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DOMINATING SETS IN PLANAR GRAPHS: BRANCH-WIDTH AND
EXPONENTIAL SPEED-UP∗

FEDOR V. FOMIN† AND DIMITRIOS M. THILIKOS‡

Abstract. We introduce a new approach to design parameterized algorithms on planar graphs
which builds on the seminal results of Robertson and Seymour on graph minors. Graph minors
provide a list of powerful theoretical results and tools. However, the widespread opinion in the
graph algorithms community about this theory is that it is of mainly theoretical importance. In this
paper we show how deep min-max and duality theorems from graph minors can be used to obtain
exponential speed-up to many known practical algorithms for different domination problems. Our
use of branch-width instead of the usual tree-width allows us to obtain much faster algorithms. By
using this approach, we show that the k-dominating set problem on planar graphs can be solved in

time O(215.13
√
k + n3).
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1. Introduction. Dominating Set is a classic NP-complete graph problem
which fits into the broader class of domination and covering problems on which hun-
dreds of papers have been written. (The book of Haynes, Hedetniemi, and Slater [32]
is a nice source for further references on the dominating set problem.) The problem
Planar Dominating Set asks, given a planar graph G and a positive k, whether G
has a dominating set of size at most k. It is well known that the Planar Dominating

Set (as well as several variants of it) is NP-complete. In this paper we design exact
fixed-parameter algorithms (which run fast provided that the parameter k is small).
The theory of fixed-parameter algorithms and parameterized complexity has been
thoroughly developed over the past few years; see, e.g., [1, 3, 4, 8, 12, 13, 21, 23, 24].

The last six years have seen dramatic developments and improvements to the

design of subexponential algorithms with running times of 2O(
√
k)nO(1) for different

planar graph problems; see, e.g., [1, 4, 8, 9, 13, 14, 22, 31, 35]. For example, the
first algorithm for the Planar Dominating Set appeared in [2], with running time
O(8kn). The first algorithm with a sublinear exponent was given by Alber et al. in [1]

and its running time was O(269.98
√
kn). A time O(249.88

√
kn) algorithm was obtained

in [4], and Kanj and Perković [35] announced an algorithm of running time O(227
√
kn).

A common method for solving Planar Dominating Set is to prove that every
planar graph with a dominating set of size at most k has tree-width at most c

√
k, where

c is a constant. With some work (sometimes very technical) a tree decomposition
of width at most c

√
k + O(1) is constructed, and standard dynamic programming

techniques on graphs of bounded tree-width are implemented. Currently, the fastest

∗Received by the editors December 17, 2002; accepted for publication (in revised form) December
6, 2005; published electronically June 19, 2006. An extended abstract of the results of this paper
appeared in [25].

http://www.siam.org/journals/sicomp/36-2/41964.html
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway (fomin@ii.uib.no).

The work of this author was supported by the Norwegian Research Council.
‡Department of Mathematics, National and Capodistrian University of Athens Panepistimioupo-

lis, GR-15784, Athens, Greece (sedthilk@lsi.upc.edu). The work of this author was supported by the
Spanish CICYT project TIN-2004-07925 (GRAMMARS).

281



282 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

dynamic programming algorithm for a dominating set on graphs of tree-width at most

t runs in O(22tn) steps and was given by Alber et al. in [1]. This implies an O(22c
√
kn)

step algorithm for the Planar Dominating Set. Let

ctw= min{c | if G is planar and dominated by k vertices, then tw(G)≤ c
√
k+O(1)}.

The challenge in this approach is that a small bound for ctw is required for most
practical applications. The first bound for ctw appeared in [1] and was ctw < 6

√
34 =

34.98, while the next improvement was given by Kanj and Perković in [35], who proved
that ctw < 16.5.

The main tool of this paper is the branch-width of a graph. Branch-width was
introduced by Robertson and Seymour in their graph minors series of papers sev-
eral years after tree-width. These parameters are rather close, but surprisingly many
theorems of the graph minors series are easier to prove when one uses branch-width
instead of tree-width. Nice examples of the use of branch-width in proof techniques
can be found in [38] and [39]. Another powerful property of branch-width is that it
can be naturally generalized for hypergraphs and matroids. A good example of gen-
eralization of Robertson and Seymour theory for matroids by using branch-width is
the paper by Geelen, Gerards, and Whittle [29]. Algorithms for problems expressible
in monadic second-order logic on matroids of bounded branch-width are discussed
by Hlinĕný [34]. Alekhnovich and Razborov [5] use branch-width of hypergraphs to
design algorithms for SAT.

From a practical point of view, branch-width is also promising. For some prob-
lems, branch-width is more suitable for actual implementations. Cook and Seymour
[10, 11] used branch decompositions to solve the ring routing problem, related to the
design of reliable cost-effective SONET networks and to solving TSP (see also [7, 19]).
In theory, there is not a big difference between tree-width and branch-width based
algorithms. However in practice, branch-width is sometimes easier to use. The ques-
tion due to Bodlaender (private communication) is the following: Are there examples
where the constant factors for branch-width algorithms are significantly smaller than
for their tree-width counterparts? This paper is partially motivated1 by this question.

Our results. In this paper we introduce a new approach for solving the Planar

Dominating Set problem. Our approach is based on branch-width and provides

an algorithm of running time O(215.13
√
k + n3), which is a significant step toward a

practical algorithm. Instead of constructing a tree decomposition and proving that
the width of the obtained tree decomposition is upper bounded by c

√
k, we prove

a combinatorial result relating the branch-width with the domination number of a
planar graph. The proof of the combinatorial bounds is complicated and is based on
nice properties of branch-width, which follow from deep results of the graph minors
series.

Our proof is not constructive, in the sense that it cannot be turned into a polyno-
mial algorithm that constructs the corresponding branch decomposition. Fortunately,
there is a well-known algorithm due to Seymour and Thomas for computing an opti-
mal branch decomposition of a planar graph in O(n4) steps. We stress that this algo-
rithm does not have the so-called enormous hidden constants and is really practical.

1One of the challenges that appeared during the workshop “Optimization Problems, Graph
Classes and Width Parameters” (Centre de Recerca Matemàtica, Bellaterra, Spain, November 15–
17, 2001), was the following question: Is it possible, using bounded branch-width instead of bounded
tree-width, to obtain more efficient solutions for Planar Dominating Set and other parameterized
problems?
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(We refer to the work of Hicks [33] on implementations of the Seymour and Thomas
algorithm; see also [30] for a recent algorithm that runs in O(n3) steps.)

Our main combinatorial result is that for every planar graph G with a dominating
set of size ≤ k, the branch-width of G is at most 3

√
4.5

√
k < 6.364

√
k. We combine

this bound with the following algorithmic results: (i) the algorithm of Seymour and
Thomas for planar branch-width, (ii) the results of Alber, Fellows, and Niedermeier
[3] on a linear problem kernel for Planar Dominating Set, and (iii) a new dynamic
programming algorithm for solving the dominating set problem on graphs of bounded
branch-width (see subsection 4.2). As a result, we obtain an algorithm of running

time O(215.13
√
k + n3).

According to Robertson and Seymour [36], for any graph G with at least three
edges, the tree-width of G is always bounded by 3

2 times its branch-width. This result,
in combination with our bound, implies that ctw < 9.546. To our knowledge, this gives
an improvement on any other bound for the tree-width of planar graphs dominated
by k vertices.

Organization of the paper. In section 2, we give basic definitions and state
some known theorems. We also present how a theorem of Robertson, Seymour, and
Thomas can be directly used to prove that every planar graph with a dominating
set of size ≤ k has branch-width at most ≤ 12

√
k + 9. This observation (combined

with the results discussed in section 4) already implies an algorithm for the Planar

Dominating Set problem with running time O(228.56
√
k+n3), where n is the number

of vertices of G. This is already a strong improvement (for large k) on the result of

Alber et al. in [1] and is close to the running time O(227
√
kn) of the algorithm of Kanj

and Perković in [35].

Section 3 is devoted to the proof of Theorem 3.22, the main combinatorial result
of the paper. The proof of this result is complicated, and we split it into several
parts. In subsection 3.1, we give technical results about branch decompositions. These
results are based on the powerful theorem of Robertson and Seymour on the branch-
width of dual graphs. We emphasize that these results are crucial for our proof. In
subsection 3.2, we define the notion of the extension of a graph and prove that the
branch-width of an extension is at most three times the branch-width of the original
graph. In section 3.3 we introduce the notion of nicely dominated graphs, which
is a suitable “normalization” of the structure of the dominated planar graphs. In
subsection 3.4, we explain how nicely dominated graphs can be gradually decomposed
into simpler ones so that the branch-width of the original graph is bounded by the
branch-width of some “enhanced version” of the simpler ones. In subsection 3.5 we
introduce the prime nicely dominated graphs as those that are “the simplest possible”
with respect to the decomposition of subsection 3.4. In subsection 3.6, we prove that
any prime nicely dominated graph G is “contained” in the extension of a simpler
planar graph denoted as red(G). In subsection 3.7 we use this fact along with the
results of subsections 3.2, 3.4, and 3.6 to prove that bw(G) ≤ 3 · bw(red(G)). By
its construction, all the vertices of red(G) are vertices of the dominating set D. The
result follows because, according to [28], bw(red(G)) ≤

√
4.5 · |D|.

Section 4 contains discussions on algorithmic consequences of the combinatorial
result. Subsection 4.1 describes the general algorithmic scheme that we follow. Sub-
section 4.2 contains a dynamic programming algorithm for the solving dominating set
problem on graphs of branch-width ≤ � and m edges, in time O(31.5·�m).

In section 5 we discuss the optimality of our results (subsection 5.1) and provide
some concluding remarks and open problems (subsection 5.2).
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2. Definitions and preliminary results. Let G be a graph with vertex set
V (G) and edge set E(G). For every nonempty W ⊆ V (G), the subgraph of G induced
by W is denoted by G[W ]. A vertex v ∈ V (G) of a connected graph G is called a cut
vertex if the graph G − {v} is not connected. A connected graph on at least three
vertices without a cut vertex is called 2-connected. Maximal 2-connected subgraphs of
a graph G or induced edges whose two endpoints are cut vertices are called 2-connected
components.

Let Σ be a sphere. By Σ-plane graph G we mean a planar graph G with the vertex
set V (G) and the edge set E(G) drawn in Σ. To simplify notations, we usually do not
distinguish between a vertex of the graph and the point of Σ used in the drawing to
represent the vertex, or between an edge and the open line segment representing it. If

Δ ⊆ Σ, then Δ denotes the closure of Δ, and the boundary of Δ is Δ̂ = Δ ∩ Σ − Δ.
We denote the set of the faces of the drawing by R(G). (Every face is an open set.)
An edge e (a vertex v) is incident to a face r if e ⊆ r̄ (v ⊆ r̄). We do not distinguish
between a boundary of a face and the subgraph of the drawing induced by edges
incident to the face. The length of a face r is the number of edges incident to r.
Δ ⊆ Σ is an open disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}. Let C be
a cycle in a Σ-plane graph G. By the Jordan curve theorem, C bounds exactly two
discs. For a vertex x ∈ V (G), we call a disc Δ bounded by C x-avoiding if x �∈ Δ.
We call a face r ∈ R(G) square face if r̂ is a cycle of length four.

A set D ⊆ V (G) is a dominating set in a graph G if every vertex in V (G)−D is
adjacent to a vertex in D. Graph G is D-dominated if D is a dominating set in G.

For a hypergraph G we denote by V (G) its vertex (ground) set and by E(G) the set
of its hyperedges. A branch decomposition of a hypergraph G is a pair (T, τ), where T
is a tree with vertices of degree one or three and τ is a bijection from E(G) to the set
of leaves of T . The order function ω : E(T ) → 2V (G) of a branch decomposition maps
every edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists
of all vertices v ∈ V (G) such that there exist edges f1, f2 ∈ E(G) with v ∈ f1 ∩ f2,
and such that the leaves τ(f1), τ(f2) are in different components of T − {e}.

The width of (T, τ) is equal to maxe∈E(T ) |ω(e)|, and the branch-width of G, bw(G),
is the minimum width over all branch decompositions of G.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and remove
all loops and duplicate edges. A graph H obtained by a sequence of edge contractions
is said to be a contraction of G. H is a minor of G if H is a subgraph of a contraction
of G. We use the notation H 	 G (resp., H 	c G) when H is a minor (a contraction)
of G. It is well known that H 	 G or H 	c G implies bw(H) ≤ bw(G). Moreover,
the fact that G has a dominating set of size k and H 	c G imply that H has a
dominating set of size ≤ k (which is not true for H 	 G).

For planar graphs the branch-width can be bounded in terms of the domination
number by making use of the following result of Robertson, Seymour, and Thomas
(Theorems 4.3 in [36] and 6.3 in [38]).

Theorem 2.1 (see [38]). Let k ≥ 1 be an integer. Every planar graph with no
(k, k)-grid as a minor has branch-width ≤ 4k − 3.

To give an idea on how results from graph minors can be used on the study
of dominating sets in planar graphs, we present the following simple consequence of
Theorem 2.1.

Lemma 2.2. Let G be a planar graph with a dominating set of size ≤ k. Then
bw(G) ≤ 12

√
k + 9.
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Proof. Suppose that bw(G) > 12
√
k+9. By Theorem 2.1, there exists a sequence

of edge contractions or edge/vertex removals reducing G to a (ρ, ρ)-grid where ρ =
3
√
k+3. We apply to G only the contractions from this sequence and call the resulting

graph J . J contains a (ρ, ρ)-grid as a subgraph. As J 	c G, J also has a dominating
set D of size ≤ k. A vertex in D cannot dominate more than nine internal vertices
of the (ρ, ρ)-grid. Therefore, k ≥ (ρ − 2)2/9, which implies ρ ≤ 3

√
k + 2 = ρ − 1, a

contradiction.
In the remaining part of the paper we show how the above upper bound for

the branch-width of a planar graph in terms of its dominating set number can be
strongly improved. Our results will use as a basic ingredient the following theorem,
which is a direct consequence of the Robertson and Seymour min-max Theorem 4.3 in
[36] relating tangles and branch-width and Theorem 6.6 in [37] establishing relations
between tangles of dual graphs. Since the result is not mentioned explicitly in the
articles of Robertson and Seymour, we provide here a short explanation of how it can
be derived.

We denote as K2
2 the graph consisting of two vertices connected by a double edge.

Notice that K2
2 is a dual of itself; therefore, if G contains K2

2 as a minor, then its dual
G∗ also contains K2

2 as a minor.
Theorem 2.3. Let G be a Σ-plane graph that contains K2

2 as a minor and let
Gd be its dual. Then bw(G) = bw(Gd).

Proof. A separation of a graph G is a pair (A,B) of subgraphs with A ∪ B = G
and E(A ∩B) = ∅, and its order is |V (A ∩B)|. A tangle of order θ ≥ 1 is a set T of
separations of G, each of order less than θ, such that

1. for every separation (A,B) of G of order less than θ, T contains one of (A,B)
and (B,A);

2. if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪A2 ∪A3 �= G; and
3. if (A,B) ∈ T , then V (A) �= V (G).

The tangle number θ(G) of G is the maximum order of tangles in G. By the result
of Robertson and Seymour [36, Theorem 4.3], for any graph G of branch-width at least
two, θ(G) = bw(G). Since bw(K2

2 ) = 2 and K2
2 	 G, we have that θ(G) = bw(G).

By similar arguments, θ(Gd) = bw(Gd).
Let G be a graph 2-cell embedded in a connected surface Σ. A subset of Σ meeting

the drawing only at vertices of G is called G-normal. The length of a G-normal arc
is the number of vertices it meets. A tangle T of order θ is respectful if, for every
homeomorphic to a circle G-normal arc N in Σ of length less than θ, there is a closed
disk Δ ⊆ Σ with Δ̂ = N such that the separation (G ∩ Δ, G ∩ Σ − Δ) ∈ T . By the
first tangle property, every tangle T of a graph embedded in a sphere is respectful.

By [37, Theorem 6.6], for every 2-cell embedded graph G on a connected surface
Σ, G has a respectful tangle of order θ if and only if its dual Gd does. This implies
that θ(G) = θ(Gd) and the theorem follows.

For our bounds, we need an upper bound on the size of branch-width of a planar
graph in terms of its size. The best published bound for the branch-width that we
were able to find in the literature is bw(G) ≤ 4

√
|V (G)| − 3 which follows directly

from Theorem 2.1. An improvement of this inequality can be found in [28]. This proof
is based on a relation between slopes and majorities, the two notions introduced by
Robertson and Seymour in [36] and Alon, Seymour, and Thomas in [6], respectively.

Theorem 2.4 (see [28]). For any planar graph G, bw(G) ≤
√

4.5 · |V (G)|.

3. Bounding branch-width of D-dominated planar graphs. This section
is devoted to the proof of the main combinatorial result of this paper: The branch-
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width of any planar graph with a dominating set of size k is at most 3
√

4.5
√
k. The

idea of the proof is to show that for every planar graph G with a dominating set of
size k there is a graph H on at most k vertices such that bw(G) ≤ 3 · bw(H). Then
Theorem 2.4 will do the rest of the job.

The construction of the graph H and the proof of bw(G) ≤ 3 · bw(H) is not
direct. First we prove that every planar graph with a dominating set D is a minor
of some graph with a nice structure. We call these “structured” graphs nicely D-
dominated. For a nicely D-dominated planar graph G we show how to define a graph
red(G) on |D| vertices. The most complicated part of the proof is the proof that
bw(G) ≤ 3 · bw(red(G)) (clearly this implies the main combinatorial result). The
proof of this inequality is based on a more general result about isomorphism of special
hypergraphs obtained from G and red(G) (Lemma 3.16) and the structural properties
of nicely D-dominated graphs.

3.1. Auxiliary results. In this section we obtain some useful technical results
about branch-width.

Lemma 3.1. Let G1 and G2 be hypergraphs with one hyperedge in common, i.e.,
V (G1) ∩ V (G2) = f and {f} = E(G1) ∩ E(G2). Then bw(G1 ∪ G2) ≤ max{bw(G1),
bw(G2), |f |}. Moreover, if every vertex v ∈ f has degree ≥ 2 in at least one of the
hypergraphs (i.e., v is contained in at least two edges in G1 or in at least two edges in
G2), then bw(G1 ∪ G2) = max{bw(G1),bw(G2)}.

Proof. Clearly, bw(G1 ∪ G2) ≥ max{bw(G1),bw(G2)}.
For i = 1, 2, let (Ti, τi) be a branch decomposition of Gi of width ≤ k and let

ei = {xi, yi} be the edge of Ti having as endpoint the leaf τi(f) = xi. We construct
tree T as follows. First we remove the vertices xi and add edge {y1, y2}. Then we
subdivide {y1, y2} by introducing a new vertex y. Finally we add vertex x and make
it adjacent to y.

We set τ(f) = x. For any other edge g ∈ E(G1) ∪ E(G2) we set τ(g) = τ1(g) if
g ∈ E(G1) and τ(g) = τ2(g) otherwise.

Because |ω({y1, y})| = |ω({y2, y})| = |ω({x, y})| ≤ |f | and for any other edge of
T , its order is equal to the order of the corresponding edge in one of the Ti’s, we have
that (T, τ) is a branch decomposition of width ≤ max{k, |f |}.

If every vertex v of f has degree ≥ 2 in one of the hypergraphs, then |f | ≤
max{|ω(e1)|, |ω(e2)|} ≤ k. Thus in this case, (T, τ) is a branch decomposition of
width ≤ k.

Let G be a connected Σ-plane graph with all vertices of degree at least two. For
a vertex x of G and a pair (z, y) of two of its neighbors, we call (z, y) a pair of
consecutive neighbors of x if edges {x, z}, {x, y} appear consecutively in the cyclic
ordering of the edges incident to x. (Notice that if x has only two neighbors y and z,
then both (y, z) and (z, y) are pairs of consecutive neighbors of x.)

Lemma 3.2. Let G be a planar graph. Then G is the minor of a planar 2-
connected graph H such that bw(H) = max{bw(G), 2}.

Proof. We use induction on the number of vertices in G. Every graph on at most
three vertices is the minor of a complete graph on three vertices, which is 2-connected
and has branch-width two. Suppose that the lemma is correct for every planar graph
on at most n vertices.

Let G be a graph on n + 1 vertices.
Case A. G is 2-connected. In this case the lemma trivially holds.
Case B. G is connected (but not 2-connected). Then G has a cut vertex x. Let

V1, V2, . . . , Vk be the vertex sets of the connected components of G− {x}. Let G1 be



DOMINATING SETS IN PLANAR GRAPHS 287

the subgraph of G induced by V1 ∪ {x} and let G2 be the subgraph of G induced by
V2 ∪ V3 ∪ · · · ∪ Vk ∪ {x}.

By the induction assumption, there are 2-connected planar graphs Hi, i = 1, 2,
such that bw(Hi) = max{bw(Gi), 2}, and Gi ≺ Hi.

Planar graphs H1 and H2 have only one common vertex x, and thus the graph
H1 ∪ H2 is also planar. Let H be a Σ-plane graph which is a drawing of H1 ∪ H2.
Let a and b be two consecutive neighbors of x in H (i.e., vertices such that the edges
{a, x}, {b, x} are incident to the same face), where a ∈ V (H1) and b ∈ V (H2). We
denote by H ′ the graph obtained from H by drawing the edge {a, b} so that it does
not intersect other edges of H (this is possible because {a, x}, {b, x} are incident to
the same face). Let us remark that H ′ is 2-connected and contains H (and therefore
G) as a minor.

The complete graph K on three vertices {a, b, x} has one common edge {a, b} with
H1. The degrees of a and x in K are two, and at least two in H1 (H1 is 2-connected).
By Lemma 3.1, we have that

bw(H1 ∪K) = max{bw(H1), 2} = max{bw(G1), 2}.
By applying Lemma 3.1, for H1 ∪K and H2, we arrive at

bw(H ′) = bw(H1 ∪H2 ∪K) = max{bw(G1),bw(G2), 2} ≤ max{bw(G), 2}.
Since G is the minor of H ′, we have that bw(H ′) = max{bw(G), 2}.

Case C. G is not connected. Let F be the graph obtained from G by adding
an edge connecting two connected components. By making use of Lemma 3.1, it
is easy to show that bw(F ) ≤ max{bw(G), 2}, and this case can be reduced to
Case B.

A graph G is weakly triangulated if all its faces are of length two or three. A graph
is (2, 3)-regular if all its vertices have degree two or three. Notice that the dual of a
weakly triangulated graph is (2, 3)-regular and vice versa.

Lemma 3.3. Every 2-connected Σ-plane graph G has a weak triangulation H such
that bw(H) = bw(G).

Proof. Because G is 2-connected every face of G is bounded by a cycle. Suppose
that there is a face r of G bounded by a cycle C = (x0, . . . , xs−1), s ≥ 4. We show
that there are vertices xi and xj that are not adjacent in C such that the graph G′

obtained from G by adding the edge {xi, xj} has bw(G′) = bw(G). By applying this
argument recursively, one obtains a weak triangulation of G of the same branch-width.

If there are vertices xi and xj that are adjacent in G and are not adjacent in C,
then we can draw a chord joining xi and xj in r. Because G is 2-connected it holds
that bw(G) ≥ 2 and, therefore, the addition of multiple edges does not increase the
branch-width. Suppose now that the cycle C is chordless. Let (T, τ) be a branch
decomposition of G and let ω be its order function. Every edge f of T corresponds
to the partition of E(G) into two sets. One of these sets contains at least �|C|/2�≥ 2
edges of C. By induction on the number of edges in G, it is easy to show that there is
always an edge f of T such that for the corresponding partition (E1, E2) of E(G), the
set E1 contains exactly two edges of C. Let e1, e2 be such edges. Because C is chordless
and its length is at least four, we have that ω(f) contains at least two vertices, say
xi and xj , of C that are not adjacent. Then adding edge {xi, xj} does not increase
the branch-width. (The decomposition can be obtained from T by subdividing f and
adding the leaf corresponding to {xi, xj} to the vertex subdividing f .)

In the next lemma we use powerful duality results of Robertson and Seymour.
Moreover, the implications of these results play the crucial role in our proof.
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Fig. 1. The steps 1, 2, and 3 of the definition of the function ext.

Lemma 3.4. Every 2-connected Σ-plane graph G is the contraction of a (2, 3)-
regular Σ-plane graph H such that bw(H) = bw(G).

Proof. Let Gd be the dual graph of G. By Theorem 2.3, bw(Gd) = bw(G) (the
dual of a 2-connected graph is 2-connected, and any 2-connected graph contains K2

2 as
a minor). By Lemma 3.3, there is a weak triangulation Hd of Gd such that bw(Hd) =
bw(Gd). The dual of Hd, which we denote by H, contains G as a contraction (each
edge removal in a planar graph corresponds to an edge contraction in its dual and vice
versa). Applying Theorem 2.3 the second time, we obtain that bw(H) = bw(Hd).
Hence, bw(H) = bw(G). Since Hd is weakly triangulated, we have that H is (2, 3)-
regular.

3.2. Extensions of Σ-plane graphs. Let G be a connected Σ-plane graph
where all the vertices have degree at least two. We define the exension of G, ext(G),
as the hypergraph obtained from G by making use of the following three steps (see
Figure 1 for an example).

Step 1. For each edge e ∈ E(G), duplicate e and then subdivide each of its two
copies twice. That way, each edge e = {x, y} of G is replaced by a cycle denoted
as Cx,y = (x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) (indexed in clockwise order). Let G1 be the

resulting graph.
Step 2. For each vertex x ∈ V (G) and each pair (y, z) of consecutive neighbors of x

(in G), identify the edges {x, x−
x,y} and {x, x+

x,z} in G1. Let G2 be the resulting graph.
Step 3. The hypergraph ext(G) is defined by setting ext(G) = (V (G2), {Cx,y |

{x, y} ∈ E(G)}).
From the above construction, if H = ext(G), then there exists a bijection θ :

E(G) → E(H) mapping each edge e = {x, y} to the hyperedge formed by the vertices
of Cx,y. See Figure 1 for an example of the definition of ext.

Lemma 3.5. For any (2, 3)-regular Σ-plane graph G, bw(ext(G)) ≤ 3 · bw(G).
Proof. Let (T, τ) be a branch decomposition of G of width ≤ k. By the definition

of ext(G), there is a bijection θ : E(G) → E(ext(G)) defining which edge of G is
replaced by which hyperedge of ext(G). Let L be the set of leaves in T . For ext(G)
we define a branch decomposition (T, τ ′) with a bijection τ ′ : E(ext(G)) → L such
that τ ′(t) = θ(τ(t)). We use the notations ω and ω′ for the order functions of (T, τ)
and (T, τ ′), respectively.

We claim that (T, τ ′) is a branch decomposition of ext(G) of width ≤ 3k. To
prove the claim we show that for any f ∈ E(T ), |ω′(f)| ≤ 3 · |ω(f)|. In other words, we
need to show that it is possible to define a function σf mapping each vertex v ∈ ω(f)
to a set of three vertices of ω′(f) such that every vertex y ∈ ω′(f) is contained in
σf (x) for some x ∈ ω(f).
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Fig. 2. The construction of the value of σf (v) in the proof of Lemma 3.5.

Fig. 3. The construction of the branch decomposition of clE(H) in the proof of Lemma 3.6.

Let T1 and T2 be the components of T − {f}. We construct σf by distinguishing
two cases.

• The degree of v is three in G. We can assume that two of its incident edges,
say e1, e2, are images of leaves of T1 and one, say e3, is an image of a leaf in T2. We
define σf (v) = (θ(e1) ∩ θ(e3)) ∪ (θ(e2) ∩ θ(e3)). (This process is illustrated in the left
half of Figure 2.)

• The degree of v is two in G. We can assume that one of its incident edges, say
e1, is an image of some leaf of T1 and the other, say e2, is an image of a leaf in T2.
We define σf (v) = θ(e1) ∩ θ(e2) (this is illustrated in the right half of Figure 2).

Note that in both cases |σf (v)| = 3. Suppose now that y is a vertex in ω′(f).
Then y should be an endpoint of at least two hyperedges α and β of ext(G) and
without loss of generality we assume that τ ′(α) is a leaf of T1 and τ ′(β) is a leaf of
T2. By the definition of τ ′, this means that τ(θ−1(α)) is a leaf of T1 and τ(θ−1(β))
is a leaf of T2. By the construction of ext(G), θ−1(α) and θ−1(β) have a vertex x in
common; therefore x ∈ ω(f). From the definition of σf , we get that y ∈ σf (x). This
proves the relation |ω′(f)| ≤ 3 · |ω(f)|, and the lemma follows.

Let H be a planar hypergraph and let E ⊆ E(H). We set clE(H) = (V (H), EH),
where EH = E(H) − E ∪ {{x, y} ⊆ V (H) | ∃e∈E(H) : {x, y} ∈ e} (in other words, we
replace each hyperedge e ∈ E by a clique formed by connecting each pair of endpoints
of e).

Lemma 3.6. Let H be a hypergraph with every vertex of degree at least two. Then
for any E ⊆ E(H), bw(clE(H)) ≤ bw(H).

Proof. If (T, τ) is a branch decomposition of H, then we construct a branch
decomposition of clE(H) by identifying each leaf t where τ(t) ∈ E with the root of

a binary tree Tt that has
(|τ(t)|

2

)
leaves. The leaves of Tt are mapped to the edges of

the clique made up by pairs of endpoints in τ(t) (see also Figure 3).
Lemma 3.7. Let G and H be connected Σ-plane graphs with all vertices of mini-

mum degree at least two and such that G 	 H. Then bw(ext(G)) ≤ bw(ext(H)).
Proof. Let E′ (resp., E′′) be the set of edges that one should contract (resp.,

remove) in H in order to obtain G (clearly, we can assume that E′ ∩ E′′ = ∅). Let
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Fig. 4. The construction of the branch decomposition of clE(H) in the proof of Lemma 3.7.

θ be the bijection mapping edges of G to hyperedges of ext(G). If we prove that
ext(G) is a minor of clθ(E′∪E′′)(ext(H)), then the result will follow from Lemma 3.6.
To see this, for each e = {x, y} ∈ E′, we separate the edges of the clique re-
placing θ(e) = (x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) into two categories: We call {x+

x,y, y
−
x,y},

{x, y}, and {y+
x,y, x

−
x,y} horizontal and we call the rest unimportant. Moreover, for

any edge e = {x, y} ∈ E′′, we separate the edges of the clique replacing θ(e) =
(x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) into two categories: We call {x+

x,y, x
−
x,y} and {y+

x,y, y
−
x,y}

vertical and the rest useless. To obtain ext(G) from clE′(ext(H)) we first remove the
useless and the unimportant edges and then contract all the horizontal and vertical
ones (see Figure 4).

We are ready to state the main property of ext.

Lemma 3.8. Let G be a connected Σ-plane graph with all vertices of degree at
least two. Then bw(ext(G)) ≤ 3 · bw(G).

Proof. The branch-width of G is at least two, and by Lemma 3.2, G is the minor
of a 2-connected Σ-plane graph G′ such that bw(G′) = bw(G). By Lemma 3.4, G′ is
the contraction of a (2, 3)-regular Σ-plane graph H where bw(H) ≤ bw(G′). Notice
that G is a minor of H and both G and H are Σ-plane and connected and have all
vertices of degree at least two. By Lemma 3.7, bw(ext(G)) ≤ bw(ext(H)). Note
also that H is (2, 3)-regular. By Lemma 3.5, bw(ext(H)) ≤ 3 ·bw(H), and the result
follows.

3.3. Nicely D-dominated Σ-plane graphs. An important tool spanning all
of our proofs is the concept of unique D-domination. We call a D-dominated graph G
uniquely dominated if there is no path of length < 3 connecting two vertices of D. Let
us remark that this implies that each vertex x ∈ V (G) −D has exactly one neighbor
in D (i.e., is uniquely dominated).

We call a multiple edge {a, b} represented by lines l1, l2, . . . , lr of a D-dominated
Σ-plane graph G exceptional if

• a, b �∈ D;
• a and b are both adjacent to the same vertex in D;
• for any i, j, i �= j, each of the open discs bounded by li ∪ lj contains at least

one vertex of D.

For example, all the multiple edges in the graphs in Figure 5 are exceptional.

Lemma 3.9. For every 2-connected D-dominated Σ-plane graph G without mul-
tiple edges, there exists a Σ-plane graph H such that the following hold:

(a) G is a minor of H.
(b) H is uniquely D-dominated.
(c) All multiple edges of H are exceptional.
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Fig. 5. Example of the transformations T1, T2, and T3 in the proof of Lemma 3.9.

(d) For any face r of H, r̂ is either a triangle or a square.
(e) If the distance between vertices x, y ∈ D in H is three, then there exist at

least two distinct (x, y)-paths in H of length three.
(f) If a (closed) face r of H contains a vertex of D, then r̂ is a triangle.
(g) Every square face of H contains two edges ei, i = 1, 2, without common ver-

tices such that for each i = 1, 2, there exists a vertex xi ∈ D adjacent to both
endpoints of ei.

(h) If x, y ∈ D, then every two distinct (x, y)-paths of H of length three are
internally disjoint.

Proof. We construct a graph H, satisfying properties (a)–(f), by applying, one
after the other, on G the following transformations:

• T1. As long as there exists in G a vertex x with more than one neighbor y in
D, subdivide the edge {x, y}.

We call the resulting graph G1.
As G1 does not have multiple edges, properties (a), (c) are trivially satisfied.

Moreover, notice that, if G1 is not uniquely dominated, then T1 can be further
applied. Therefore, (b) holds for G1. For an example of the application of T1, see
the first step of Figure 5.

• T2. As long as G1 has a face r bounded by a cycle r̂ = (x0, . . . , xq−1), q ≥ 4,
and such that xi ∈ D for some i, 0 ≤ i ≤ q − 1, add in G1 the edge {xi−1, xi+1}
(indices are taken modulo q).

We call the resulting graph G2.
Notice that the vertices of r̂ are distinct because G2 is 2-connected. Clearly, G2

satisfies property (a). Recall now that G1 satisfies property (b). Therefore, if some
vertex xi ∈ r̂ is in D, then its neighbors xi−1 and xi+1 (the indices are taken modulo
q) are not in D. Therefore, property (b) holds also for G2. Notice that, if T2 creates
a multiple edge, then this can be only an exceptional multiple edge. Therefore, (c)
holds for G2. For an example of the application of T2, see the second step of Figure 5.

Finally note that none of the vertices of D is in a face of G2 of length ≥ 4.
We call a square face that satisfies property (g) solid.
• T3. As long as G2 has a face r that is not a solid square and such that r̂ =

(x0, . . . , xq−1), r ≥ 4, choose an edge in {{x1, x3}, {x0, x2}} that is not already present
in G2 and add it to G2.

We call the resulting graph G3.
The above transformation can always be applied because it is impossible that

both {x1, x3} and {x0, x2} are in the planar graph G3. Therefore, property (c) is an
invariant of T3. Clearly, G3 satisfies property (a). Property (b) is an invariant of T3
as the added edge has no endpoints in D. We have that all the faces of G3 are either
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Fig. 6. The transformations T4 and T5 in the proof of Lemma 3.6.

Fig. 7. Example of the transformation T4 in the proof of Lemma 3.6.

triangles or solid squares and therefore G3 also satisfies (d) and (g). For an example
of the application of T3, see the third step of Figure 5.

• T4. As long as G3 has a unique (x, y)-path P = (x, a, b, y), where x, y ∈ D,
apply the first transformation of Figure 6 on P .

We call the resulting graph G4.
It is easy to verify that properties (a)–(d) are invariants of T4. Also, it is easy

to see that the transformation of Figure 6 creates square faces with property (g) and
does not alter property (g) for square faces that already have been created. Moreover,
G4 satisfies (e) because each time we apply the transformation of Figure 6 the number
of pairs in D connected by unique paths decreases. Finally, none of the square faces
appearing (because of T4) contains a vertex in D. Thus (f) holds. For an example
of the application of T4, see Figure 7.

In order to give the transformation that enforces property (h) we need some defi-
nitions. Observe that if property (h) does not hold for G4, this implies the existence of
some pair of paths Pi = (x, a, bi, y), i = 1, 2. We call the graph O defined by this pair
an (h)-obstacle and we define its (h)-disc as the x-avoiding closed disc ΔO bounded
by the cycle (a, b1, y, b2, a). An (h)-obstacle is minimal if no (x, y)-path has vertices
contained in its (h)-disc. Notice that if G4 has an (h)-obstacle it also has a minimal
(h)-obstacle and vice versa. We call an (h)-obstacle hollow if its (h)-disc contains no
neighbor of a except b1 and b2. Notice that a hollow (h)-obstacle is always minimal.
We claim that in any hollow (h)-disc, vertices b1 and b2 are adjacent. Indeed, by
property (b), a is not adjacent to y in G4. Therefore b1, a, b2 are in a face of G4

that, from property (g), cannot be a square face (otherwise, property (b) would be
violated). Therefore, (b1, a, b2) is a triangle and the claim follows.

• T5. As long as G4 has a hollow (h)-obstacle O, apply the second transformation
of Figure 6 on edge {a, x} and the face bounded by (b1, b2, a).

We call the resulting graph G5.
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Fig. 8. Example of the transformation T5 in the proof of Lemma 3.6.

Fig. 9. Simple examples of nicely D-dominated Σ-plane graphs.

Notice that after T5 none of the properties (a)–(g) is altered by the application
of T5 (the arguments are the same as those used for the previous transformations).
Moreover, each time the second transformation of Figure 6 is applied, the number of
hollow (h)-obstacles decreases and no new nonhollow (h)-obstacles appear. For an
example of the application of T5, see Figure 8. To finish the proof, we show that T5
is able to eliminate all the (h)-obstacles. It remains to prove the following claim.

Claim. If a 2-connected D-dominated Σ-plane graph satisfies properties (b)–(g)
and contains a minimal (h)-obstacle, then it also contains a hollow (h)-obstacle.

Proof of claim. Let O = (P1, P2) be a minimal nonhollow (h)-obstacle with (h)-
disc ΔO and let O be the set containing O along with of all the minimal (h)-obstacles
that contain the edge {a, x} and whose (h)-disc is a subset of ΔO. If O1, O2 ∈ O and
ΔO1 ⊂ ΔO2 , then we say that O1 < O2 (clearly, for any O′ ∈ O − {O}, O′ < O).
Let us remark that relation “<” is a partial order on O and that all its minimal
elements are hollow (h)-obstacles. The claim follows and thus T5 is able to enforce
property (h).

Let G be a connected D-dominated Σ-plane graph satisfying properties (b)–(h)
of Lemma 3.9. We call such graphs nicely D-dominated Σ-plane graphs. For example,
the graphs of Figure 9 and the last graph in Figure 8 are nicely D-dominated Σ-plane
graphs (see also Figure 10 and all the graphs of Figure 11).

Given a nicely D-dominated Σ-plane graph G, we define T (G) as the set of all
the triangles (cycles of length three) containing a vertex of D. By property (f), for
every face r with r̂ ∩D �= ∅, r̂ ∈ T (G). (The inverse is not always correct; i.e., not
every triangle in T (G) bounds a face.) We call the triangles in T (G) D-triangles.

We also define C(G) as the set of all cycles consisting of two distinct paths of
length three connecting two vertices of D (these are indeed cycles because of property
(h) of nicely dominated graphs). Thus each cycle C in C(G) is of length six and is
the union of two length-three paths connecting its two dominating vertices.

We call the cycles in C(G) D-hexagons. The poles of a cycle C ∈ C(G) are the
vertices in D ∩ C. We call a D-triangle T (D-hexagon C) empty if one of the open
discs bounded in Σ by T (C) does not contain vertices of G. Notice that all empty
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Fig. 10. D-triangles and D-hexagons of the last graph of Figure 8.

D-triangles are boundaries of faces of G. For some examples of the above definitions
see Figure 10.

3.4. Decomposing nicely D-dominated Σ-planar graphs. In this subsec-
tion we show how nicely D-dominated planar graphs can be simplified. The idea is
based on the structure imposed by properties (b)–(h): Any nicely D-dominated pla-
nar graph can be seen as the result of gluing together two simpler structures of the
same type. This is described by the following two lemmata.

Lemma 3.10. Let G be a nicely D-dominated Σ-plane graph G and let T ∈ T (G)
be a nonempty D-triangle bounding the closed discs Δ1,Δ2. Let also Gi, i = 1, 2, be
the subgraph of G containing all vertices and edges included in Δi. Then Gi, i = 1, 2,
is a nicely Di-dominated graph for some Di ⊆ D and Gi has fewer vertices than G.

Proof. Let Di = D ∩ Δi, i = 1, 2. Clearly, Di ⊆ D. Moreover, as T is non-
empty, we have that |V (Gi)| < |V (G)|. Let us verify that properties (b)–(h) hold for
Gi, i = 1, 2. First of all we observe that, by the construction of Gi, two vertices in Gi

are adjacent if and only if they are adjacent in G. We will refer to this fact saying
that Gi preserves the adjacency of G. (Note that since G can have multiple edges, Gi

is not necessary an induced subgraph of G.)
To prove property (b), we show first that Gi is Di-dominated. For the sake of

contradiction, suppose that there exists a vertex a ∈ V (Gi) that is not dominated
by Di. As property (b) holds for G, there exists a vertex w ∈ D − Di so that a is
uniquely dominated by w in G. This means that w ∈ Σ − Δi and a ∈ Δi. Therefore,
a is a vertex of T . Because T is a D-triangle, there is some x ∈ D ∩ T . Since a is
adjacent in Gi to x and x �= w, we have a contradiction to the property (b) on G.
Now it remains to prove that Gi is uniquely D′-dominated and that this is a direct
consequence of the fact that Gi preserves the adjacency of G.

For property (c), let e = {v, u} be some multiple edge in Gi represented by edges
l1, . . . , lr, and suppose that x is the dominating vertex of T . As e is an exceptional
multiple edge in G and because of property (b), none of its endpoints is in D and
also x �∈ e. Let Δl,Δ

∗
l be the two closed discs defined by some pair lh, lj of edges

representing e. By the definition of Gi, lh ∪ lj ⊆ Δi, therefore one, say Δl, of Δl,Δ
∗
l

includes T . As x �∈ e, we have that x �∈ Δ̂l and Δl − Δ̂l contains some vertex of D.
Observe now that Δ∗

l ⊆ Δi. Therefore, if Δ∗
l − Δ̂∗

l does not contain vertices of D in
Gi, then the same holds also for G, which is a contradiction as e is exceptional in G.
It remains now to prove that v and u are adjacent to the same vertex of D in Gi.
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Fig. 11. Examples of the application of Lemmata 3.10 and 3.11.

Indeed, this is the case for G, and we let w be this vertex. If w �∈ Δi, then both v, u
should be vertices of T , which contradicts property (b). Therefore, w ∈ V (Gi) and
property (c) holds for Gi.

For (d), we stress that all the faces of Gi that are in Δi are also the faces of G.
Therefore, property (d) holds for all these faces. Also, it holds for the unique new
face r = Σ − Δi of Gi because r̂ is a triangle.

For property (e), let x, y be two vertices in Di of distance three in Gi. Let P 1
i

and P 2
i be two internally disjoint paths connecting x and y in G (these paths exist

because of properties (e) and (h) in G). Notice that (e) holds if we prove that both
P j
i , j = 1, 2, are paths of Gi, i = 1, 2, as well. Suppose to the contrary that one,

say P 1
i = (x, a, b, y), of P j

i , j = 1, 2, is not a path in Gi. This means that at least
one of a, b is in (Σ − Δi) ∩ V (G). It follows that two nonconsecutive vertices of P 1

i

are vertices of T . Therefore, the distance between x and y in G is at most two, a
contradiction to property (b) for G.

Suppose now that (f) does not hold for Gi. As (d) holds for Gi we have that
there exists a square in Gi containing a vertex of D. As Gi preserves the adjacency
of G, this square also should exist in G, a contradiction to (f) for G.

To prove (g), suppose that (a, b, c, d) is a square of Gi. As Gi preserves the
adjacency of G, (a, b, c, d) is also a square of G; therefore we may assume that there
are vertices z, w ∈ D where (z, a, b) and (w, c, d) are triangles of G. It is enough to
prove that {z, a}, {z, b}, {w, c}, and {w, d} are edges of Gi. Suppose to the contrary
that one of them, say {a, z}, is not an edge of Gi. As Gi preserves the adjacency of
G, this means that z �∈ V (Gi). In other words, we have that (z, a, b) is a triangle of
G where z ∈ (Σ−Δi)∩V (G) and {a, b} ∈ Δi ∩V (G). If this is true, then a, b should
be vertices of T ; therefore the distance in G between z and the dominating vertex
belonging in T is at most two, a contradiction to property (b).

Finally, if there exist two paths violating (h) in Gi the same also should happen
in G as Gi preserves the adjacency of G.

For an example of the application of Lemma 3.10, see the second step of Figure 11.
Lemma 3.11. Let G be a nicely D-dominated Σ-plane graph G and let C =

(x, a, b, y, c, d, x) be a nonempty D-hexagon with poles x, y bounding the closed discs
Δ1,Δ2. Let also Gi, i = 1, 2, be the graph containing all the edges and vertices included
in Δi and extended by adding the edges {b, c} and {a, d} (edges {b, c} and {a, d} are
placed outside Di to ensure planarity of Gi). Then Gi, i = 1, 2, is a nicely Di-
dominated graph for some Di ⊆ D and Gi, i = 1, 2, has fewer vertices than G.

Proof. Let G−
i be a graph where V (G−

i ) = Δi ∩ V (G) and E(G−
i ) = {e ∈ E(G) |

e is included in Δi}; i.e. G−
i , contains all edges and vertices included in Δi. Set

Di = D ∩ Δi, i = 1, 2. Therefore, Gi can be seen as the graph with V (Gi) = V (G−
i )
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and E(Gi) = E(G−
i )∪{{b, c}∪{a, d}}. As in the proof of Lemma 3.10, we will say that

G−
i preserves the adjacency of G in the sense that two vertices in G−

i are adjacent if
and only if they are adjacent in G. We also have that Di ⊆ D and |V (Gi)| < |V (G)|.

Let us verify properties (b)–(h) for Gi, i = 1, 2.

To prove (b) we first claim that Gi is Di-dominated. If some vertex α ∈ V (Gi)−Di

is not dominated by Di, then it is dominated by some vertex w ∈ D −Di (property
(b) for G). This means that w ∈ Σ − Δi implying α ∈ C. Thus α ∈ {a, b, c, d}. But
this means that the distance between w, x ∈ D or the distance between w, y ∈ D
in G is ≤ 2, which also violates (b) for G. Therefore Gi is Di-dominated. Clearly,
as Gi preserves the adjacency of G, Gi should be uniquely dominated and (b) holds
for Gi.

For property (c), we will first prove that it holds for G−
i . Let e = {v, u} be some

multiple edge in G−
i represented by edges l1, . . . , lr. As e is an exceptional multiple

edge in G and because of property (b), none of its endpoints is in D and also x, y �∈ e.
Let Δl,Δ

∗
l be the two closed discs defined by some pair lh, lj of edges representing e.

By the definition of G−
i , lh ∪ lj ⊆ Δi, therefore one of Δl,Δ

∗
l , say Δl, includes C. As

x, y �∈ e, we have that x, y �∈ Δ̂l and Δl− Δ̂l contains some vertex of D. Observe now
that Δ∗

l ⊆ Δi. Therefore, if Δ∗
l − Δ̂∗

l does not contain vertices of D, then the same
holds also for G, which is a contradiction, as e is exceptional in G. It remains now
to prove that v and u are adjacent to the same vertex of D in G−

i . Since this holds
for G, we have that there exists a vertex w ∈ D such that {u,w}, {v, w} ∈ E(G).
If w �∈ Δi, then both v, u should be vertices of C, which contradicts property (b).
Therefore, w ∈ V (G−

i ) and property (c) holds for G−
i . If now the addition of any, say

{b, c}, of {b, c}, {a, d} creates a multiple edge, then {b, c} should already be an edge
in G−

i . Suppose then that lold, lnew are two lines in Gi, representing {b, c}, and lnew

is the newly added one. As lnew �⊆ Di and lold ⊆ Di, it follows that the one of the
open discs defined by lold ∪ lnew contains y and the other contains x. Therefore, (c)
holds also for Gi.

Notice that all the faces of Gi that are included in Δi are also faces of Gi. The
boundaries of the new faces are the cycles (y, a, b), (a, b, c, d), and (x, c, b) that are all
either triangles or squares. Therefore, (d) holds for Gi.

If property (e) holds for G−
i , then it also holds for Gi. Let P be a (w, v)-path in

G−
i of length three. Property (e) holds trivially for G−

i if {w, v} = {x, y}. So suppose
that it is violated for some pair {w, v} �= {x, y}. Because (e) holds for G, we can find
a {w, v}-path P ′ = (w,α, β, v) of length three in G that is not a path in G−

i . As
{w, v} �= {x, y}, only one, say α, of α, β can be outside Δi. This means that w and β
are vertices of C. Since β ∈ {a, b, c, d}, we have that v is adjacent in G to a vertex in
{a, b, c, d}. This contradicts property (b) for G, as it implies the existence of a path
of length ≤ 2 connecting v ∈ D and one of the vertices x, y ∈ D.

It is easy to verify (f) for the new faces (x, a, d), (a, b, c, d), and (y, c, d) of Gi.
Suppose now that (f) is violated for some face of Gi that is also a face of G. As (d)
holds for Gi, we have that there exists a square in Gi containing a vertex of Gi. As
Gi preserves the adjacency of G, this square should exist also in G, a contradiction
to (f) for G.

Property (g) is trivial for the new square face of Gi bounded by (a, b, c, d). Let
us prove that (g) also holds for all the square faces of G−

i . Let r̂ = (α, β, γ, δ) be
the boundary of some square face r of G−

i . As G−
i preserves the adjacency of G,

(α, β, γ, δ) is also the boundary of some square face of G. Therefore, we may assume
that there are vertices z, w ∈ D where (z, α, β) and (w, γ, δ) are triangles of G. It is
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enough to prove that {z, α}, {z, β}, {w, γ}, and {w, δ} are all edges of G−
i . Suppose,

to the contrary, that one of them, say {a, z}, is not an edge of G−
i . As G−

i preserves
the adjacency of G, this means that z �∈ V (G−

i ). In other words, we have that (z, α, β)
is a triangle of G, where z ∈ (Σ − Δi) ∩ V (G) and {α, β} ∈ Δi ∩ V (G). Then α, β
should be vertices of C different from x and y. Therefore, either z, x or z, y are at
distance at most two in G, contradicting property (b).

For (h), we observe that no path of length three in Gi connecting two vertices
of D can use the edges {a, d} and {b, c} in Gi. Indeed, if this is possible for one,
say {a, d}, of the edges {a, d} and {b, c}, then such a path would have extremes in
distance two from x, a contradiction to property (b) for Gi. Therefore, if there exist
two paths violating (h) in Gi, they should be paths of G−

i and also paths of G as G−
i

preserves the adjacency of G, a contradiction to property (b).
For an example of the application of Lemma 3.10, see steps 1, 3, and 4 of Figure 11.

3.5. Prime D-dominated Σ-plane graphs. A nicely D-dominated Σ-plane
graph G is a prime D-dominated Σ-plane graph (or just prime) if all its D-triangles
and D-hexagons are empty. For example, all the graphs in Figure 9 are prime.

Lemma 3.12. Let G be a prime D-dominated Σ-plane graph. If G contains two
vertices x, y ∈ D connected by three paths of length three, then V (P1)∪V (P2)∪V (P3) =
V (G).

Proof. By property (h), the paths Pi, i = 1, 2, 3, are mutually internally disjoint.
Then Σ − (P1 ∪ P2 ∪ P3) contains three connected components that are open discs.
We call them Δ1,2, Δ2,3, and Δ1,3 assuming that they do not contain vertices of
P3, P1, and P2, respectively. Let i, j, h be any three distinct indices of {1, 2, 3}. As
Pi ∪ Pj forms an empty D-hexagon, all the vertices of G should be contained in one,
say Δ, of the closed discs bounded by the cycle Pi ∪ Pj . Notice that Ph should be
entirely included in Δi,j because of its internal vertices. Therefore, Δ = Δi,j and thus
V (G) = V (G) ∩ Δi,j . Resuming, we have that V (G) = V (G) ∩ (Δ1,2 ∩ Δ2,3 ∩ Δ1,3)
and the lemma follows as Δ1,2 ∩Δ2,3 ∩Δ1,3 contains exactly the vertices of the paths
Pi, i = 1, 2, 3.

The graph Σ3
2 of Figure 11 is a graph satisfying the conditions of Lemma 3.12.

Let us recall that C(G) is the set of all cycles consisting of two distinct paths of
length three connecting two vertices of D. For a nicely D-dominated Σ-plane graph
G, we define its reduced graph, red(G), as the graph with vertex set D and where two
vertices x, y ∈ D are adjacent in red(G) if and only if the distance between x and y
in G is three. Let us stress that red(G) is a connected graph. The main idea of our
proof is that red(G) expresses a “good” part of the structure of a nicely D-dominated
graph G.

An important relation of a prime graph and its reduced graph is provided by the
following lemma.

Lemma 3.13. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3. Then
the mapping

φ :E(red(G))→C(G), where φ(e) =C if and only if the endpoints of e are in D∩C,

is a bijection.
Proof. Clearly, any D-hexagon C with poles x and y implies the existence of

a (x, y)-path in G and therefore C is the image of {x, y} ∈ E(red(G)). In or-
der to show that φ is a bijection, we have to show that for every e = {x, y} ∈
E(red(G)), there exists a unique D-hexagon C with poles x and y. By the definition
of red(G), x and y are within distance three in G. By properties (e) and (h) of nicely
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D-dominated Σ-plane graphs, there are at least two internally disjoint paths connect-
ing x and y. Suppose to the contrary that G has at least three (x, y)-paths P1, P2, P3.
As |D| ≥ 3, G contains vertices that are not in V (P1)∪V (P2)∪V (P3), a contradiction
to Lemma 3.12.

Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3 and let φ be the
bijection defined in Lemma 3.13. For every edge e = {x, y} ∈ E(red(G)), we choose
a vertex w ∈ D−{x}− {y} and define Δ(e) as the w-avoiding open disc bounded by
φ(e) (because G is prime, the definition does not depend on the choice of w). Observe
that for any two different e1, e2 ∈ E(red(G)), it holds that Δ(e1) ∩ Δ(e2) = ∅.

Some of the properties of prime D-dominated Σ-plane graphs are given by the
next two lemmata.

Lemma 3.14. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 2. For
any D-triangle T = (x, a, b) with x ∈ D, the edges {x, a} and {x, b} are also the edges
of some D-hexagon of G with poles x and y ∈ D. Moreover, if |D| ≥ 3, the edge {a, b}
is in Δ({x, y}).

Proof. Because G is a prime graph, one of the open discs bounded by T is a face
of G. Let rx, r̂x = T = (x, a, b), be such a face. Let r, r �= rx, be the (unique) face
incident to {a, b}, i.e., {a, b} ⊆ r̂. By (d), r is either a triangle or a square face.

We claim that it is a square face. Suppose to the contrary that r̂ = (a, b, c).
Then, from property (b), c �∈ D. Let y ∈ D be the unique vertex dominating c. We
distinguish two cases:

Case 1. x = y. In this case all vertices in V (G)−{x, a, b, c} are covered (in Σ) by
four open discs bounded by triangles (x, a, b), (x, a, c), (x, b, c), and (a, b, c). Since G
is prime, all D-triangles (x, a, b), (x, a, c), (x, b, c) are empty. Therefore, all vertices in
V (G) − {x, a, b, c} are in the x-avoiding open disc Δ bounded by (a, b, c). As Δ = r
is a face of G, we have that V (G) − {x, a, b, c} = ∅, a contradiction to the fact that
|D| ≥ 2.

Case 2. x �= y. Then G contains the paths (x, a, c, y) and (x, b, c, y), a contradic-
tion to property (h), and the claim holds.

As r is a square face, we assume that r̂ = (a, b, c, d). Property (g), together with
the fact that a, b are adjacent to x, implies that either all vertices a, b, c, d are adjacent
to x, or there is y ∈ D, y �= x, that is adjacent to c and d.

We claim that the first case is impossible. Indeed, if a, b, c, d are adjacent to x,
then all the vertices in V (G) − {x, a, b, c, d} should be included in the five open discs
bounded by triangles (x, a, b), (x, a, c), (x, b, d), (c, d, x) and square (a, b, c, d). Four
discs bounded by D-triangles are faces of G (G is prime); thus all the vertices of
V (G)−{x, a, b, c, d} are in the x-avoiding open disc r bounded by (a, b, c, d). Because
r is a face of G, we conclude that V (G) − {x, a, b, c, d} = ∅. Since by property
(b), a, b, c, d �∈ D, we have a contradiction to the fact that |D| ≥ 2, and the claim
holds.

Therefore, there is y ∈ D, y �= x, and y is adjacent to c and d. Because (y, c, d)
is a D-triangle in a prime graph, one of the discs ry bounded by (y, c, d) is the face
of G. Hence C = (x, a, c, y, d, b, x) is a D-hexagon containing edges {x, a} and {x, b},
as required. Notice now that Δ = rx ∪ {a, b} ∪ r ∪ {c, d} ∪ ry is one of the open discs
bounded by C (here an edge represents an open set). As V (G)∩Δ = ∅, we have that
Δ({x, y}) = Δ and thus the edge {a, b} is contained in Δ({x, y}).

Lemma 3.15. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 2. Then
the endpoints of each edge of G are the vertices of some D-hexagon.

Proof. Let e = {x, y} be an edge of G.
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Fig. 12. An example of the proof of Lemma 3.17.

Case 1. {x, y}∩D = {x} (by property (b), |{x, y}∩D| ≤ 1). Let r be the face of
G incident to e = {x, y}. From property (f), r is a D-triangle and the result follows
from Lemma 3.14.

Case 2. {x, y} ∩D = ∅. Let dx and dy be the vertices of D-dominating x and y,
respectively. If dx = dy, then e is incident to the D-triangle (dx, x, y), and the result
follows from Lemma 3.14. Suppose now that dx �= dy. Then (dx, x, y, dy) is the path
connecting two vertices in D. From property (e), {x, y} belongs to the union of two
distinct paths connecting dx and dy. Therefore, {x, y} should be an edge of some
D-hexagon and the lemma follows.

3.6. On the structure of nicely D-dominated Σ-plane graphs. For a given
nicely D-dominated Σ-plane graph G, we define hypergraph G∗ with the vertex set
V (G∗) = V (G) and edge set E(G∗) = E(G)∪T (G)∪C(G); i.e., G∗ is obtained from G
by adding all D-triangles and D-hexagons as hyperedges. We also define hypergraph
Gh with the vertex set V (Gh) = V (G) and the edge set E(Gh) = C(G); i.e., Gh has
the vertices of G as vertices and each of its hyperedges contains the vertices of some
D-hexagon of G. Observe that Gh can be obtained from G∗ by removing all the
(hyper)edges of size two and three.

Lemma 3.16. For any prime D-dominated Σ-plane graph G with |D| ≥ 2,
bw(G∗) ≤ max{bw(Gh), 3}.

Proof. By Lemmata 3.14 and 3.15, we have that for each hyperedge in G∗ there
exists some D-hexagon containing all its endpoints. In other words, each hyperedge
of G∗ is a subset of some hyperedge of Gh. By applying Lemma 3.1 recursively
for every hyperedge f of G∗ that is an edge or a triangle, we arrive at bw(G∗) ≤
max{bw(Gh), 3}.

The following structural result will serve as a base for the recursive application
of Lemmata 3.10 and 3.11 in the proof of Lemma 3.21.

Lemma 3.17. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3. Then
red(G) is a connected Σ-plane graph, all vertices of G have degree at least two, and
Gh is isomorphic to ext(red(G)).

Proof. We define the joined drawing of G and red(G) in Σ as follows:
Take a drawing of G on Σ and draw the vertices of red(G) identically to the

vertices of G. For each edge ei = {x, y} ∈ E(red(G)) we draw {x, y} as an I-arc
connecting x and y and contained in Δ(ei).

For an example of joined drawing, see the second drawing of Figure 12. The
following three auxiliary propositions are used in the proof of the lemma.

Proposition 3.18. If G is a prime D-dominated Σ-plane graph, then red(G) is
a Σ-plane graph.
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To prove the proposition, let us take the joined drawing of G and red(G) in Σ.
Observe that, for any pair of edges ei, ei ∈ E(red(G)), Δ(ei)∩Δ(ei) = ∅. Therefore,
if in this drawing we delete all the points that are not points of vertices or edges of
red(G), what remains is a planar drawing of red(G).

Proposition 3.19. Let G be a prime D-dominated Σ-plane graph where |D| ≥ 3
and let φ be the bijection defined in Lemma 3.13. In the joined drawing of G and
red(G) in Σ, for any vertex x ∈ D, of degree at least three, two edges {x, y} and
{x, z} are consecutive if and only if the D-hexagons φ({x, y}) and φ({x, z}) have
exactly one edge in common. In the special case where x ∈ D has degree two, the
D-hexagons φ({x, y}) and φ({x, z}) have exactly two edges in common.

In fact, let φ({x, y}) and φ({x, z}) be two hexagons sharing only x as a common
vertex. By property (f), all faces of G incident to x are bordered by triangles that
in turn are cyclically ordered according to the cyclic ordering of their edges incident
to x. This ordering contains one triangle from φ({x, y}) and one from φ({x, z}).
The removal of these triangles from the cyclic ordering breaks it into two nonempty
subintervals, such that each of the subintervals contains one of the triangles T1 and T2.
By Lemma 3.14, each of T1, T2 is a part of some D-hexagon φ({x, z1}) and φ({x, z2}),
respectively, and this implies that the edges {x, y} and {x, z} cannot be consecutive in
red(G). The inverse direction follows directly by the definition of the joined drawing
of G and red(G).

Proposition 3.20. Let G be a prime D-dominated Σ-plane graph where |D| ≥ 3.
Then all vertices of red(G) have degree at least two.

In fact, let x ∈ D be a vertex of G incident to a face r. By property (f) of
Lemma 3.9, the boundary of r is a triangle r̂ = (x, a1, a2). By Lemma 3.14, the edges
{x, a1} and {x, a2} are also the edges of some D-hexagon with poles x and y. We
distinguish the following cases:

Case 1. x has a neighbor a3, distinct from a1 and a2. We choose a3 so that a2

and a3 are consecutive in the cyclic ordering of the neighbors of x. Note also that the
unique face whose boundary contains x, a2, and a3 should be a triangle (otherwise we
have a contradiction to property (f)). By Lemma 3.14, the edges {x, a2} and {x, a3}
are contained in some D-hexagon with poles x and w. Clearly w �= y (otherwise x
and y are connected by three internally disjoint paths), and from Lemma 3.12 we
have that |D| = 2, a contradiction. We conclude that {x,w} is an edge of red(G),
different from {x, y}.

Case 2. The only neighbors of x are the vertices a1 and a2. From property (f),
e = {a1, a2} is an exceptional edge; i.e., there are two lines l1 and l2, representing e,
whose extremes are a1 and a2. Let T 1, T 2 be the triangles containing x and lines l1
and l2, respectively. For i = 1, 2, we apply Lemma 3.14 for T i and derive that both
{x, ai}, i = 1, 2, belong to some D-hexagon Ci of G with poles x and yi. Moreover, as
|D| ≥ 3, the line li is contained in Δ({x, yi}). Therefore, for the case y1 = y2 we have
that both lines l1, l2 are in Δ({x, yi}), which is impossible. So, x has two neighbors
in red(G), which completes the proof of Proposition 3.20.

Now we are in position to prove Lemma 3.17.

By Proposition 3.18, G is a Σ-plane graph. By Proposition 3.20, all vertices
of red(G) have degree at least two. Therefore, the three transformation steps of
ext can be applied on red(G). Consider now the joint drawing of G and red(G)
in Σ. For each edge e = {x, y} ∈ E(red(G)), we use the notation φ(x, y) =
(x, x+

x,y, y
−
x,y, y, x

+
x,y, x

−
x,y, x) (the ordering is clockwise). Apply Steps 1 and 2 of the

definition of ext on red(G). During Step 2, identify vertices x−
x,y, x+

x,z with the
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vertices of G that are denoted in the same way. This is possible because of Proposi-
tion 3.19 and because the graph G2 created after Step 2 has exactly the same vertex
set as the graph G. Let us recall that there exists a bijection θ : E(G) → E(ext(G))
mapping each edge e = {x, y} to the hyperedge formed by the vertices of Cx,y. More-
over, for any edge e = {x, y} ∈ E(red(G)), the cycle θ(x, y) = Cx,y is identical to the
D-hexagon φ(x, y). Notice now that the application of Step 3 of the definition of red
on G2 ignores the edges of G2 and adds as edges all the cycles φ(e), e ∈ E(red(G)).
As these cycles are exactly those added toward constructing Gh, the graph Gh is also
identical to the result of Step 3. Thus Gh is isomorphic to ext(red(G)).

3.7. Main combinatorial result.
Lemma 3.21. For any nicely D-dominated Σ-plane graph G, bw(G) ≤ 3 ·√

4.5 · |D|.
Proof. For |D| = 1, G−D is outerplanar. It is well known that the branch-width

of an outerplanar graph is at most two, implying bw(G) ≤ 3.
Suppose that |D| ≥ 2. Clearly, bw(G) ≤ bw(G∗), and to prove the lemma we

show that bw(G∗) ≤ 3 ·
√

4.5 · |D|.
Prime case. We first examine the special case where G is a prime D-dominated

Σ-plane graph. There are two subcases:
• If |D| = 2, then we set D = {x, y}. If there are only two (x, y)-paths in G,

then G = Σ2
2. If there are three (x, y)-paths in G, then G = Σ3

2 (see Figure 9).
Moreover, G cannot contain more than three (x, y)-paths; otherwise it would not be
prime. Therefore, |V (G)| ≤ 8 and thus bw(G∗) ≤ 8 ≤ 3 ·

√
4.5 · 2 = 9.

• Suppose now that G is a prime D-dominated Σ-plane graph and |D| ≥ 3. By
Theorem 2.4, bw(red(G)) ≤

√
4.5 · |D|. By Lemma 3.17, all the vertices red(G) have

degree ≥ 2. Therefore, we can apply Lemma 3.8 on red(G) (recall that red(G) is
connected) and get bw(ext(red(G))) ≤ 3 · bw(red(G)). By Lemma 3.17, bw(Gh) =
bw(ext(red(G))) and by Lemma 3.16, bw(G∗) ≤ max{bw(Gh), 3}. Resuming, we
conclude that if G is prime, then bw(G∗) ≤ 3 ·

√
4.5 · |D|.

General case. Suppose that G is a nicely D-dominated Σ-plane graph. We use
induction on the number of vertices of G. If |V (G)| = 3, then G is a triangle (the graph
Σ1 of Figure 9) and bw(G∗) = 3 ≤ 3 ·

√
4.5. Suppose that bw(G∗) ≤ 3 ·

√
4.5 · |D|

for every nicely D-dominated graph on < n vertices. Let G be a nicely D-dominated
Σ-plane graph where |V (G)| = n and let q be a nonempty D-triangle or D-hexagon
(if q does not exist, then the induction step follows by the prime case above). By
Lemmata 3.10 and 3.11, we have that if Δ1,Δ2 are the discs bounded by q, then, for
i = 1, 2, Gi = G[V (G)∩Δi] is a subgraph of a nicely Di-dominated Σ-plane graph for
some Di ⊆ D, i = 1, 2, and that |V (Gi)| < n (we use the expression “subgraph” in
order to capture the case when q is a D-hexagon). Applying the induction hypothesis,
we get that bw(G∗

i ) ≤ 3 ·
√

4.5 · |Di|, i = 1, 2. Notice also that G∗ = G∗
1 ∪G∗

2 and that
V (G∗

1 )∩V (G∗
2 ) = q ∈ E(G∗

1 )∩E(G∗
2 ). Therefore, we can apply Lemma 3.1 and we get

bw(G∗) ≤ 3 ·
√

4.5 · |Di| (recall that |q| ≤ 6).
For an example of the induction of the general case in the proof of Lemma 3.21,

see Figure 11.
The following is the main combinatorial result of this paper.
Theorem 3.22. Let G be a D-dominated Σ-plane graph. Then bw(G) ≤

3
√

4.5 · |D|.
Proof. If the branch-width of G is at most one, the theorem is trivial. Suppose

that bw(G) ≥ 2. Then removing multiple edges does not decrease the branch-width
of G, and we can assume that G is simple.
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Let A be the set of cut vertices of G. Let Gi be the 2-connected components of
G, Di = D ∩ V (Gi), and Ai = A ∩ V (Gi), 1 ≤ i ≤ r. Let also Ni be the vertices of
Gi that are not dominated by Di, 1 ≤ i ≤ r.

Note also that each vertex of Ni is dominated in G by some vertex from V (G)−
V (Gi). Moreover, a vertex from V (G) − V (Gi) cannot dominate more than one
vertex in Gi. Therefore, |Ni| ≤ |D −Di|. Thus for D′

i = Ni ∪Di, we have that Gi is
D′

i-dominated and |D′
i| ≤ |D|.

Consider now two cases for the graph Gi, 1 ≤ i ≤ r.
Case 1. Gi is a D′

i-dominated 2-connected planar graph. We take a drawing
of this graph in a sphere Σ and apply Lemma 3.9. In this way, we construct a
nicely D′

i-dominated Σ-plane graph Hi containing (property (a)) Gi as a minor. By
Lemma 3.21, bw(Hi) ≤ 3 ·

√
4.5 · |D′

i|. Since Gi is a minor of Hi, we have that

bw(Gi) ≤ 3
√

4.5 · |D′
i| ≤ 3

√
4.5 · |D|.

Case 2. Gi is an induced edge. Clearly, in this case, bw(Gi) ≤ 3
√

4.5 · |D|.
Each graph Gi can be treated as a hypergraph with the ground set V (Gi) and the

edge set E(G)∪{{v} | v ∈ V (G)}. As hypergraphs, graphs Gi have at most one edge
(edge consisting of one vertex) in common, and by applying Lemma 3.1 recursively
we obtain that bw(G) ≤ max{1,max1≤i≤r bw(Gi)} ≤ 3

√
4.5 · |D|.

4. Algorithmic consequences. In this section we discuss an algorithm that,
given a planar graph G on n vertices and an integer k, decides whether G has a
dominating set of size at most k.

4.1. The general algorithm. The algorithm runs in O(212.75
√
k + n3) steps

and works in three phases as follows.
Phase 1. We use the known reduction of Planar Dominating Set problem to a

linear problem kernel as a preprocessing procedure. Alber, Fellows, and Niedermeier
[3] designed a procedure that, for a given integer k and planar graph G on n vertices,
outputs a planar graph H on ≤ 335k vertices such that G has a dominating set of size
≤ k if and only if H has a dominating set of size ≤ k. Later, Chen, Fernau, Kanj,
and Xia [9] improved this result, providing a reduction to a kernel of a size ≤ 67k.
Each of the aforementioned reductions can be performed in O(n3) steps.

Phase 2. We compute an optimal branch decomposition of the graph H. For this
step, one can use the algorithms due to Seymour and Thomas (algorithms 7.3 and 9.1
of sections 7 and 9 in [39]—for an implementation, see the work of Hicks in [33]).
These algorithms need O(n2) steps for checking and O(n4) steps for constructing the
branch decomposition for graphs on n vertices. We stress that there are no large
hidden constants in the running time of these algorithms, which is important for
practical applications. Thus a branch decomposition of H can be constructed in
O(k4) steps. Check whether bw(H) ≤ (3

√
4.5)

√
k < 6.364

√
k. If the answer is “no,”

then by Theorem 3.22 we conclude that there is no dominating set of size k in G. If
the answer is “yes,” then we proceed with the next phase.

Phase 3. Here we use a dynamic programming approach to solve the Planar

Dominating Set problem on graph H. Alber et al. [1] suggested a dynamic pro-
gramming algorithm based on the so-called monotonicity property of the domination
problem. For a graph G on n vertices with a given tree decomposition of width �, the
algorithm of Alber et al. can be implemented in O(22�n) steps. There is a well known
transformation due to Robertson and Seymour [36] that, given a branch decomposi-
tion of width ≤ � of a graph with m edges, constructs a tree decomposition of width
≤ (3/2)� in O(m2) steps. Thus the result of Alber et al. immediately implies that
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the Dominating Set problem on graphs with n vertices and m edges and of branch-
width ≤ � can be solved in O(23�n + m2) steps. Notice now that for planar graphs

m = O(n). This phase requires O(23·3
√

4.5·kk+k2) steps. As 3·3
√

4.5 < 19.1, we obtain

an O(219.1
√
k +n3)-step algorithm that finds in planar graph on n vertices a dominat-

ing set of size at most k, or reports that no such dominating set exists. However, in
the next subsection (Theorem 4.1) we construct a dynamic programming algorithm
solving the Dominating Set problem on graphs of branch-width ≤ � in O(31.5�m)
steps, where m is the number of edges in a graph. Because (1.5 · log2 3) ·3

√
4.5 < 15.13

and m = O(k), we can reduce the cost of this phase to O(215.13
√
k) steps and conclude

with a time O(215.13
√
k + n3) algorithm.

4.2. Dynamic programming on graphs of bounded branch-width. Let
(T ′, τ) be a branch decomposition of a graph G with m edges and let ω′ : E(T ′) →
2V (G) be the order function of (T ′, τ). We choose an edge {x, y} in T ′, put a new
vertex v of degree two on this edge, and make v adjacent to a new vertex r. By
choosing r as a root in the new tree T = T ′ ∪ {v, r}, we turn T into a rooted tree.
For every edge of f ∈ E(T ) ∩ E(T ′) we put ω(f) = ω′(f). Also we put ω({x, v}) =
ω({v, y}) = ω′({x, y}) and ω({r, v}) = ∅.

For an edge f of T we define Ef (Vf ) as the set of edges (vertices) that are “below”
f , i.e., the set of all edges (vertices) g such that every path containing g and {v, r} in
T contains f . With this notation, E(T ) = E{v,r} and V (T ) = V{v,r}. Every edge f
of T that is not incident to a leaf has two children that are the edges of Ef incident
to f . We also denote by Gf the subgraph of G formed by edges of G corresponding
to the leaves of Vf .

For every edge f of T we color the vertices of ω(f) in three colors:
black (represented by 1, meaning that the vertex is in the dominating set),
white (represented by 0, meaning that the vertex is dominated at the current step

of the algorithm and is not in the dominating set), and
grey (represented by 0̂, meaning that at the current step of the algorithm we still

have not decided to color this vertex white or black).
For every edge f of T we use mapping

Af : {0, 0̂, 1}|ω(f)| → N ∪ {+∞}.

For a coloring c ∈ {0, 0̂, 1}|ω(f)|, the value Af (c) stores the minimum cardinality of
a set Df ⊆ V (Gf ) such that every nongrey vertex of Gf is dominated by a vertex
from Df and all black vertices are in Df . More formally, Af (c) stores the minimum
cardinality of a set Df (c) such that

• every vertex of V (Gf ) \ ω(f) is adjacent to a vertex of Df (c),
• for every vertex u ∈ ω(f), c(u) = 1 ⇒ u ∈ Df (c) and c(u) = 0 ⇒ (u �∈ Df (c)

and u is adjacent to a vertex from Df (c)).
We put Af (c) = +∞ if there is no such set Df (c). Because ω({r, v}) = ∅ and
G{r,v} = G, we have that A{r,v}(c) is the smallest size of a dominating set in G.

Let f be a nonleaf edge of T and let f1, f2 be the children of f . Define X1 = ω(f)−
ω(f2), X2 = ω(f)−ω(f1), X3 = ω(f)∩(ω(f1)∩ω(f2)), and X4 = (ω(f1)∪ω(f2))−ω(f).

Notice that Xi ∩Xj �= ∅, 1 ≤ i �= j ≤ 4, and

ω(f) = X1 ∪X2 ∪X3.(1)

Notice now that by the definition of ω it is impossible that a vertex belongs in exactly
one of ω(f), ω(f1), ω(f2). Therefore, condition u ∈ X4 implies that u ∈ ω(f1)∩ω(f2).
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Hence

ω(f1) = X1 ∪X3 ∪X4,(2)

and

ω(f2) = X2 ∪X3 ∪X4.(3)

We say that a coloring c of ω(f) is formed from coloring c1 of ω(f1) and coloring
c2 of ω(f2) if the following hold:

[F1] For every u ∈ X1, c(u) = c1(u).
[F2] For every u ∈ X2, c(u) = c2(u).
[F3] For every u ∈ X3, (c(u) ∈ {0̂, 1} ⇒ c(u) = c1(u) = c2(u)) and (c(u) = 0 ⇒

[c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) = 0 ∨ c2(u) = 0)]). (The color 1 (0̂) can appear
only if both colors in c1 and c2 are 1 (0̂). The color 0 appears when both
colors in c1, c2 are not 1 and at least one of them is 0.)

[F4] For every u ∈ X4, (c1(u) = c2(u) = 1) ∨ (c1(u) = c2(u) = 0) ∨ (c1(u) =
0∧ c2(u) = 0̂)∨ (c1(u) = 0̂∧ c2(u) = 0). This property says that every vertex
u of ω(f1) and ω(f2) that does not appear in ω(f) (and hence does not appear
further) should be finally colored either by 1 (if both colors of u in c1 and c2
are 1) or 0 (0 can appear if both colors of u in c1 and c2 are not 1 and at
least one color is 0).

Notice that every coloring of f is formed from some colorings of its children f1

and f2. We start computations of values Af (c) from leaves of T . For every leaf f ,
|ω(f)| ≤ 1, and the number of colorings of ω(f) is at most three. Thus all possible
values of Af (c) can be computed in O(m) steps.

Then we compute the values of the corresponding functions in bottom-up fashion.
The main observation here is that if f1 and f2 are the children of f , then the vertex sets
ω(f1), ω(f2) “separate” subgraphs G1 and G2; thus the value Af (c) can be obtained
from the information on colorings of ω(f1) and ω(f2). More precisely, let #1(Xi, c),
1 ≤ i ≤ 4, be the number of vertices in Xi colored by color 1 in coloring c. For a
coloring c we assign

Af (c) = min{Af1
(c1) + Af2

(c2) − #1(X3, c1) − #1(X4, c1)|c1, c2 form c}.(4)

(Every 1 from X3 and X4 is counted in Af1(c1) + Af2(c2) twice, and X3 ∩X4 = ∅.)
The number of steps to compute the minimum in (4) is given by

O

(∑
c

|{c1, c2} : c1, c2 form c|
)
.

Let xi = |Xi|, 1 ≤ i ≤ 4. For a fixed coloring c of ω(f), let p be the number of
vertices of X3 colored with 0. By [F3], every 0 of a vertex u ∈ X3 can be “formed”
in three ways, from 0̂ and 0, or from 0 and 0, or from 0 and 0̂. By [F4], a color of
u ∈ X4 can be obtained in four ways: 1 can be obtained from 1 and 1; 0 can be
obtained either from 0 and 0, or from 0 and 0̂, or from 0̂ and 0. Then by [F1]–[F4],
the number of colorings that form a fixed coloring c with exactly p vertices of X3 of
color 0 is equal to 3p4x4 . Every vertex of ω(f) = X1 ∪X2 ∪X3 can be colored in one
of the three colors. The number of operations needed to estimate (4) for all possible
colorings of ω(f) is

x3∑
p=0

3x1+x2 · 2x3−p · 3p
(
x3

p

)
4x4 = 3x1+x25x34x4 .
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The obtained bound can be reduced by using the trick due to Alber et al. [1].
The trick is based on the following observation. If for some coloring c of f we replace
a color of a vertex u from 0̂ to 0, then for the new coloring c′, Af (c) ≤ Af (c′). Thus
in (4) we can replace “c1, c2 form c” with “c1 and c2 satisfies [F1], [F2], [F3′], and
[F4′],” where [F3′] and [F4′] are as follows:

[F3′] For every u ∈ X3, (c(u) ∈ {0̂, 1} ⇒ c(u) = c1(u) = c2(u)) and (c(u) = 0 ⇒
[c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) �= c2(u))]).

[F4′] For every u ∈ X4, (c1(u) = c2(u) = 1) ∨ [c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) �=
c2(u))].

The purpose of properties [F3′] and [F4′] is to reduce the search space from
all coloring forming c to the smaller set of colorings. Thus the number of steps for
evaluating Af (c) is bounded by

x3∑
p=0

3x1+x2 · 2x3−p · 2p
(
x3

p

)
3x4 = 3x1+x24x33x4 .

Let � be the branch-width of G. By (1), (2), and (3),

x1 + x2 + x3 ≤ �,

x1 + x3 + x4 ≤ �,(5)

x2 + x3 + x4 ≤ �.

The maximum value of the linear function x1 + x2 + x4 + x3 · log34 subject

to constraints (5) is 3log43
2 �. (This is because the value of the corresponding linear

program achieves maximum in x1 = x2 = x4 = 0.5�, x3 = 0.) Thus

3x1+x24x33x4 ≤ 4
3 log43

2 � = 3
3�
2 .

It is easy to check that the number of edges in T is O(m) and the number of steps

needed to evaluate A{r,v}(c) is O(3
3�
2 m). Summarizing, we get the following theorem.

Theorem 4.1. For a graph G on m edges and given a branch decomposition of
width ≤ �, the dominating set of G can be computed in O(3

3�
2 m) time.

5. Concluding remarks and open problems. We start this section with a
discussion on the optimality of our results. We then give a presentation on several
open problems and results that were motivated by this work.

5.1. Can Theorem 3.22 be improved? We have proved that for any planar
graph with a dominating set of size ≤ k, bw(G) ≤ 3

√
4.5 · k < 6.364

√
k. The first of

the multiplicative factors 3 follows from our results on the structure of planar graphs
with a given dominating set in section 3. The second factor

√
4.5 ≈ 2.121 follows

from [28] and is the bound on branch-width of planar graphs (Theorem 2.4). Any
improvement to any of these two factors immediately implies an improvement to the
time analysis of our fixed-parameter algorithm for a dominating set. However, our
approach cannot be strongly improved because the upper bound of Theorem 3.22 is
not far from the optimal.

Lemma 5.1. There exist planar graphs with a dominating set of size ≤ k and
with branch-width > 3

√
k.

Proof. Let G be a (3n + 2, 3n + 2)-grid for any n ≥ 1. Let V ′ be the vertices
of G of degree < 4. Let also V ′′ be the set of all vertices adjacent to V ′ in G. We
define D as the unique S ⊆ V (G) − V ′ − V ′′, where |S| = n2 and such that the
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Fig. 13. An example of the proof of Lemma 5.1.

distance in G of all pairs v, u ∈ D in G is a multiple of three. Then for any vertex
v ∈ D, and for any possible cycle (square) (v, x, y, z, v) add the edge {x, z}. The
construction is completed by connecting all the vertices in V ′ with a new vertex vnew

(see Figure 13). We call the resulting graph Jn. Clearly, D ∪ {vnew} is a dominating
set of Jn of size k = n2 + 1 ≥ 2. As the (3n + 2, 3n + 2)-grid is a subgraph of Jn
we have that bw(Jn) ≥ 3n + 2 ≥ 3

√
k − 1 + 2 > 3

√
k (from [36], the (ρ, ρ)-grid has

branch-width ρ).

5.2. Open problems and extensions of our results. A (k, r)-center in a
graph G is a set of at most k vertices, which we call centers, such that any vertex of
G is within distance at most r from some center. Extending the results of section 4,
[13] gives an algorithm that outputs, if it exists, a (k, r)-center of a planar graph in

rO(r
√
k) + nO(1) steps (according to [13], the same result also holds for map graphs).

The constants hidden in the first O-notation are based on an extension of Lemma 2.2,
bounding the branch-width of any planar graph containing a (k, r)-center by 4(2r +
1)
√
k + O(r). We conjecture that this bound (and subsequently the running time

of the algorithm in [13]) can be improved to (2r + 1)
√

4.5 · k. We also suspect that
a proof of this conjecture could be based on the same steps as those we used for
Theorem 3.22.

An approach similar to the one of section 4 has been applied for a wide num-
ber of problems related to the Planar Dominating Set problem. In this way,
our upper bound improves the algorithm complexity analysis for a series of problems
when their inputs are restricted to planar graphs. As a sample we mention the fol-
lowing: Independent Dominating Set, Perfect Dominating Set, Perfect

Code, Weighted Dominating Set, Total Dominating Set, Edge Dominat-

ing Set, Face Cover, Vertex Feedback Set, Vertex Cover, Minimum Max-

imal Matching, Clique Transversal Set, Disjoint Cycles, and Digraph

Kernel (see [17] for details and extensions to more general graph classes). How-
ever, in all of the aforementioned problems, the time analysis is based on algorithms
and combinatorial bounds for tree-width. It is an interesting problem whether bet-
ter speed-up is possible using branch-width instead of tree-width, as we did in this
paper. To our knowledge, not much progress has been noted so far on the design of
algorithms on graphs of bounded branch-width (see [11, 13, 20]).

It appears that the planarity is not a limit for the existence of bounds like the
one in Theorem 3.22. In [27], it was proved that for any D-dominated graph G,
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bw(G) ≤ 3(
√

4.5+2
√

2 · eg(G))
√
|D| + 6 · eg(G) = O(

√
|D| · eg(G)+eg(G)), where

eg(G) is the Euler genus of G. The proof of this bound uses Theorem 3.22 as a
basic ingredient. As a consequence of [27], most of the applications mentioned in the
previous paragraph also can be extended for graphs of bounded genus. For discussions
on the limits of this approach, see [26].

Finally, the idea behind Lemma 2.2 offers a mechanism for proving similar bounds
for a wide family of parameters. This is the general family of bidimensional parameters
introduced in [12] that unified the framework where the algorithmic paradigm of
section 4 can be applied. Recent research on bidimensionality extends to several
results such as [14, 15, 16, 18].

Acknowledgments. We are grateful to Hans Bodlaender, Ton Kloks, and Robin
Thomas for answering our questions.
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