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1. INTRODUCTION

In 1990, Golovach [6] observed the following fact: for every Platonic graph G the
edge search number of G is equal to the node search number of its dual. Thus
for example, the edge search number of the dodecahedral graph is equal to the
node search number of icosahedral graph. (See the survey [1] on search games
and related parameters.) Later this result was generalized as follows: for every 2-
connected plane graph G with maximum vertex degree at most three and each face
bordered by at most five edges, the edge search number of G is equal to the node
search number of G∗ [7]. By the well-known relation between search numbers
and the pathwidth of a graph [8], this result implies that for every such graph G,
the pathwidth of G is always between pathwidth(G∗) − 1 and pathwidth(G∗) + 1.
Let us note that 2-connectivity condition is important here because trees can have
arbitrary large pathwidth while their duals are of pathwidth zero. In fact, the results
in [6] triggered the following conjecture of Golovach [6]:

Conjecture 1. For every 2-connected plane graph G the edge search number of
G is equal to the node search number of its dual G∗.

For c ≥ 0, we say that a graph parameter p is c-additively self dual on a subclass
G of plane graphs if for every graph G ∈ G and for its geometrical dual G∗,p(G∗) ≤
p(G) + c. So Conjecture 1 would imply that the pathwidth is 1-additively self dual
on 2-connected plane graphs.

There are two width parameters related to pathwidth, namely, branchwidth and
treewidth, known to be additively self dual. In case of branchwidth, it follows from
the results in [14] that it is 1-additively self dual for planar graphs in general and
0-additively self dual for planar graphs that are not trees. The 1-additively self
duality of treewidth was first claimed in [11] for general planar graphs. The first
proof of this fact appeared in [9] (see also [3] for a simpler proof.)

One of the results obtained in this paper (Section 6) implies that for each number
c ≥ 0 pathwidth is not c-additively self dual on 2-connected plane graphs. This
disproves Conjecture 1. In order to further explore the self duality of pathwidth,
we define a weaker version of it: A graph parameter p is c-multiplicatively self
dual for a subclass G of plane graphs if there exists a constant d ≥ 0 such that
for every graph G ∈ G and its dual G∗, p(G∗) ≤ c · p(G) + d. It is known that
pathwidth is 2-multiplicatively self dual on 2-connected outerplane graphs [2] and
3-self dual on Halin graphs [5]. The main result of this paper is that, for simple
3-connected planar graphs, pathwidth is 6-multiplicatively self dual. Actually we
prove a more general result, by showing that for every polyhedral embedding of
a graph G in some surface of oriented genus g, the pathwidth of G is at most
6 · (pathwidth(G∗) + g − 2), where G∗ is the geometric dual of G (Section 4). On
the other side, we show that on 3-connected planar graphs, pathwidth fails to be
c-multiplicatively self dual for every c < 1.5 (Section 6).
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2. DEFINITIONS

All graphs in this paper are simple, that is, without loops and multiple edges except
if the opposite is explicitly mentioned. For a graph G we denote by V (G) and E(G)
its vertex and edge sets, respectively. We use NG(v) to denote the set of vertices
adjacent to v in G. The degree of v ∈ V (G) is the number of vertices in NG(v).
We denote by K2,3 the complete bipartite graph with a bipartition of sizes two and
three.

Let R be a subset of V (G) and S be subset of E(G). In each case, we set Rc =
V (G) \ R and Sc = E(G) \ S. If S ⊆ E(G), we use the notation V (S) for the set of
endpoints of the edges in S, that is, V (S) = ⋃

{u,v}∈S({u} ∪ {v}). We define

∂GR = {e ∈ E(G) | e ∩ R �= ∅ and e ∩ Rc �= ∅}, and

δGS = V (S) ∩ V (Sc).

In other words, ∂GR contains all edges that have one endpoint in R and one endpoint
in Rc and δGS contains all vertices that are endpoints of edges in S and endpoints
of edges in Sc.

A linear ordering (or just an ordering) L of a set S is a bijection L : S →
{1, . . . , |S|}. Often it will be convenient to denote an ordering by using it to index the
set, so that L(si) = i for 1 ≤ i ≤ n where i will be referred to as the label of si. For a
set S we denote byLS the set of all linear orderings of S. Let L = (s1, . . . , s|S|) ∈ LS

be a linear ordering of S. We define

pref (L) = {{s1, . . . , si} | i ∈ {1, . . . , |S|}.
The cut-width and the linear-width of a graph G (denoted as cw(G) and lw(G),

respectively) are defined as follows:

cw(G) = min
L∈LV (G)

max
R∈pref (L)

|∂GR|

lw(G) = min
L∈LE(G)

max
S∈pref (L)

|δGS|.

A tree decomposition of a graph G is a pair (X, U) where U is a tree and X =
({Xi | i ∈ V (U)}) is a collection of subsets of V (G) such that

(1)
⋃

i∈V (U) Xi = V (G),
(2) for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
(3) for each v ∈ V (G), the set of nodes {i | v ∈ Xi} forms a connected subtree

of U.

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals

max
i∈V (U)

{|Xi| − 1}.
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The treewidth of a graph G is the minimum width over all tree decompositions
of G.

A path decomposition of a graph G is a tree decomposition (X, U) where U is a
path. We denote a path decomposition as a sequence X = (X1, . . . , Xr). The width
of X equals to max1≤i≤r{|Xi| − 1} and the pathwidth of a graph G (we denote it
as pw(G)) is the minimum width over all path decompositions of G. Linear-width
and pathwidth are closely related as indicated by the following result.

Proposition 1 ([5]). For any graph G, pw(G) ≤ lw(G) ≤ pw(G) + 1.

3. SURFACES, DUALS, MEDIALS, AND RADIALS

Let � be a surface. A line in � is subset homeomorphic to (0, 1). An O-arc is a
subset of � homeomorphic to a circle. For a graph G we use the notation (G, �) to
denote an embedding of G in �. A subset of � meeting the drawing only at vertices
of G is called G-normal. If an O-arc is G-normal, then we call it a noose. The length
of a noose is the number of its vertices.

Given a set S ⊆ �, we use the notation S for the closure of S. To simplify
notations we do not distinguish between a vertex of an embedded graph and the
point of � used in the drawing to represent the vertex or between an edge and
the open line segment representing it. That way we consider G as the union of
the points corresponding to its vertices and edges and a subgraph H of G can be
seen as H ⊆ G. We call by face of G every maximal connected component of
� − E(G) − V (G) (every face is an open set). We use the notation V (G), E(G),
and F (G) for the set of the vertices, edges, and faces of G. An edge e (a vertex v)
is incident with a face r if it belongs to its closure.

Representativity [12,13] is the measure of the extent of the local planarity of a
graph embedded in a surface. The representativity (or face-width) rep(G, �) of a
graph embedding (G, �) is the smallest length of a non-contractible noose in �.
If the oriented genus of � is 0, we put rep(G, �) = +∞, We call an embedding
(�, G) polyhedral [10] if G is 3-connected and rep(�, G) ≥ 3.

For a given embedding (G, �), we denote by (G∗, �) its dual embedding. Thus
G∗ is the geometric dual of G. Each vertex v (face r) in (G, �) corresponds to some
face v∗ (vertex r∗) in (G∗, �). Also, given a set S ⊆ E(G), we denote as S∗ the set
of the duals of the edges in S.

Let (G, �) be an embedding and let (G∗, �) be its dual. We define radial graph
embedding (RG, �) of (G, �) (also known as vertex-face graph embedding) as fol-
lows: RG is an embedded bipartite graph with vertex set V (RG) = V (G) ∪ V (G∗).
For each pair e = {v, u}, e∗ = {u∗, v∗} of dual edges in G and G∗, RG contains
edges {v, v∗}, {v∗, u}, {u, u∗}, and {u∗, v}.

The following proposition can be found in [10].

Proposition 2 ([10]). The following conditions are equivalent:
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FIGURE 1. A planar embedding of K4 along with its radial graph and its
medialgraph.

� (G, �) is a polyhedral embedding;
� (G∗, �) is a polyhedral embedding;
� (RG, �) has no multiple edges and every 4-cycle of RG is the border of some

face.

The medial graph embedding (MG, �) of (G, �) is the dual embedding of
the radial embedding (RG, �) of (G, �). Notice that (MG, �) is a �-embedded
4-regular graph. (See Fig. 1 for an example of radial and medial graphs.)

Notice that two dual polyhedral graph embeddings (G, �) and (G∗, �) have
isomorphic radial graphs and medial graphs.

We will also need the following auxiliary result.

Lemma 1. Let (G, �) be a polyhedral embedding and let (MG, G) be its medial
embedding. Then lw(G) ≥ 3 and cw(MG) ≥ 6.

Proof. By the definition of polyhedral embeddings, G is 3-connected and has
at least three vertices. Then for every two edges e, f of G, |δG({e} ∪ {f })| ≥ 3.
Thus lw(G) ≥ 3.

Every vertex of MG is of degree four. Thus for every pair of vertices v, u of MG,
|∂MG

({v} ∪ {u})| ≥ 6 and cw(MG) ≥ 6. �
The definitions of (RG, �) and (MG, �) establish the bijections

ρ : E(G) → F (RG)

mapping the edges of G to the regions of RG, and

µ : E(G) → V (MG)

mapping the edges of G to the vertices of MG. For S ⊆ E(G), we define ρ(S) =
{ρ(e) | e ∈ S} and µ(S) = {µ(e) | e ∈ S}.

4. THE MAIN RESULT

Lemma 2. Let (G, �) and (G∗, �) be dual polyhedral embeddings in the surface
of oriented genus g and let (GM, �) be the medial graph embedding. Then for each
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S ⊆ E(G), |S| ≥ 2,

max{|δG∗S∗|, |δGS|} ≤ |∂MG
µ(S)|
2

≤ 6(min{|δG∗S∗|, |δGS|} + g − 2).

We postpone the proof of Lemma 2 till the next section. Instead, we present the
main result of this paper that follows easily from Lemma 2, and the definitions of
linear-width and cutwidth.

Theorem 1. Let (G, �) and (G∗, �) be dual polyhedral embeddings in the surface
of oriented genus g and let (GM, �) be the medial graph embedding. Then

pw(G∗) ≤ cw(MG)/2 ≤ 6 · (pw(G) + g − 1).

Proof. By Proposition 1, it is enough to prove that

lw(G∗) ≤ cw(MG)/2 ≤ 6 · (lw(G) + g − 2).

Let K = (v1, . . . , vm) be a linear ordering of V (MG) such that |∂MG
R| ≤ k

for every R ∈ pref (K). By Lemma 1, k ≥ 6. The bijection µ maps vertices
of MG to edges of G, and we consider the corresponding linear ordering L =
(µ−1(v1), . . . , µ−1(vm)) of E(G). Let L∗ be the ordering of E(G∗) containing the
dual edges of L in the same order as they appear in L. Let S∗ ∈ pref (L∗). If |S∗| = 1,
then |δGS∗| = 2 < k/2. If |S| ≥ 2, then by Lemma 2, |δGS∗| ≤ |∂MG

µ(S)|/2 ≤ k/2.
Let now L = (e1, . . . , em) be a linear ordering of E(G) with |δGS| ≤ k for

every S ∈ pref (L). By Lemma 1, k ≥ 3. Consider the linear ordering K =
(µ(e1), . . . , µ(em)) of V (MG) and let R ∈ pref (K). If |R| = 1, then |∂GM

(R)|/2 =
2 ≤ 6 · (k + g − 2). If |R| ≥ 2, then |µ−1(R)| ≥ 2 and by Lemma 2, we have that
|∂MG

R|/2 ≤ 6 · (δGµ−1(R) + g − 2) ≤ 6 · (k + g − 2). �

5. PROOF OF LEMMA 2

Let (G, �) and (G∗, �) be dual polyhedral embeddings in a surface of oriented
genus g and let (GM, �) be the medial graph embedding.

For F ⊆ F (G) we define Fc = F (G) \ F and the graph

∂GF = (∪r∈Fr) ∩ (∪r∈Fcr).

In other words, ∂GF is the graph containing the vertices and the edges that are on
the border of faces in F and faces in Fc.

Recall that MG and RM are dual graphs and therefore, for every S ⊆ E(G),
|∂MG

µ(S)| = |E(∂RG
ρ(S))|. By this fact, to prove Lemma 2, it is sufficient to show

that

max{|δG∗S∗|, |δGS|} ≤ |E(∂RG
ρ(S))|

2
≤ 6(min{|δG∗S∗|, |δGS|} + g − 2) (1)
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The set of edges S of G corresponds to the set of faces F of RG, that is, F = ρ(S).
The graph H = ∂RG

F = ∂RG
ρ(S) is a bipartite graph with bipartition V1 = δGS and

V2 = δG∗S∗. We define the bijection ρ∗ : E(G∗) → F (RG) such that for any e∗ ∈
E(G∗), ρ∗(e∗) = ρ(e). Thus V1 = δGρ−1(F ) and V2 = δG∗ρ−1

∗ (F ). This permits to
restate (1) in terms of edges and vertices of H:

max{|V1|, |V2|} ≤ |E(H)|
2

≤ 6(min{|V1|, |V2|} + g − 2) (2)

To proceed with the proof of (2), we need some structural information on H.
We call a graph X �-nicely Eulerian if it satisfies the following properties:

(E1) X is embeddable in �;
(E2) All cycles of X are of even length at least four;
(E3) All vertices X are of even degree at least two;
(E4) X does not contain K2,3 as a subgraph.

Claim 1. H is �-nicely-Eulerian.

Proof. (E1) holds because H is a subgraph of RG. RG is bipartite graph without
(by Proposition 2) multiple edges. Thus all its cycles are of even length at least four
and (E2) follows. To verify (E3), notice that every vertex of H is adjacent to at least
one edge, so the minimum vertex degree in H is at least one. Let v be a vertex of H.
By definition, every edge e of H adjacent to v, is adjacent to a face from F and to a
face from Fc. If there is only one face f ∈ F adjacent to v in RG, then the degree
of v is two. By a simple induction on the number of faces of F adjacent to v in RG,
it follows that the degree of v in H is even.

To prove (E4), assume to the contrary that H contains K2,3. Since H is a subgraph
of RG, we have that RG contains K2,3 as well. It means that there are two vertices
u, v in RG connected by three disjoint paths (v, x, u), (v, y, u), and (v, z, u) of length
two. The union of every two of these paths is a 4-cycle in RG, and by Proposition
2, is a border of some face in RG. This implies that RG = K2,3 (otherwise one of
the three faces formed by the paths should contain a vertex of RG). Then G is a
triangle. But for each subset of edges S of the triangle, the corresponding graph H
contains at most four edges and cannot contain K2,3. �

We now come back to the proof of Equation (2). Recall that H is bipartite
�-nicely Eulerian graph and by (E3), each vertex of Vi, i = 1, 2 has minimum
degree two. This implies that |E(H)| ≥ 2 · |Vi|, i = 1, 2, and the left part of the
inequality (2) follows. Finally, the right part of the inequality (2) holds by the
following claim.

Claim 2. Let H be a bipartite �-nicely Eulerian graph with bipartition (V1, V2)
such that 3 ≤ |V1| ≤ |V2|. Then |E(H)| ≤ 12 · (|V1| + g − 2).

Proof. For every such a graph H, we set θ(H) = ∑
v∈V2

(degH (v) − 2). For sake
of contradiction, let us assume that lemma is not correct. Let H be a counter-example
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with the smallest number θ(H). Thus |E(H)| > 12 · (|V1| + g − 2). First we prove
that θ(H) = 0. In fact, if θ(H) > 0 there is a vertex v ∈ V2 of degree at least four.
Since a polyhedral embedding is a 2-cell embedding, a small neighborhood of the
point v in � is homeomorphic to a disc and it is possible to define a cyclic ordering
of the edges incident to v. Let {v, v1}, {v, v2}, . . . , {v, vr}, where r ≥ 4 and r is
even, be a clockwise ordering of edges incident to v. We define the graph H ′, a
�-respectful v-splitting of H, as a graph obtained from H by replacing v with two
new vertices u and w and by adding edges {u, v1}, {u, v2}, and {w, v3}, . . . , {w, vr}.
Notice that H ′ is also a bipartite �-nicely Eulerian graph with bipartition (V ′

1, V
′
2)

and |V ′
1| = |V1| ≤ |V2| = |V ′

2| − 1 ≤ |V ′
2|. Since |E(H ′)| = |E(H)|, we have that

|E(H ′)| > 12 · (|V ′
1| + g − 2), which is a contradiction, because θ(H ′)=θ(H) − 2.

Therefore θ(H) = 0 which means that all vertices in V2 are of degree two.
We now construct the graph J from H as follows: for every vertex v in V1 we

contract one of its two incident edges. The resulting graph J has no loops because of
property (E2), however, it can have multiple edges. But by property (E4), H excludes
K2,3, and therefore the multiplicity of the edges in J is at most two. We further reduce
J to a graph J ′ by replacing multiple edge by simple ones. By the construction of
J, |V1| = |V (J)| = |V (J ′)| and |V2| = |E(J)| ≤ 2|E(J ′)|. Since J ′ is a minor of
H, we have that J ′ is �-embeddable. As |V (J ′)| = |V1| ≥ 3, by Euler’s formula,
|E(J ′)| ≤ 3(|V (J ′)| + g − 2). This implies that |V2| ≤ 6(|V1| + g − 2). Finally, as
all vertices of V2 are of degree two in H, we have that |E(H)| = 2 · |V2|, which
implies that |E(H)| ≤ 12 · (|V1| + g − 2), a contradiction to the status of H as a
counter-example. �

6. COUNTER EXAMPLES

For every positive integer i, we define graphs Gi recursively, using the graphs C,
M, and L in Figure 2 as ingredients. Notice that the vertices of these graphs that
are not grey are partitioned into white and black triples. Given some graph G with
l white triples W1, . . . , Wl and a graph H ∈ {M, L} we denote as G H the graph
obtained if we take the disjoint union of G and l copies of H, say H1 . . . Hl, and then
identify Wi with the black triple of Hi, i = 1, . . . , l. We use the notation J1 J2 J3

to denote the graph (J1 J2) J3 and the notation J1 J
(α)
2 J3 to denote the graph

J1 J2 . . . J2 J3 where the operation J2 is repeated α times for some α ≥ 0.
Using this notation, and given a positive integer i, we define Gi = C M(i − 1) L.
Thus the graph Gi is obtained from one copy of C, 3

2 · 3i−1
2 = ∑i−1

�=1 3� copies
of M and 3i−1 copies of L. This process is illustrated in Figure 3 for the graph
G2 = C M L.

In what follows, we prove that for every i ≥ 1, pw(Gi) ≥ 3i + 1 (Lemma 3) and
pw(G∗

i ) ≤ 2i + 5 (Lemma 4).
The proof of the first inequality is by induction which will be based on a series of

observations. Before proceeding, it is perhaps appropriate to recall a few definitions.
Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
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FIGURE 2. Graphs C, M, and L.

contracting the edge e; that is, to get G/e we identify the vertices x and y and
remove all loops and duplicate edges. A graph H obtained by a sequence of edge-
contractions is said to be a contraction of G. H is a minor of G if H is a subgraph
of a contraction of G.

Observation 1. The removal from Gi of the gray vertices in C creates three
isomorphic connected components G

j

i , 1 ≤ j ≤ 3. For every i ≥ 2 and 1 ≤ j ≤ 3,
the graph Gi−1 is the minor of G

j

i .

The proof of the next fact is easy, although tedious to write out, and we omit it.

Observation 2. pw(G1) ≥ 4.

Lemma 3. For each i ≥ 1, pw(Gi) ≥ 3i + 1.

Proof. We proceed by induction. For i = 1 the lemma follows from Observation
2. Assume that the statement of the lemma is correct for all graphs Gk, 1 ≤ k < i.

For a sake of contradiction, suppose that pw(Gi) ≤ 3i. Let (X1, . . . , Xt) be a
path decomposition of Gi of width at most 3i. Let G

j

i , j = 1, 2, 3 be the three
isomorphic connected components of the graph obtained from Gi by removing
the gray vertices of C. Pathwidth is a parameter closed under the operation of
taking minors, hence by Observation 1, pw(Gj

i ) ≥ pw(Gi−1). Then, by induction
hypothesis, pw(Gj

i ) ≥ 3i − 2.
We claim that for each 1 ≤ j ≤ 3, there exists an hj, 1 ≤ hj ≤ t, such that |Xhj

|
contains at least 3i − 1 vertices from G

j

i . In fact, if the claim does not hold, then
(X1 ∩ V (Gj

i ), . . . , X1 ∩ V (Gj

i )) is the path decomposition of G
j

i of width at most
3i − 3, which is a contradiction to the fact that pw(Gj

i ) ≥ 3i − 2.
Thus we can choose three indices hj, 1 ≤ j ≤ 3, such that |Xhj

∩ V (Gj

i )| ≥
3i − 1. Notice that the indices h1, h2, and h3 are pairwise distinct because otherwise
there exists an index h, 1 ≤ h ≤ t, such that |Xh| ≥ 6i − 2 > 3i + 1, which is a
contradiction to the assumption pw(Gi) ≤ 3i.

Let us assume w.l.o.g, that h1 < h2 < h3. Then

forj = 1, 3, (Xhj
\ Xh2 ) ∩ V (Gj

i ) �= ∅ (3)

Journal of Graph Theory DOI 10.1002/jgt



ON SELF DUALITY OF PATHWIDTH 51

FIGURE 3. The construction of G2.

To prove (3) observe that, if (3) does not hold, then Xh2 contains at least 3i − 1
vertices of G

j

i , for some j �= 2, and thus |Xh2 | ≥ 6i − 2 > 3i + 1, which is a con-
tradiction to the assumption that pw(Gi) ≤ 3i. By (3), we can choose the vertices
v1 and v3 such that vj ∈ (Xhj

\ X2) ∩ V (Gj

i ), j = 1, 3. By the construction of Gi,
the subgraph of Gi induced by the vertex set V (Gi) \ V (G2

i ) is 3-connected and
therefore v1 is connected with v3 via three vertex disjoint paths that avoid the ver-
tices of V (G2

i ). Let P1, P2, P3 be such paths. The removal of Xh2 from Gi separates
v1 and v3 into different connected components. Therefore, Xh2 contains at least one
internal vertex of each of the paths P1, P2, and P3. But since none of these internal
vertices is in V (G2

i ), the size of Xh2 (which contains at least 3i − 1 vertices of G2
i )

is at least 3i + 2. This is a contradiction to the assumption that pw(Gi) ≤ 3i and
concludes the proof of pw(Gi) ≥ 3i + 1. �

Now we turn to the proof of pw(G∗) ≤ 2i + 5. We need some definitions.
A planar embedding of a simple 3-connected planar graph G is called extended

Halin graph if the graph obtained after removing all vertices incident to its exterior
face is a tree T, which is called the skeleton G. Thus, for example, for each i ≥ 1,
the graph Gi is an extended Halin graph (in Fig. 3 the skeleton of G2 is depicted by
the the bold edges). An outerplane graph is a planar embedding of an outerplanar
graph with every vertex on the exterior face. The weak dual of a plane graph G is
the graph obtained from the dual G∗ by deleting the vertex corresponding to the
exterior face of G.

The following proposition can be found in [2].

Proposition 1 ([2]). Let G be a 2-connected outerplane graph and T be its weak
dual. Then pw(G) ≤ 2 · pw(T ) + 2.

The next observation is crucial for our arguments.
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Observation 3.

� The weak dual of an extended Halin graph G is a 2-connected outerplane
graph H such that the weak dual of H is the skeleton of G.

The following results are also easy known exercises.

Observation 4.

� Let a graph H ′ be obtained from a graph G by placing vertices of degree two
on some edges of H. Then pw(H ′) ≤ pw(H) + 1.

� The pathwidth of a tree of radius k is at most k.

Lemma 4. For each i ≥ 1, pw(G∗
i ) ≤ 2i + 5.

Proof. Let Ti be the skeleton of Gi, and let Hi be the weak dual of Gi. Since Hi is
obtained from G∗

i by removing one vertex, pw(G∗
i ) ≤ pw(Hi) + 1 (the removal of

a vertex cannot decrease pathwidth by more than one). By Observation 4,pw(Ti) ≤
i + 1. By Observation 3, Ti is the weak dual of Hi. By Proposition 3, pw(Hi) ≤
2(pw(Ti) + 1). Putting all together we obtain that

pw(G∗
i ) ≤ pw(Hi) + 1 ≤ 2(pw(Ti) + 1) + 1 ≤ 2i + 5.

�

By Lemmata 4 and 3 we arrive at the following conclusion.

Theorem 2. For every c < 1.5 there is an infinite set of 3-connected planar graphs
that are not c-multiplicatively self dual.

7. DISCUSSIONS

Let G be a subclass of the class of planar graphs. We define

thres(pw,G) = inf{c | pathwidth is c-multiplicatively self dual on G}.
By Theorems 1 and 2, if G is the class of simple 3-connected planar graphs, then
3/2 ≤ thres(pw,G) ≤ 6. Very recently Amini et al. [15] have announced the Proof
of thres(pw,G) ≤ 3.

Using the same machinery as in Lemma 3, it is possible to prove that for each
i ≥ 1, the 2-connected outerplane graph Hi which is the weak dual of Gi, is of
pathwidth at least 2i + 1. (Similar result was also obtained independently in [4].)
However, by Observation 4 and the fact that the removal of a vertex cannot decrease
pathwidth by more than one, we obtain that pw(H∗

i ) ≤ i + 2. Therefore, if G is the
class of 2-connected planar graphs, then 2 ≤ thres(pw,G).
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An interesting open problem here is to find the exact values of thres(pw,G)
when G is the class

� The class of 2-connected planar graphs;
� The class of 3-connected planar graphs.

Are these values equal?

ACKNOWLEDGEMENT

Many thanks to Omid Amini, David Coudert, and Jean-Sebastien Sereni for valuable
comments.

REFERENCES

[1] D. Bienstock, Graph searching, path-width, tree-width and related problems
(a survey), In: Reliability of computer and communication networks (New
Brunswick, NJ, 1989), Vol. 5 of DIMACS Ser Discrete Math Theoret Comput
Sci, Amer Math Soc, Providence, RI, 1991, pp. 33–49.

[2] H. L. Bodlaender and F. V. Fomin, Approximation of pathwidth of outerplanar
graphs, J Algorithms 43 (2002), 190–200.
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