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Abstract

The Plane Diameter Completion problem asks, given a plane graph G and

a positive integer d, if it is a spanning subgraph of a plane graph H that has

diameter at most d. We examine two variants of this problem where the input

comes with another parameter k. In the first variant, called BPDC, k upper

bounds the total number of edges to be added and in the second, called BFPDC,

k upper bounds the number of additional edges per face. We prove that both

problems are NP-complete, the first even for 3-connected graphs of face-degree at

most 4 and the second even when k = 1 on 3-connected graphs of face-degree at

most 5. In this paper we give parameterized algorithms for both problems that

run in O(n3) + 22O((kd)2 log d)

· n steps.

1 Introduction

In 1987, Chung [3, Problem 5] introduced the following problem: find the optimum way

to add q edges to a given graph G so that the resulting graph has minimum diameter.

(Notice that in all problems defined in this paper we can directly assume that G is

a simple graph as loops do not contribute to the diameter of a graph and the same

holds if we take simple edges instead of multiple ones.) This problem was proved to

be NP-hard if the aim is to obtain a graph of diameter at most 3 [19], and later the

NP-hardness was shown even for the Diameter-2 Completion problem [14]. It is

also know that Diameter-2 Completion is W[2]-hard when parameterized by q [9].

For planar graphs, Dejter and Fellows introduced in [5] the Planar Diameter

Completion problem that asks whether it is possible to obtain a planar graph of
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diameter at most d from a given planar graph by edge additions. It is not known whether

Planar Diameter Completion admits a polynomial time algorithm, but Dejter

and Fellows showed that, when parameterized by d, Planar Diameter Completion

is fixed parameter tractable [5]. The proof is based on the fact that the yes-instances

of the problem are closed under taking minors. Because of the Robertson and Seymour

theorem [18] and the algorithm in [16], this implies that, for each d, the set of graphs G

for which (G, d) is a yes-instance can be characterized by a finite set of forbidden minors.

This fact, along with the minor-checking algorithm in [17] implies that there exists an

O(f(d) · n3)-step algorithm (i.e. an FPT-algorithm) deciding whether a plane graph G

has a plane completion of diameter at most d. Using the parameterized complexity,

this means that Planar Diameter Completion is FPT, when parameterized by

d. To make this result constructive, one requires the set of forbidden minors for each

d, which is unknown. To find a constructive FPT-algorithm for this parameterized

problem remains a major open problem in parameterized algorithm design.

Our results. We denote by S0 the 3-dimensional sphere. By a plane graph G we

mean a simple planar graph G with the vertex set V (G) and the edge set E(G) drawn

in S0 such that no two edges of this embedding intersect. A plane graph H is a a

plane completion (or, simply completion) of another plane graph G if H is a spanning

subgraph of G. A q-edge completion of a plane graph G is a completion H of G where

|E(H)| − |E(G)| ≤ q. A k-face completion of a plane graph G is a completion H of G

where at most k edges are added in each face of G.

In this paper we consider the variants of the Plane Diameter Completion

problem:

Plane Diameter Completion (PDC)

Input: a plane graph G and d ∈ N≥1.

Output: is there a completion of G with diameter at most d?

Notice that the important difference between PDC and the aforementioned problems

is that we consider plane graphs, i.e., the aim is to reduce the diameter of a given

embedding of a planar graph preserving the embedding. In particular we are interested

in the following variants:

Bounded Budget PDC (BPDC)

Input: a plane graph G and q ∈ N, d ∈ N≥1

Question: is there a completion H of G of diameter at most d that is also a q-edge

completion?

Bounded Budget/Face PDC (BFPDC)

Input: a plane graph G and k ∈ N, d ∈ N≥1.

Question: is there a completion H of G of diameter at most d that is also a k-face

completion?

We examine the complexity of the two above problems. Our hardness results are

the following.
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Theorem 1. Both BPDC and BFPDC are NP-complete. Moreover, BPDC is

NP-complete even for 3-connected graphs of face-degree at most 4, and BFPDC is

NP-complete even for k = 1 on 3-connected graphs of face-degree at most 5.

The hardness results are proved in Section 6 using a series of reductions departing

from the Planar 3-Satisfiability problem that was shown to be NP-hard by

Lichtenstein in [15].

The results of Theorem 1 prompt us to examine the parameterized complexity1 of

the above problems. For this, we consider the following general problem:

Bounded Budget and Budget/Face BDC (BBFPDC)

Input: a plane graph G, q ∈ N ∪ {∞}, k ∈ N, and d ∈ N≥1.

Question: is there a completion H of G of diameter at most d that is also a q-edge completion

and a k-face completion?

Notice that when q =∞ BBFPDC yields BFPDC and when q = k BBFPDC yields

BPDC. Our main result is that BBFPDC is fixed parameter tractable (belongs in the

parameterized class FPT) when parameterized by k and d.

Theorem 2. It is possible to construct an O(n3)+22
O((kd) log d) ·(α(q))2 ·n-step algorithm

for BBFPDC.

(In the above statement and in the rest of this paper we use the function α :

N ∪ {∞} → N such that if q =∞, then α(q) = 1, otherwise α(q) = q.)

The main ideas of the algorithm of Theorem 2 are the following. We first observe

that yes-instances of PDC and all its variants have bounded branchwidth (for the

definition of branchwidth, see Section 2). The typical approach in this case is to derive

an FPT-algorithm by either expressing the problem in Monadic Second Order Logic –

MSOL (using Courcelle’s theorem [4]) or to design a dynamic programming algorithm

for this problem. However, for completion problems, this is not really plausible as this

logic can quantify on existing edges or vertices of the graph and not on the “non-existing”

completion edges. This also indicates that to design a dynamic programming algorithm

for such problems is, in general, not an easy task. In this paper we show how to

tackle this problem for BBFPDC (and its special cases BPDC and BFPDC). Our

approach is to deal with the input G as a part of a more complicated graph with

O(k2 · n) additional edges, namely its cylindrical enhancement G′ (see Section 3 for the

definition). Informally, sufficiently large cylindrical grids are placed inside the faces

of G and then internally vertex disjoint paths in these grids can be used to emulate

the edges of a solution of the original problem placed inside the corresponding faces.

Thus, by the enhancement we reduce BBFPDC to a new problem on G′ certified

by a suitable 3-partition of the additional edges. Roughly, this partition consists of

the 1-weighted edges that should be added in the completion, the 0-weighted edges

that should link these edges to the boundary of the face of G where they will be

1For more on parameterized complexity, we refer the reader to [8].
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inserted, and the ∞-weighted edges that will be the (useless) rest of the additional

edges. The new problem asks for such a partition that simulates a bounded diameter

completion. The good news is that, as long as the number of edges per face to be

added is bounded, which is the case for BBFPDC, the new graph G′ has still bounded

branchwidth and it is possible, in the new instance, to quantify this 3-partition of the

graph G′. However, even under these circumstances, to express the new problem in

Monadic Second Order Logic is not easy. For these reasons we decided to follow the

more technical approach of designing a dynamic programming algorithm that leads to

the (better) complexity bounds of Theorem 2. This algorithm is quite involved due to

the technicalities of the translation of the BBFPDC to the new problem. It runs on

a sphere-cut decomposition of the plane embedding of G′ and its tables encode how

a partial solution is behaving inside a closed disk whose boundary meets only (a few

of) the edges of G′. We stress that this encoding takes into account the topological

embedding and not just the combinatorial structure of G′. Sphere-cut decompositions

as well as some necessary combinatorial structures for this encoding are presented in

Section 4. The dynamic programming algorithms is presented in Section 5 and is the

most technical part of this paper.

2 Definitions and preliminaries

Given a graph G, we denote by V (G) (respectively E(G)) the set of vertices (respectively

edges) of G. A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G),

and we denote this by G′ ⊆ G. Also, in case V (G) = V (G′), we say that H is a spanning

subgraph of G. If S is a set of vertices or a set of edges of a graph G, the graph G \ S
is the graph obtained from G after the removal of the elements of S. If S is a set of

edges, we define G[E] as the graph whose vertex set consists of the endpoints of the

edges of E and whose edge set of E.

Distance and diameter. Let G be a graph and let w : E(G) → N ∪ {∞} (w is a

weighting of the edges of G). Given two vertices x, x′ ∈ V (G) we call (x, x′)-path every

path of G with x and x′ as endpoints. We also define w-distG(x, x′) = min{w(E(P )) |
P is an (x, x′)-path in G} and w-diam(G) = max{w-distG(x, y) | x, y ∈ V (G)} (if G

is not connected then w-diam(G) is infinite). When the graph is unweighted then we

use distG and diam instead of w-distG and w-diam.

Plane graphs. To simplify notations on plane graphs, we consider a plane graph G as

the union of the points of S0 in its embedding corresponding to its vertices and edges.

That way, a subgraph H of G can be seen as a graph H where H ⊆ G. The faces

of a plane graph G, are the connected components of the set S0 \G. A vertex v (an

edge e resp.) of a plane graph G is incident to a face f and, vice-versa, f is incident

to v (resp. e) if v (resp., e) lies on the boundary of f . Two faces f1, f2 are adjacent

if they have a common incident edges. We denote by F (G) the set of all faces of G.

The degree of a face f ∈ F (G) is the number of edges incident to f where bridges of G
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count double in this number. The face-degree of G is the maximum degree of a face in

F (G). Given a face f of G, we define BG(f) as the graph whose set of points is the

boundary of f and whose vertices are the vertices incident to f .

A set ∆ ⊆ S0 is an open disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}. Also,

∆ is a closed disk of S0 if it is the closure of some open disk of S0.

Branch decomposition. Given a graph H with n vertices, a branch decomposition

of H is a pair (T, µ), where T is a tree with all internal vertices of degree three and

µ : L→ E(H) is a bijection from the set of leaves of T to the edges of H. For every

edge e of T , we define the middle set mid(e) ⊆ V (H) as follows: if T \ {e} has two

connected components T1 and T2, and for i ∈ {1, 2}, let He
i = H[{µ(f) : f ∈ L∩V (Ti)],

and set mid(e) = V (He
1) ∩ V (He

2).

The width of (T, µ) is the maximum order of the middle sets over all edges of T ,

i.e. max{|mid(e)| : e ∈ T}. The branchwidth of H is the minimum width of a branch

decomposition of H and is denoted by bw(H).

Grid-annulus. Let k and r be positive integers where k ∈ N≥3, r ∈ N≥3. We define

the graph Γk,r as the (k × r)-grid annulus, which is the Cartesian product of a path of

k vertices and a cycle of r vertices. Notice that Γk,r is uniquely embeddable (up to

homeomorphism) in the plane and has exactly two non-square faces (i.e., faces incident

to 4 edges) f1 and f2 that are incident only with vertices of degree 3. We call one of

the faces f1 and f2 the interior of Γk,r and the other the exterior of Γk,r. We call the

vertices incident to the interior (exterior) of Γk,r base (roof ) of Γk,r. Given an edge

e in the base of Γk,r, we define its ceilings as the set of edges of Γk,r that contains e

and whose dual edges in Γ∗k,r form a minimum length path between the duals of the

interior and the exterior face of Γ∗k,r.

We need the following result.

Proposition 1 ([11]). Let G be a planar graph and r, k be integers with r ≥ 3 and

k ≥ 1. Then G has either a minor isomorphic to Γr,k or a branch decomposition of

width at most r + 2k − 2.

An central feature of the PDC problem and its variants is that its yes-instances

have bounded branchwidth.

Lemma 1. There exists a constant c1 such that if (G, d) is a yes-instance of PDC,

then bw(G) ≤ c1 · d. The same holds for the graphs in the yes-instances of BPDC,

BFPDC, and BBFPDC.

Proof. We examine only the case of PDC as a yes-instance of BPDC, BFPDC, and

BBFPDC is also a yes-instance of PDC.

Notice first that if G has a completion of diameter at most d and G′ is a minor2

of some G, then also G′ has a completion H of diameter at most d. Notice also

2A graph G′ is a minor of a graph G if it can obtained applying edge contractions to some subgraph

of G.
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that every completion of the grid annulus Γr+2,r+2 has diameter > r, therefore, if

(G, d) is a yes-instance of PDC, then G cannot contain a Γr+2,r+2 as a minor. From

Proposition 1, G has branchwidth bounded by a linear function of d and the lemma

follows.

3 The reduction

3.1 Cylindrical enhancements

Cylindrical enhancement of a plane graph. Let G be a plane graph. We next

give the definition of the graph G(k) for k ∈ N≥3. Let fi ∈ F (G) and let Ci1, . . . , C
i
ρi be

the connected components of BG(fi). For each Cij , we denote by σij the number of its

edges, agreeing that, in this number, bridge edges count twice and that if Cij consists of

only one vertex, then σij = 1. We then add a copy Γij of Γk,k·σi
j

in the embedding of G

such that Cij is contained in the interior of Γij and all Ci1, . . . , C
i
j−1, . . . , C

i
j+1 . . . , C

i
ρi

are contained in the exterior of Γij (In Figure 1 the edges of each Γij are colored red).

We then add, for each v ∈ Cij , κ(v) · k edges (those around the disks C1, . . . , C4 in

Figure 1) from v to the base of Γij , where κ(v) is the number of connected components

in Cij \ v (in the trivial case where Cij consists of only one vertex v, then κ(v) = 1).

We add these edges in a way that the resulting embedding remains plane and no more

than a set Vv,i,j of k consecutive vertices of the base of Cij are connected with the

same vertex v of Cij ; observe that there is only one way to add edges so to fulfill these

restrictions. Notice that the set Vv,i,j always induces a path Pv,i,j in the resulting

graph except in the case where Cij consists of a single vertex v where Vv,i,j induces a

cycle. In the later case we pick a maximal path in this cycle and we denote it by Pv,i,j .

In the example of Figure 1 the Pv,i,j ’s are the bold paths of the innermost cycle of each

Γij . We apply this enhancement for each connected component of the boundary of each

face of G and we denote the resulting graph by R
(k)
G .

We call a face fi of R
(k)
G non-trivial if B

R
(k)
G

(fi) has more than one connected

components Ci1, . . . , C
i
ρi . Notice that if fi is non-trivial, each Cij is the roof of some

previously added grid-annulus. For each such grid-annulus, let Jj be k consecutive

vertices of its roof. We add inside fi a copy of Γk,k·ρi such that its base is a subset

of fi and let {I1, . . . , Iρi} be a partition of its roof in ρi parts, each consisting of k

consecutive base vertices. In the example of Figure 1, the annulus Γk,k·ρi is the one

with the edges in the middle of the figure and its base is its innermost cycle. For each

j ∈ {1, . . . , ri} we add k edges (depicted as the “interconnecting” edges in Figure 1)

each connecting a vertex of Jj with some vertex of Ij in a way that the resulting

embedding remains plane (again, there is a unique way for this to be done). We apply

this enhancement for each non-trivial face of R
(k)
G and we denote the resulting graph by

G(k). Notice that G(k) is not uniquely defined as its definition depends on the choice of

the sets Jj . From now on, we always consider an arbitrary choice for G(k) and we call
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C1 C2

C3C4

Figure 1: An example of a cylindrical enhancement for k = 3 inside a non-trivial face

of a graph with 4 connected components (i.e., the boundaries of the disks C1, . . . , C4).

G(k) the k-th cylindrical enhancement of G. By the construction of G(k), it directly

follows that |V (G(k))| = O(k2 · n). We say that an edge of G(k) is an expansion edge

if it is an edge of Pv,i,j for some i, j, and v ∈ V (Ci,j). Also we denote by Ḡ(k) the

graph created by G(k) if we contract all its expansion edges and all their ceilings of the

grid-annuli that were added during the construction of R
(k)
G .

Primal-dual drawings. Let G be a connected plane graph. We denote by D(G) the

graph obtained if we draw G together with its dual so that dual edges are intersecting

to a single point and then introduce a vertex to each of these intersection points. We

recursively define D(k)(G) such that D(0)(G) = G and D(k)(G) = Dk−1(D(G)) for

every k ≥ 1. The next proposition is a direct consequence of [13, Lemma 4].

Proposition 2. There exists some constant c such that for every connected plane

graph G, it holds that bw(D(G)) ≤ 2 · bw(G).

Corollary 1. For every connected plane graph G and k ∈ N≥1, it holds that bw(D(k)(G)) ≤
2k · bw(G).
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Lemma 2. If G is a connected plane graph and k ∈ N≥3, then Ḡ(k) is a minor of

D(dlog(k+1)e+1)(G).

Proof. Notice first that Ḡ(3) is a minor of D(3)(G). It is then enough to observe that

for every i ≥ 3, if Ḡ(i) is a minor of D(i)(G), then Ḡ(2i+1) is a minor of D(i+1)(G).

The following lemma indicates that cylindrical enhancements do not considerably

increase the branchwidth of a graph.

Lemma 3. There is a constant c2 such that if G is an n-vertex plane graph and

k ∈ N≥3, then G(k) is 3-connected, bw(G(k)) ≤ c2 · k · bw(G).

Proof. Let H be the graph created from G if we add a vertex vf to each non trivial

face f and for each of the connected components of BG(f), we arbitrarily pick a vertex

and make it adjacent to vf by a path of 2k internal vertices. As the branchwidth

of a non-acyclic graph is the maximum branchwidth of its connected components, it

follows that bw(H) = bw(G). It is also easy to see that G(k) is a minor of H̄(k). From

Lemma 2, H̄(k) is a minor of D(r)(H), where r = dlog(k + 1)e+ 1. By Corollary 1, it

follows that bw(D(r)(H)) ≤ 2r · bw(H) = O(k · bw(G)).

3.2 Edge colorings of new edges.

Let G and H be two plane graphs such that G is a subgraph of H and let q ∈ N∪{∞},
k ∈ N, and d ∈ N≥1. Given a 3-partition p = {E0, E1, E∞} of E(H) \E(G), we define

the function wp : E(H)→ N such that

wp = {(e, 1) | e ∈ E(G)} ∪ {(e, 0) | E ∈ E0} ∪

{(e, 1) | e ∈ E1} ∪ {(e, d+ 1) | E ∈ E∞}.

We say that G has (q, k, d)-extension in H if there is a 3-partition p = {E0, E1, E∞}
of E(H) \ E(G) such that the following conditions hold

A. There is no path in H with endpoints in V (G) that consists of edges in E0,

B. every face F of G contains at most k edges of E1,

C. ∀x, y ∈ V (G),wp-distH(x, y) ≤ d, and

D. |E1| ≤ q.

Given a 3-partition p = {E0, E1, E∞} of E(H) \ E(G) we refer to its elements as

the 0-edges, the 1-edges, and the ∞-edges respectively. We also call the edges of G

old-edges.

Our first step towards our algorithm is to reduce BBFPDC to a problem about

(q, k, d)-extensions of G.

Given a plane graph G and an open set Λ of S0, we define G〈Λ〉 as the graph whose

edge set consists of the edges of G that are subsets of Λ and whose vertex set consists

of their endpoints.
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Disjoint paths. Let G be a graph. We say that two paths in G are disjoint if none of

the internal vertices of a path is a vertex of the other. Given a collection P of pairwise dis-

joint paths ofG, we define L(P) = {{x, y} | x and y are the endpoints of a path in P}.
The proofs of the following proposition can be found in [2].

Proposition 3. Let G be a graph k ∈ N≥1 and let H be a k-face completion of G.

For every face f ∈ F (G), there is a collection P of k disjoint paths in the graph

G(max{3,k})〈f〉 such that E(G〈f〉) = L(P).

Lemma 4. Let G be a plane graph, with q ∈ N ∪ {∞}, k ∈ N≥1 and d ∈ N≥1. Then

(G, q, k, d) is a yes-instance of BBFPDC if and only if G has a (q, k, d)-extension in

G(max{3,k}).

Proof. Assume first that (G, q, k, d) is a yes-instance of BBFPDC and let H be a

completion H of G of diameter at most d that is also a q-edge completion and a k-face

completion. This means that for every f ∈ F (G), the graph Hf = H〈f〉 contains at

most k edges and that the graph Hnew =
⋃
f∈F (H)Hf contains at most q edges. From

Proposition 3, there is a collection Pf of yf = |E(Hf )| internally disjoint paths in

G(max{3,k}). Let E1 be a set of y =
∑
f∈F (G) yf edges obtained if, for every f ∈ F (G),

we pick one edge from each of the paths in Pf . Let E0 = E(
⋃
f∈F (G)

⋃
P∈Pf

) \E1 and

let E∞ = E(Hnew)\(E0∪E1). We now observe that p = {E0, E1, E∞} is a 3-partition

of E(Hnew) = E(G(max{3,k})) \E(G). By its construction, p satisfies conditions 1–4 of

the definition of a (q, k, d)-extension of G in G(max{3,k}) as required.

Let now p = {E0, E1, E∞} is a 3-partition of E(Hnew) = E(G(max{3,k})) \ E(G)

that is a (q, k, d)-extension of G in G(max{3,k}). We construct the graph H by removing

from G(max{3,k}) all edges in E∞ and then, in the resulting graph, contract all edges in

E0. It is easy to observe that H is a completion of G that is also an q-edge completion

and a k-face completion

4 Structures for dynamic programming

For our dynamic programming algorithm we need a variant of branchwidth for plane

graphs whose middle sets have additional topological properties.

Sphere-cut decomposition. Let H be a plane graph. An arc is a subset O of

the plane homeomorphic to a circle and is called a noose of H if it meets H only in

vertices. We also set VO = V (H) ∩O. An arc of a noose O is a connected component

of O \ VO while in the trivial case where VO = ∅, O does not have arcs. A sphere-cut

decomposition or sc-decomposition of H is a triple (T, µ, π) where (T, µ) is a branch

decomposition of H and π is a function mapping each e ∈ E(T ) to cyclic orderings

of vertices of H, such that for every e ∈ E(T ) there is a noose Oe of H where the

following properties are satisfied.

• Oe meets every face of H at most once,
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• He
1 is contained in one of the closed disks bounded by Oe and He

2 is contained in

the other (He
1 and He

2 are as in the definition of branch decomposition).

• π(e) is a cyclic ordering of VOe
defined by a clockwise traversal of Oe in the

embedding of H.

We denote Xe = VOe
and we always assume that its vertices are clockwise enu-

merated according to π(e). We denote by Ae the set containing the arcs of Oe. Also,

if π(e) = [a1, . . . , ak, a1], then we use the notation Ae = {a1,2, a2,3, . . . , ak−1,k, ak,1}
where the boundary of the arc ai,i+1 consists of the vertices ai and ai+1. We also define

H+
e = (V (H), E(H ∪Ae)), i.e., H+

e is the embedding occurring if we add in H the

arcs of Oe as edges. A face of H+
e is called internal if it is not incident to an arc in Ae,

i.e., it is also a face of H. A face of H+
e is marginal if it is a properly included is some

face of H.

For our dynamic programming we require to have in hand an optimal sphere-cut

decomposition. This is done combining the main result of [10] and [20, (5.1)] (see

also [7]) and is summarized to the following.

Proposition 4. There exists an algorithm that, with input a 3-connected plane graph

G and w ∈ N, outputs a sphere-cut decomposition of G of width at most w or reports

that bw(G) > w.

Our next step is to define a series of combinatorial structures that are necessary for

our dynamic programming. Given two sets A and B we denote by AB the set of all

functions from B to A.

(d, k, q)-configurations. Given a set X and a non-negative integer t, we say that the

pair (X , χ) is a t-labeled partition of X if X is a collection of pairwise disjoint non-empty

subsets of X and χ is a function mapping the integers in {1, . . . , |X |} to integers in

{0, . . . , t}. In case X = ∅, a t-labeled partition corresponds to the pair {∅,∅} where ∅
is the “empty” function, i.e. the function whose domain is empty. Let X and A be

two finite sets. Given d, k ∈ N and q ∈ N ∪ {∞}, we define a (d, k, q)-configuration of

(X,A) as a quintuple ((X , χ), (A, α), (F , E), δ, z) where

1. (X , χ) is a 1-labeled partition of X,

2. (A, α) is a k-labeled partition of A,

3. (F , E) is a graph (possibly with loops) where F ⊆ {0, . . . , d+ 1}X ,

4. δ ∈ {0, . . . , d+ 1}X2

, and

5. if q ∈ N, then z ≤ q, otherwise z =∞.

Fusions and restrictions. Let (X1, χ1) and (X2, χ2) be two t-labeled partitions

of the sets X1 and X2 respectively such that Xi = {Xi
1, . . . , X

i
ρ1}, i ∈ {1, 2}. We
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define X1 ⊕ X2 as follows: if x, x′ ∈ X1 ∪ X2 we say that x ∼ x′ if there is a set in

X1 ∪ X2 that contains both of them. Let ∼T be the transitive closure of ∼. Then

X1 ⊕ X2 contains the equivalence classes of ∼T . We now define χ1 ⊕ χ2 as follows:

let X1 ⊕ X2 = {Y1, . . . , Yρ}. Then for each i ∈ {1, . . . , ρ}, we define χ1 ⊕ χ2(i) =

min{t,
∑
X1

i′⊆Yi
χ1(i′) +

∑
X2

i′⊆Yi
χ2(i′)}.

The fusion of the t-labeled partitions (X1, χ1) and (X2, χ2) is the pair (X1 ⊕
X2, χ1 ⊕ χ2) that is a (t+ 1)-labeled partition and is denoted by (X1, χ1)⊕ (X2, χ2).

Given a t-labeled partition (X , χ) of a set X and given a subset X ′ of X we define

the restriction of (X , χ) to X ′ as the t-labeled partition (X ′, χ′) of X ′ where X ′ =

{Xi ∩ X ′ | Xi ∈ X} \ {∅} and χ′ = {(i, χ(i)) | Xi ∩ X ′ 6= ∅} and we denote it by

(X , χ)|X′ . We also define the intersection of (X , χ) with X ′ as the t-labeled partition

(X ′, χ′) where X ′ = {Xi ∈ X | Xi ∩ (X \X ′) 6= ∅} and χ′ = {(i, χ(i)) | Xi ∩X ′′ 6= ∅}
where X ′′ = ∪X′

i∈X ′Xi and we denote it by (X , χ) ∩X ′. Notice that (X , χ)|X′ and

(X , χ) ∩X ′ are not always the same.

5 Dynamic programming

The following result is the main algorithmic contribution of this paper.

Lemma 5. There exists an algorithm that, given (G,H, q, k, d,D, b) as input where

G and H are plane graphs such that G is a subgraph of H, H is 3-connected, q ∈
N ∪ {∞}, k ∈ N, d ∈ N≥1, b ∈ N, and D = (T, µ, π) is a sphere-cut decomposition of

H with width at most b, decides whether G has (q, k, d)-extension in H in (α(q))2 ·
2O(b2 log d)+2O(b log d) · n steps.

Proof. We use the notation Eold = E(G) and Enew = E(H) \E(G), V old = V (G) and

V new = V (H) \ V (G). We choose an arbitrary edge e∗ ∈ E(T ), subdivide it by adding

a new vertex vnew and update T by adding a new vertex r adjacent to vnew. We then

root T at this vertex r and we extend µ by setting µ(r) = ∅. In T we call leaf-edges all

its edges that are incident to its leaves except from the edge er = {r, vnew}. An edge of

T that is not a leaf-edge is called internal. We denote by L(T ) the set of the leaf-edges

of T and we denote by I(T ) the internal edges of T . We also call er root-edge. For each

e ∈ E(T ), let Te be the tree of the forest T \ {e} that does not contain r as a leaf and

let Ee be the edges that are images, via µ, of the leaves of T that are also leaves of Te.

We denote He = H[Ee] and Ve = V (He) and observe that Her = H. For each edge

e ∈ I(T ), we define its children as the two edges that both belong in the connected

component of T \ e that does not contain the root r and that share a common endpoint

with e. Also, for each edge e ∈ E(T ), we define ∆e as the closed disk bounded by

Oe such that G ∩ ∆e = He. Finally, for each edge e ∈ E(T ), we set Xe = mid(e),

V new
e = Ve ∩ V new, V old

e = Ve ∩ V old, Enew
e = Ee ∩ Enew, and Eold

e = Ee ∩ Eold.

Distance signatures and dependency graphs. Let p = {E0
e , E

1
e , E

∞
e } be a 3-

partition of Enew
e . For each vertex v ∈ Ve, we define the (Xe,p)-distance vector
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of v as the function φv : Xe → {0, . . . , d + 1} such that if x ∈ Xe then φv(x) =

min{wp-distGe
(v, x), d+ 1}. We define the (e,p)-dependency graph Ge,p = (Fe,p, Ee,p)

(that may contain loops) where Fe,p = {φv | v ∈ Ve} and such that two (not necessarily

distinct) vertices φ and φ′ of Fe,p are connected by an edge in Ee,p if and only if

there exist v, v′ ∈ Ve such that φ = φv, φ
′ = φv′ and wp-distHe

(v, v′) > d. Notice

that the set Φe = {Ge,p | p is a 3-partition of Enew
e } has at most 2(d+2)|Xe|

elements

because {Fe,p | p is a 3-partition of Enew
e } ⊆ {0, . . . , d+1}Xe and, to each Fe,p, assign

a unique edge set Ee,p. Intuitively, each Fe,p corresponds to a partition of the elements

of Ve such that vertices in the same part have the same (Xe,p)-distance signature.

Moreover the existence of an edge in the (e,p)-dependency graph between two such

parts implies that they contain vertices, one from each part, whose wp-distance in He

is bigger than d.

The tables. Our aim is to give a dynamic programming algorithm running on the

sc-decomposition T . For this, we describe, for each e ∈ E(T ), a table T(e) containing

information on partial solutions of the problem for the graph Ge in a way that the

table of an edge e ∈ E(T ) can be computed using the tables of the two children of e,

the size of each table does not depend on G and the final answer can be derived by the

table of the root-edge er.

We define the function T mapping each e ∈ E(T ) to a collection T(e) of (d, k, q)-

configurations of (Xe,Ae). In particular, Q = ((X , χ), (A, α), (F , E), δ, z) ∈ T(e) iff

there exists a 3-partition p = {E0
e , E

1
e , E

∞
e } of Enew

e such that the following hold:

1. C1, . . . , Ch are the connected components of (V (He), E
0
e ), then

• X = {V (C1) ∩Xe, . . . , V (Ch) ∩Xe} and

• ∀i∈{1,...,h} χ(i) = 1 if Ci contains some vertex of V old
e , otherwise χ(i) = 0.

(The pair (X , χ) encodes the connected components of the 0-edges that contain

vertices of Xe and for each of them registers the number (0 or 1) of the vertices

in V old
e in them. This information is important to control Condition A.)

2. A is a partition of Ae such that two arcs A,A′ ∈ Ae belong in the same set,

say Ai of A if and only if they are incident to the same marginal face fi of H+
e .

Moreover, for each i ∈ {1, . . . , |A|}, α(i) is equal to the number of edges in E1
e

that are inside fi.

(Here (A, α) encodes the “partial” faces of the embedding of Ge that are inside ∆e. To

each of them we correspond the number of 1-edges that they contain in He. This is

useful in order to guarantee that during the algorithm, faces that stop being marginal

do not contain more than k 1-edges, as required by Condition B.)

3. (F , E) is the (e,p)-dependency graph, i.e., the graph Ge,p = (Fe,p, Ee,p).

(Recall that F is the collection of all the different distance vectors of the vertices of

Ve. Notice also that there might be pairs of vertices x, x′ ∈ Ve whose wp-distance
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in Ge is bigger than d. In order for G to have a completion of diameter d, these

two vertices should become connected, at some step of the algorithm, by paths

passing outside ∆e. To check this possibility, it is enough to know the distance

vectors of x and x′ and these are encoded in the set F . Moreover the fact that x

and x′ are still “far away” inside Ge is certified by the existence of an edge (or a

loop) between their distance vectors in F .)

4. For each pair x, x′ ∈ Xe, δ(x, x
′) = min{wp-distHe

(x, x′), d+ 1}.

(This information is complementary to the one stored in F and registers the

distances of the vertices in Xe inside He. As we will see, F and δ will be used in

order to compute the distance vectors as well as their dependencies during the

steps of the algorithm. )

5. There is no path in He with endpoints in V old
e that consists of edges in E0

e .

(This ensures that Condition A is satisfied for the current graph Ge.)

6. Every internal face of G+
e contains at most k edges in E1

e .

(This ensures that Condition B holds for all the internal faces of Ge.)

7. ∀v, v′ ∈ Ve, either wp-distHe
(v, v′) ≤ d or there are two vertices x, x′ ∈ Xe such

that φv(x) + φv′(x
′) ≤ d.

(Here we demand that if two vertices x1, x2 of Ve are “far away” (have wp-distance

> d) inside He then they have some chance to come “close” (obtain wp-distance

≤ d) in the final graph, so that Condition C is satisfied. This fact is already

stored by an edge in E between the two distance vectors of x and x′ and the

possibility that x1 and x2 may come close at some step of the algorithm, in what

concerns the graph Ge, depends only on these distance vectors and not on the

vertices x1 and x2 themselves.)

8. There are at most z edges of E1
e inside the internal faces of G+

e (clearly, this last

condition becomes void when q =∞).

(This information helps us control Condition D during the algorithm.)

Notice that in case Xe = ∅ the only graph that can correspond to the 6th step is the

graph ({∅}, ∅) which, from now on will be denoted by G∅.

Bounding the set of characteristics. Our next step is to bound T(e) for each

e ∈ E(T ). Notice first that |Xe| = |Ae| ≤ b. This means that there are 2O(b log b)

instantiations of (X , χ) and 2O(k+b log b) instantiations of (A, α). As we previously

noticed, the different instantiations of (F , E) are |Φe| = 22O(b log d)

. Moreover, there

are 2O(b2 log d) instantiations of δ and α(q) instantiations of z. We conclude that there

exists a function f such that for each e ∈ V (T ), |T(e)| ≤ f(k, q, b, d). Moreover,

f(k, q, b, d) = α(q) · 2O(b2 log d)+2O(b log d)

.
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The characteristic function on the root edge. Observe that Enew is (k, d, q,w)-

edge colorable in H if and only if T(er) 6= ∅, i.e., ((∅,∅), (∅,∅), G∅,∅, z) ∈ T(er) for

some z ≤ q. Indeed, if this happens, conditions 1–4 become void while conditions 5, 6,

7, and 8 imply that H = He satisfies the conditions A, B, C, and D respectively in the

definition of the (k, d, q,w)-edge colorability of Enew.

The computation of the tables. We will now show how to compute T(e) for each

e ∈ E(T ).

We now give the definition of T(e) in the case where e is a leaf of T is the following:

Given a q ∈ N ∪ {∞}, we define A(q) = {∞} if q =∞, otherwise A(q) = {z | z ≤ q}.
Suppose now that el is a leaf-edge of T where π(el) = [a1, a2, a1] and Ael =

{a1,2, a2,1}.

1. If {a1, a2} ∈ Eold
e , then

T(el) = {
(
({{a1}, {a2}}, {(1, 1), (2, 1)}),

({{a1,2}, {a2,1}}, {(1, 0), (2, 0)}),({
{(a1, 0), (a2,w({a1, a2}))}, {(a1,w({a1, a2})), (a2, 0)}

}
, ∅
)
,

{((a1, a2),w({a1, a2}))}, z
)
| z ∈ A(q)},

2. if {a1, a2} ∈ Enew
e and {a1, a2} ⊆ V old

e , then T(el) = Q1 ∪Q∞ where

Q1 = {
(

({{a1}, {a2}}, {(1, 1), (2, 1)})

({{a1,2, a2,1}}, {(1, 1)})

(
{
{(a1, 0), (a2, 1)}, {(a1, 1), (a2, 0)}

}
, ∅)

{((a1, a2), s)}, z
)
| z ∈ A(q)− {0}}

Q∞ = {
(

({{a1}, {a2}}, {(1, 1), (2, 1)})

({{a1,2, a2,1}}, {(1, 0)})

(
{
{(a1, 0), (a2, d+ 1)}, {(a1, d+ 1), (a2, 0)}

}
,K)

{((a1, a2), d+ 1)}, z
)
| z ∈ A(q)}

(the set K above contains a single edge that is not a loop), and if {a1, a2} ∈ Enew
e

and {a1, a2} * V old
e , then T(el) = Q1 ∪Q∞ ∪Q0 where

Q0 = {
(

({{a1, a2}}, {(1, 1− 〈{a1, a2} ⊆ V new
e 〉)})

({{a1,2, a2,1}}, {(1, 0)})

({{(a1, 0), (a2, 0)}}, ∅)

{((a1, a2), 0)}, z
)
| z ∈ A(q)}.

Assume now that e is a non-leaf edge of T with children el and er, the collection

T(e) is given by join(T(e1),T(e2)) where join is a procedure that is depicted below.
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Notice that Ae is the symmetric difference of Ael and Aer and Xe consists of the

endpoints of the arcs in Ae. We also set XF
e = (Xel ∪Xer ) \Xe.

Procedure join

Input: two collections Cel and Cer of (d, k, q)-configurations of (Xel ,Ael) and (Xer ,Aer ).

Output: a collection Cr of (d, k, q)-configurations of (Xe,Ae)

(1) set Ce = ∅
(2) for every pair (Qel , Qer ) ∈ Cel × Cer , if merge(Qel , Qer ) 6= void,

then let Ce ← Ce ∪ {merge(Qel , Qer )}.
(3) return Ce

It remains to describe the routine merge. For this, assume that it receives as

inputs the (d, k, q)-configurations Ql = ((Xl, χl), (Al, αl), (Fl, El), δl, zl) and Qr =

((Xr, χr), (Ar, αr), (Fr, Er), δr, zr) of (Xel ,Ael) and (Xer ,Aer ) respectively. Procedure

merge(Qel , Qer ) returns a (d, k, q)-configuration ((X , χ), (A, α), (F , E), δ, z) of (Xe,Ae)

constructed as follows:

1. If zr + zr > q, then return void, otherwise z = zl + zr

(This controls the number of 1-edges that are now contained in ∆e)

2. Let (X ′, χ′) = (Xl, χl)⊕ (Xr, χr) and if χ′−1(2) 6= ∅ then return void.

(This compute the “fusion” of the connected components of (V (Hel , E
0
el

)) and

(V (Her , E
0
er )) with vertices in Vel and Ver and makes sure that none of the created

components contains 2 or more 0-vertices.)

3. Let (X , χ) = (X ′l , χ′l)|Ve

(This computes the fusion (X ′l , χ′l) is restricted on the boundary Oe of ∆e.)

4. Let (A′, α′) = (Al, αl)⊕ (Ar, αr) and if α′−1(k + 1) 6= ∅ then return void.

5. Let (A, α) = (Al, αl)⊕ (Ar, αr)|Ae
.

6. Compute the function γ : (Fel ∪ Fer ∪Xe)× (Fel ∪ Fer ∪Xe)→ {0, . . . , d+ 1},
whose description is given latter.

7. Take the disjoint union of the graphs (Fl, El) and (Fr, Er) and remove from it

every edge {φ1, φ2} for which γ(φ1, φ2) ≤ d. Let G+ = (F+, E+) be the obtained

graph.

8. If for some edge {φ1, φ2} ∈ E+ it holds that for every x1, x2 ∈ Ve, γ(φ1, x1) +

γ(φ2, x2) > d, then return void.

9. Consider the function λ : Fl ∪Fr → {1, . . . , d}Xe such that λ(φ) = {(x, γ(φ, x)) |
x ∈ Xe}.
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10. For every φ′ ∈ λ(Fl ∪ Fr), do the following for every set F = λ−1(φ′): identify

in G+ all vertices in F and if at least one pair of them is adjacent in G+, then

add an loop on the vertex created after this identification. Let G = (F , E) be the

resulting graph (notice that F = λ(Fl ∪ Fr)).

11. δ = {((x, x′), γ(x, x′)) | x, x′ ∈ Ve}.

The definition of function γ. We present here the definition of the function γ used

in the above description of the tables of the dynamic programming procedure.

Given a non-empty set X and q ∈ {0, 1} we define

ordq(X) = {π | ∃X ′ ⊆ X : X ′ 6= ∅ ∧ |X ′| mod 2 = q

∧ π is an ordering of X ′}

Given γl and γr, we define γ : (Fel ∪Fer ∪Xe)× (Fel ∪Fer ∪Xe)→ {0, . . . , d+ 1}
by distinguishing the following cases:

1. If (x ∈ Xe \Xer ∧ φ ∈ Fel) or (x ∈ Xe \Xel ∧ φ ∈ Fer ), then

γ(φ, x) = min
{
φ(x),min{φ(p1) +

∑
J1,ρ−1K

δs(i)(pi, pi+1) +

δs(ρ)(pρ, x) | [p1, . . . , pρ] ∈ ord0(XF
e )}

}
,

where s(i) = “l” if 〈x ∈ Xe \Xel〉 = (imod 2), otherwise s(i) = “r”.

2. If (x ∈ Xe \Xel ∧ φ ∈ Fel) or (x ∈ Xe \Xer ∧ φ ∈ Fer ), then

γ(φ, x) = min
{
φ(p1) +

∑
J1,ρ−1K

δt(i)(pi, pi+1) + δt(ρ)(pρ, x)

| [p1, . . . , pρ] ∈ ord1(XF
e )}

}
,

where t(i) = “l” if 〈x ∈ Xe \Xel〉 6= (imod 2), otherwise t(i) = “r”.

3. If x is one of the (at most two) vertices in (Xer ∩Xer ) \XF
e and φ ∈ Fel ∪ Fer ,

then

γ(φ, x) = min
{
φ(x),

min{φ(p1) +
∑

J1,ρ−1K

δu(i)(pi, pi+1) + δu(q)(pρ, x)

| [p1, . . . , pρ] ∈ ordq(XF
e )} | q ∈ {0, 1}

}
where u(i) = “r” if 〈φ ∈ Fel〉 = (imod 2), otherwise u(i) = “l”.

4. If φ, φ′ ∈ Fl ∪ Fr, then

γ(φ, φ′) = min
{
φ(p1) +

∑
J1,ρ−1K

δu(i)(pi, pi+1) + φ′(pρ)

| [p1, . . . , pρ] ∈ ordq(XF
e )
}
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In this equality, q = 1 if φ and φ′ belong in different sets in {Fl,Fr}, otherwise

q = 0. The function u is the same as in the previous case.

5. If x1, x2 ∈ Xe \Xer or x1, x2 ∈ Xe \Xel , then

δ(x1, x2) = min
{
δy(0,x1)(x1, x2),min{δy(0,x1)(x1, p1) +∑

i∈J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ord0(XF
e )}

}
In this equality y(i, x) = “l” if 〈x ∈ Xe \ Xer 〉 = 〈i mod 2 = 0〉 otherwise

y(i, x) = “r”.

6. If x1, x2 belong in different sets is {Xe \Xer , Xe \Xel}, then

δ(x1, x2) = min
{
δy(0,x1)(x1, p1) +

∑
J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ord1(XF
e )
}

The function y is the same as in the previous case.

7. If exactly one, say x2, of x1, x2 belongs in Xer ∩Xer ) \XF
e , then

δ(x1, x2) = min

{
δy(0,x1)(x1, x2),

min
{

min{δy(0,x1)(x1, p1) +
∑

J1,ρ−1K

δy(i,x1)(pi, pi+1) +

δy(0,x2)(pρ, x2) | [p1, . . . , pρ] ∈ ordq(XF
e )}|q ∈ {0, 1}

}}
The function y is the same as in the two previous cases. In case x1 belongs in

Xer ∩Xer ) \XF
e , then just swap the positions of x1 and x2 in the above equation.

8. If both x1, x2 belong in Xer ∩Xer ) \XF
e , then

δ(x1, x2) = min
{
δl(x1, x2), δr(x1, x2),

min{min{δz(0,j)(x1, p1) +∑
J1,ρ−1K

δz(i,j)(pi, pi+1) + δz(q,j)(pρ, x2) |

[p1, . . . , pρ] ∈ ordq(XF
e )}|(q, j) ∈ {0, 1}2}

}
In the previous equality, z(i, j) = “l” if (i+ jmod 2) = 0, otehrwise z(i, x) = “r”.

Running time analysis. It now remains to prove that procedure join runs in

(α(q))2 · 2O(k2)+2O(b log d)

steps. Recall that there exists a function f such that |T(e)| ≤
f(k, q, b, d). Therefore merge will be called in Step (2) at most (f(k, q, b, d))2 times.
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The first computationally non-trivial step of merge is Step 5, where function γ is

computed. Notice that γ has at most ((d+ 1)|Xel
| + (d+ 1)|Xer | + |Xe|)2 = 2O(b·log d)

entries and each of their values require running over all permutations of the subsets of

XF
e that are at most b! = 2O(b·log b). These facts imply that the computation of γ takes

2O(b·log b) steps. As Steps 6–10 deal with graphs of 2O(b·log d) vertices, the running time

of join is the claimed one.

We are now in position to prove the main algorithmic result of this paper.

Proof of Theorem 2. Given an input I = (G, q, k, d) of BBFPDC, we consider the

graph H = G(max{3,k}) whose construction takes O(k2n) steps, because of Lemma 3.

Then run the algorithm of Proposition 4 with (H,w) as input, where w = c1 · c2 · k · d.

If the answer is that bw(H) > w, then, from Proposition 3, tw(G) > c1 · d, therefore,

from Lemma 1, we can safely report that I is a no-instance. If the algorithm of

Proposition 4 outputs a sphere-cut decomposition D = (T, µ) of width at most w =

O(k · d) then we call the dynamic programming algorithm of Lemma 5, with input

(G,H, q, k, d,D, b). This, from Lemma 4, provides an answer to BBFPDC for the

instance I in (α(q))2 · 2O((kd)2 log d)+2O((kd) log d) · n = (α(q))2 · 22O((kd) log d) · n steps and

this completes the proof of the theorem.

6 NP-hardness proofs

In this section we show that the Bounded Budget Plane Diameter Completion

and Bounded Budget/Face Plane Diameter Completion problems are NP-

complete.

Here we consider R2-plane graphs, i.e., graphs embedded in the plane R2. Each

R2-plane graph has exactly one unbounded face, called the outer face, and all other

faces are called inner faces. Take in mind that every S0-plane graph has as many

embeddings in R2 as the number of its faces (each correspond on which face of the

embedding in S0 will be chosen to be the outer face in R2). All our problems can be

equivalently restated on R2-plane graphs. We choose such embeddings because they

facilitate the presentation of the result of this section.

We also need some additional terminology. A walk in a graph G of is a sequence

P = v0, e1, v1, e2, . . . , es, vs of vertices and edges of G such that v0, . . . , vs ∈ V (G),

e1, . . . , es ∈ E(G), the edges e1, . . . , es are pairwise distinct, and for i ∈ {1, . . . , s},
ei = {vi−1, vi}; v0, vs are the end-vertices of the walk. A walk is closed if its end-vertices

are the same. The length of a walk P is the number of edges in P . For a walk P with

end-vertices u, v, we say that P is a (u, v)-walk. A walk is a path if v0, . . . , vs and

e1, . . . , es are pairwise distinct with possible exception v0 = vs, and a cycle is a closed

path. We write P = v0 . . . vs to denote a walk P = v0, e1, . . . , es, vs omitting edges.

Recall that the 3-Satisfiability problem for a given Boolean formula φ = C1 ∧
. . . ∧ Cm with clauses C1, . . . , Cm with 3 literals each over variables x1, . . . , xn, asks
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whether x1, . . . , xn have an assignment that satisfies φ. We write that a literal xi ∈ Cj
(xi ∈ Cj resp.) if this interval is in Cj . For an instance φ of 3-Satisfiability, we define

the graphs Gφ and G′φ as follows. The vertex set of Gφ is {x1, . . . , xn} ∪ {C1, . . . , Cm},
and for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, {xi, Cj} ∈ E(Gφ) if and only if Cj contains

either xi or xi. Respectively, V (G′φ) = {x1, x1, . . . , xn, xn}∪{C1, . . . , Cm} and E(G′φ) =

{{xi, xi}|1 ≤ i ≤ n}∪{{xi, Cj}|xi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪{{xi, Cj}|xi ∈ Cj , 1 ≤
i ≤ n, 1 ≤ j ≤ m}.

Let φ over variables x1, . . . , xn be an instance of 3-Satisfiability such that G′φ
is planar, and let G′ be a plane embedding of G′φ. Let also Rφ = {{xi, xi}|1 ≤ i ≤
n} ⊆ E(G′). We define the bipartite graph H(G′) as the graph with the vertex set

Rφ ∪ F (G′) and the edge set {{e, f}|e ∈ Rφ, f ∈ F (G′) such that e is incident to f}.
We consider the following special variant of Satisfiability.

Plane Satisfiability with Connectivity of Variables

Input: A Boolean formula φ = C1∧ . . .∧Cm with clauses C1, . . . , Cm with at most 3 literals

each over variables x1, . . . , xn such that G′φ is planar, and a plane embedding G′ of G′φ
such that H(G′) is connected.

Output: Is it possible to satisfy φ?

We show that this problem is hard.

Lemma 6. Plane Satisfiability with Connectivity of Variables is NP-

complete.

Proof. It is straightforward to see that Plane Satisfiability with Connectivity

of Variables is in NP. To show NP-hardness, we reduce Planar 3-Satisfiability,

i.e. the 3-Satisfiability problem restricted to instances φ such that Gφ is planar.

This problem was shown to be NP-complete by Lichtenstein in [15].

Let φ = C1 ∧ . . . ∧ Cm over variables x1, . . . , xn be an instance of Planar 3-

Satisfiability. For the plane graph Gφ, we construct its plane embedding G. It is

well known that it can be done in polynomial time, e.g., by the classical algorithm of

Hopcroft and Tarjan [12] or by the algorithm of Boyer and Myrvold [1]. We consequently

consider variables x1, . . . , xn and modify φ and G.

Suppose that a variable xi occurs in the clauses Cj1 , . . . , Cjp(i) . Without loss of

generality we assume that the edges {xi, Cj1}, . . . , {xi, Cjp(i)} are ordered clockwise in

G as shown in Fig. 2 a). We perform the following modifications of φ and G.

• Replace xi by 2p(i) new variables xi,1, . . . , xi,2p(i).

• For k ∈ {1, . . . , p(i)}, replace xi in Cjk by xi,2k−1.

• Construct 2p(i) clauses C1
i , . . . , C

2p(i)
i where Cki = xi,k−1∨xi,k for k ∈ {1, . . . 2p(i)};

we assume that xi,0 = xi,2p(i).

• Modify the current plane graph as it is shown in Fig. 2.3

3Here and further we demonstrate constructions of plane embeddings in figures instead of long

technical formal descriptions.
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Denote the obtained Boolean formula and plane graph by φ̂ and Ĝ respectively. By

the construction, Ĝ is a plane embedding of Gφ̂.

C2p
i

xi

Cj1

Cj2Cjp

Cj1

Cj2Cjp

a) b)

xi,1

xi,3xi,2p−1

xi,2
xi,2p

C1
i

C2
i

Figure 2: Modification of φ and G: a) before the modification and b) after; p = p(i).

We show that φ can be satisfied if and only if φ̂ has a satisfying assignment. Suppose

that the variables have assigned values such that φ = true. For each i ∈ {1, . . . , n}, we

assign the same value as xi for all the variables xi,1, . . . , xi,2p(i) that replace xi in φ̂. It is

straightforward to verify that φ̂ = true for this assignment. Assume now that φ̂ = true

for some values of the variables. Observe that for each i ∈ {1, . . . , n}, the variables

xi,1, . . . , xi,2p(i) that replace xi should have the same value to satisfy C1
i , . . . , C

2p(i)
i . It

remains to observe that if each xi has the same value as xi,1, . . . , xi,2p(i), then φ = true

by the construction of φ̂.

fi
xi,3

Cj1

C2
i

xi,1

C1
i

Cjp

xi,1

xi,2

xi,2

Cj2

C2p
i

xi,2p−1

xi,2p−1 xi,3

xi,2p

xi,2p

Figure 3: Construction of Ĝ′; it is assumed that Cj1 contains xi, Cj2 contains xi and

Cjp(i) contains xi, and p = p(i).

Observe that each variable xi,k in φ̂ occurs in at most 3 clauses, and it occurs at

least once in positive and at least once with negation. It implies that a plane embedding

Ĝ′ of G′
φ̂

can be constructed from Ĝ by “splitting” the variable vertices as shown in

Fig. 3. Clearly, Ĝ′ can be constructed in polynomial time.

We claim that H(Ĝ′) is connected. To see it, observe that Ĝ′ is constructed from G

by replacing each variable-vertex xi by the cycle Li = C1
i xi,1xi,1C

2
i . . . C

1
i (see Fig. 3).
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Respectively, this graph has n new faces that are inner faces of these cycles. All other

faces correspond to the faces of G. Denote by fi the inner face of Li for i ∈ {1, . . . , n}.
Notice that Rφ̂ contains edges from the cycles Li. It follows that each vertex of Rφ̂ is

adjacent to some vertex fi in H(Ĝ′). Hence, to prove the connectivity of H(Ĝ′), it is

sufficient to show that for any two vertices h1, h2 ∈ F (Ĝ′), H(Ĝ′) has a (h1, h2)-walk.

Consider the dual G∗ of Ĝ′. Recall that V (G∗) = F (Ĝ′) and two vertices of G∗ are

adjacent if and only if the corresponding faces of Ĝ′ are adjacent. It is straightforward

to observe that the dual of any plane graph is always connected. Hence, to show

that for any two vertices h1, h2 ∈ F (Ĝ′) of H(Ĝ′), H(Ĝ′) has a (h1, h2)-walk, it is

sufficient to prove that it holds for any two h1, h2 that are adjacent vertices of G∗, i.e.,

adjacent faces of Ĝ′. Suppose that h1 = fi for some i ∈ {1, . . . , n}. Then h2 is a face

corresponding to a face h′2 of G such that the vertex xi lies on the boundary of h′2.

Then by the construction of Ĝ′, there is an edge e = {xi,j , xi,j} of Ĝ′ that lies on the

boundaries of h1 and h2. Because e is a vertex of H(Ĝ′) adjacent to h1, h2, there is

a (h1, h2)-walk in H(Ĝ′). Assume now that h1, h2 are faces of Ĝ′ distinct from fi for

i ∈ {1, . . . , n}. Because h1, h2 are adjacent in G∗, the faces h1, h2 correspond to faces

h′1, h
′
2 of G such that h′1, h

′
2 has a common vertex xi on their boundaries. It implies

that h1, h2 are adjacent to fi in G∗. We already proved that H(Ĝ′) has (fi, h1) and

(fi, h2)-walks. Therefore, H(Ĝ′) has an (h1, h2)-walk.

It completes the proof of connectedness of H(Ĝ′) and the proof of the lemma.

For the proof of our main result, we need some special gadgets. We introduce them

and prove their properties that will be useful further.

Let r ≥ 3 be a positive integer. We construct the graph Wr(v1, . . . , vr) as follows

(see Fig. 4).

• Construct vertices v1, . . . , vr and a vertex u.

• For i ∈ {1, . . . , r}, construct a (vi, u) path xi0 . . . x
i
r of length r, vi = xi0, u = xir.

• For j ∈ {1, . . . , r − 1}, construct a cycle x1j . . . x
r
jx

1
j .

• For i ∈ {1, . . . , r} and j ∈ {1, . . . , r−1}, construct an edge {xi−1j−1, x
i
j}; we assume

that x0j = xrj for j ∈ {0, . . . , r}.

We say that the vertices of V (Wr(v1, . . . , vr)) \ {v1, . . . , vr} are the inner vertices of

the gadget.

Let G be a plane graph with a face f , and let v1 . . . vrv1, r ≥ 3, be a facial walk

for f . We say that G′ is obtained from G by attaching a web to f if G′ is constructed

by adding a copy of Wr(v1, . . . , vr), where the vertices v1, . . . , vr of the gadget are

identified with the vertices with the same names in the facial walk, and embedding

Wr(v1, . . . , vr) if f as is shown in Fig. 5. Notice that some vertices in the facial walk

can occur several times.

Lemma 7. Let G be a plane graph with a face f that has a facial walk of length r ≥ 3,

and let G′ be a plane graph obtained from G by attaching a web to f .
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v5

v1

v2

v3v4

Figure 4: Construction of W5(v1, . . . , v5).

f Wr(v1, . . . , vr)

Figure 5: Attachment of a web.

i) For any two vertices u, v ∈ V (G), distG′(u, v) = distG(u, v). Moreover, any

shortest (u, v)-path in G′ has no inner vertices of Wr(v1, . . . , vr) attached to f .

ii) For any vertex v ∈ V (Wr(v1, . . . , vr)), there is a vertex u ∈ V (G) such that

distG′(u, v) ≤ r.

Proof. Let v1 . . . vrv0 be a facial walk for f . To prove i), it is sufficient to observe

that for all vi, vj , the length of any (vi, vj)-path in Wr(v1, . . . , vr) is greater that the

length of a shortest (vi, vj)-path in G that lies on the boundary of f . The definition of

Wr(v1, . . . , vr) immediately implies ii).

Let h be a positive integer. The graph Mh(u1, u2, u3) is defined as follows (see

Fig. 6).

• Construct vertices u1, u2, u3 and v1, v2, v3.

• For i ∈ {1, 2, 3}, construct a (ui, vi) path xi0 . . . x
i
r of length `, ui = xi0, vi = xih.

• For j ∈ {1, . . . , h}, construct a cycle x1j . . . x
r
jx

1
j .

• For j ∈ {1, . . . , h}, construct edges {x1j−1, x2j}, {x1j−1, x3j} and {x2j−1, x3j}.

We say that the vertices of V (Mh(u1, u2, u3)) \ {u1, u2, u3} are the inner vertices of

the gadget. We also say that u1 is the root and v1 is the pole of M`(u1, u2, u3).

Let G be a plane graph, and let u1 ∈ V (G) be a vertex incident to a face f with

a triangle facial walk u1u2u3u1. Let also ` be a positive integer. We say that G′ is
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v1

u1

u2 u3

Figure 6: Construction of M3(u1, u2, u3).

obtained from G by attaching a mast of height h rooted in u1 to f if G′ is constructed by

adding a copy of Mh(u1, u2, u3), where the vertices u1, u2, u3 of the gadget are identified

with the vertices with the same names in the facial walk, and embedding Mh(u1, u2, u3)

in f . We need the properties summarized in the following straightforward lemma.

Lemma 8. Let ` be a positive integer. Let G be a plane graph, and let u1 be a vertex

of G incident to a face f with a triangle facial walk u1u2u3u1. Let also G′ be a plane

graph obtained from G by attaching a mast of height h rooted in u1 to f .

i) For any two vertices u, v ∈ V (G), distG′(u, v) = distG(u, v). Moreover, any

shortest (u, v)-path in G′ has no inner vertices of Mh(u1, u2, u2) attached to f .

ii) For any vertex v ∈ V (Mh(u1, u2, u2)), distG′(u1, v) ≤ h.

iii) If v is the pole of Mh(u1, u2, u2), then distG′(u1, v) = h and distG′(u2, v) >

h,distG′(u3, v) > h.

iv) For any inner vertices x, y of Mh(u1, u2, u2), distG′(x, y) ≤ h.

Now we are ready to prove the main result of the section.

Proof of Theorem 1. It is straightforward to see that BPDC and BFPDC are in NP.

To show NP-hardness, we reduce Plane Satisfiability with Connectivity of

Variables that was shown to be NP-complete in Lemma 6.

First, we consider BPDC.

Let (φ,G′) be an instance of Plane Satisfiability with Connectivity of

Variables, where φ = C1 ∧ . . . ∧ Cm is a Boolean formula with clauses C1, . . . , Cm

with at most 3 literals each over variables x1, . . . , xn such that G′φ is planar, and

G′ is a plane embedding of G′φ such that H(G′) is connected. Recall that H(G′) is

the bipartite graph with the bipartition of the vertex set (Rφ, F (G′)), where Rφ =

{{xi, xi}|1 ≤ i ≤ n} ⊆ E(G′), and F (G′) is the set of faces of G′, and for e ∈ Rφ and

f ∈ F (G′), {e, f} ∈ E(H(G′)) if and only if the edge e is incident to the face f in G′.

Notice that degH(G′)(e) ≤ 2 for any e ∈ Rφ.

We select an arbitrary vertex r ∈ F (G′) of H(G′). Using the connectedness of

H(G′), we find in polynomial time a tree T of shortest (r, e)-paths for e ∈ Rφ by the
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breadth-first search. We assume that T is rooted in r and it defines the parent-child

relation on T . Let L ⊆ Rφ be the set of leaves of T , and let s = max{distT (r, e)|e ∈ L}.

zi

xi xi

yi yi

wi

vp

b)

xi

yi yi

vc

vp

a)

fi zi

xi

f i fi
f i

Figure 7: Construction of gadgets for {xi, xi}.

We construct the plane graph Ĝ as follows.

i) Construct a copy of G′.

ii) For each vertex f ∈ V (T ) such that f ∈ F (G′), crate a vertex vf embedded in

the face f .

iii) For each e = {xi, xi} ∈ Rφ \ L, denote by p its parent and by c its child

in T , construct vertices yi, yi, zi and edges {xi, yi}, {yi, vp}, {xi, vc}, {xi, zi},
{xi, yi}, {yi, vp}, {xi, vc}, {xi, zi}, {zi, vp} and embed them as is shown in Fig. 7

a). Denote by fi the inner face of the cycle xiyivpzixi and by f i the inner face

of the cycle xiyivpzixi.

iv) For each e = {xi, xi} ∈ L, denote by p its parent in T , construct vertices

yi, yi, zi, wi and edges {xi, yi}, {yi, vp}, {xi, wi}, {xi, zi}, {xi, yi}, {yi, vp}, {xi, wi},
{xi, zi}, {zi, vp} and embed them as is shown in Fig 7 b). Denote by fi the inner

face of the cycle xiyivpzixi and by f i the inner face of the cycle xiyivpzixi.

v) For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, if {xi, Cj} ∈ E(G′) ({xi, Cj} ∈ E(G′)

resp.), replace this edge by a (xi, Cj)-path (by (xi, Cj)-path resp.) of length

2s− distT (r, {xi, xi}).

We denote the constructed at this stage graph by Ĝ1. Observe that Ĝ1 is connected.

Hence, each face has a facial walk. Denote by ` the length of a longest facial walk in

Ĝ1. Now we proceed with construction of Ĝ.

vi) For each face f ∈ F (Ĝ1) distinct from the faces fi, f i for i ∈ {1, . . . , n}, attach a

web to f .

Denote the constructed at this stage graph by Ĝ2. Notice that Ĝ2 is 3-connected due

to attached webs.

vii) For j ∈ {1, . . . ,m}, select a face f of the obtained graph such that Cj is incident

to f and attach a mast of height `+2s rooted in Cj to f (notice that the boundary

of f is a triangle because of attached webs).
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viii) For each e = {xi, xi} ∈ L, attach a mast of height `+ 4s− 1− distT (r, e) rooted

in wi to the face with the facial walk wixixiwi.

ix) For the vertex vr, select a face f with a triangle boundary such that vr is incident

to f (such a face always exists due to attached webs) and attach a mast of height

`+ 8s rooted in vr to f .

Notice that the obtained graph Ĝ is 3-connected because Ĝ2 is 3-connected and

attachments of masts cannot destroy 3-connectivity. Also only the faces fi, f i for

i ∈ {1, . . . , n} have degree 4, and all other faces have degree 3.

To complete the construction of an instance of BPDC, we set q = n and d = 2`+12s.

We show that (φ,G′) is a yes-instance of Plane Satisfiability with Connec-

tivity of Variables if and only if (Ĝ, q, d) is a yes-instance of BPDC.

Suppose that (φ,G′) is a yes-instance of Plane Satisfiability with Connec-

tivity of Variables. Assume that the variables x1, . . . , xn have values such that

φ = true. For i ∈ {1, . . . , n}, if xi = true, then we add an edge {xi, vp} for the parent

p of {xi, xi} in T and embed this edge in fi. Respectively, we add an edge {xi, vp} and

embed this edge in f i if xi = false. Denote the obtained graph by Ĝ′. We show that

diam(Ĝ′) ≤ d.

By the construction of Ĝ1, for any vertex v ∈ V (Ĝ1), distĜ1
(vr, v) ≤ 3s. By

Lemma 7, any vertex v ∈ V (Ĝ2) is at distance at most ` from a vertex of Ĝ1 in Ĝ2.

Hence, for any vertex v ∈ V (Ĝ2), distĜ2
(vr, v) ≤ ` + 3s. Observe also that for any

e = {xi, xi} ∈ L, distĜ′(vr, wi) = distT (r, e) + 1. To show that for any u, v ∈ V (Ĝ′),

distĜ′(u, v) ≤ d, we consider five cases.

Case 1. u, v ∈ V (Ĝ2). Because distĜ2
(vr, u) ≤ ` + 3s and distĜ2

(vr, v) ≤ ` + 3s,

distĜ′(u, v) ≤ distĜ2
(u, v) ≤ 2`+ 6s ≤ d.

Case 2. u, v are vertices of the same mast attached to a face of Ĝ2. By Lemma 8,

distĜ′(u, v) is at most the height of the mast, and we have that distĜ′(u, v) ≤ `+8s ≤ d.

Case 3. u ∈ V (Ĝ2) and v is a vertex of a mast attached to a face of Ĝ2. By

Lemma 8, distĜ′(u, vr) ≤ `+ 8s if the mast is rooted in vr. Suppose that this mast

is rooted in some other vertex z, i.e., z = wi or z = Cj for some i ∈ {1, . . . , n},
j ∈ {1, . . . ,m}. Then distĜ′(u, vr) ≤ ` + 4s − 1 + distĜ1

(z, r) ≤ ` + 8s. Because

distĜ′(vr, v) ≤ distĜ2
(vr, v) ≤ `+ 3s, distĜ′(u, v) ≤ 2`+ 11s ≤ d.

Case 4. u, v are vertices of distinct masts attached to faces of Ĝ2 that are rooted

in z, z′ 6= vr respectively. If z = wi for some i ∈ {1, . . . , n}, then distĜ′(u, vr) ≤
`+ 4s−1−distT (r, e) +distĜ′(vr, wi) ≤ (`+ 4s−1−distT (r, e)) + (distT (r, e) + 1) ≤
` + 4s where e = {xi, xi}. If z = Cj for some j ∈ {1, . . . ,m}, then distĜ′(u, vr) ≤
`+ 2s+ distĜ1(Cj , vr) ≤ `+ 5s. Clearly, the same bounds hold for distĜ′(v, vr). We

have that distĜ′(u, v) ≤ distĜ′(u, vr) + distĜ′(vr, v) ≤ 2`+ 10s ≤ d.

It remains to consider the last case.

Case 5. u, v are vertices of masts attached to faces of Ĝ2 such that u is in the mast

rooted in vr and v is in a mast rooted in z 6= vr. Suppose that z = wi for some

i ∈ {1, . . . , n}. Then e = {xi, xi} ∈ L. We have that distĜ′(u, v) ≤ distĜ′(u, vr) +
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distĜ′(vr, wi)+distĜ′(wi, v) ≤ (`+8s)+(distT (r, e)+1)+(`+4s−1−distT (r, e)) ≤
2`+ 12s ≤ d. Assume that z = Cj for j ∈ {1, . . . ,m}. Then the clause Cj in φ contains

a literal that has the value true. Let xi be such a literal (the case when Cj contains

some xi = true is symmetric). Notice that if xi = true, then for the vertex xi ∈ V (Ĝ′),

distĜ′(xi, vr) = distT (e, r) for e = {xi, xi} by the construction of Ĝ and the selection

of the added edges. Then, distĜ′(u, v) ≤ distĜ′(u, vr)+distĜ′(vr, xi)+distĜ′(xi, Cj)+

distĜ′(Cj , v) ≤ (`+ 8s) + distT (r, e) + (2s− distT (r, e)) + (`+ 2s) ≤ 2`+ 12s ≤ d.

Suppose now that (Ĝ, q, d) is a yes-instance of BPDC. Let A be a set of at most

q edges such that the graph Ĝ′ obtained from Ĝ by the addition of A has diameter

at most d. Because only the faces fi, f i for i ∈ {1, . . . , n} have degree 4 and all other

faces have degree 3, each edge of A has its end-vertices in the boundary of some fi

or f i and is embedded in this face. Using this observation, denote by Ĝ′1 and Ĝ′2 the

graphs obtained from Ĝ1 and Ĝ2 respectively by the addition of A. Let v′r be the pole

of the mast rooted in vr. Because diam(Ĝ′) ≤ d, for any u ∈ V (Ĝ′), distĜ′(v′r, u) ≤ d
and, in particular, it holds for poles of other masts.

Consider masts rooted in wi for e = {xi, xi} ∈ L. For a mast rooted in wi,

denote by w′i its pole. By Lemma 8, distĜ′(v′r, w
′
i) = distĜ′(v′r, vr) + distĜ′(vr, wi) +

distĜ′(wi, w
′
i) = (`+ 8s) + distĜ′

2
(vr, wi) + (`+ 4s− 1−distT (r, e)), and by Lemma 7,

distĜ′
2
(vr, wi) = distĜ′

1
(vr, wi). We conclude that distĜ′

1
(vr, wi) ≤ distT (r, e) + 1.

Because distT (r, e) + 1 ≤ s + 1, a shortest (vr, wi)-path in Ĝ′1 does not contain the

vertices Cj for j ∈ {1, . . . ,m}. We obtain that for every edge e′ = {xh, xh} that lies on

the unique (r, e)-path in T , {xi, vp} ∈ A or {xi, vp} ∈ A where p is the parent of e′ in

T . This holds for each leaf of T . Because Rφ ⊆ V (T ) and k = n, we have that for each

h ∈ {1, . . . , n}, either {xi, vp} ∈ A or {xi, vp} ∈ A where p is the parent of {xh, xh} in

T . For h ∈ {1, . . . , n}, we let the variable xh = true if {xi, vp} ∈ A and xh = false

otherwise. We show that this assignment satisfies φ.

Consider a clause Cj for j ∈ {1, . . . ,m}. To simplify notations, assume that Cj

contains literals xi1 , xi2 , xi3 (the cases when Cj contains two literals and/or some

literals are negations of variables are considered in the same way). Let C ′j be the

pole of the mast rooted in the vertex Cj . We have that distĜ′(v′r, C
′
j) ≤ d. By

Lemma 8,distĜ′(v′r, C
′
j) = distĜ′(v′r, vr) + distĜ′(vr, Cj) + distĜ′(Cj , C

′
j) = (`+ 8s) +

distĜ′
2
(vr, Cj) + (`+ 2s), and by Lemma 7, distĜ′

2
(vr, Cj) = distĜ′

1
(vr, Cj). Therefore,

distĜ′
1
(vr, Cj) ≤ 2s. Let eh = {xih , xih} for h ∈ {1, 2, 3}. By the construction

of Ĝ′, distĜ′
1
(vr, Cj) = min{distĜ′

1
(vr, xih) + (2s − distT (r, eh))|1 ≤ h ≤ 3}. Let

distĜ′
1
(vr, Cj) = distĜ′

1
(vr, xih) + (2s− distT (r, eh)) for h ∈ {1, 2, 3}. It follows that

distĜ′
1
(vr, xih) ≤ distT (r, eh), and this immediately implies that {vp, xih} ∈ A where

p is the parent of eh in T . By the definition, xih = true and, therefore, Cj = true.

This holds for each Cj for j ∈ {1, . . . ,m}, and we conclude that φ = true.

To complete the proof of the NP-hardness of BPDC, it remains to observe that Ĝ

can be constructed in polynomial time.

To show NP-hardness of BFPDC, we use similar arguments.
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Let (φ,G′) be an instance of Plane Satisfiability with Connectivity of

Variables, where φ = C1 ∧ . . . ∧ Cm is a Boolean formula with clauses C1, . . . , Cm

with at most 3 literals each over variables x1, . . . , xn such that G′φ is planar, and G′ is

a plane embedding of G′φ such that H(G′) is connected. As before, we pick an arbitrary

vertex r ∈ F (G′) of H(G′) and find a tree T rooted in r of shortest (r, e)-paths for

e ∈ Rφ with the set of leaves L ⊆ Rφ. Let s = max{distT (r, e)|e ∈ L}.

fi

xi xi

yi yi

wi

vp

b)

xi

yi yi

vc

vp

a)

xi

fi

Figure 8: Construction of gadgets for {xi, xi}.

We construct the plane graph G̃ similarly to the construction of Ĝ above. The only

difference is that Steps iii) and iv) are replaced by the following steps iii∗) and iv∗).

iii∗) For each e = {xi, xi} ∈ Rφ \L, denote by p its parent and by c its child in T , con-

struct vertices yi, yi and edges {xi, yi}, {yi, vp}, {xi, vc}, {xi, yi}, {yi, vp}, {xi, vc}
and embed them as is shown in Fig. 8 a). Denote by fi the inner face of the cycle

xiyivpyixixi.

iv∗) For each e = {xi, xi} ∈ L, denote by p its parent in T , construct vertices yi, yi, wi

and edges {xi, yi}, {yi, vp}, {xi, wi}, {xi, yi}, {yi, vp}, {xi, wi} and embed them

as is shown in Fig 8 b). Denote by fi the inner face of the cycle xiyivpyixixi.

Observe that G̃ can be obtained from Ĝ by the deletion of the vertices z1, . . . , zn, and

for any u, v ∈ V (G̃), distG̃(u, v) = distĜ(u, v). Notice that the obtained graph G̃ is

3-connected, the faces f1, . . . , fn have degree 5, and all other faces have degree 3. To

complete the construction of an instance of BFPDC, we set k = 1 and d = 2`+ 12s.

We show that (φ,G′) is a yes-instance of Plane Satisfiability with Connec-

tivity of Variables if and only if (G̃, k, d) is a yes-instance of BFPDC.

Suppose that (φ,G′) is a yes-instance of Plane Satisfiability with Connec-

tivity of Variables. Assume that the variables x1, . . . , xn have values such that

φ = true. For i ∈ {1, . . . , n}, if xi = true, then we add an edge {xi, vp} for the parent

p of {xi, xi} in T and embed this edge in fi. Respectively, we add an edge {xi, vp}
and embed this edge in fi if xi = false. Denote the obtained graph by G̃′. By exactly

the same arguments as for the proof of the inequality diam(Ĝ′) ≤ d, we have that

diam(G̃′) ≤ d.

Suppose now that (Ĝ, k, d) is a yes-instance of BFPDC. Let A be a set of edges

such that the graph G̃′ obtained from G̃ by the addition of A has diameter at most
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d. Because only the faces f1, . . . , fn have degree 5 and all other faces have degree 3,

each edge of A has its end-vertices in the boundary of some fi and is embedded in this

face. Because k = 1, at most one edge of A is embedded in fi for i ∈ {1, . . . , n}. Let

v′r be the pole of the mast rooted in vr. Because diam(G̃′) ≤ d, for any u ∈ V (G̃′),

distG̃′(v′r, u) ≤ d and, in particular, it holds for poles of other masts. Consider masts

rooted in wi for e = {xi, xi} ∈ L. For a mast rooted in wi, denote by w′i its pole.

Because distG̃′(v′r, w
′
i) ≤ d, by the same arguments that were used above in the proof of

the NP-hardness of BPDC, we obtain that it implies that for each h ∈ {1, . . . , n}, either

{xi, vp} ∈ A or {xi, vp} ∈ A where p is the parent of {xh, xh} in T . For h ∈ {1, . . . , n},
we let the variable xh = true if {xi, vp} ∈ A and xh = false otherwise. To prove that

this assignment satisfies φ, we again use the same arguments as above: it follows from

the fact that for each clause Cj , distG̃′(v′r, C
′
j) ≤ d where C ′j is the pole of the mast

rooted in the vertex Cj .

To complete the proof of the NP-hardness of BPDC, it remains to observe that G̃

can be constructed in polynomial time.

We proved that BPDC is NP-complete for 3-connected planar graphs. By the

Whitney’s theorem (see, e.g., [6]), any two plane embeddings of a 3-connected plane

graphs are equivalent. It gives the following corollary.

Bounded Budget Planar Diameter Completion

Input: A planar graph G, non-negative integers k and d.

Output: Is it possible to obtain a planar graph G′ of diameter at most d from G by adding

at most k edges?

Corollary 2. Bounded Budget Planar Diameter Completion is NP-complete

for 3-connected planar graphs.

7 Discussion

We remark that our algorithm still works for the classic PDC problem when the

face-degree of the input graph is bounded. For this we define the following problem:

Bounded Face BDC (FPDC)

Input: a plane graph G with face-degree at most k ∈ N≥3, and d ∈ N
Question: is it possible to add edges in G such that the resulting embedding remains plane

and has diameter at most d?

We directly have the following corollary of Theorem 2.

Theorem 3. It is possible to construct an O(n3) + 22
O((kd) log d) · n-step algorithm for

FPDC.

To construct an FPT-algorithm for PDC when parameterized by d remains an

insisting open problem. The reason why our approach does not apply (at least directly)

for PDC is that, as long as a completion may add an arbitrary number of edges in each
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face, we cannot guarantee that our dynamic programming algorithm will be applied

on a graph of bounded branchwidth. We believe that our approach and, in particular,

the machinery of our dynamic programming algorithm, might be useful for further

investigations on this problem.

All the problems in this paper are defined on plane graphs. However, one may also

consider the “non-embedded” counterparts of the problems PDC and BPDC by asking

that their input is a planar combinatorial graphs (without a particular embedding).

Similarly, such a counterpart can also be defined for the case of BFPDC if we ask

whether the completion has an embedding with at most k new edges per face. Again,

all these parameterized problems are known to be (non-constructively) in FPT, because

of the results in [18, 16]. However, our approach fails to design the corresponding

algorithms as it strongly requires an embedding of the input graph. For this reason we

believe that even the non-embedded versions of BPDC and BFPDC are as challenging

as the general Planar Diameter Completion problem.
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