 # Vo. In this case by collapsing all the vertices(pto a vertex with weight; and all the remaining
vertices inV; to an unbounded vertex, we obtain the gr&pim Fig. 2with a weight assignment,;. Observe that any restrictive
D-coloring of (G, w,) can be extended ity ! k! oc'l’l_kl agz_kz ways to obtain a valid restrictiid-coloring of (G, w), and that
any validH-coloring of (G, w) can be contracted to provide a valid restricti¥eoloring of (G, w,). Therefore H(G, H, w) is
0 whenG is not bipartite om1 + np <k1 + k2, otherwise

— "nl—kl no—ko ni np ny ni
H(G, H, w) = k1! k! oq oy ((kl ks + ky ko)) O



J. Diaz et al./Discrete Applied Mathematics 145 (2005) 297 -305 303

In the case thatl is an isolated vertexG must also be an isolated vertex and we can comdue E, w,.) andH(G, F, W)
in polynomial time.
Now we are ready to prove the main result in this section.

Theorem 8. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive clique
then the restrictivétH-coloring problem can be solved in polynomial time.

Proof. Assume thati hasl connected components. Given a weight assignmeoit H, letw; denote the restriction of to
the vertices inf ;. As the given grapl® is connected, it can be mapped only to one connected componkhtioérefore we
only have to count the number of restrictii& colorings of(G, w;) that fulfill the weight bounds with an empty assignment of
vertices inG to the remaining components.

We classify the connected componentsidds follows: H ; is forbiddenif w(H ;) ={0}; H; is freeif w(H ;) ={oo}; otherwise
Hj is restricted Therefore, we have

lele(G, Hj,wij) if all the components are free or forbidden,
H(G, H,w) = { H(G, Hj, w;) if H; is the unique restricted component,
0 if more than one component is restricted.

The last formula can be evaluated in polynomial time by Lemmas 6 andl7.

Notice that counting in polynomial time implies deciding in polynomial time, so we get the same result for the decision
versions.

Corollary 9. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive
clique, then the restrictive H-coloring problem can be solved in polynomial time.

5. H-coloring: the general case

Now we show how to compute the number of restricti«eolorings for the general case where the gr&oimight not be
connected. Observe that in a restrictideoloring of G a connected component @may only provide a part of the demanded
number of preimages. Due to this fact, we are forced to take into considetéttmhorings of components d& that are
H-colorings but that fill only part of the number of preimages required by

Theorem 10. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive
clique, then the restrictivetH -coloring problem can be solved in polynomial time.

Proof. In order to keep an uniform notation, we assume that all the weight assignments are definédmyero fulfill this
goal, any weight assignment of a connected compoHgris extended téd by assigning the weight 0 to all the vertices outside
V(Hj). We say that a weight assignmentefined oveH is properfor H; if for all u € V(H) — V(H;), w(u) = 0. We will
represent by(j) the set of proper functions for the componeént, 1< j <I.

We assume thaB hasm connected componenty., ..., G, and use the notatio6’ to denote the graph formed by the
disjoint union ofG1, ..., G;. For givenG andw, to computeH (G, H, w), we construct initially a tablel'[i, j, f1, such that for
any 1<i<m, 1< j <l andf € B(w) we have

. H(G;, H;, f) if feP()),
Tl j. f1= {0 ! otherwise

By Theorem 87[i, j, f] can be computed in polynomial time, for ahyAs G hasn vertices, the size dB(w) is at most: and
therefore polynomial in the input size, so the whole table can be computed in polynomial time.

Using dynamic programming we can compute a tefijie /], for 1<i <m and f € (Bw), whereS[i, f] keeps the number
of restrictiveH-colorings of(G?, f). To get the equation, we have only to take into account that a connected compo@ent of
must be mapped entirely to a unique connected componéht 80, for anyf € (Bw), we get

SIL f1= Y TILj. f]

1<j<l
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and, for any k< j <m, we get

SUj, f1= > S[j =1, f11- Tli, j, f2).
1<j<lfitfo=f

As the size oB(w) is polynomial, tables can be computed in polynomial time.
Finally, we have,

HG. Howy= Y Sim, f1,
feAw)

which again can be computed in polynomial timé.]
Putting together Theorems 1, 4 and 10, we get the dichotomy result.

Theorem 11. If all connected components of H are either a complete irreflexive bipartite graph or a complete reflexive clique
then the restrictive H-coloring and the restricti¥é/-coloring problems can be solved in polynomial timéherwise they are
NP -complete o£P -completerespectively.

6. The restrictive list H-coloring problem

Now we will show how to extend the previous result to counting restrictivéHisblorings. The main difficulty here is that
the vertices in a connected componentio¢annot be collapsed to a single vertex, because this may put together vertices that
are not in the same vertex list. Once we have solved the connected case the second step is identical to the disconnected case fc
the restrictiveH-coloring.

We will consider the two main types of connected components and show that a dynamic programming approach allow us to
compute the number of restrictive lidtcolorings. Making an abuse of notation we will representiogs, H, w, L) the number
of restrictive listH-colorings of a triple(G, w, L).

Lemma 12. Let H be a reflexive clique. Thegiven a connected grépG a weight assignmemton H and a list selection L for
G, H(G, H, w, L) can be computed in polynomial time.

Proof. AsH is areflexive clique we can assign a vertexaab any vertex irH provided the additional restrictions are fulfilled.
LetV(G) ={u1, ..., u,}. Foranya € H definef, by

1 ifb=a,

fa(®) = {0 otherwise.

We want to compute a tabR[i, 1], 1<i <n, f € B(w), which counts the number of restrictive Iidtcolorings for the triple
(G[{uz, ..., u;}1, f, L). The recurrence is the following: for any e B(w)

|1 ifdae L) f=fa,

kM. f1= {O otherwise
and, for any k< j <m,

Rli, f1= > R[j =1, f1l.

Ja e L) f2=fa
A+ fa=f
As the size oB(w) is polynomial, we can fill the tabIRin polynomial time.
Finally,

HG. H.w.L)= Y Rln, fl. O
JeAw)

Lemma 13. Let H be a complete irreflexive bipartite graph with more than one vertex., dieen a connected graph,@
weight assignment on H, and a list selection L for GH(G, H, w, L) can be computed in polynomial time.
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Proof. If H is bipartite, thernG must be bipartite. In this case, we can work separately with the two possible assignments of
partitions ofG with partitions ofH. Notice that once the global assignment is set, any vertex can be mapped to any one in the
assigned partition, thus working as in the previous lemma we can copGteH, w) in polynomial time. O

Using the same technique of Section 5, we can obtain the polynomial time result, this together with Theorems 1 and 4 give
the dichotomy for the list version of the problem.

Theorem 14. If allthe connected components of H are either a complete irreflexive bipartite graph or a complete reflexive clique,
then the restrictive list H-coloring and the restrictive lii -coloring problems can be solved in polynomial tiéherwise
they areNP -complete ang#P -completerespectively.

7. Further variations and conclusions

We can consider a variation of the restrictidecoloring problem, in which the weight of each element is replaced by a list
of weight ranges. In the most general versionltiesely restrictive list H-coloringthe input is a triplgG, L, W), whereG is
a graphG, L is a preference list foB, andW is a range weights list fad. This problem acts as a generic mark for solving the
equitableH-coloring problem, th€H, C, K)-coloring problem and the restricti‘é-coloring problem, in their plain and list
versions. Its hardness follows from Theorem 1. Using the algorithm described in the proof of Theorem 10, we can compute the
number of restrictive lisH-colorings of(G, f), for any weight assignmefittherefore we can compute the number of “loosely
restrictive” list H-colorings in polyomial time. And we attain the same dichotomy result as for the corresponding restrictive
version.

Two variants of the lisH-coloring problem have been considered in the literaturectimnected list H-coloringroblem, in
which any set in the list must induce a connected subgraph; amh#kall list H-coloring in which all the sets in the list either
contain all the vertices i or exactly one vertex. The two problems were introduce@JnAs theH-coloring problem can be
reduced to both variants the dichotomy results presented in this paper also hold for the restrictive and loosely restrictive decision
and counting version of both problems.

The running time of the algorithms in this paper has the form/@¢), wherec is a constant independent flt is an open
problem to characterize the family of graphs for which a time bound of the faffi(/)n“) can be achieved, whef@epends
onhbut it is independent af.
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