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ABSTRACT. We survey recent results on the complexity of several versions of
the H-coloring and the list-H-coloring problems that are amenable to param-
eterization.

1. Introduction

The notion of homomorphism between graphs is a natural algebraic character-
istic which has been used to study the structural properties of several combina-
torial problems on graphs. Recall that given two graphs G = (V(G), E(()) and
G' = (V(G"), E(G")) an homomorphism of G into G’ is a map 0 : V(G) — V(G')
with the property that {v,w} € E(G) = {0(v),0(w)} € F(G'). For a fixed graph
H, possibly with loops but without multiple edges, we say that a graph ' has an
H-coloring if there exists a homomorphism 6 from G to H. In Figure 1 we have an
example of an H-coloring of a graph. Given any graph G as input, the H-coloring
problem asks whether there exists an H-coloring of (. Notice that in the particular
case when H is the complete graph K., the H-coloring problem is the problem of
deciding if ¢ is ¢-colorable. The complexity of the H-coloring problem is well known
(see [42] for a survey). Hell and Nesetfil [32] proved a dichotomy theorem stating
that if H is bipartite or it has a loop, then the H-coloring problem can be trivially
solved in polynomial time, otherwise the H-coloring problem is NP-complete. In
the particular case where (G has bounded degree such a dichotomy result seems
difficult [29].

An interesting extension of the H-coloring problem is list H-coloring. Given a
graph G and, for every v € V((7), a set L(v) C V(H), the list H-coloring problem
asks whether there is an H-coloring x of G such that for every u € V() we have
x(u) € L(u). Notice that when every list L(u) = V(H), the list H-coloring is the
H-coloring problem. Moreover, the list K .-coloring is the list-coloring problem (see
for [18, 38]). From the previous remarks, we know that if the H-coloring problem
is NP-complete, the list H-coloring problem is also NP-complete. However, the
dichotomy for the list H-coloring problem is different and harder to achieve. The
first result showed that when H is a reflexive (every vertex is looped) interval
graph, the list H-coloring problem can be solved in polynomial time, otherwise
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F1GURE 1. An example of an H-coloring of (. The homomorphism
is given by: 0(a) = 0(d) = 0(f) = 1 and 0(b) = 0(c) = O(e) =
0(g) =2

the problem is NP-complete [25]. The second result states that if H is irreflexive
(no vertex is looped) and the complement of H is a circular arc graph of clique
covering number two, the H-coloring problem can be solved in polynomial time,
otherwise the problem is NP-complete [26]. The third and last result establishes
the dichotomy: when H is a general (with looped and unlooped vertices) bi-arc
graph, the list H-coloring problem can be solved in polynomial time, otherwise the
problem is NP-complete [27].

An interesting issue is counting the number of solutions to the above men-
tioned problems. Most counting versions of problems, whose decision versions are
NP-complete, are known to be #P-complete. Moreover, the search for efficient
approximations to counting problems, known to be #P-complete, has become one
of the exciting areas of research in the last decade [35]. It should be noted that
many counting problems on a graph ' can be restated as counting the number
of homomorphisms from G' to a particular fixed graph H. For instance, the clas-
sical problem of counting the number of proper c-colorings of a given graph G is
equivalent to counting the number of K -colorings of . As a second example, the
problem of counting the number of independent sets corresponds to the problem of
counting the number of H-colorings, where H consists of a single edge with a loop
in one of its two vertices (see Figure 1).

Given an input graph G, the #H -coloring problem is the problem of evaluating
the number of H-colorings in G. In the same manner, given the input (G, {L(v)}),
the list #H-coloring problem is the problem of evaluating the number of list H-
colorings of (G, {L(v)}).

The following dichotomy result is due to Dyer and Greenhill: the # H-coloring
problem is #P-complete if H has a connected component which is not a complete
reflexive graph or a complete irreflexive bipartite graph, otherwise it is in P. This
result holds even in the case when GG has degree bounded by a suitable large con-
stant [23].

Regarding the complexity of the problem of counting list H-colorings, it is not
difficult to prove that the number of list H-colorings can be computed in polynomial
time whenever H is a reflexive complete graph or an irreflexive complete bipartite
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graph. This observation together with the #P-completenes result for the #H-
coloring problem implies the following dichotomy result [16, 33]: the list #H-
coloring problem is #P-complete if H has a connected component which is not a
complete reflexive graph or a complete irreflexive bipartite graph, otherwise the
counting problem is in P.

The aim of this paper is to survey the use of ideas from parameterized com-
plexity, to further explore the complexity of the H-coloring and the list H-coloring
problems. In defining a parameterization, the issue is not whether a problem is
hard, but what makes the problem hard or easy to compute. To study the struc-
tural hardness of a difficult problem, the approach is to split the input into two
parts: a difficult part (the non-parameterizided) and an easy part (the parameter-
ized), where we impose some restrictions. For several problems, it is known that
the parameterization of the input does not break the NP-completeness barrier. A
classical example is the coloring problem parameterized by the number £ of colors
that can be used. It is well known that the problem is NP-complete, for k& > 3.
On the other hand, problems like the maxzimum independent set or the minimum
vertex cover of a graph become polynomially solvable when we parameterize them
by the size of the independent set or by the size of the vertex cover. Even in the
cases where a parameterization of a NP-complete problem leads to a polynomial
time algorithm, there are different upper bounds of the running time for the best
known algorithm. For instance, the running time could be O(nf(k)) or it could
be O(f(k)n®) , where f(k) is a function of the parameter k, and « is a positive
constant. A parameterized problem is said to be Fized Parameter Tractable if there
exist an O(f(k)n®)-algorithm that solves the problem. The class FPT is the class
of all fixed parameter tractable problems. In a series of papers on parameterized
complexity, Downey and Fellows defined a parameterized complexity hierarchy, the
W-hierarchy, that falls between FPT and W[P], FPT C W[1] C W[2] C --- C W[P],
along with suitable notions of reducibility and completeness (see [21] for a nice
exposition of parameterized complexity). It is an open problem whether the in-
clusion in the hierarchy is strict. Moreover, there is evidence that if a problem
is complete for some level of the W-hierarchy, then it is not expected to have an
O(f(k)n“)-algorithm. For example, the parameterized vertex cover problem be-
longs to FPT [4], while the the parameterized independent set problem is known to
be W[1]-complete [19].

We survey the parameterized complexity of different variants of the H-coloring
and the list H-coloring problems, by considering two different types of parameteri-
zations. The first approach is to set as parameter the treewidth of the input graph.
Intuitively, the parameter of treeewidth is a measure of the global connectivity of
a graph (see the formal definitions in Section 2). We survey recent results proving
that several extensions and variants of the H-coloring problem, can be solved in
time linear to the size of the input graph. We stress that the algorithms are easy
to implement and remain polynomial even in the general case where we consider H
to be a part of the input.

The second approach is to parameterize the problems by restricting the number
of vertices in (¢ that are mapped into a specific subset of vertices of H. We present
characterizations of H that allow the classification of the decisional parameterized
problems as in FPT, in P, or as NP-complete.

Notice that the counting versions, the list #H-coloring and the # H-coloring,
are functional problems and therefore cannot fit into the current framework of
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FIGURE 2. A tree decomposition of the graph G in Figure 1

the parameterized complexity theory. To study the complexity of the counting
versions of the parameterized problems we define the class #PPT (#P Parameter
Tractable problems) as the class of parameterized counting problems, which can
be solved by an algorithm within time O(f(k)n®), where f is some function of the
parameter k, and « is a positive integer. We investigate characterizations for which
the parameterized counting problems remain #P-complete, as well as conditions
for which the parameterization classifies the problem in the classes P or #PPT.
Notice that the solution to the list H-coloring and the H-coloring problems, can be
considered as a particular case of their counting versions, therefore, when possible,
we describe algorithms for solving the counting versions of the problems and we
state their decision versions as corollaries to those algorithms.

In the last section, we present some comments and conjectures on the parame-
terized approach for the counting and decisional versions of the H-coloring problem,
and propose some alternative lines of research.

Throughout the paper, we use some standard notation. For the input graph
G, we set n = |V(G)| and m = |E(G)]. For the fixed graph H, h = |V (H)| and
e = |F(H)|. For a given graph ¢ and a vertex subset S C V((), let G[S] be the
subgraph induced by S, and let G — S denote the subgraph G[V () — S]. As usual
K, denotes a complete graph on k vertices and K ; a complete bibartite graph
with parts containing k and [ vertices. As usual for a functiuon 6 we use 0|s to
denote its restrictioin to the set S.

2. Parameterizing by treewidth

Treewidth was first defined by Halin in [31] and was reintroduced independently
in [3] and [48]. It plays a key role in many proofs in structural graph theory [49,
44] and served as one of the cornerstone concepts for the lengthy proof of the
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Wagner’s conjecture developed by Robertson and Seymour in their Graph Minor
Series (see [47] for a survey). Formally,

DEFINITION 2.1. A tree decomposition of a graph (i is a pair (X,U) where U
is a tree whose vertices we will call nodes and X = ({X; | i € V(U)}) is a collection
of subsets of V() such that

1. UieV(U) X; = V(G),

2. for each edge {v,w} € F(G), there is an i € V(U) such that v, w € Xj, and

3. for each v € V() the set of nodes {7 | v € X;} forms a subtree of U.

The width of a tree decomposition ({X; | i € V(U)},U) equals max;ey () {|Xi|—1}.
The treewidth of a graph ¢ is the minimum width over all tree decompositions of

G.

In Figure 2, we present a tree decomposition with optimal width of the graph
G given in Figure 1.

As a graph parameter, treewidth has many algorithmic applications. A wide
range of combinatorial optimization problems are polynomially solvable when re-
stricted to graphs with bounded treewidth. Unfortunately, computing the treewidth
of a graph is a NP-complete problem [3]. However, we can fix our attention only to
graphs where the treewidth is bounded by a constant k. Such graphs are alterna-
tively called partial k-trees. For any constant k, Bodlaender [6] presented a linear
time algorithm that, given a graph (i, checks whether ¢ is a partial k-tree and, if
so, outputs a minimum width tree decomposition.

The canonical methodology to get polynomial solutions to difficult problems,
consists of a two step procedure: First find a constant width tree-decomposition of
the input graph, not necessarily optimal. Then, use dynamic programming to get
a solution, taking advantage of the bounded treewidth decomposition of the graph
(see [2, B]). For the purpose of solving the first canonical step, the algorithm of
Bodlaender [6] does not seem to be feasible to implement, as it uses as a subroutine
the algorithm in [7], which involves an enormous hidden constant. However, we can
make use of earlier algorithms that output a tree decomposition of &, with width
bounded by a linear function of k [46, 39, 41]. In particular, the deterministic
algorithm by Reed [46] runs in O(nlogn) time and, for constant k, it either returns
that the treewidth of ¢ is more than k, or it constructs a tree decomposition of
width 4% or less. This last algorithm allows us to assume that any partial k-tree is
always given together with a tree decomposition of constant width.

2.1. The main algorithm. For some problems on partial k-trees, where k
is a fixed constant, Courcelle [13] associated the existence of a polynomial time
algorithm with their expressibility by Monadic Second Order Logic, see also [12].
As a consequence of these results, it is possible to construct a polynomial time
algorithm solving the H-coloring and the # H-coloring problem for partial k-trees,
when £ and the size of H are fixed constants. However, the results of Courcelle do
not provide implementable algorithms because of the very large hidden constants
in their complexity.

The H-coloring problem is one of the many problems, where the dynamic pro-
gramming technique has yield a polynomial-time solution for partial k-trees [50].
In terms of parameterized complexity this means that, for any H, the H-coloring
problem parameterized by the treewidth of the input graph is a problem in FPT. In
the remaining of the section, we present a polynomial time algorithm for counting
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FIGURE 3. A nice tree decomposition of the graph G in Figure 1

H-colorings, in the case that the input graph G has constant treewidth and we
survey its consequences.

Although the methodology follows the two cannonical steps, we shall remark
that we present an easy to be implemented algorithm for the second step, asumming
the aforementioned result on the existence of fast and implementable algorithms
for obtaining a bounded width decomposition for a partial k-tree. Moreover, the
algorithm remains polynomial even when there are no restricions on the size of
H. Once more, this is the first positive result on counting H-colorings, when H is
generic and only the input graph is restricted.
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Instead of working with the general definition of tree decomposition, we shall
consider a more refined version of decomposition, the nice tree decomposition de-
fined in [6, 7, 36], which simplifies the exploration of the tree structure.

DEFINITION 2.2. A rooted tree decomposition is a triple D = (X, U, ) in which
U is a tree rooted at r and (X,U) is a tree decomposition.

Let D = (X,U,r) be a rooted tree decomposition of a graph G' where X =
{X; | i € V(U)}. D is called a nice tree decomposition if the following are
satisfied:

1. Every node of U has at most two children,

2. if a node ¢ has two children j and h, then X; = X; = X},

3. if a node ¢ has one child, then either |X;| = |X;| + 1 and X; C X; or
|Xz| = |X]| —land X; C Xj.

4. if a node 7 is a leaf, then | X;| = 1.

Without lost of generality, we can assume that the root r has X, = @. In
Figure 3 we present a nice tree decomposition for the graph &' in Figure 1. It is
known that for any constant & > 1, given a tree decomposition of a graph G of width
at most k& and O(n) nodes, there exists a linear time algorithm that constructs a
nice tree decomposition of G, with O(n) nodes and width at most k [7].

Given a nice tree decomposition D = (X, U,r) of (¢, for any p € X of D, let U,
denote the subtree of U, rooted at node p. We set V, = U,ecv (v,) X, and, for any
p € V(U), we define GG, = G[V,]. Therefore we associate to each node a subgraph,
notice that G, = G'. A key observation is the fact that a nice tree decomposition
D= ({X, | pe V(U)},U,r) contains four possible node types: Start node, if the
node is a leaf; Join node, if the node has two children ¢;, i = 1, 2; Forget node, if the
node p has only one child ¢ and |X,| = |X,| — 1; and Introduce node, if the node p
has only one child ¢ and |X,| = |X,| + 1. Observe that the root r is a forget node.

The optimization of the space used in the counting part of the algorithm is
attained by the construction of a special topological ordering of V(U7), called stingy.
This ordering has the property that for any j, the number of nodes in the set
{u1,...,u;} whose parent appears at a position k£ > j is at most logn. The stingy
ordering can be computed in linear time, performing an adequate tree traversal.

Given a nice tree decomposition D = (X,U,r) of a graph G, for each p €
V(U), define the set F, = {¢ : X, — V(H)}. Notice that if (¢ has treewidth
k, then for any p € V(U), |F,| < h**1. Moreover, for the root we have F, =
{2}, where @ represents the empty function. The table associated to a node
p € V(U) will have an entry for each ¢ € F,, holding the value I,(¢) = |{6 |
0 is an H-colorings of G, with 0]x, = ¢}|. As we always have 0|y = @, we get
that the number of H-colorings of (¢ is equal to I, (@).

THEOREM 2.1 ([15]). Given a partial k-tree (¢, together with a nice tree de-
composition D = (X, U, r) with width k, and a stingy ordering of the nodes in D, the
algorithm Count-H computes the number of H-colorings of G in O(nh* Tt min{k, h})
steps, using O(h**'logn) additional space.

If we use an O(f(k)n) algorithm to solve the first canonical step, we have the
following corollary to Theorem 2.1.

COROLLARY 2.1. Let k& be fixed. The #H-coloring problem, for graphs with
treewidth bounded by k, can be solved in O(n(h*T'min{k, h}) + f(k))) steps.
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function count-H(G, H, D, S)

D = (X,U,r)is a nice tree decomposition of G with width &
0= V(G)], h= V(H)], s = V(D)
S =(p1,...,ps =r)is astingy ordering of V(U)
begin
for p:=p; to p. do
if pis a start node, with X, = {v} then
for all a € V(H) do [,((v,a)) =1
end
if pis a introduce node then
let ¢ be its unique child
vi=Xp — Xy
Sq={u € Xy |[{u,v} € E(Gp)}
for all ¢ € F, and a € V(H) do
if Vues, {¢(u),a} € E(H) then
Iy(e U{(v,a)}) := Iq()

else I,(pU{(v,a)}):=0
end

end for

erase the information on node ¢

end
if pis a forget node then
let g be its unique child
vi=Xg— X,
for all ¢ € F), do
Ip(p) = ZaeV(H) Ly(p U{(v,a)})
end for
erase the information on node ¢
end
if pis a join node with children ¢, and ¢» then
for all ¢ € F), do
Ip() i= 14, (@) - 1g, ()
end for
erase the information on nodes ¢; and g2
end
end for
return [, (&)
end

FiGURE 4. An algorithm for counting H-colorings

2.2. Other versions of H-coloring. An earlier version of the H-coloring
problem is the exact H-coloring problem: given a graph G, decide if there is an
H-coloring 0 of ¢ such that 0(V(G)) = V(H) and 0(F(G)) = E(H). This problem
appeared in [30] as problem GT-52 and it is known to be NP-complete, even for
the case where H is a triangle [40]. An intermediate problem is the one of asking
whether there is an H-coloring 0 of G such that 0(V(G)) = V(H) and we call
it vertex exact H-coloring. The list exact H-coloring and the list vertex exact H -
coloring are defined in the obvious way and we call their counting versions list exact
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#H-coloring and list vertex exact #H -coloring. Algorithm count-H can be adapted
to solve all these counting variations of the # H-coloring problem.

THEOREM 2.2 ([15]). The exact # H-coloring and the vertex exact # H-coloring
problems, parameterized by the treewidth of the input graph, are all in #PPT.

Theorem 2.2 yields corollaries analogous to Corollary 2.1 in the obvious way.

2.3. Counting list H-colorings. It is easy to adapt the algorithm count-H
to obtain an algorithm for the list #H-coloring problem for graphs of bounded
treewidth. The unique changes are the redefinition of the set F, as {¢ : X, —
V(H) and Veex,¢(x) € L(x)}, and the replacement of the requirement a € V(H)
by a € L(v), in the treatment of an start node, in function count-H. Applying similar
changes to the algorithms used to prove Theorem 2.2 we can rewrite them in their
“list” versions with the same complexity bounds (for further details see [15]).

2.4. The decision version of H-coloring problems. Notice that a graph
G is H-colorable if the number of H-colorings of ¢ is non zero. This implies that
the algorithms involved in the Theorems 2.1, and 2.2 can solve the corresponding
decision version of the problems examined with the same time bounds, as well as
their “list” extensions. In other words the decision version of all the variations of
the H-coloring introduced in this section, belong in FPT. We mention that for the
case of H-coloring of partial k-trees, the result described improves the best known
algorithm, which runs in O(nhz(k‘l'l)) steps and is due to Telle and Proskurowski
in [50].

2.5. The directed case. Given two directed graphs H and é, an ﬁ-coloring
ofé is any function 0 : V(é) — V(ﬁ) with the property that (v, w) € E(é) =
(0(v),0(w)) € E(ﬁ) If H is a fixed directed graph, the H -coloring problem asks
whether, a given directed graph G has an ﬁ—coloring. We define the #ﬁ-coloring
problem as the problem of, given a directed graph é, counting all the ﬁ—colorings
of G. In an analougous way, we can extend the definition for the list, exact and
vertex exact variations.

It is easy to adapt the algorithms of Theorems 2.1, and 2.2 as well as their “list”
extensions for the directed case. The complexity of the corresponding algorithms
is the same (for details, see [15]).

2.6. Enumeration. Notice that for each of the algorithms described so far,
if we retain the information of all the tables, it is possible to use it in order to
enumerate all the homomorphisms. The storing of all the tables implies a burden
of O(n/logn) to the space reported in Theorems 2.1 and 2.2. In particular, setting
up a suitable bookkeeping of the enumerated homomorphisms, a top-down traversal
of the table information can pop-up each of them in O(n) steps.

2.7. The general homomorphism problem. Consider the homomorphism
problem of deciding, given two input graphs ' and H, whether there is an ho-
momorphism from G' to H. From Theorem 2.1 we have that the homomorphism
problem can be solved in polynomial time if we parameterize it by the treewidth
of (4. Therefore, the H-coloring problem for partial k-trees remains polynomially
solvable even if we consider H to be a part of the input. Similar observations hold
for the corresponding list and counting versions.
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Notice that if we parameterize the homomorphism problem by considering the
treewidth of H, instead of by the treewidth of (G, we do not affect the generality of
the dichotomy theorem of Hell and NesetFil [42] as, for any k, graphs with treewidth
k can be bipartite or non-bipartite. However treewidth related restrictions, for
a target graph H, the so called bounded trecwidth duality, lead to a polynomial
solution to the H-coloring problem [28], even for the case when H is directed.
Similar results are known for the general algebraic homomorphism problem: given
two finite relational structures A and B, is there an homomorphisms H : 4 —
B?. This generic formulation include the graph homomorphism problem as well as
constraint salisfaction problems and conjunctive-query containment problems [37].

2.8. Coloring and chromatic polynomial. Several researchers have con-
sidered the problem of counting the number of proper c-colorings in a graph .
The problem is #P-hard for ¢ > 3 and maximum degree A of G at least 3 [34].
In the same paper, it is proved that there exists a Fully Polynomial time Random-
ized Aproximation Scheme (FPRAS) for the number of colorings in the case when
¢ > 2A + 1. Bubley et al. [9] proved that the problem is # P-hard for fixed A, but
there is a FPRAS for ¢ = 5 and A = 3. Edwards [24] proved that if ¢ > 3 and the
minimum degree where d > an, the counting problem is #P-complete if o < %,
but it is in P for o > z:% Recall that the problem of counting the number of
c-colorings of a graph G is the # K .-coloring problem. Therefore, we conclude that

COROLLARY 2.2. An algorithm can be constructed to compute the number of
c-colorings of a partial k-tree graph, in O(nc**+' min{k, c}) steps.

Andrzejak [1] has given an O(n?t71982¢)_time algorithm to compute the Tutte
polynomial of a partial k-tree graph on n vertices, where ¢ is twice the number of
partitions of a set with 3(k+ 1) elements. Andrzejak’s algorithm gave the best pro-
cedure to compute the chromatic polymonial for a partial k-tree. As a consequence
of the results on counting H-colorings for partial k-trees, the following result is
proved in [15].

COROLLARY 2.3. The chromatic polynomial of a partial k-tree can be con-
structed in O(kn*+3) steps.

Notice the the goal of the previous result is not the evaluation of the chromatic
polynomial, for which better bouns can be obtained through the evaluation of the
Tutte polynomial of a bounded treewidth graph [43].

2.9. Other extensions. Recall that in the case where H is an edge with only
one looped verex, as in Figure 1, the #H-coloring problem is equivalent to the
problem of counting independet sets. Using our previous results, we get

COROLLARY 2.4. The number of independent sets of a partial k-tree can be
obtained in O(n2**1) steps.

It has been observed that, by specializing the structure of H, we can generate an
arbitrary number of counting problems that are, in general, #P-complete (see [23,
22]). This includes, for example, the problem of counting the g-particle Widom-
Rowlinson configurations in bounded treewidth graphs. For further applications of
the results described in this section see [15].

Finally, notice that, for the counting and decision version of the problems,
Theorems 2.1 and 2.2 provide polynomial time algorithms even in the case where

k= O(logn).
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F1GURE 5. The graphs (H, C, K) for the parameterized indepen-
dent set and vertex cover as parameterized colorings (the big ver-
tices represent the labeled vertices of )

3. Parameterizing H-coloring by image restriction

Let us introduce the second type of parameterization for the H-coloring prob-
lems. Let C'={ay,...,a,} be aset of r vertices in V(H) and let K = (k1,... k)
be an r-tuple of non negative integers, where each k; is associated to a;. The triple
(H,C, K) is called a partial weighted assignment on H and a mapping x : V(G) —
V(H) is an (H,C, K)-coloring of GG if x is an H-coloring of (¢ such that, for all
a; € Oy |x Y(a;)| = k;. In this section, we let k denote Zi:l,...,r ki, for any given
partial weighted assignment (H, C, K). We say that a partial weighted assignment
(H,C,K) is a weighted extension of a graph F if H — C' = F. We call a partial
weighted assignment (H, C, K) positive if all the integers in I are positive.

For fixed H, C' and K, given an input graph G, the (H, C, K')-coloring problem
asks whether there exists an (H,C, K)-coloring of GG. Notice, that the (H,C, K)-
coloring can express well known parameterized problems, like the the independent
set and the vertex cover problems (see Figure 5).

The new parameterization can be extended in a straightforward manner to
define the list (H, C, K)-coloring problem. We define the #(H,C, K)-coloring as
the problem of counting the number of (H, C, K)-colorings of an input graph G,
and the list #(H,C, K)-coloring as the problem of counting the number of list
(H,C, K)-colorings of an input (G, {L(v)}).

3.1. Easy cases. In this subsection, we survey results from [16], giving nec-
essary conditions for the #(H, C, K)-coloring problem and the list #(H,C, K)-
coloring, to be solvable in linear time. A sufficient condition, for the list #(H, C, K)-
coloring problem to be solved in linear time, is that the set C' of parameterized
vertices forms a vertex cover. The core of the proof is the Algorithm Count-List-
Colorings in Figure 6, which given a graph ¢, counts the number of list (H, C, K)-
coloring, using O(kn + f(k, h)) steps, for some function f.

THEOREM 3.1. If (H,C, K) is a partial weighted assignment, where H — C
has no edges, there exists an O(kn + f(k, h)) time algorithm that solves the list
#(H, C, K)-coloring problem.

Recall that any H-coloring can be seen as a list H-coloring in which the list
for each vertex is V(H). Therefore, as a corollary to the previous lemma, we get a
necessary condition for the #(H, C, K)-coloring problem to be in the class #PPT,

CoROLLARY 3.1. If (H,C, K) is a partial weighted assignment, where H — C
has no edges, then there exists an O(kn + f(k, h)) time algorithm that solves the
#(H, C, K)-coloring problem.
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Algorithm Count-List-Colorings(Gr, L, H, C, K).

Input:  Two graphs G/, H, a function L : V(G) — 2V )
and a partial weighted assignment
(H,C,K) on H such that F(H —C) = §.

Output: The number of list (H, C, K)-colorings of .

1: Let Ry be the set of vertices in G of degree > k.
2: If |Ry| > k or |E(G)] > kn then return 0.
3: Set G' =G — Ry.
4: Let R be the non isolated vertices in G/ and
let R3 be the isolated vertices in G'.
5: If |[Ry| > k* + k then return 0.
6: Setup a partition R = (Py,..., Py),m < ¢q-2" of Rz where
¢ is the number of different neighborhoods of vertices in K3 and
Vouer, (Jicicm {v,u} € Pi & (Na(v) = Na(u) A(L(v) = L(u)))).
7: Let Q = 0.

8 Fori=1,...,m,
if |P;| <k+ 1, then set F; = P,
otherwise let F; be any subset of P; where |F;| = k + 1.
Set Q=QUI; and P, = P; — F;.
9:  Let M be the set of all the list (H, C\, K)-colorings of G[Ry U Ry U Q).

10: Set n=0.
11: For any y € H, do
Set 7= 1.

For any nonempty P; € R, do
Let V; contain all vertices @ of H — C' where Ny (x) D x(P).
Set B:= - |V;|IFil.
Set n:=n+ S.
12: return 7.
13: End.

Figure 6. Algorithm Count-List-Colorings

It is easy to observe that, when F(H — ') = @, if an (H,C, K)-coloring of
G exists then G has a vertex cover of size k. Therefore (¢ must have bounded
treewidth, and both Theorem 3.1 and Corollary 3.1 could be obtained as a variation
of Algorithm Count-H. However both results improve the complexity bound, as they
do not require the computation of a tree decomposition.

3.2. Cases in P. In this section we present the cases of the #(H,C, K)-
coloring and list #(H, C, K)-coloring problems which are known to be solved by
an algorithm with time bound O(n**¢), and therefore can be solved in polynomial
time.

The main result relates the problem of counting list (H, (', K)-colorings with
the problem of counting list (H — C')-colorings. This result is the key for all the
positive results in this subsection and it appears in [16].

THEOREM 3.2. The list #(H, C, K)-coloring problem can be solved in n*+¢
steps, whenever the list #(H — C')-coloring problem can be solved in O(n°) steps.
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Recalling, once more, that the number of H-colorings is the same as the number
of list H-coloring for an adequate list selection, we get

COROLLARY 3.2. The #(H, C, K)-coloring problem can be solved in n**+¢ steps,
if the list #(H — C)-coloring problem can be solved in O(n) steps.

As mentioned in the introduction, the dichotomy for counting list H-colorings
is the same as for counting H-colorings. Therefore, if we can solve #H-coloring
problem in polynomial time, we can also solve the list #H-coloring problem in
polynomial time.

COROLLARY 3.3. The list #(H, C, K)-coloring and the #(H,C, K)-coloring
problems can be solved in n**¢ steps, if the #(H — C)-coloring problem can be
solved in polynomial time. Where ¢ is a constant independent of k.

3.3. Hardness results. Let us consider negative results giving conditions un-
der which the list #(H, C', K)-coloring remains #P-complete. The following result
has not been published previously and we provide here a complete proof.

THEOREM 3.3. For any parameter assignment (H, C, I{), the list #(H, C, K)-
coloring problem is #P-complete whenever the #(H — C')-coloring problem is #P-
complete.

Proor. Let H = H — C'. We reduce the #H’-coloring problem to the list
#(H, C, K)-coloring problem. Let G be an instance of the H’'-coloring problem.
We construct an instance G’ of the (H, C, K')-coloring problem as follows: Take G
as the disjoint union of GG and a graph F', that consists of k isolated vertices. We
assign to every v € V((7), the list L(v) = V(H') and to every f € V(F'), we assign
the list L(f) = C.

Notice that, from the way we have defined the lists, the additional vertices
can be only mapped to the set of parameterized vertices, but any arrangement
of images is possible. The size of F' guarantees that every parameterized vertex
receives the prescribed number of images. Furthermore, combining an arrangement
of the vertices of F' with an H’-coloring of G we obtain a valid list H-coloring of
(@ AL())).

Therefore, for any H'-colorings of GG there are k! list H-colorings of (G', {L(v)})
and the statement of the theorem follows. O

Putting together Theorems 3.2, 3.3 and the results in [16, 33, 23] we get the
following dichotomy.

THEOREM 3.4. The list #£(H, C, K)-coloringis #P-complete if H—C' has a con-
nected component which is not a complete reflexive graph or a complete irreflexive
bipartite graph. Otherwise the counting problem is in P.

3.4. The decision version. All the positive results for the counting versions
can be translated to their decision versions, however, polynomial time and hardness
results can be reinforced. In [17] another necesary condition for the (H,C, K)-
coloring problem to be in the class FPT was presented. First we need a definition.

We say that a partial weighted assignment (H,C, K) is compact when each
connected component H; of H satisfies one of the following exclusive conditions:

(1) BE(H; —C) =10,
(2) H;[C] is a non-empty reflexive clique with all its vertices adjacent with one
looped vertex of H; — C, or
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Ficure 7. Components for a compact partial weighted assignment
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FIGURE 8. Special cases of components for a compact partial
weighted assignment

(3) V(H;)NC = and H; contains at least one looped vertex.

Figure 7 gives a representation of the types of components allowed in a compact
weighted assignment. Let (H,C, K) be a compact partial weighted assignment.
Notice that if y : V(G) = V(H) is a (H, C, K)-coloring of (7, the total size of the
connected components of ¢ that are mapped to the vertices of some component H;
of type (2), is at least k;, where a; is H; contribution to the total weight.

The next theorem was proved in [17]. The crunch of the proof is an O(n(k +
h)) + v(G) f(k,h)) time algorithm, where v(() is the number of the connected
components of the input graph . The basic ideas of the algorithm are the following:
first, reduce the problem to a compact partial weighted assignment for the particular
components depicted in Figure 8. When G has “many” connected components an
adaptation of the algorithm Count-List-Colorings is used to check whether a “small”
number of them are mapped to the l-components of I, if this is possible plenty
of components are left unmapped, which will allow an extension of the mapping
to the remainning of G. When (' has few connected components, the number of
components of (¢ that can be mapped to the components of H does not depend
on the size of (¢, and a exhaustive search algorithm checks the existence of an
(H,C, K)-coloring.

THEOREM 3.5. If (H,C, K) is compact, then the (H,C, K)-coloring problem,
parameterized by K, belongs to the class FPT.

It is not known any equivalent result for the list (H, C, K')-coloring problem. For
the hardness results, an extension of the argument used in the proof of Theorem 3.3
yields the following result on the complexity of the list (I, C', I{')-coloring problem.
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COROLLARY 3.4. The list (H,C, K)-coloring problem is NP-complete, when-
ever the list (H — C')-coloring problem is NP-complete.

On the other hand, a much more involved argument is presented in [17], which
provides a similar hardness result for the (H, C, K)-coloring problem.

THEOREM 3.6. The (H, ', K)-coloring problem is NP-complete if (H — (') is
not bipartite and it does not contain a loop.

On the positive side, Theorem 3.2 can be extended to get both problems in the
class P.

COROLLARY 3.5. The (H, C, K)-coloring and the list (H, ', K)-coloring prob-
lems can be solved in n**¢ steps, whenever the list (H — C')-coloring can be solved
in O(n®) steps.

The previous result include the particular cases where H — (' is a reflexive
interval graph [25] and where H — (' is an irreflexive graph whose complement is a
circular arc graph of clique covering number two [26]. Furthermore, Theorem 3.6
and Corollary 3.5 provide a dichotomy theorem for the list (H, C', K')-coloring prob-
lem.

THEOREM 3.7. The list (H, C, K)-coloring problem is NP-complete if (H — )
is not a bi-arc graph, otherwise it is in P.

For the (H, C', K)-coloring problem, there is a gap, because the positive results
relate to the dichotomy for the list H-coloring problem, while the negative results
relate to the dichotomy for the H-coloring problem. For some graphs in the gap,
there are negative and positive results depending on the weigthed extension selected.

The next result proved in [17] shows that if I is a graph, for which the list
F-coloring problem is NP-complete, but the F-coloring problem is in P, then F' has
weighted extensions for which the problem falls in P.

THEOREM 3.8. Let Fy be either a bipartite graph or a graph with at least one
loop, and let F; be any graph. Then, the (Fy @ Fy, V(Iy), I)-coloring can be solved
in polynomial time for any partial weighted assignment K.

In the previous theorem, Fy & Fy denotes the graph obtained from Fy and Fy
adding all the edges between vertices in different graphs. It is also worth mentioning
that for any weighted extension of a graph F' for which the F-coloring problem is
in P, the problem is also polynomially solvable in the trivial case K = (0,...,0).

The condition of Theorem 3.6 is not necessary. The next result presents
weighted assignments (H, (', K) for which the (H — C)-coloring problem is in P,
but the (H,C, K)-coloring problem is NP-compete.

THEOREM 3.9. The (H,C, K)-coloring problem is NP-complete for the partial
weighted assignments depicted in Figure 9, provided that (H, (', K) is positive.

Finally, notice that the subgraph induced by the non parameterized vertices in
each of the 3 examples given in Figure 9 have, by Theorem 3.8, another weighted
extension, so that the corresponding parameterized coloring problem belongs to the
class P.
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FIGURE 9. Some hard partial weighted assignments(the big ver-
tices represent the labeled vertices of )

4. Remarks and open problems

The results for all the versions of the H-coloring problem are sumarized in
Tables 1 and 2. Notice that, all the hardness results presented in this paper, can
be extended to the case in which the input graph has degree bounded by some
constant. Several problems remain unsolved, we present some of them together
with some conjectures. We propose other interesting ways to parameterize the H-
coloring problem, and finish by citing some open problems related to lines of attack

#P-hard problems.

4.1. Dichotomy conjectures. The hardness result for the #(H, C, K)-coloring
problem seems more difficult to obtain. The results in [16] provide a partial answer,
by showing #P-completeness when H has the property that no homomorphism from
H to H sends vertices in C' to vertices in V(H) — C.

CONJECTURE 4.1. The #(H, C, K)-coloring is #£P-complete if H—C' has a con-
nected component which is not a complete reflexive graph or a complete irreflexive
bipartite graph. Otherwise the counting problem is in P.

The results in Theorems 3.6 and 3.8 are sharp in the following sense: If F
is a graph where the F-coloring is NP-complete then, for any weighted extension
(H,C,K) of I, the (H,C, K)-coloring is also NP-complete. On the other hand, if
the F-coloring problem is in P then there exist a weighted extension (H,C, K) of I
so that the (H, C, K)-coloring problem is in P. Moreover, the results in Theorem 3.9
and Corollary 3.5 are also sharp, in the sense that if F' is a graph where the list
F-coloring problem is in P then, for any weighted extension (H,C,K) of I, the
(H,C, K)-coloring problem is also in P. We provided some examples where the list
F-coloring problem is NP-complete and I has a weighted extension (H, C, K') such
that the (H, C, K)-coloring problem is also NP-complete.

The above observations indicate that different weighted extensions of some
graphs produce parameterized coloring problems with different complexities. It
seems to be a hard problem to achieve a dichotomy discriminating those parame-
terized assignments (H, C, ) of a given graph F for which the (H,C, K)-coloring
problem is NP-complete or in P. However we conjecture the following.

CONJECTURE 4.2. For any graph F such that the list F-coloring problem is
NP-complete, there is a weighted extension (H,C, K) of F such that the (H, ', K)-
coloring problem is also NP-complete.
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. [

(Hlaclal‘rl) (H27027I(2) (H37037I(3)

F1GURE 10. Three weighted extensions conjectured to be WJl]-
hard when K is parameterized (the big vertices represent the la-
beled vertices of H)

The results on NP-completeness indicate, that the frontier depends not only
on the structure of the graph H — C', but also on the structure imposed by the
weighted vertices. We observe that in all the complexity results described in this
survey, positive or negative, the dichotomy does not depend on the choice of the
numbers in K (when K is positive).

We now fix our attention on conditions classifying the (H, C, K')-coloring prob-
lem in FPT. We conjecture that the condition of Theorem 3.5 is also necessary.

CONJECTURE 4.3. For any partial weighted assignment (H, C, K), the (H, C, K)-
coloring problem is in FPT if (H,C, K) is compact, otherwise the problem is W
[1]-hard.

In support of this conjecture we recall that the parameterized independent set
problem, known to be W [1]-complete [20], satisfies the conjecture.

Conjecture 4.3 is sufficiently general to express several open problems in pa-
rameterized complexity such as

1. (Parameter: k) Does G contain an independent set S, where |S| = k, and
such that G[V(G) — S] is bipartite? (This problem can be seen as a param-
eterization of 3-coloring where some color should be used exactly k times.)

2. (Parameter: k) Is there a set S C V(G), with |S| = k, such that G[V(G)— 5]
is bipartite?

3. (Parameters: k,{) Does (i contain Ky ; as subgraph?

These three problems correspond to the parameterized colorings given in Fig-

ure 10. Observe that the (Hs, Cz, K3)-problem is equivalent to ask if the comple-
ment of (& contains Ky, , as a subgraph.

4.2. Other parameterizations of H-coloring. Other interesting parame-
terizations of the H-coloring problem are obtained by modifying the equality con-
dition on K. We can consider the (H,C,> K)-coloring and the (H,C,< K)-
coloring problems, defined like the (H, |, K)-coloring problem with the difference
that, for any a; € C, the number of preimages of a; is at most k; or at least k;,
respectively. If we consider the first partial weighted assignment in Figure 5, the
(H,C,> K)-coloring problem is equivalent to the (H, | K)-coloring problem and
the (H, C, < K)-coloring problem is trivial. For the second partial weighted assign-
ment in Figure 5, the (H, C, < K)-coloring problem is equivalent to the (H, C, K)-
coloring problem and the (H, C, > K)-coloring problem is trivial.

In the parameterization described in Section 3, we fixed the number of preim-
ages of a set of vertices in an H-coloring. As an H-coloring of G maps also
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(<) Min Cut

F1GURE 11. The graphs (H,C, K) for the parameterized cut as
parameterized colorings

| -coloring | FPT | P | NP-complete |
list H bounded trewidth [15] dichotomy [27]
H bounded trewidth [15] dichotomy [32]
list (H,C, K) E(V—-C)=0[17] dichotomy [17]
(H,C,K) (H,C, K) compact list (H — C')-coloring | (H — C')-coloring
[17] in P [17] NP-hard [17]

TaBLE 1. Complexity of H-coloring problems

the edges of G to edges of H, one could enhance the definition of a (H,C, K)-
coloring by including also restrictions on the number of preimages of a subset of
edges. This can be done by allowing C' to be a subset of V(H) U E(H). As
usual, if 0 is an H-coloring, we define the preimages of an edge e = {a,b} as
0=1(e) = {{v,u} € E(G) | 0(v) = a and O(u) = b}. Both the (H,C, < K)-coloring
and the (H, C, > K)-coloring can be generalized to allow edge subsets in the obvious
way.

An interesting case is the parameterization (H,C, K) (see Figure 11), where
H is the graph with two looped vertices connected by an edge e, C' = {e} and
K = (k). This particular problem is equivalent to the problem of deciding whether
G has an edge cut of size equal to k. Accordingly, the “<”-version and the “>”-
version of the same problem asks for an edge cut of size > k (the decision version
of the min-cut problem, which is in P) and an edge cut of size < k (the decision
version of the maa-cut problem, which is NP-complete) respectively. Moreover, the
max-cut problem is known to be in the class FPT. Recall, that all the problems
in the class MAXNP are also in FPT [10], and furthermore it is known that the
maz-cut problem is MAXSNP-complete [45].

On the other hand, if 1 denotes the vector with all components set to one, the
(H, F(H),> 1)-coloring is the exact H-coloring problem, which is NP-complete [40].

Another interesting parameterization for the list H-coloring, is to set as pa-
rameter the maximum allowed size for each list.

4.3. Other directions. Given the hardness results of this survey, a natural
question is to approximate the counting versions of the H-coloring that are known
to be in #P. As the problem is self reducible, a candidate technique would be
the almost uniform generation, via the Markov chain method, to generate an al-
most uniform sampling. In [11, 22], there are given negative results for uniform
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| -coloring | #PPT | P | #P-complete |
list ##H bounded trewidth [15] dichotomy [16, 33]
#H bounded trewidth [15] dichotomy [23
list #(H, C, K) E(V —C)=10(16] dichotomy [16
list #(H - C) | (H,C,K)
#(H,C,K) E(V —C)=10(16] -coloring irreducible
in P [16] [16]

TaBLE 2. Complexity of the counting H-coloring problems

sampling in the case of some particular selection of H and one positive result for
weighted sampling when H is a tree. It remains a challenging problem, to get more
general results to approximate the #£ H-coloring and the list # H-coloring and their
parameterizations.

Other model of research consider that H has weights on all the vertices. This
weighting of the vertices of H is interpreted as a product measure on the set of
H-colorings [8]. It will be of interest to know if it is posible to have a polynomial
time algorithm for sampling H-colorings accordingly to the probability distribution
induced by the product measure.

Positive and negative complexity results concerning the special case of the
coloring problem in which the degree of the input graph is large were studied
in [24]. Edwards results on colorings were partially extended to the H-coloring
problem in [14]. It will be of interest to extend the results on counting colorings
in [24] to the H-coloring problem.

Acknowledgement. We thank an anonymous referee for improving the quality of
the reading.
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