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ING problem, we present a deterministic parameterized algorithm with time complexity
0*(2@r—Dk+o()) 'improving the previous best result 0* (22*+°®))_The algorithm, when ap-
plied to the unweighted 3-sET PACKING problem, has running time 0*(32¥°®) improv-
ing the previous best result 0*(43.62%+°®)) Moreover, for the weighted r-SET PACKING and
weighted rp-MATCHING problems, we give a kernel of size O(k"), which is the first kernel-
ization algorithm for the problems on weighted versions.
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1. Introduction

Matching and packing problems form an important class of NP-hard problems. In particular, the 3D-MATCHING problem
is one of the six “basic” NP-complete problems [7]. In this paper, we are mainly focused on the weighted rb-MATCHING and
weighted r-SET PACKING problems, for r > 3, which are formally defined as follows.

Weighted rD-MATCHING: Given a collection S C Ay x A; x --- x A; of r-tuples and an integer k, where Ay, A;, ..., Ar
are pair-wise disjoint sets and each r-tuple in S has a weight value, find a subcollection S’ of k r-tuples in S with the
maximum weight sum such that no two r-tuples in S’ have common elements, or report that no such subcollection
exists.

Weighted r-sET PACKING: Given a collection S of r-sets (i.e., sets that contain exactly r elements) and an integer k,
where each r-set in S has a weight value, find a subcollection S’ of k r-sets in S with the maximum weight sum such
that no two r-sets in S’ have common elements, or report that no such subcollection exists.

Parameterized algorithms for rD-MATCHING and r-SET PACKING have been an active research line, whose running time
are bounded by a polynomial of the input size n times a function f (k) of the parameter k. First note that the r-SET PACKING
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Table 1

Comparison of deterministic algorithms for matching.
References Time complexity 3DM rDM W3DM WrDM Remark
(4] 0 ((rk)!(rk)*™®) v v v v
[5] o* (25rk—4k (G(Yfrlk)k+k)) v v v v
[11] 0%(12.8™) v v v v
[2] o* (4rk+o(k)) v v v v
Our result 0* (4= Dito(kyy v v v v
[15] 0*(432k+000) v v r = 3only
Our result 0% (16"+00) v v r=3
(1] 0 ((r — DX((r — 1k/e)*=2) v v x x
[9] 0*(200k)) v v X x
[16] 0*(43.62k+00) v X r = 3only
[12] 0%(21.26%) v X r = 3only
[10] 0*(8%) (randomized) v X r =3only

problem is a general extension of the rb-MATCHING problem. Therefore, all parameterized algorithms for r-SET PACKING can
also be used to solve rD-MATCHING. The weighted rp-MATCHING and weighted r-SET PACKING problems were first studied by
Downey and Fellows [4], where a deterministic parameterized algorithm of time complexity 0% ((rk)!(rk)>™) was presented.!
Animproved deterministic algorithm for the weighted rp-MATCHING and weighted r-SET PACKING problems was proposed by
Fellows et al. [5] with running time 0* (2574 (6<r_r1,3k+k)). Liu et al. [11] further reduced the time complexity to 0*(12.8™).

For weighted 3D-MATCHING, Wang and Feng [15] gave a more efficient algorithm of time complexity 0*(7.563kT°®) =
0*(432%t°®)  Currently, the best deterministic algorithms for the weighted rp-MATCHING and weighted r-SET PACKING
problems are due to Chen et al. [2] with time complexity 0* (4%+°®)),

We remark that there is also a very active research line on parameterized algorithms for unweighted versions of the
problems. Using the technique of Greedy Localization, Chen et al. [1] and Jia et al. [8] presented deterministic algorithms
for the unweighted rD-MATCHING and r-SET PACKING problems of time 0*((r — D*((r — 1)k/e)*"=2). Koutis [9] gave an
improved deterministic algorithm of time 0*(2°0®). For the case of r = 3, Liu et al. [12] presented a deterministic algorithm
of time 0*(21.26%) for the unweighted 3D-MATCHING problem, which is currently the best deterministic algorithm for the
unweighted 3D-MATCHING problem. For the unweighted 3-SET PACKING problem, Liu et al. [ 12] gave a deterministic algorithm
of time 0*(97.98%), which was further improved by Wang and Feng [16] with an algorithm of time 0*(43.62%t°®)_This is
currently the best deterministic algorithm for the unweighted 3-seT PACKING problem. It should be pointed out that all these
algorithms [1,8,9,12,16] seem to work only for unweighted versions and cannot be applied to solve the weighted versions.
Very recently, Koutis [10] proposed a randomized algorithm of time complexity 0*(8*) for the unweighted 3D-MATCHING
and 3-SET PACKING problems. However, as remarked in [17], the algorithms in [10] only work for unweighted case and do
not appear to extend to the weighted versions. Moreover, whether the algorithms can be extended to rb-MATCHING and
-SET PACKING for r > 3, and whether the randomized algorithms can be derandomized are still unknown.

In this paper, we study the weighted versions of rD-MATCHING and r-SET PACKING, and develop a different algorithmic
approach to the problems. In particular, after further analyzing the structure of the problems and using (n, k)-universal
sets and the divide-and-conquer methods, we are able to develop a deterministic algorithm of time 0* (47— Dk+o(®)) for the
weighted rD-MATCHING problem, improving the previous best result 0*(4™**+°®)_In fact, our deterministic algorithms for
the weighted cases are even better than the previous best deterministic algorithm for the unweighted cases. For example,
our algorithm for weighted 3D-MATCHING runs in time 0*(16¥+°®) which is much better than the previous best algorithm
of time 0*(21.26%) for unweighted 3D-MATCHING.

Table 1 provides a comprehensive comparison of deterministic algorithms for the rD-MATCHING problems, where “v”
denotes that the algorithm can be applied to the problem, “x” denotes that the algorithm is not applicable to the problem,
and 3DM, W3DM, rDM, and WrDM denote unweighted 3D-MATCHING, weighted 3D-MATCHING, unweighted rD-MATCHING,
and weighted rD-MATCHING, respectively. We have partitioned the algorithms into three groups. In the first group (the
first 5 rows in the table), we compare our algorithm with previous algorithms that are applicable to rD-MATCHING for a
general integer r > 3 and for both weighted and unweighted versions. In the second group, consisting of rows 6-7 in the
table, we compare our algorithm with the best previous algorithm for 3D-MATCHING for both weighted and unweighted
versions. Finally, the last group, consisting of rows 8-12 in the table, lists all previous algorithms that are only applicable
to unweighted version of rD-MATCHING. As we can see, our algorithm improves all previous algorithms significantly, except
the last row, which, as we have mentioned above, seems difficult to be derandomized and/or extended to general integer
r>3.

For the weighted r-SET PACKING problem, we also develop an improved deterministic algorithm. By further analyzing
the structure of the problem, we present an algorithm of time 0* (2"~ Dk+o(®) for weighted r-sET PACKING, improving the

1 Following the recent convention, for a given function f, we will use the notion 0*(f) for O(f - n°1).
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previous best result 0* (22%+t°®)) In particular, for the case of r = 3, our deterministic algorithm for weighted 3-SET PACKING
runs in time 0*(32¥7°®), which is even better than the previous best algorithm of time 0*(43.62%t°®) for the unweighted
3-SET PACKING problem.

Finally, for the weighted r-SET PACKING and rD-MATCHING problems, we develop a polynomial time Kernelization
algorithm that gives the problems a kernel of size O(k"). This gives the first kernelization algorithm for the problems for
their weighted versions.

Before we start our discussion, we give a brief review on the necessary background.

Assume that n and k are integers such that n > k. Let Z, be the set {0, 1, ..., n — 1}. A splitting function over Z, is a
{0, 1} function over Z,. A subset W of Z, is called a k-subset if it contains exactly k elements. Let (W, W;) be a partition of
the k-subset W, i.e., Wo U W; = W and Wy N W; = . We say that a splitting function f over Z, implements the partition
(Wo, W) if f(x) =0forallx € Wy and f(y) = 1forally € Wjy.

Definition ([13]). A set ¥, of splitting functions over Z, is an (n, k)-universal set if for every k-subset W of Z, and for any
partition (Wy, W7) of W, there is a splitting function f in ¥, j that implements (W, W). The size of an (n, k)-universal set
¥, k is the number of splitting functions in ¥, y.

Proposition 1.1 ([13,2]). Thereis an O(n2’“’12'°g2 ky time deterministic algorithm that constructs an (n, k)-universal set ¥,, \ of
size bounded by n2k+12108* k+2,

A function f on Z, is injective from a subset W of Z, if for any two different elements x and y in W, f (x) # f(y).
By Bertrand’s postulate, proved by Chebyshev in 1850 (see [14], Section 5.2), there is a prime number q such that
n < q < 2n. Moreover, the smallest prime number gy between n and 2n can be constructed in time O(n).

Proposition 1.2 ([6]). Let n and k be integers, n > k, and let qo be the smallest prime number such thatn < qq < 2n. For any k-
subset W in Z,, there is an integer z, 0 < z < qq, such that the function g, x , over Z,, defined as g, . (a) = (az mod qo) mod K2,
is injective from W.

2. An improved algorithm for weighted rp-MATCHING

LetS C Ay X --- X A; be a collection of r-tuples. Denote by val'(S) the set of all elements from A; inS, 1 <i < r,and
let Val(S) = U{Zl Val'(S). Without loss of generality, we assume that [Val'(S)| = n for all i. A matching is a collection of
r-tuples in which no two tuples have common elements. A k-matching is a matching of k tuples.

Our improved algorithm for weighted rbD-MATCHING is based on the idea of divide-and-conquer. Let (S, k) be an instance
of weighted rD-MATCHING. Suppose that a k-matching of the maximum weight in S is M*. Let M be the collection of any k/2
r-tuples in M*, and let M3 be the collection of the other k/2 r-tuples in M*.2 Then both M; and M; are (k/2)-matchings. If
we can partition the elements in Val(S) into two subsets V; and V; such that Val(M]) € V; and Val(M;) < V5, then we can
recursively work on two subcollections S; and S, where S; is the subcollection of r-tuples in S in which all elements are in
Vi, fori = 1, 2. Note that for i = 1, 2, M}" is a (k/2)-matching in S;. Therefore, if we can recursively find a (k/2)-matching
M/ of the maximum weight in S, for i = 1, 2, then, since Val(S;) U Val(S;) = @, the union of M} and M} is a k-matching of
the maximum weight in S.

This idea has been used in [2], which developed a deterministic algorithm of time 0*(4™+°®) for the weighted rp-
MATCHING problem. The following observation enables us to further improve the running time of the algorithm. Let
vall(S) = {ay, . .., a,}. Thenitis easy to see that there is an index h such that {ay, . . ., a} contains k/2 elements in Val' (M*)
and {ap,1, ..., a,} contains the other k/2 elements in Val'(M*). In particular, this implies that the maximum weighted
k-matching M* can be partitioned into two (k/2)-matchings M} and M; such that {as, ..., as} contains all elements in
val! (M7) and {ap41, . . ., a,} contains all elements in val! (M3). The index h can be found by enumerating all possible indices
between 1 and n. Therefore, finding the correct partition of the elements in Val!(S) takes at most n rounds.

This idea is implemented in the algorithm WRDM given in Fig. 1, where the function g,  , is as given in Proposition 1.2.

Theorem 2.1. The algorithm WRDM in Fig. 1 correctly solves the weighted rD-MATCHING problem in time 0* (4"~ Dk+o(k)),

Proof. First note that the collection M returned by the algorithm WRDM is initialized as the empty set ¢ in step 4. Only
when step 5.1 of the algorithm finds a k-matching M; in S, does step 5.2 of the algorithm replace M by the k-matching M.
Therefore, if the collection S has no k-matching, then the algorithm WRDM will always correctly return the empty set {.

In consequence, we only need to prove that when the collection S contains k-matchings, the algorithm WRDM(S, k) must
return a k-matching of the maximum weight in S.

Without loss of generality and by renaming the elements, we can assume that the set Val'(S) is the set Z,, and that the set
Val(S) — vall(S) is the set Zr—1yn. In particular, for an h-matching M in S for any integer h, Val' (M) is a subset of h elements
in Z, and Val(M) — Val' (M) is a subset of (r — 1)h elements in Zi—1yn-

We prove the following Claim for the subroutine Matching-ext(S’, z;, z,, h) by induction on the integer h.

2 19 simplify our discussion, we assume that k is even. In case k is odd, we should replace the two k/2’s by | k/2] and [k/2], respectively. Our discussion
will still go through but will be involved in more complicated expressions.
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Algorithm WRDM (S, k)

Input: S € Ay X A; X --+ x A, and an integer k

Output: a maximum weighted k-matching in S if such a matching exists

1. forh = 1to kdo construct a (((r — 1)k)?, (r — 1)h)-universal set Y((r—1)i02,(r—1h>

2. let q; be the smallest prime number such thatn < q; < 2n;

3. let g, be the smallest prime number such that (r — 1)n < q, < 2(r — )m;

4. M=0;

5. for0 <z; <q;and0 <z, < g do

5.1 M; = Matching-ext(S, z, z, k);

5.2 if M, # ¢ and M is a k-matching with weight larger than that of M
thenM = My;

6. return M.

Subroutine Matching-ext(S’, z, z,, h)
Input: a collection S’ of r-tuples and an integer h < k, z; induces a pre-partition of
val'(§"), and z, induces a pre-partition of Val(S") — Val'(5").
Output: an h-matching with maximum weight in S if such a matching exists
1.if h = 1 then return the r-tuple with the maximum weight in S’;
2.M' =@,
3.fori=0tok’ — 1do
for each splitting function f in ¥, _1y2 1), dO
31 Vo={alaeVal'(s)andgun (@ < i}
32 Vy={a|aeVal'(s)and g, (@) > i};
33 Wo={a|aeVal(S) — Val'(s') and f (- o1z, (@) = O};
34 Wiy ={a|aeVal(s) — Val'(s") and f (gr—1yn, -1k (@) = 1};
3.5 let S be the subcollection of r-tuples in S’ whose elements are all in Vo U Wp;
3.6 letS] be the subcollection of r-tuples in S whose elements are all in V; U Wy;
3.7 M, = Matching-ext(S;, z1, 2, h/2);
3.8 M; = Matching-ext(S}, z;, z;, h/2);
3.9 if M| # 0, M; # ¥, and weight(My) + weight(M;) > weight(M")
then M’ = My U M};
4. return M'.

Fig. 1. The algorithm WRDM.

Claim. Let M* be an h-matching of the maximum weight in the collection S’, where S’ C Sand h < k.Ifz; is an integer
that makes the function g,y ,, injective from Val'(M*), and if z, is an integer that makes the function E(r—1)n, =1k, 23
injective from Val(M*) — Val'(M*), then the subroutine Matching-ext(S’, z;, z,, h) returns an h-matching of the
maximum weight in the collection S’.

The Claim obviously holds true for the case h = 1by step 1 of the subroutine (for any given z; and z, ). Now we consider the
case h > 1.Recall that the function g, x ,, is from Z, to Z,2. Since the function g x , is injective from val'(M*), we can assume
that g, x ;, maps the h elements in val' (M*) to h different elements iy, i, . . ., iy in Z2,where0 <i; <ip <--- <ip <k?—1.
Take the index iy, and define

M : the set of h/2 r-tuples in M* such that Va € Val](MS‘),gnJLzl (@) < in2, (1)
M7 : therest h/2 r-tuples in M* such that Vb € Val1(Mf),g,,,h,zl (b) > inj2. (2)
Now consider the set Val(M*)—Val' (M*). First of all, by our assumption, the function 8(r—1)n,(—1)k,zp» Which is from Z _q),

t0 Z((r—1))2, is injective from Val(M*) — Val' (M*). Therefore, the function &(r—1)n,(—1)k,z, Maps the set Val(M*) — val' (M*)
of (r — T)h elements to a set X of (r — 1)h different elements in Z, _y,2. In particular, the function g¢—1)n, (r—1)k.z, maps the

set Val(M{) — val' (Mg) of (r — 1)h/2 elements to a set X, of (r — 1)h/2 different elements in Z,_1),)2, and maps the set
Val(M{) — val! (M7) of (r — 1)h/2 elements to a set X; of (r — 1)h/2 different elements in Z _y2. That is
&r—1n, (- 1k.z, Maps Val(Mg) — Val' (M) to Xo, (3)
8(r—1yn,(r— 1)k z, Maps Val(M7) — Val' (M}) to X;. (4)

Note that (Xp, X;) makes a partition of X (i.e., Xo N X; = @ and Xo U X; = X).
Since X is a subset of (r — 1)h elements in Z,_y)2, by the definition of the (((r — k)2, (r — 1)h)-universal set
Y (r—1)k)2,r—1yn there is a splitting function fo in ¥,_1)42 —1), that implements the partition (Xo, X), that is
fo(a) = Oforalla € Xy, (5)
fo(b) = 1forallb € X;. (6)

Now consider step 3 of the subroutine Matching-ext(S’, z1, z,, h), when the integer i = i/, is picked and the splitting
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function f = fy is picked. For these selections of the index i = i/, and the function f = f, we can derive

val'(M}) €V, and Val'(M}) C vy, (7)

where the first relation is from (1) and step 3.1 of the subroutine, and the second relation is from (2) and step 3.2 of the
subroutine. Moreover, from (3), (5), and step 3.3 of the subroutine, we derive

Val(Mg) — val'(Mg) € W, (8)
and from (4), (6), and step 3.4 of the subroutine, we derive
Val(M}) — Val' (M) € w;. (9)

From (7) and (8), all elements in M are contained in Vo U Wy, and from (7) and (9), all elements in M} are contained
in V; U Wj. By steps 3.5-3.6, the subcollection S; contains the (h/2)-matching Mg, and the subcollection S} contains
the (h/2)-matching M. Note that M§ must be an (h/2)-matching of the maximum weight in S| —otherwise, a maximum
weighted (h/2)-matching in S; plus the (h/2)-matching M{ in S] would form an h-matching whose weight is larger than
that of M*, contradicting the maximality of M*. Since the function gy ,, is injective from val' (M*), the integer z; also
makes the function g, i ,, injective from val' (M{). Similarly, the integer z, makes the function g —1)n, -—1)k,z, injective from
Val(Mg) — val! (Mg). Therefore, by the induction hypothesis, the subroutine call Matching-ext(S;, z1, z2, h/2) in step 3.7
will return an (h/2)-matching M of the maximum weight in S, where the (h/2)-matching M should have the same weight
as that of M. Completely similar analysis shows that the subroutine call Matching-ext(S, z1, z;, h/2) in step 3.8 will return
an (h/2)-matching M} of the maximum weight in S}, where the (h/2)-matching M; should have the same weight as that
of M7. Since the collections Sj and S{ share no common elements, the union of My and Mj is an h-matching in S’ whose
weight is equal to that of the maximum weighted h-matching M*, we conclude that after step 3.9 of the subroutine for the
selections of the index i = ij,/; and the splitting function f = fo, the collection M" becomes an h-matching of the maximum
weight in §’. In particular, when the subroutine Matching-ext(S’, z, z,, h) returns at step 4, it returns an h-matching of the
maximum weight in S’.

This completes the proof of the Claim.

Now we return back to the algorithm WRDM(S, k). Suppose that the collection S has a k-matching M of the maximum
weight. Since the set Val' (M) is a subset of k elements in val'(S) = Z,, by Proposition 1.2, thereisanintegerz;,0 < z; < q1,
such that the function g, i ;, is injective from val'(M). Similarly, since the set Val(M) — Val'(M) is a subset of (r — 1)k
elements in Val(S) — val'(s) = Z—1)n, by Proposition 1.2, there is an integer z;, 0 < z; < ¢y, such that the function
8(r—1)n,(—1)k,z, 1S injective from Val(M) — Val' (M). When these values of z; and z, are selected in step 5 of the algorithm, by
the Claim proved above, the subroutine call Matching-ext(S, z;, z3, k) in step 5.1 will return a k-matching of the maximum
weight in S. Now by step 5.2 of the algorithm, the final collection M returned by the algorithm in step 6 is a k-matching of
the maximum weight in S.

This completes the proof of the correctness for the algorithm WRDM.

Finally, we study the complexity of the algorithm WRDM. First consider the subroutine Matching-ext(S’, z1, z,, h). By
Proposition 1.1, the (((r — 1)k)?, (r — 1)h)-universal set ¥, _;yy2. 1), cONtains at most ((r — 1)k)22(r=Dh+12log? (= Dh)+2
splitting functions. Therefore, the loop body, i.e., steps 3.1-3.9, of the subroutine is executed at most

2 2
I ((r — 1)k)220~DIH121087(=DI+2 < H=Dh2 (1 _ 1))2212108" (= DR+2
— 2(r—1)hk2212logz((r—1)k)+2 log((r—1)k)+2
< Z(r—l)h212logz((r—l)k)+4log((r—l)k)+2
times (note that r > 3). Each execution of the loop body takes time O(m) to construct the subcollections S/ and S’, and
0 1
recursively calls the subroutine twice to search for (h/2)-matchings in the subcollections, where m = O(n") is the size of

the collection S’. Therefore, if we let T(m, h) be the running time of the subroutine Matching-ext(S’, z;, z,, h), then the
function T (m, h) satisfies the following recurrence relation:

T(m,1) <cm;

T(m, h) < 2(r—l)h212logz((r—l)k)+4log((r—1)k)+2 - (2T(m, h/2) + cm),

where ¢ is a constant. Using Corollary 2.2 in [2] (where we replace k by h, n by m, a by 2"!, t(n) by cm, and cy by
212 log2 ((r—1k)+4log((r—1)k)+2 )‘ we derive

T(m, h) = O(m4(r—1)h20(10g3((r—l)k))) _ O*(4(r—1)h+o(k))'

This shows that the running time of the subroutine Matching-ext(S’, z;, z,, h) is bounded by 0* (47— Dh+o(®)y,
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Since the prime number ¢, is bounded by 2n, and the prime number g, is bounded by 2(r — 1)n, and by Proposition 1.1,
the (((r — 1)k)2, (r — 1)h)-universal sets for all h in step 1 can be constructed in time 0*(2¥t°®)  from the analysis for
the subroutine Matching-ext(S’, z;, z», h), now it is straightforward to conclude that the running time of the algorithm
WRDM(S, k) is bounded by 0* (4~ Dk+o)y

This completes the proof of the theorem. O

We point out that the algorithm WRDM(S, k) can be used directly to solve the unweighted rb-MATCHING problem in time
0* (40— Dk+o)) which improves the previous best deterministic algorithm of running time 0* (4**+°®)) for the problem [2].
Applying the algorithm WRDM(S, k) to the unweighted 3D-MATCHING problem, we get a deterministic algorithm of running
time 0* (16¥+°%) for the problem, improving the previous best deterministic algorithm of running time 0*(21.26%) for the
problem [12].

3. An improved algorithm for weighted r-SET PACKING

In this section, we are focused on the weighted r-SET PACKING problem. A packing of r-sets is a collection of r-sets in
which no two r-sets intersect. A k-packing is a packing of k r-sets. Let (S, k) be an instance of weighted r-SET PACKING, whose
objective is to find a k-packing with the maximum weight in S. For a collection S’ of r-sets, let Val(S”) be the set of all elements
occurring in S’. Without loss of generality, let Val(S) = Z, = {0, 1, ..., n — 1} so that the elements in Val(S) can be related
by inequalities.

The method we used in the previous section on rD-MATCHING is not applicable to r-SET PACKING: the elements in Val(S)
cannot be partitioned into “columns”. Nevertheless, the following observation helps us to “partially” apply the method.

Define the pivot of an r-set o to be the smallest element in o.

Lemma 3.1. LetP = {01, 03, . .., oy} be a k-packing of the maximum weight in the collection S, sorted in increasing order by the
pivots of the r-sets. For each i, 1 < i < k, let a; be the pivot of the r-set ;. Then for alli, 1 < i < k, no r-set among {01, . . . , O}
can contain any elements in {ay, . . ., a;}.

Proof. Since the r-sets o1, 03, ..., 0y are sorted in increasing order by their pivots, for each j,j > i, the smallest element
in o (i.e., the pivot of ;) is larger than all elements in {a, ..., a;}. Thus, the r-set o; cannot contain any elements in
{aq,...,q}. O

In particular, if we pick the pivot ay, of the r-set oy, in the maximum weighted k-packing P = {071, 02, ..., ok}, whichis
sorted in increasing order by pivots,® then all r-sets in the (k/2)-packing Py = {071, ..., 0} /2} have their pivots smaller than
or equal to ai/,, and all r-sets in the (k/2)-packing Py = {o}/241, - . ., 0} have their pivots larger than a/,. Unfortunately,
an r-set o; in Py, where i < k/2, may contain an element a that is a pivot for some r-set not in P and a > ai,. Therefore,
we cannot simply partition the collection S into two subcollections Sy and S; based on pivots, then construct maximum
weighted (k/2)-packings in Sy and S;, and combine them into a maximum weighted packing in S.

On the other hand, the element ay/, at least indicates the fact that if we want to construct two disjoint subcollections
So and S; from S such that Py and P; are maximum weighted (k/2)-packings in Sg and Sy, respectively, then by Lemma 3.1,
all pivots ay, . .., ax/» should be in Sy. Therefore, we only need to concentrate on properly partitioning the rest (r — 1/2)k
elements in the k-packing P into the two subcollections S and S;.

Let fo be a function on Val(S). Define fy(S) to be a collection of r-sets constructed by the following process. Initially,

fo(S) = 0.

1. Foreachr-seto = {by, by, ..., b/ }inS,iffo(b;) # fo(b;) foralli # j, constructanr-setfo(o) = {fo(b1), fo(b2), ..., fo(b;)}
of the same weight and add it to fy(S);
2. If there are multiple copies of an r-set ¢’ in fy(S), then remove all copies of ¢’ from fy(S) except the one with the largest
weight.
For a k-packing P’ = {07, ..., 0} in fo(S), there is a k-packing P = {071, ..., oy} of the same weight in S, where for each
i, fo(o;) = o]. Moreover, the k-packing P can be easily constructed from P’ in time O(km), where m is the total number of
r-sets in S. In particular, the weight of a maximum weighted k-packing in fy(S) cannot be larger than that of a maximum
weighted k-packing in S.
Now we are ready for our algorithm WRSP for weighted r-SET PACKING, as given in Fig. 2.

Theorem 3.2. The algorithm WRSP correctly solves the weighted r-SET PACKING problem in time 0* (23— Dk+o()y,

Proof. The function g, ; , in step 4.1 of the algorithm WRSP is as given in Proposition 1.2, which maps each element in Z,
to an element in Z 2. First note that in the algorithm WRSP, the collection P is initialized to the empty set ¢ in step 3. The

collection P becomes a k-packing in S only when step 4.3 of the algorithm finds a k-packing in S. Moreover, by the remark
before the theorem, when P is a k-packing in S, a k-packing P in S of the same weight can be constructed in time O(km),

3 Again, to simplify our discussion and expressions, we assume that k is an even number.



J. Chen et al. / Theoretical Computer Science 412 (2011) 2503-2512 2509

Algorithm WRSP (S, k)
Input: a collection S of r-sets such that Val(S) = Z,, and an integer k
Output: a maximum weighted k-packing in S if such a packing exists

1. for h = 1to kdo construct a ((rk)?, (2r — 1)h/2)-universal set Y2, 2r—1)h/2)5
2. let g be the smallest prime number such thatn < q < 2n;

3. P=¢;

4. forz=0toq— 1do

4.1 S zgn,rk,z(s):

42 P, = Packing-ext(S, k);

43 if Py is a k-packing with weight larger than that of P then P = Py;

5. return a k-packing P in S whose weight is equal to that of P.

Subroutine Packing-ext(S’, h)
Input: a collection S’ of r-sets such that Val(S") C Z 2 and an integer h < k
Output: a maximum weighted h-packing in S’ if such a packing exists

1. if h = 1 then return the r-set with the maximum weight in S’;

2. let{a;, az, ..., a;} be the set of pivots of r-sets in S’, sorted in increasing order;
3. P =g

4. fori=h/2tot —h/2do

4.1 for each splitting function f in W2 or_1)n/> dO

4.2 Vo ={a,aa,...,a};

43 Wy = {x | x € Val(§') — Vp and f (x) = 0};

4.4 W, ={x|xeVallS) —Vyandf(x) = 1};

45 let S be the subcollection of S’ that contains only elements in W U Vo;
4.6 let S be the subcollection of S’ that contains only elements in W;

4.7 Pj = Packing-ext(Sy, h/2);  P; = Packing-ext(S;, h/2);

4.8 if Py # @, P{ # ¥ and weight(P;) + weight(P,) > weight(P")
then P’ = P UPy;

5. returnP’.

Fig. 2. The algorithm WRSP.

where m is the total number of r-sets in S. Therefore, if the collection S has no k-packing, then the algorithm WRSP will
always correctly return the empty set (.

As a result, we only need to prove that when S contains k-packings, the algorithm WRSP must return a k-packing
with the maximum weight in S. For this, we first prove that if a collection S’ contains an h-packing, then the subroutine
Packing-ext(S’, h) returns an h-packing of the maximum weight in S’. Our proof is by induction on h.

The Claim obviously holds true for the case h = 1 by step 1 of the subroutine. Now consider the case when h > 1. Let
P* = {01, 02, ..., oy} be an h-packing of the maximum weight in S’, where the r-sets are sorted in increasing order by their
pivots, and for each i, let b; be the pivot of o;. Note that all pivots b; appear in the set {a;, a,, . . ., a;} constructed in step 2 of
the subroutine. In particular, we can assume b/, = a;.

Let P; = {o1,...,0np2}, and P} = {04241, ..., 0y). Consider the two disjoint sets Yo = Val(P;) — {ai, ..., a;} and
Y; = Val(P}). The set Y, has at most (r — 1)h/2 elements because {by, ..., by/»} is a subset of {ay, ..., a;} (note that some
a;in {ay, ..., g;} that is not a pivot of any r-set in P; can appear in Py ). The set Y; has exact (rh)/2 elements. Let Y; be any
superset of Yy that is disjoint from Y; and has exact (r —1)h/2 elements. Then, the set Y = YjUY isaset of exact (2r —1)h/2
elements in the set Z > (recall that we assume Val(S") C Z2).

By the definition of the ((rk)?, (2r — 1)h/2)-universal set, there is a splitting function f* in Y92, 2r—1yh/2 SUch that (1)
f*(x) = 0for all x in Y (in particular f*(x) = 0 for all x in Yp), and (2) f*(x) = 1 for all x in Y;. Now consider step 4 of the
subroutine when i = j (i.e., when a; = by,/;) and when f = f*. By the above discussion, we have Val(Py) € W, U V; and
Val(P{) € W (note that by Lemma 3.1, no element in {as, ..., a;} is in Val(P{)). Therefore, P; and P} are (h/2)-packings in
the subcollections Sj and S}, respectively. By the induction hypothesis, step 4.7 returns a maximum weighted (h/2)-packing
P} in S; and a maximum weighted (h/2)-packing P; in Sj. Since the subcollections S, and S; contain no common elements,
the union Py U P{ is an h-packing in S’. Since the weight of P is not smaller than that of P} and the weight of P{ is not smaller
than that of P{, and P* = P§ U P} is a maximum weighted h-packing in S’, we conclude that after the execution of the loop
with the values i = jand f = f*, the collection P’ becomes a maximum weighted h-packing in S’. Since step 4.8 of the
subroutine can never produce an h-packing of weight larger than that of P*, the subroutine Packing-ext(S’, h) must return
in step 5 a maximum weighted h-packing in S’. This completes the proof that if S’ contains h-packings, then the subroutine
Packing-ext(S’, h) must return a maximum weighted h-packing in S’.

To complete the proof for the correctness for the algorithm WRSP(S, k), let Py, be a maximum weighted k-packing in
S, and let Y.« be the set of rk elements in P,.x. By Proposition 1.2, there is an integer z*, 0 < z* < g, such that the function
Zn.rk.z+ 15 injective from Ypa. Therefore, when z = z* in step 4 of the algorithm WRSP, the collection gy, r ,+ (Pmax) has the
same weight as that of Ppa, and is a maximum weighted k-packing in S (note that the weight of a maximum weighted k-
packing in S cannot be larger than that of Pp,,). By what we have proved for the subroutine Packing-ext, step 4.2 of the
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algorithm will produce a maximum weighted k-packing P, in S and step 4.3 will ensure that the collection P is a k-packing
in S whose weight is equal to that of Py.x. Finally, step 5 of WRSP returns a maximum weighted k-packing in S.

We now analyze the complexity of the algorithm. First consider the subroutine Packing-ext. By our assumption,
Val(S") € Zy2. Thus, the set of pivots in step 2 of the subroutine has at most (rk)? elements (ie., t < (rk)?). By

Proposition 1.1, the ((rk)?, (2r — 1)h/2)-universal set W2 ,_1)/> has at most (rk)22@r=Dh/2+121082(2r=Dh/2+2 gplitting

functions. Therefore, the loop of steps 4.2-4.8 of the subroutine is executed at most (rk)*22~Dh/2+12108*(2r=Dh/2+2 jmes,
Each execution of the loop, not counting the recursive calls, takes time O(m), where m is the number of r-sets in S’.
Let T(m, h) be the running time of the subroutine Packing-ext. Then we have

T(m,1) <cm;
T(m, h) < (rk)42(2r7])h/2+]2logz((erl)h/Z)*FZ (Cm 4 ZT(m, h/z))
< 2(2r71)h/2212logz(rk)+4log(rk)+2(cm + 2T (m, h/2))

A

where c is a constant, and we have used the fact h < kand (2r — 1)/2 < r. Using Corollary 2.2 in [2], where we replace k

by h, n by m, a by 22"=D/2, ¢(n) by cm, and ¢, by 212108 tK+4108(+2 (note that both r and k are independent of h and m), we
derive

T(m, h) — O(m2(2r—l)h20(10g3(rk))) — O*(Z(Zr—1)h+o(k)).

This shows that the complexity of the subroutine Packing-ext(S’, h) is 0* (2@ ~Vh+o®) In particular, step 4.2 of the
algorithm WRSP takes time 0* (22— Dk+o(y

By Proposition 1.1, the ((rk)2, (2r — 1)h/2)-universal sets Wk, 2r—1yy2 for all hin step 1 of the algorithm WRSP can be
constructed in time 0* (2@ ~Dk/2+0()) The prime number q is bounded by 2n. Therefore, the running time of the algorithm
WRSP(S, k) is bounded by 0* (2 —Vk+00)) ‘This completes the proof of theorem. O

We point out that the algorithm WRSP(S, k) can be directly applied to solve the unweighted r-SET PACKING problem in
time 0* (2@ —Dk+o(®)) "and improves the previous best result 0*(22%+°®)) [2]. In particular, when applying the algorithm
WRSP(S, k) to the unweighted 3-SET PACKING problem, we solve unweighted 3-SET PACKING in time 0*(32¢+°®) improving
the previous best result 0*(43.62¢+°®) [16].

4. Kernelization for weighted matching and packing

In this section, we present an 0*(k") kernel for the weighted r-seT PACKING problem (thus, also for the weighted rp-
MATCHING problem).

Lemma 4.1. Let (S, k) be an instance of weighted r-SET PACKING, where S contains k-packings. Let as, . . ., a,_q be r — q elements
inVal(S), 0 < q <r — 1.IfS has more than (rk)? r-sets that contain all a4, . . ., ar_gq, then there is a proper subcollection S’ of S,
S’ C S, that contains a maximum weighted k-packing in S.

Proof. We prove the lemma by induction on q. The lemma is trivially true for the case g = 0: if the collection S contains
more than (rk)° = 1 copies of an r-set that consists of the r elements aj, . . ., a;, then we can remove all but the one with
the largest weight of these copies. It is obvious that the resulting proper subcollection S’ of S contains a maximum weighted
k-packing in S.

Now consider the general case of ¢ > 0.LetT = {07, ..., On, Ont1, - - - , 0t} be the collection of all r-sets in S that contain
all elements ay, .. ., a,_q, sorted by their weights in non-increasing order, where h = (rk)?and t > h = (rk)9. Let P* be a
maximum weighted k-packing in S.

Case 1. If P* has no r-set that contains all elements ay, .. ., a,_gq, or if P* contains an r-set o; in T with i < h, then the

proper subcollection " = S — {o;} of S contains P* (note that h < t and that no other r-set in P* can be in T), and the lemma
is proved.

The remaining case is that P* contains an r-set o; in T with i > h. We divide this case into two subcases.

Case2.1.Ifanr-setojin T withj < h contains no element in Val(P*) —{a, ..., a,_q}, then (P* —{0;}) U{0o;} is a maximum
weighted k-packing in S that is contained in the proper subcollection S’ = S — {o;} (note that by the ordering of T and by
the definition of P*, the weight of o; must be equal to the weight of 0;) and the lemma is proved.

Case 2.2. Every r-set in {071, ..., o3} contains at least one element in Val(P*) — {as, ..., a,—¢}. Then {01, ..., oy, 0}}
is a collection of more than h = (rk)? r-sets in T that contain all elements aj, ..., a,_q plus at least one element in
Val(P*) — {ay, ..., ar—q}. Since there are r(k — 1) 4+ q < rk elements in Val(P*) — {a;, ..., a,—4} (note that g < r), there is
at least one element b in Val(P*) — {ay, ..., a;_q} such that more than (rk)?=1 r-setsin T (thus in S) contain ther — (g — 1)
elements {a, ..., a-_q, b}. Now by the induction hypothesis, there is a proper subcollection S" of S that contains a maximum
weighted k-packing in S.

This completes the proof of the lemma. O

Now we can conclude with our main theorem in this section.
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Theorem 4.2. There is a polynomial time kernelization algorithm for the weighted r-SET PACKING problem that, on an instance
(S, k), produces an instance (S’, k) where S’ is a subcollection of S and S” has at most (rk)" = O(k") r-sets, such that if S contains
k-packings then S’ contains a maximum weighted k-packing in S.

Proof. First note that S’ is a subcollection of S. Therefore, if S contains no k-packings, then it is impossible for S’ to contain
a k-packing. Therefore, in the following, we can assume that S contains k-packings.

On a collection S of more than (rk)" r-sets, our kernelization algorithm works by repeatedly applying the following
procedure:

Reduce(S)

1. forg=0tor — 1do

1.1 foreveryr —qelementsay, ..., d,_q in Val(S) do

1.2 if there are more than (rk)? r-sets in S that contain all ay, . . ., a,—q
1.3 then remove from S the r-set o; that contains all ay, . . ., a,—4

1.4 and has the smallest weight, Return;

2. remove from S the r-set o/ that has the smallest weight; Return.

We must show that the procedure Reduce works correctly.

Case A. The procedure Reduce(S) returns at step 1.4. Then there are an integer q,0 < q < r — 1, and r — q elements
aj, ... ar_q such that S has more than (rk)? r-sets that contain all a5, . . ., a,_g. If this is in Case 1 or Case 2.1 as described
in the proof of Lemma 4.1, then as explained in the proof, the proper subcollection S’ = S — {o;} of S contains a maximum
weighted k-packing in S, where oy is the r-set that contains all ay, . . ., a,_4 and has the smallest weight. On the other hand,
Case 2.2 in the proof cannot hold true here: Case 2.2 would imply that there are r — (q — 1) elements ay, .. ., ar_g, b such
that the collection S has more than (rk)?~! r-sets that contain all ay, . . ., ar—q, b (see the discussion of Case 2.2 in the proof
of Lemma 4.1). If this were the case, then the procedure would have returned during the (g — 1)st execution of the loop of
steps 1.1-1.4. In conclusion, if there are an integer q,0 < q < r—1,and r —qgelements ay, . . ., a,_q such that S has more than
(rk)? r-sets that contain all ay, . . ., a,_4, then the procedure Reduce(S) will produce the proper subcollection S’ = S — {0y}
of S that contains a maximum weighted k-packing in S.

Case B. The procedure Reduce(S) returns at step 2. Let P* be a maximum weighted k-packing in S. Let S =
{o{,..., 04,044, ..., 0/}, where the r-sets have been sorted by their weights in non-increasing order, h = (rk)", and
t > h.LetS, = {0y, ..., o, }. If all r-sets in P* are in S, then the proper subcollection S’ = S — {0/} contains the maximum
weighted k-packing P*. On the other hand, suppose that there are r-sets in P* that are not in Sy,. Let oj’ be the r-set in P* that
is not in S, and has the largest index j in S (in particular, j > h). We divide this case into two subcases:

Subcase B.1. There is an r-set o/ in Sy, i < h, that contains no elements in Val(P*). Then the proper subcollection
§" =S — {0/} will contain (P* — aj/) U {0/}, which is also a maximum weighted k-packing in S.

Subcase B.2. Every r-set in Sy contains at least one element in Val(P*). Then Sy plus aj/ gives a collection of more than
(rk)" r-setsin S in which each r-set contains at least one element in Val(P*). Since Val(P*) has exactly rk elements, we derive
that there is an element a; in Val(P*) such that S, U {aj/} (thus S) has more than (rk)"~! r-sets that contain a;. That is, for
q = r—1,thereisr —q = 1 element a; such that S has more than (rk)? r-sets that contain a;. But this is a contradiction: the
existence of the element a; would have made the procedure Reduce(S) to return at step 1.4 during its (r — 1)st execution
of the loop 1.1-1.4, instead of at step 2. Therefore, Subcase B.2 is impossible.

This completes the proof that if the procedure Reduce(S) returns at step 2, then the proper subcollection S’ = S — {0/}
must contain a maximum weighted k-packing in S.

Summarizing the discussion in Cases A and B verifies that if the collection S has more than (rk)" r-sets, then the procedure
Reduce(S) always returns a proper subcollection S’ of S that contains a maximum weighted k-packing in S.

It is easy to derive that the running time of the procedure Reduce(S) is bounded by

. n
0 = 0(mn"),
(qu_(;(r—q)) (mn")

where m is the number of r-sets in S and n = |Val(S)|.

Therefore, in time O(mn"), the procedure Reduce(S), on a collection S of more than (rk)" r-sets, produces a proper
subcollection S’ of S that contains a maximum weighted k-packing in S. If we repeatedly apply the procedure Reduce to the
resulting collection as long as it contains more than (rk)" r-sets, for at most m — (rk)" times, we end up with a subcollection
S’ of the original collection S such that S’ contains at most (rk)" r-sets and S’ contains a maximum weighted k-packing in S.
The iznstance (S, k) then is the desired instance in the theorem, and it can be constructed from the original instance in time
O(m*n"). O

Since r-SET PACKING is a natural generalization of rD-MATCHING. Theorem 4.2 also gives a kernelization algorithm for the
weighted rpD-MATCHING problem.

Finally, we remark that polynomial time kernelization algorithms for the unweighted rb-MATCHING and r-SET PACKING
problems have been reported in the literature [5]. On the other hand, Theorem 4.2 seems to be the first kernelization result
for the weighted versions of the problems.
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5. Conclusions

Matching and packing have been an important class of NP-hard problems. Parameterized algorithms for matching and
packing problems have been an active research direction in the past decade. In this paper, we offered new observations
that enabled us to take advantage of the recent techniques based on divide-and-conquer in parameterized algorithms [2],
and develop improved deterministic algorithms for the weighted rb-MATCHING and r-SET PACKING problems for any fixed
constantr.

An obvious open problem is whether or not the algorithms can be further improved. In particular, is it possible to
develop deterministic algorithms of running time 0* (2) for the rD-MATCHING and r-SET PACKING problems, even just for the
unweighted versions? The approach based on (1, k)-universal set, which has been adopted in the current paper, seems to
have its limit to reach this goal. On the other hand, there have been recently developed randomized algorithms of running
time 0*(23) for the unweighted 3D-MATCHING and 3-SET PACKING problems [10], although it is unknown whether these
algorithms can be derandomized without significantly increasing the running time and whether these algorithms can be
extended to solve the weighted versions of the problems and to solve the problems for a general integer r > 3[10,17].

Theorem 4.2 shows a kernelization upper bound O(k") for the weighted rD-MATCHING and the weighted r-SET PACKING
problems. This result may lead to further interesting research. In particular, Dell and van Melkebeek [3] have recently been
able to establish non-linear lower bounds for kernel size for a variety of parameterized problems. It will be interesting to
study nontrivial lower bounds for kernel size for rD-MATCHING and r-SET PACKING, and see how closely the upper bounds
presented in the current paper match the lower bounds.
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