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a b s t r a c t

An induced packing of odd cycles in a graph is a packing such that there is no edge in the
graph between any two odd cycles in the packing. We prove that an induced packing of k
odd cycles in an n-vertex graph can be found (if it exists) in time 2O(k3/2)

· n2+ϵ (for any
constant ϵ > 0) when the input graph is planar. We also show that deciding if a graph has
an induced packing of two odd induced cycles is NP-complete.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Weassume that the reader is familiarwith notions of graph theory; for those not defined here, we refer to the textbook by
Diestel [10]. We consider finite and undirected graphs G = (VG, EG) that have no loops and no multiple edges. The number
of vertices and edges of a graph will be denoted by n and m, respectively.

Packing graphs. Packing graphs is a classic field of graph theory withmany results andmany conjectures. Packing is finding
(usually) vertex- or edge-disjoint copies of graphs from some family (the guest graphs) into a fixed graph G (the host graph).
There is a significant body of work on graph packing in the context of extremal combinatorics. The survey by Yap presents
many results on packing graphs into a complete graph, focusing mainly on the famous Erdős–Sós conjecture [33]. This
conjecture states that if the average degree of a graph G is strictly bigger than k−1, then G contains every tree on k vertices.

Packing has also been studied from the algorithmic point of view. The goal is usually to find the maximum number of
disjoint copies of a guest graph in the host graph. Amatching in a graph is a packing of vertex-disjoint K2s and it can be solved
in polynomial time by Edmond’s algorithm [14]. This means that the existence of a perfect matching (i.e. a matching which
spans all the vertices of the host graph) can also be decided in polynomial time. Perfect matching has been generalized
to perfect H-matching by Kirkpatrick and Hell, for graphs other than K2 [26]. The authors prove that the problem is NP-
complete for any graph H with at least three vertices. Berman et al. proved that the problem remains NP-complete even for
planar host graphs [1] .

✩ A preliminary version of this work appeared in the Proceedings of the 20th International Symposium on Algorithms and Computation, ISAAC 2009
(Golovach et al., 0000 [17]).
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Packing cycles. The problem of finding the maximum number of vertex-disjoint triangles in the input graph was proved to
be NP-complete by Garey and Johnson [16]. However, there is a randomized (43/83 − ε)-approximation algorithm, even
for the weighted version of the problem presented by Hassin and Rubinstein [20,21].

There is a large collection of results on edge-disjoint packing of cycles that has applications in genome rearrangement in
computational biology. The problem is studied by Caprara et al. who proved that it is APX-hard and can be approximated
with the factor of O(log n) by a greedy algorithm [4]. The approximation factor was later improved by Krivelevich et al. to
O(log1/2 n) [28]. Friggstad and Salavatipour showed that it is almost best possible [15]. They proved that it is impossible
to approximate the edge-disjoint cycle problem within a ratio of O(log1/2−ε n) in polynomial time for any constant ε > 0,
unless NP ⊆ ZPTIME(npolylog(n)). They also note that the same results hold for packing vertex-disjoint cycles.

Heath and Vergara consider the problem of maximum edge-disjoint packing when the host and guest graphs are
restricted to be planar [22]. Among other results they prove that the problem admits a polynomial-time solution if both
graphs are trees, and is NP-complete when the guest graph is either a cycle or a tree with at least three edges.

Packing odd cycles. The problem of packing odd cycles in a graphwas studied by Bruce Reed [30]. Hewasmainly concerned
with the Erdős–Pósa property for odd cycles. In the conclusion, he gives an argument that packing k odd cycles in a graph is
NP-complete when k is a part of the input. He also points out that a consequence of his results on the Erdős–Pósa property
is a polynomial-time algorithm for packing odd cycles in a planar graph. Then he continues, ‘‘As of the current writing, the
author and P. Seymour believe they have a much more complicated algorithm for determining if a graph contains k vertex-disjoint
odd cycles, k fixed. However, the proof of this result is extremely complicated and may well never be written down.’’

The recent progress in the theory of graph minors made it possible to have a proof of this theorem. In their recent work,
Ken-ichi Kawarabayashi and Bruce Reed give an algorithm for packing k vertex-disjoint odd cycles in general graphs [25].
The running time of the algorithm isO(mn·α(m, n)) for any fixed k, whereα(m, n) is the inverse of the Ackermann function.

Even and odd holes. A hole is an induced cycle of length at least 4. Finding even and odd holes has been studied in the
literature. The structure of graphswith no even hole is analyzed by Conforti et al. [6], leading to a polynomial-time algorithm
for finding an even hole in a graph by the same authors [7]. Another algorithm, with a better running time, was proposed
by Chudnovsky et al. [5].

Despite a seeming similarity, the complexity of detecting an odd hole in a graph has been a long standing open problem.
The problem has been shown by Conforti et al. to be solvable in polynomial time for graphs of bounded clique number [8].
Also, Bienstock has shown that the problem is NP-complete if the odd hole is required to contain a given vertex [2].

Our results. We are interested in induced packing of odd cycles. In this setting, odd cycles in the host graph are not only
vertex-disjoint but also there is no edge in the host graph between twoodd cycles in the packing. The term ‘‘induced packing’’
refers to this fact. The cycles themselves do not need to be induced, although this can be assumedwithout loss of generality.
Indeed, let C be an odd cycle in an induced packing of odd cycles in a graph G. If C has a chord e, then the graph obtained
from C by the addition of e is the union of two cycles C1 or C2 with one common edge e, and one of C1 or C2, say C1, is odd.
Replacing C in the induced packing by C1 leads to another induced packing of the same number of odd cycles. Hence, any
induced packing of odd cycles can easily be transformed to an induced packing of odd induced cycles that has the same
size. While packing of k odd cycles is polynomial, for any fixed k [25], we prove that to decide if a graph contains an induced
packing of two odd (induced) cycles is NP-complete. Induced packing is then, not surprisingly, much harder than packing.
The two odd induced cycles in our hardness proof are in fact odd holes (and can bemade arbitrarily long).While the problem
of settling the complexity of detecting an odd hole is likely to be rather difficult to tackle, we show that to determine if a
graph has two induced odd holes such that there is no edge between them is NP-complete.

We observe that it is NP-complete to decide whether a planar graph G has an induced packing of k odd cycles, if k is
a constant that is part of the input. On the other hand, when k is a fixed constant, we show that an induced packing of k
odd cycles in a planar graph can be found in polynomial time (if it exists). Our strategy is to solve the problem by dynamic
programming for graphs of small tree-width. If the tree-width is large, then the graph contains a large grid minor. In the
model of the minor, we can either find an induced packing of k disjoint cycles, or a large bipartite graph. Our main technical
result shows that, in the latter case, we can find an irrelevant vertex in the graph. The vertex is called irrelevant because one
can remove it from the graph and be sure that the new graph has an induced packing of k odd cycles if and only if the original
graph does.

Our motivation. Our motivation for considering induced packings of odd cycles is twofold.

1. Despite many existing results on graph packing, induced packings were not much studied before, possibly with
the exception of the induced matching (see e.g. [3,18,23]). It seems interesting to understand how more difficult
problems become when the ‘‘induced’’ restriction is added. Recently, there has been some interest in studying induced
problems [24,27].

2. We are interested in the applicability of the irrelevant vertex technique and how it can be used to improve parameter
dependence. This technique was developed in the Graph Minors project by Robertson and Seymour and recently found
some applications [27,29]. The existence of an irrelevant vertex is usually forced by large tree-width. Here, if the input
graph has a large tree-width, we either find a solution, or an irrelevant vertex.
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2. Background

In this section, we gather some definitions and present results from the literature that wewill use later. A graph is chordal
if it does not contain an induced cycle of length ≥ 4. The tree-width of the graph G is the minimum size of the maximum
clique minus 1, where the minimum is taken over all chordal supergraphs of G.

The r × r grid has all pairs (i, j) for i, j = 0, 1, . . . , r − 1 as the vertex set, and two vertices (i, j) and (i′, j′) are joined by
an edge if and only if |i − i′| + |j − j′| = 1. The side length of an r × r grid is r . A connected graph G contains H as a minor
if H can be obtained from G by a sequence of vertex or edge deletions, and edge contractions (removing loops and multiple
edges).

Here are two useful lemmas.

Lemma 1 ((6.2) in [31]). Let r ≥ 1 be an integer. Every planar graph with no r × r grid minor has tree-width ≤ 6r − 5.

Lemma 2 (from [19]). For every constant ϵ > 0, there exists a constant cϵ > 3.5 such that the side length of the largest square
grid minor in a planar graph can be approximated with the factor of cϵ and the corresponding grid minor can be constructed in
time O(n1+ϵ).

Let G be a planar graph. We assume that G has some fixed embedding in the plane and consider the corresponding plane
graph. To simplify notations, we neither distinguish between a vertex of G and the point of the plane graph representing it
nor between an edge of G and the line in the plane graph representing it. Consequently, we do not distinguish between a
subgraph of G and the corresponding set of points of the plane.

Let C be a cycle of G. Then C has exactly two faces: the inner face and the outer face. Now let X be a set of points in the
plane that may correspond to a vertex, an edge, or more generally, to a subgraph of G. We say that X lies inside C if every
point of X is contained in the inner face of C . Similarly, X lies outside C if every point of X is in the outer face of C . For two
cycles C and Z , we define µZ (C) as the number of connected (topological) components of the set of points on the plane
obtained from C by the removal of all the points of Z . We say that a cycle C crosses a cycle Z in a plane graph if there are two
points x, y ∈ C , such that x is inside Z and y is outside Z . Note that C crosses Z if and only if Z crosses C .

Two subgraphs of a graph are calledmutually induced if they are vertex-disjoint and no vertex of one subgraph is adjacent
to a vertex of the other. A set of subgraphs of a graph ismutually induced if any two subgraphs of the set aremutually induced.

A sequence of cycles Z1, . . . , Zq in a plane graphG is callednested, if there exist disks∆1, . . . , ∆q such that for i = 1, . . . , q,
Zi bounds ∆i, and ∆i+1 ⊂ ∆i, for i = 1, . . . , q− 1. We say that Z1, . . . , Zq are strongly nested if they are nested and mutually
induced.

Now we are ready to formally define the problem we study here.

Problem k-Induced-Packing-Of-Odd-Cycles

Input: A planar graph G.
Output: A set of kmutually induced odd cycles in G if there exists

one; NO otherwise.

First, we observe that this problem is hard, if k is part of the input.

Proposition 3. k-Induced-Packing-Of-Odd-Cycles is NP-complete.

Proof. Let G be a planar graph and k be an integer. For each vertex v of G add two new vertices and make them adjacent
to each other, and also adjacent to v. Then, the new graph has an induced packing of k odd cycles if and only if G has an
independent set of size k. However, the problem of deciding if a planar graph has an independent set of size k, if k is a part
of input, is NP-complete [16]. �

The k-Induced-Packing-Of-Odd-Cycles problem is expressible in monadic second order logic. The seminal result of
Courcelle implies that for any class of graphs whose tree-width is bounded, there exists a linear-time algorithm solving the
problem in this class of graphs [9].

Even though the complexity is linear in n, the dependence on the parameter k is highly exponential. It is possible to
obtain a better dependence on the parameter using dynamic programming on tree decompositions. There is a standard
technique of dynamic programming in planar graphs of bounded tree-width that is applicable to our setting (Section 5 of
[13]). It reduces the number of states in the dynamic programming by the use of sphere decomposition of a planar graph.
This approach can find a solution to the problem in time 2O(w)

· n, where w is the tree-width of the input graph. (See also
[12] for a survey and [32] for an application of the same technique to similar problems.) As the method is standard and the
dynamic programming is similar to the one in [13], we omit the proof of the following lemma.

Lemma 4. k-Induced-Packing-Of-Odd-Cycles is solvable in 2O(w)
· n time for planar graphs of tree-width at most w.
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3. Induced packing of odd cycles

In this section, we present a combinatorial lemma on the existence of an irrelevant vertex, and state our algorithm
together with the proof of its correctness.

Irrelevant vertex

Lemma 5. Let k be a positive integer, G a plane graph, and Z1 a cycle in G such that the graph induced by the vertices of Z1 and
the vertices inside Z1 is bipartite. Also, let Z1, . . . , Zk be a sequence of strongly nested cycles in G and v a vertex inside Zk that is
not adjacent to any vertex of Zk. Then, G has an induced packing of k odd cycles if and only if G \ v does.

Proof. The backward implication is clear. To prove the forward implication, let us assume that G has an induced packing of
k odd cycles and let C be one for which


C∈C


i=1,...,k µZi(C) is minimum. Observe that each cycle C ∈ C contains a vertex

that lies outside Z1, because C is odd and the graph induced by the vertices of Z1 and the vertices inside Z1 is bipartite. We
want to show that v is not contained in any cycle of C.

The relation of being inside defines a poset on C whose Hasse diagram HC is a forest. We will work with HC assuming
that every tree in the forest is rooted; this can be done in a natural way. We define the height of a cycle in C to be 1 for the
leaves of HC . For other cycles in C, the height is the minimum of the height of its children in HC plus 1. Notice that the depth
of a tree in TC is at most k and therefore the maximum height of a cycle in C is at most k.

Now it only remains to prove the following claim.

Claim. No cycle of height (at most) i from C crosses Zi, for all i = 1, . . . , k.

Let i be the smallest integer such that a cycle C ∈ C of height i crosses Zi. Let Q be the set of edges of C which lie inside
Zi, and P be the set of edges of Zi which lie inside C in the plane graph G. Note that the set of edges (EC \ Q ) ∪ P induces a
subgraph of G that is a union of edge-disjoint cycles. Let R denote the set of these cycles. Sets P and Q are disjoint and P ∪Q
also induces a subgraph of G that is a union of edge-disjoint cycles; each of these cycles belongs to the bipartite graph and
has therefore even length. Hence, the total number of edges in P and Q is even. Since C is an odd cycle, this implies that the
total length of the cycles in R is odd. Consequently, there is an odd cycle C ′ in R.

We now prove that C ′ is mutually induced with every cycle in C \ {C}. In order to obtain a contradiction, suppose that
C ′ and some cycle C ′′

∈ C \ {C} are not mutually induced. Then, by definition, there exist two vertices s and t in C ′ and C ′′,
respectively, such that either s = t or s is adjacent to t . Because the cycles in C are mutually induced, s is not a vertex of
C . This means that s is a vertex of Zi, and hence it lies inside C . Consequently, t cannot be outside C . This means that C ′′ lies
inside C . Then, by definition, the height j of C ′′ is less than the height i of C , so we have i > j ≥ 1. Recall that i is the smallest
integer such that a cycle in C of height i crosses Zi. Therefore, C ′′ does not cross Zj, and consequently, since Z1, . . . , Zk are
strongly nested, C ′′ does not cross Zi−1. We conclude that t either lies outside Zi−1 or is a vertex of Zi−1. Because Z1, . . . , Zk
are strongly nested and s ∈ Zi, this means that s ≠ t and s cannot be adjacent to t either; a contradiction. Therefore,
(C \ {C}) ∪ {C ′

} is an induced packing of k cycles in G. However,


i=1,...,k µZi(C
′) <


i=1,...,k µZi(C); a contradiction with

our choice of C. Hence, we have shown the Claim, and thus completed the proof of Lemma 5. �

The algorithm

Here is our algorithm for solving k-Induced-Packing-Of-Odd-Cycles. We prove its correctness and analyse its running
time in Theorem 6.

Algorithm k-Induced-Packing-Of-Odd-Cycles

Input: A planar graph G.
Output: A collection of k mutually induced odd cycles in G if there

exists one; NO otherwise.

1. Run the algorithm from Lemma 2 and construct a grid minorM .
2. If the side length of M is less than ⌈

√
k⌉(cϵ · k + 2) − 1, then solve

the problem using the algorithm of Lemma 4 and stop.
3. Otherwise, find k mutually induced copies of a square grid of side

length cϵ · k + 1 in M .
4. For every copy, check if the model of the copy in G is bipartite.
5. If the models of all copies are non-bipartite, return an induced

packing of k odd cycles and stop.
6. Otherwise, construct kmutually induced odd cycles in a bipartite

copy H .
7. Find an irrelevant vertex v in H using Lemma 5.
8. Run the algorithm for G \ v.
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Fig. 1. First stage of construction of G.

Theorem 6. For every constant ϵ > 0, the algorithm k-Induced-Packing-Of-Odd-Cycles is correct and runs in time 2O(k3/2)
·

n2+ϵ .

Proof. Let us suppose that the input graph G contains an induced packing of k odd cycles. Let ϵ > 0 be a constant and
cϵ > 3.5 be the approximation factor from Lemma 2 corresponding to ϵ.

If the algorithm from Lemma 2 in Step 1 finds a gridminorM of side length less than ⌈
√
k⌉(cϵ ·k+2)−1, then the largest

grid minor is of side length less than ⌈
√
k⌉(cϵ · k + 2) − 1. This, from Lemma 1, means that the tree-width of the graph is

bounded by a constant and the problem can be solved by Lemma 4. The induced packing of k odd cycles will be found in
Step 2.

If the side length ofM is at least ⌈
√
k⌉(cϵ ·k+2)−1, thenM contains kmutually disjoint copies of the (cϵ ·k+1)×(cϵ ·k+1)

grid (Step 3). For each copy, we look at the graph induced by the union of branch sets in G corresponding to the vertices of
the copy. If for every copy the graph is non-bipartite, there is an induced packing of k odd cycles (Step 4 & 5).

Otherwise, there is a copy H whosemodel is bipartite. In this copy, since cϵ > 3.5, peeling off the (cϵ ·k+1)× (cϵ ·k+1)
grid, we find k nested, mutually induced cycles Z ′

1, . . . , Z
′

k. The central vertex of the grid v′ is also mutually induced with
the cycles. Notice that the model of cycle Z ′

i in G, for all i = 1, . . . , k, contains a cycle passing through the all branch sets
corresponding to the vertices of Z ′

i . Therefore, we construct a collection of k nested, mutually induced cycles Z1, . . . , Zk (Step
6). These cycles, together with a vertex v from the model of v′ in G (Step 7), satisfy conditions of Lemma 5. By the Lemma 5,
the induced packing of k odd cycles will be found recursively (Step 8).

Notice that Step 8 of the algorithm will be executed at most n times and Step 1 is the most time-consuming step of the
algorithm, taking O(n1+ϵ) time. Step 2 takes time 2O(k3/2)

· n and the algorithm runs in time 2O(k3/2)
· n2+ϵ . �

4. Two induced disjoint odd cycles

Theorem 7. It is NP-complete to decide whether a given graph G contains two mutually induced odd induced cycles.

Proof. We reduce the well known NP-complete 3-Satisfiability problem [16]. It is known that this problem remains NP-
complete even for the case when each Boolean variable occurs at most two times in positive and at most two times in
negations. We use this variant of the problem for our reduction. Let x1, . . . , xn be Boolean variables and let C1, . . . , Cm be
clauses of the given Boolean formula Φ in the conjunctive normal form. We construct a graph G as follows.

First, we introduce vertices u0, . . . , un and vertices v0, . . . , vn. For each 1 ≤ i ≤ n, the following is done (see Fig. 1):

• Add vertices xi, xi and edges ui−1xi, xiui, ui−1xi and xiui. Denote by Pi and P i the paths ui−1xiui and ui−1xiui respectively.
• Construct vertices ai, bi, ci, di, ei, ai, bi, di, ei and y(1)

i , y(2)
i , y(1)

i , y(2)
i , and then add edges vi−1ai, aiy

(1)
i , y(1)

i bi, bici, cidi,
diy

(2)
i , y(2)

i ei, eivi, vi−1ai, aiy
(1)
i , y(1)

i bi, bici, cidi, diy
(2)
i , y(2)

i ei and eivi. Denote by Qi the path vi−1aiy
(1)
i bicidiy

(2)
i divi and let

Q i = vi−1aiy
(1)
i bicidiy

(2)
i divi.

• Add edges xiai, xibi, xidi, xiei, xiai, xibi, xidi and xiei.

Now we introduce vertices w0, . . . , wm. For each 1 ≤ j ≤ m, three vertices z(1)
j , z(2)

j , z(3)
j are constructed and joined by

edges with wj−1 and wj. We denote by R(r)
j the path wj−1z

(r)
j wj for r = 1, 2, 3. Assume that the clause Cj contains literals

l1, l2, l3. For each literal lr , 1 ≤ r ≤ 3, the following is done (see Fig. 2):

• If lr = xi for some 1 ≤ i ≤ n, then the edge xiz
(r)
j is added, and also the vertex z(r)

j is joined by an edge with y(1)
i if lr is

the first occurrence of the literal xi in the Boolean formula, and z(r)
j is joined with y(2)

i if lr is the second occurrence of xi.
• If lr = xi for some 1 ≤ i ≤ n, then the edge xiz

(r)
j is added, and also the vertex z(r)

j is joined by an edge with y(1)
i if lr is

the first occurrence of the literal xi in the Boolean formula, and z(r)
j is joined with y(2)

i if lr is the second occurrence of xi.

Finally, we add the edges u0un and v0w0, introduce the vertex s and join the vertices vn and wm with s by edges.
We claim that Φ can be satisfied if and only if there are two disjoint induced odd cycles S1 and S2 in G.
Suppose that Φ can be satisfied, and variables x1, . . . , xn have corresponding truth assignment. We construct S1 from

paths Pi and P i using them as segments. For each 1 ≤ i ≤ n, we include Pi in the cycle if xi = false and P i is included if
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Fig. 2. Second stage of construction of G, the clause Cj contains literals xi (second occurrence), xp (first occurrence) and xq (second occurrence).

xi = true. The construction of S1 is completed by adding the edge u0un. The cycle S2 is constructed by using paths Qi,Q i and
R(r)
j . For each 1 ≤ i ≤ n, the path Qi is included in S2 if xi = false and Q i is included if xi = true. Now we consider clauses

Cj for 1 ≤ j ≤ m. Suppose that Cj contains literals l1, l2, l3. Since Φ = true, there is a literal lr = true, and we include in S2
the path R(r)

j . Finally, the edge v0w0 and the path vnswm is added to the cycle. It is easy to check that S1 and S2 are disjoint
induced odd cycles, and they have no adjacent vertices.

Assume now that G contains two disjoint induced odd cycles S1 and S2. Notice that the graph obtained from G by removal
of the edges u0un and v0w0 is bipartite. Since S1 and S2 are odd, they have to include these edges. Suppose without loss of
generality that u0un is included in S1 and v0w0 is included in S2. We need now the following claim.

Claim. For any 1 ≤ i ≤ n,

• either Pi or P i is included in S1 as a segment,
• if Pi is included in S1, then Qi is included in S2, and if S1 contains P i, then S2 contains Q i.

For each 1 ≤ j ≤ m, S2 includes one of the paths R(1)
j , R(2)

j , R(3)
j .

Proof of the Claim. First we prove that for any 1 ≤ i ≤ n, either Pi or P i is included in S1 as a segment, and if Pi is included
in S1, then Qi is included in S2, and if S1 contains P i, then S2 contains Q i. Suppose that this claim holds for the lesser values
of the parameter, i.e. S1 contains the edge u0un and either the path Pk or Pk for 1 ≤ k < i, and similarly S2 contains the edge
v0w0 and either the path Qk or Q k for 1 ≤ k < i. Assume without loss of generality that if i > 1, then S1 includes Pi−1 (the
case, when P i−1 is in S1, is symmetric). The vertex ui−1 is incident with two edges of S1. Since S1 is an induced cycle and we
assume that S1 contains Pi−1, we find that S1 cannot include ui−1xi−1. Hence, S1 contains either the edge ui−1xi or the edge
ui−1xi. By the symmetry of our construction, we may assume that ui−1xi is in S1. Cycles S1 and S2 have no adjacent vertices.
Our assumptions that S1 contains Pi−1 and S2 contains either Qi−1 or Q i−1 if i > 1 imply that S2 includes Qi−1. The vertex
vi is incident with two edges in the cycle. Since Pi−1 is in S1, S2 cannot include the edge vi−1ei−1, and because Pi is in S1, S2
cannot include the edge vi−1ai. Hence, this cycle contains the edges vi−1ai and aiy

(1)
i . Notice that if y(1)

i is adjacent to some
vertex z(r)

j , then xi is also adjacent to this vertex and S2 cannot include the edge y(i)
i z(r)

j . It means that S2 contains the edges
y(1)
i bi and bici. By similar arguments we prove that S2 includes the edges cidi, diy

(2)
i , y(2)

i ei and eivi. Therefore, S2 includes Qi.
Now we return to the cycle S1. Since all vertices z(r)

j adjacent to xi are adjacent either to y(1)
i or y(2)

i , S1 cannot include edges
xiz

(r)
j . So, it contains the edge xiui, and together with the fact that S1 includes ui−1xi, it means that Pi is a segment of S1.
Nowwe prove that for each 1 ≤ j ≤ n, S2 includes one of the paths R

(1)
j , R(2)

j , R(3)
j . Again suppose that this claim holds for

the lesser values of the parameter, and S2 contains the edge v0w0 and one of the paths R(1)
k , R(2)

k , R(3)
k for 1 ≤ k < j. Since S2

is an induced path, it includes one of the edgeswj−1z
(1)
j ,wj−1z

(2)
j ,wj−1z

(1)
j . Assume that the cycle containswj−1z

(3)
j . Suppose

that z(1)
j is adjacent to some vertex xi, and therefore to one of vertices y(1)

i or y(2)
i (say, the vertex y(1)

i ). Notice that in this case
xi is a vertex of S1 by the first part of the claim. The cycle S2 cannot contain the edge z(1)

j xi since xi is adjacent to the vertex
ui−1 which is included in S1. If S2 contains z(1)

j y(1)
i , then it should contain either the edge y(1)

i ai or y
(1)
i bi, but these vertices

are adjacent to xi. Same arguments can be used for the case when z(1)
j is adjacent to some vertex xi. Hence S2 includes the

edge z(1)
j wj and we conclude that R(1)

j is a segment of S2. �

Using this claim we assign values to the Boolean variables x1, . . . , xn: set xi = true if P i is a segment of S1 and xi = false
if Pi is a segment of S1. Consider clauses C1, . . . , Cm. Suppose that the clause Cj contains literals l1, l2, l3 which correspond to
vertices z(1)

j , z(2)
j , z(3)

j . The cycle S2 contains one of the paths R(1)
j , R(2)

j , R(3)
j , say the path R(1)

j which goes through z(1)
j . This
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vertex is adjacent to one of the vertices xi or xi, and this vertex is not included in S1. It follows that by our truth assignment
li = true. Since it holds for each 1 ≤ j ≤ m, Φ = true.

To conclude the proof of the theorem, it remains to note that G has 15n + 4m + 4 vertices, and therefore can be
constructed in polynomial time. �

5. Discussion

1. Induced packing of odd cycles is a packing such that any two odd cycles are at distance at least 2 from each other. One
can consider a d-induced packing problem, in which the cycles are at distance at least k from each other. Our algorithm
can be easily modified to handle this variant of the problem in the same asymptotic running time.

2. There is another approach to solving the problem of induced packing of odd cycles on planar graphs that uses results
on outerplanarity. One could use a layer decomposition of a planar graph that is the collection of cycles obtained by
successively removing cycles bounding the outer face. By using this layer decomposition, Lemma4 and amodified version
of Lemma 5, we can solve the k-Induced-Packing-Of-Odd-Cycles problem in time 2O(k2)

· n. Compared to our result, the
complexity is better in n but the parameter dependence, which is the main focus of this paper, is worse. We observed in
[17] that there is a 2O(k2)

· n2 algorithm for solving the problem using a layer decomposition. We thank an anonymous
referee for pointing out that the dependence on n can be made linear.

3. We showed how to solve the problem in the class of planar graphs but we believe that this can be generalized to larger
classes.

Conjecture. k-Induced-Packing-Of-Odd-Cycles can be solved in polynomial time for any class of graphs in which genus
(orientable or not) is bounded.

We leave this problem for future research.
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