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Abstract

We define a variant of theH-coloring problem where the number of preimages of certain vertices is predetermined as part of
the problem input. We consider the decision and the counting version of the problem, namely therestrictive H-coloringand the
restrictive#H -coloringproblems, and we provide a dichotomy theorem determining theH’s for which the restrictiveH-coloring
problem is eitherNP -complete or polynomial time solvable. Moreover, we prove that the same criterion discriminates the#P
-complete and the polynomially solvable cases of therestrictive#H -coloring problem. Finally, we show that both our results
apply also for the list versions and other extensions of the problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider the following processing setting: we have a host networkH of processors with communication links between
them, and a set of jobs with communication demands between them, where these jobs and their restrictions in their concurrent
execution are modeled by a graphG. We may have further restrictions, for instance in many practical cases, several qualitative
restrictions are imposed by the guest network concerning the types of processors that are able to carry out each of the jobs. In
this situation, each job may be accompanied by a list of the processors that are allowed to perform the task. In real systems, the
host network wants to keep bounded (or fixed) the load of some of its processors. Thus, some processors may have thenumber
of jobs assigned to them as an additional quantitative restriction. The goal is to make a suitable assignment of jobs to processors
satisfying all the communication load and all the preference constrains. Historically, theH-coloring problem has been a good
model to simulate these problems of assignation of paper we propose a model for the full generality problem, incorporating all
the above restrictions. In the best of our knowledge, it is the first time, such a model is proposed.
Given two graphsGandH, ahomomorphismfromG toH is any function mapping the vertices inG to vertices inH, in such a

way that the image of an edge is also an edge. In the case thatH is fixed, such a homomorphism is called anH-coloring ofG. For
a given graphH, theH-coloring problemasks whether there exists anH-coloring of the input graphG, while the #H -coloring
asks for the number of theH-colorings of the input graphG. The complexity of both problems depends on the choice of the
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particular graphH. It is known that theH-coloring problem is polynomial time solvable ifH is bipartite or it contains a loop;
otherwise it isNP -complete[12]. Its counting version, the #H -coloring problem, is polynomially solvable if all the connected
components ofH are either complete reflexive graphs or complete irreflexive bipartite graphs[7], otherwise the problem is#P
-complete.
The more general version in which a list of allowed processors is given for each job is known as thelist H-coloringproblem.

The complexity of thelist H-coloring problem has been studied in[8–10], and for its counting version, thelist #H -coloring
problem, has been studied in[13,4].
Variants of theH-coloring problem in which some quantitative restrictions are fixed independently of the graph have been

studied. Baˇcík considers theequitable H-coloringproblem[1]. An H-coloring is equitable if all the vertices inH have approxi-
mately the same number of preimages. The problem was also extended by pre-fixing the minimum proportion of vertices to be
map into a given vertex. In the case that the graphH is irreflexive, without loops, it is shown that the equitable coloring problem
can be solved in polynomial time when all the connected components ofH are complete bipartite graphs, otherwise the problem
isNP -complete.
The (H,C,K)-coloring problem was considered in[5,4]. In this variant, the number of pre-images is fixed, independently

of the input graph, for a subset of the vertices inH is fixed. The complexity of the problem and of its list and counting versions
was studied in[5,4]. See[6] and[3] for surveys on different problems based onH-colorings.
In this paper we consider the case in which the additional restriction depends on the graphG, and thus form part of the input.

We call this new problem therestrictive H-coloringproblem. We examine the complexity of the restrictiveH-coloring and its
variants (see definitions later). We prove that all these problems are polynomial time solvable if all the connected components
of the host graphH are either complete reflexive graphs or complete irreflexive bipartite graphs. Moreover, we prove that in any
other case, the decision problems areNP -complete and the counting problems are#P -complete. Observe that, in contrast to
the non restrictive problems, the dichotomy result attained for this problem is the same for both list and non list problems, as
well as, for counting and decision problems.

2. Definitions

All the graphs in this paper are finite, undirected, and cannot have multiple edges but can have loops. A graph with all its
vertices looped is calledreflexive. If none of the vertices of a graph is looped then we call it irreflexive. We use the notations
V (G) andE(G) for the vertex and the edge set of a graphG. Trough all the paper letn = |V (G)| be the number of vertices.
For a connected bipartite graphG, we use the notationV1(G), V2(G) to denote the corresponding (unique) partition, with
n1 = |V1(G)| andn2 = |V1(G)|. For a given graphG and a vertex subsetS ⊆ V (G), the subgraph induced byS is the graph
G[S] = (S,E(G)∪ S × S). We use standard notation for graphs:Kr

n is a reflexive clique onn vertices andKn,m is the complete
irreflexive bipartite graph, with partitions of sizen andm.
For a given graphG, a functionw : V (G) → {0, . . . , |V (G)|,∞} is called aweight assignmentof G. Given aweight

assignmentof G, let n = |V (G)|, define the set ofbounded functions

B(w) = {f : V (H) → {0, . . . , n} | for all a ∈ V (H) f (a)�w(a)}

and the set ofacceptable functionsas

A(w) = {f ∈ B(w) | w(a) = f (a) for all a ∈ H with w(a) �= ∞}.

Given two graphsG andH, anhomomorphismfromG toH is any function� : V (G) → V (H), where for any edge{v, u} ∈
E(G), {�(v), �(u)} is also an edge ofH. For a fixed graphH, we say that� is anH-coloringof G.
For a fixed graphH, theH-coloring problemasks for the existence of anH-coloring of the input graphG, while the #H -coloring

asks for the number of theH-colorings of the input graphG.
For a fixed graphH, and given a graphG, a list of preferencesis a functionL : V (G) → 2V (H). Given the pair(G,L) a list

H-coloringof (G,L) is an homomorphism� fromG toH such that for anyv ∈ V (G), �(v) ∈ L(v).
For a fixed graphH, given an input formed by a graphG and an associated list of preferencesL, thelist H-coloringproblem

asks for the existence of a listH-coloring of the input, while thelist #H -coloringasks for the number of listH-colorings of the
input.
For a fixed graphH, given an input graphGwith n vertices and a weight assignmentw ofH, arestrictive H-coloringof (G,w)

is anH-coloring� of G such that for alla ∈ V (H) with w(a) �= ∞, |�−1(a)| = w(a). Whenw(a) = ∞, �−1(a) can have any
number of vertices. Notice that∞ is used to represent the lack of restrictions on the number of preimages of a vertex, as usual
we writen<∞ for any naturaln. Given a graphG, a preference listL, and a weight assignmentw, a restrictive list H-coloring
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Fig. 1. The four forbidden subgraphs of Lemma 2.

of the triple(G,L,w) is a listH-coloring� of (G,L) such that� is also a(G,w) restrictiveH-coloring. The problems we will
treat in this paper are the following:
Name : Restrictive H -coloring problem
Input :A graphG and a weight assignmentw onH
Question : Does(G,w) have a restrictiveH-coloring?

Name : Restrictive H -coloring problem
Input :A graphG, a listL onG, and a weight assignmentw onH
Question : Does(G,L,w) have a restrictive listH-coloring?

Note that, by settingw(a)=∞ for all a ∈ H , the restrictiveH-coloring problems solves the correspondingH-coloring problem,
therefore we can translate all the hardness results to the restrictive problem versions. In particular, the#P -hardness results in
[7,13,4]translates in the following result.

Theorem 1. If H has a connected component that is not a complete irreflexive bipartite graph or a complete reflexive clique,
then the restrictive#H -coloring and the restrictive list#H -coloring problems both are#P -hard.

In the remaining of the paper we will show that the condition in Theorem 1 discriminates theP and hard cases for the four
restrictive problems.

3. NP-completeness results

In this section we show that whenH has a connected component which is not a complete irreflexive bipartite graph or a
complete reflexive clique, the restrictiveH-coloring problem, and therefore the restrictive listH-coloring decision problem, are
NP -complete. As the two problems are clearly inNP , we provide only the hardness proofs.
The following characterization of connected graphs is well known[14].

Lemma 2. All the connected components of a graph H are either a complete reflexive graph or a complete irreflexive bipartite
graph iff H does not contain as induced subgraphs any of the graphs given inFig. 1.

Wewill take advantage of the previous characterization to showNP -hardness. Now we can state theNP -completeness result
in this section. Some of theNP -hardness proofs can also be obtained by a Turing reduction from the equitable coloring problem,
using the hardness results in[1]. However, we present simplermany-to-onereductions for all the cases.

Theorem 3. If H contains any of the graphs in Fig.1 as an induced subgraph, then the restrictive H-coloring problem isNP
-complete.

Proof. Wewill distinguish four cases, depending on which of the graphs inFig. 1appears as an induced subgraph ofH. Observe
that we can select a particular induced subgraph ofH by setting to zero the number of tasks that a processor can perform.
Case1: If {a, b} is an edge inH wherea is looped andb is unlooped then we define

w(v) =
{∞ if v = a,

k if v = b,

0 otherwise.

In this case(G,w) has a restrictiveH-coloring iff G has an independent set of size at leastk.
Case2: If {a, b, c} form a triangle inH then we set

w(v) =
{∞ if v ∈ {a, b, c},
0 otherwise.
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In this case(G,w) has a restrictiveH-coloring iff G is 3-colorable.
Case3: Let now{a, b, c} be an induced reflexive path inH.We will reduce the following problem to the restrictiveH-coloring

problem:

Name : Balanced Separator
Input : GraphG and positive integerk�n.
Question : Is there a partition ofV (G) in three setsA,B,C, with

|C| = k, and such that the removal ofC leaves a graph with no edges betweenA andB, and max{|A|, |B|}� |V |/2.
By a slight variation of theNP -hardness proof given in[2] for theminimum B-vertex separatorproblem, the above problem

can be shown to beNP -complete
LetG be an input of the above problem, we construct a new graphG̃ with k + 1 new vertices,V (G̃)= V (G)∪ {u0, . . . , uk},

and with edge setE(G̃) = E(G) ∪ {{u0, x} | x ∈ V (G)} ∪ {{u0, ui} | 1� i�k}.
For anyv ∈ V (H), we set

w(v) =



n/2 if v = a,

k + 1 if v = b,

n/2 if v = c,

0 otherwise.

Claim. G has a balanced separator if and only if(G̃,w) has a restrictive H-coloring.

T. o prove the if part of the claim, assume thatG has a balanced separator, then map all the vertices inA to a, all the vertices in
B to b and all the vertices inC to c. The vertexu0 is mapped tob, an the remaining vertices iñG are splitted betweena andc to
attain the demanded sizes.
For the only if part, in the case that(G̃,w) has a restrictiveH-coloring�, by construction all the vertices must be mapped to

a, b or c. DefineA = �−1(a) ∩ V (G), B = �−1(b) ∩ V (G) andC = �−1(c) ∩ V (G). Asa andc are not connected, thenB is a
balanced separator. However,Bmight have less thank vertices. In such a case, we can move vertices fromA and/orB to padC
to the demanded size. This completes the proof of the claim.
Case4: Let now{a, b, c, d} be an induced irreflexive path inH. We consider the followingNP -complete problem[11]:

Name : Balanced Complete Bipartite Subgraph
Input : Bipartite connected graphG = (V1, V2, E) and positive integerk, such thatk� |V1| + |V2|.
Question : DoesG containKk,k as an induced subgraph?
Let (G, k) be an input of the above problem. Letu1 andu2 be two new vertices not inV (G). We construct a new bipartite

graphG̃ = (W1,W2, F ) withW1 = V1(G) ∪ {u1} andW2 = V2(G) ∪ {u2}, and with edge set

F = {{u1, x} | x ∈ V2(G)} ∪ {{x, u2} | x ∈ V1(G)} ∪ {{u1, u2}}
∪ {{x, y} | x ∈ V1(G), y ∈ V2(G), and{x, y} /∈E(G).}

Notice thatG̃ is the bipartite complement ofGwith two new adjacent verticesu1 andu2, such thatu1 is connected with all the
vertices in one part andu2 with all the vertices in the other.
For allv ∈ V (H), we set

w(v) =




k if v = a,

∞ if v = b,

∞ if v = c,

k if v = d,

0 otherwise.

Claim. G containsKk,k as a subgraph if and only if̃G has a restrictive H-coloring.
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Fig. 2. The six basic cases for countingH-colorings.

T. o prove the if part of the claim, suppose thatG containsKk,k as a subgraph and let,U1 ⊆ V1 andU2 ⊆ V2 be the partition
producing theKk,k . Define the function� : V (G) → V (H) as

�(u) =




a if u ∈ U1,

d if u ∈ U2,

c if u ∈ V1 − U1,

b if u ∈ V2 − U2,

b if u = u1,

c if u = u2.

It is straightforward to verify that� is a restrictiveH-coloring of(G̃,w).
For the only if part, suppose now that� : V (G) → V (H) is a restrictiveH-coloring ofG̃. First we prove that�({u1, u2}) =

{b, c}. Indeed, if one, sayu1 ∈ {u1, u2}, is mapped to one, saya ∈ {a, d}, then none of the vertices of̃G can be mapped tod,
as all the vertices of̃G are of distance at most 2 fromu1. W.l.o.g. assume that�(u1) = b and�(u2) = c.
LetU2 be the set formed with the neighbors ofu1 that are mapped toa. Notice thatU2 ⊆ V2 and|U2| = k. Similarly letU1

be the subset with the neighbors ofu2 that are mapped tod. Observe thatU1 ⊆ V1 and|U1| = k. As� is aH-coloring and{a, d}
is not an edge ofH, there is no edge iñG connecting a vertex inU1 with a vertex inU2. Therefore, inG all the vertices ofU1
are connected with all the vertices inU2 which implies thatG[U1 ∪U2] isKk,k . This completes the proof of the claim, and the
proof of the theorem. �

Using the fact that the restrictive listH-coloring problem can solve the restrictiveH-coloring problem, we obtain the following
NP -hardness result.

Theorem 4. If H has a connected component that is neither a complete irreflexive bipartite graph nor a complete reflexive
clique then the restrictive H-coloring and the restrictive list H-coloring problems areNP -complete.

4. RestrictiveH-coloring: the connected case

In this section we solve in polynomial time the counting version of the restrictiveH-coloring problem in the case thatH does
not contain as a subgraph any of the forbidden graphs inFig. 1and, furthermore,G is connected.
Let us first show that for any of the different graphs and weight assignments shown inFig. 2, the number of restrictive

H-colorings of a graphG can be computed in polynomial time.
Given two graphsG,H and a weight assignmentw onV (H), letH(G,H,w)will denote the number of restrictiveH-colorings

of (G,w). We setn = |V (G)|, and for a connected bipartite graphG, we setn1, n2 to be the sizes of the two partitions. We
start solving the counting problem for the six graphs depicted inFig. 2. For each one of them we show a formula that allows to
compute in polynomial time the number of restrictive colorings. For sake of simplicity, let(

n
k ) = 0 whenevern<k.

Lemma 5. Given a graph G, H(G,H,wH ) can computed in polynomial time for any(H,wH ) ∈ {(A,wa), (Bwb), (Cwc),
(Dwd), (Ewe), (Fwf )} (given in Fig.2).

Proof. For the graphA, the unique restriction is the number of allowed pre-images, thereforeH(G,A,wa) = 1 whenn = k,
otherwiseH(G,A,wa) = 0.
For the graphB, given the pair(G,wb), the situation is similar to the previous one. TheB-colorings must mapk vertices of

G to the vertex with weightk and the remaining vertices to the other vertex. Therefore,H(G,B,wb) = (
n
k ).



302 J. Díaz et al. /Discrete Applied Mathematics 145 (2005) 297–305

For the graphC, given the pair(G,wc), asC is bipartite it is required thatG is bipartite and thatn1 + n2 = k1 + k2. To
accommodateG, we have to control the sizes of its partitions that must fill the allowed number of preimages. Therefore,

H(G,C,wc) =
{0 G is not bipartite andn1 + n2 �= k1 + k2,

2 n1 = n2 = k1 = k2,

1 otherwise.

For the graphD, given the pair(G,wd), the situation is similar to the previous one. TheD-colorings must mapk1 vertices in
one partition to the vertex with weightk1 and the remaining vertices in the same partition to the unbounded vertex. Therefore,

H(G,D,wd) =




0 G is not bipartite and
n1 + n2�k1 + k2,(

n1
k1

) (
n2
k2

)
+

(
n2
k1

) (
n1
k2

)
otherwise.

For the graphsEandF the situation is simpler. For the existence of a coloring the graphGmust be an isolated vertex. Furthermore,
it is needed thatk = n (k = 1). �

The particular cases treated in the previous lemma are the main ingredient in the polynomial time algorithm to compute the
number of restrictiveH-colorings, whenG is a connected graph.

Lemma 6. Let H be a reflexive clique, given a connected graph G and a weight assignmentw on H, thenH(G,H,w) can be
computed in polynomial time.

Proof. LetC = {a ∈ V (H) | w(a) �= ∞}, let k = ∑
a∈C w(a), and let� = |V (H) − C|. We will consider two cases.

Case1: C = V (H). In this case, collapsing all the vertices inH into a single vertex and assigning weightk to it, we get the
graphA in Fig. 2, with a weight assignmentwa . Observe that any restrictiveA-coloring of(G,wa) can be extended ink!ways to
obtain a valid restrictiveH-coloring of(G,w), and any validH-coloring of(G,w) can be contracted to provide a valid restrictive
A-coloring of(G,wa). Therefore,H(G,H,w) = k! whenn = k, otherwiseH(G,H,w) = 0.
Case2:C �= V (H). In this case by collapsing all the vertices inC to a vertex with weightk and all the remaining vertices in

V (H)−C to a vertex with weight∞, we obtain the graphB in Fig. 2, with a weight assignmentwb. Observe that any restrictive
B-coloring of (G,wb) can be extended ink!�n−k ways to obtain a valid restrictiveH-coloring of (G,w), and that any valid
H-coloring of(G,w) can be contracted to provide a valid restrictiveB-coloring of(G,wb). Therefore,H(G,H,w)=k! �n−k (

n
k ).

�

Lemma 7. Let H be a complete irreflexive bipartite graph with more than one vertex. Then, given a connected graph G and a
weight assignmentw on H, H(G,H,w) can be computed in polynomial time.

Proof. LetH = (V1, V2, E). For i = 1,2, letCi = {a ∈ Vi | w(a) �= ∞}, let ki = ∑
a∈Ci

w(a), and let�i = |Vi −Ci |. We will
consider two cases.
Case1: C1 = V1 andC2 = V2. In this case collapsing all the vertices inV1 to a vertex with weightk1 and collapsing all

the vertices inV2 to a vertex with weightk2 we obtain the graphC in Fig. 2 and a weight assignmentwc. Observe that any
restrictiveC-coloring of(G,wc) can be extended ink1! k2! ways to obtain a valid restrictiveH-coloring of(G,w), and any valid
H-coloring of(G,w) can be contracted to provide a valid restrictiveC-coloring of(G,wc). Therefore,

H(G,H,w) =
{0 G is not bipartite andn1 + n2 �= k1 + k2,

2k1! k2! n1 = n2 = k1 = k2,

k1! k2! otherwise.

Case2:C1 �= V1 orC2 �= V2. In this case by collapsing all the vertices inCi to a vertex with weightki and all the remaining
vertices inVi to an unbounded vertex, we obtain the graphD in Fig. 2with a weight assignmentwd . Observe that any restrictive
D-coloring of(G,wd) can be extended ink1! k2! �n1−k1

1 �n2−k2
2 ways to obtain a valid restrictiveH-coloring of(G,w), and that

any validH-coloring of(G,w) can be contracted to provide a valid restrictiveD-coloring of(G,wd). Therefore,H(G,H,w) is
0 whenG is not bipartite orn1 + n2�k1 + k2, otherwise

H(G,H,w) = k1! k2! �n1−k1
1 �n2−k2

2

((
n1
k1

) (
n2
k2

)
+

(
n2
k1

) (
n1
k2

))
. �
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In the case thatH is an isolated vertex,Gmust also be an isolated vertex and we can computeH(G,E,we) andH(G, F,wf )

in polynomial time.
Now we are ready to prove the main result in this section.

Theorem 8. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive clique,
then the restrictive#H -coloring problem can be solved in polynomial time.

Proof. Assume thatH hasl connected components. Given a weight assignmentw onH, let wj denote the restriction ofw to
the vertices inHj . As the given graphG is connected, it can be mapped only to one connected component ofH, therefore we
only have to count the number of restrictiveHj colorings of(G,wj ) that fulfill the weight bounds with an empty assignment of
vertices inG to the remaining components.
We classify the connected components ofH as follows:Hj is forbiddenif w(Hj )={0};Hj is freeif w(Hj )={∞}; otherwise

Hj is restricted. Therefore, we have

H(G,H,w) =
{∑l

j=1H(G,Hj ,wj ) if all the components are free or forbidden,
H(G,Hj ,wj ) if Hj is the unique restricted component,
0 if more than one component is restricted.

The last formula can be evaluated in polynomial time by Lemmas 6 and 7.�

Notice that counting in polynomial time implies deciding in polynomial time, so we get the same result for the decision
versions.

Corollary 9. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive
clique, then the restrictive H-coloring problem can be solved in polynomial time.

5. H-coloring: the general case

Now we show how to compute the number of restrictiveH-colorings for the general case where the graphG might not be
connected. Observe that in a restrictiveH-coloring ofG a connected component ofGmay only provide a part of the demanded
number of preimages. Due to this fact, we are forced to take into considerationH-colorings of components ofG that are
H-colorings but that fill only part of the number of preimages required byw.

Theorem 10. If all the connected components of H are either a complete irreflexive bipartite graph or a complete reflexive
clique, then the restrictive#H -coloring problem can be solved in polynomial time.

Proof. In order to keep an uniform notation, we assume that all the weight assignments are defined overV (H). To fulfill this
goal, any weight assignment of a connected componentHj is extended toH by assigning the weight 0 to all the vertices outside
V (Hj ). We say that a weight assignmentw defined overH is proper for Hj if for all u ∈ V (H) − V (Hj ), w(u) = 0. We will
represent byP(j) the set of proper functions for the componentGj , 1�j � l.

We assume thatG hasm connected componentsG1, . . . ,Gm, and use the notationGi to denote the graph formed by the
disjoint union ofG1, . . . ,Gi . For givenGandw, to computeH(G,H,w), we construct initially a table,T [i, j, f ], such that for
any 1� i�m, 1�j � l andf ∈ B(w) we have

T [i, j, f ] =
{

H(Gi,Hj , f ) if f ∈ P(j),
0 otherwise.

By Theorem 8,T [i, j, f ] can be computed in polynomial time, for anyf. AsG hasn vertices, the size ofB(w) is at mostnh and
therefore polynomial in the input size, so the whole table can be computed in polynomial time.
Using dynamic programming we can compute a tableS[i, f ], for 1� i�m andf ∈ (Bw), whereS[i, f ] keeps the number

of restrictiveH-colorings of(Gi, f ). To get the equation, we have only to take into account that a connected component ofG
must be mapped entirely to a unique connected component ofH. So, for anyf ∈ (Bw), we get

S[1, f ] =
∑

1� j � l

T [1, j, f ]
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and, for any 1<j �m, we get

S[j, f ] =
∑

1� j � l,f1+f2=f

S[j − 1, f1] · T [i, j, f2].

As the size ofB(w) is polynomial, tableScan be computed in polynomial time.
Finally, we have,

H(G,H,w) =
∑

f∈A(w)

S[m, f ],

which again can be computed in polynomial time.�

Putting together Theorems 1, 4 and 10, we get the dichotomy result.

Theorem 11. If all connected components of H are either a complete irreflexive bipartite graph or a complete reflexive clique,
then the restrictive H-coloring and the restrictive#H -coloring problems can be solved in polynomial time, otherwise they are
NP -complete or#P -complete, respectively.

6. The restrictive list H-coloring problem

Now we will show how to extend the previous result to counting restrictive listH-colorings. The main difficulty here is that
the vertices in a connected component ofH cannot be collapsed to a single vertex, because this may put together vertices that
are not in the same vertex list. Once we have solved the connected case the second step is identical to the disconnected case for
the restrictiveH-coloring.
We will consider the two main types of connected components and show that a dynamic programming approach allow us to

compute the number of restrictive listH-colorings. Making an abuse of notation we will represent byH(G,H,w, L) the number
of restrictive listH-colorings of a triple(G,w, L).

Lemma 12. Let H be a reflexive clique. Then, given a connected graph G a weight assignmentw on H and a list selection L for
G, H(G,H,w, L) can be computed in polynomial time.

Proof. AsH is a reflexive clique we can assign a vertex ofG to any vertex inH provided the additional restrictions are fulfilled.
Let V (G) = {u1, . . . , un}. For anya ∈ H definefa by

fa(b) =
{
1 if b = a,

0 otherwise.

We want to compute a tableR[i, f ], 1� i�n, f ∈ B(w), which counts the number of restrictive listH-colorings for the triple
(G[{u1, . . . , ui}], f, L). The recurrence is the following: for anyf ∈ B(w)

R[1, f ] =
{
1 if ∃a ∈ L(u1) f = fa,

0 otherwise

and, for any 1<j �m,

R[i, f ] =
∑

∃ a ∈ L(u1) f2 = fa
f1 + f2 = f

R[j − 1, f1].

As the size ofB(w) is polynomial, we can fill the tableR in polynomial time.
Finally,

H(G,H,w, L) =
∑

f∈A(w)

R[n, f ]. �

Lemma 13. Let H be a complete irreflexive bipartite graph with more than one vertex. Then, given a connected graph G, a
weight assignmentw on H, and a list selection L for G, H(G,H,w, L) can be computed in polynomial time.
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Proof. If H is bipartite, thenG must be bipartite. In this case, we can work separately with the two possible assignments of
partitions ofG with partitions ofH. Notice that once the global assignment is set, any vertex can be mapped to any one in the
assigned partition, thus working as in the previous lemma we can computeH(G,H,w) in polynomial time. �

Using the same technique of Section 5, we can obtain the polynomial time result, this together with Theorems 1 and 4 give
the dichotomy for the list version of the problem.

Theorem 14. If all the connected components ofHare either a complete irreflexive bipartite graph or a complete reflexive clique,
then the restrictive list H-coloring and the restrictive list#H -coloring problems can be solved in polynomial time, otherwise
they areNP -complete and#P -complete, respectively.

7. Further variations and conclusions

We can consider a variation of the restrictiveH-coloring problem, in which the weight of each element is replaced by a list
of weight ranges. In the most general version theloosely restrictive list H-coloring, the input is a triple(G,L,W), whereG is
a graphG, L is a preference list forG, andW is a range weights list forH. This problem acts as a generic mark for solving the
equitableH-coloring problem, the(H,C,K)-coloring problem and the restrictiveH-coloring problem, in their plain and list
versions. Its hardness follows from Theorem 1. Using the algorithm described in the proof of Theorem 10, we can compute the
number of restrictive listH-colorings of(G, f ), for any weight assignmentf, therefore we can compute the number of “loosely
restrictive” listH-colorings in polyomial time. And we attain the same dichotomy result as for the corresponding restrictive
version.
Two variants of the listH-coloring problem have been considered in the literature: theconnected list H-coloringproblem, in

which any set in the list must induce a connected subgraph; and theone-all list H-coloring, in which all the sets in the list either
contain all the vertices inG or exactly one vertex. The two problems were introduced in[8]. As theH-coloring problem can be
reduced to both variants the dichotomy results presented in this paper also hold for the restrictive and loosely restrictive decision
and counting version of both problems.
The running time of the algorithms in this paper has the form O(nh+c), wherec is a constant independent ofh. It is an open

problem to characterize the family of graphs for which a time bound of the form O(f (h)nc) can be achieved, wheref depends
onh but it is independent ofn.
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