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Abstract. The Graph Minors Theory, developed by Robertson and Sey-
mour, has been one of the most influential mathematical theories in pa-
rameterized algorithm design. We present some of the basic algorithmic
techniques and methods that emerged from this theory. We discuss its
direct meta-algorithmic consequences, we present the algorithmic appli-
cations of core theorems such as the grid-exclusion theorem, and we give
a brief description of the irrelevant vertex technique.
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1 Introduction

Graph Minors Theory (GMT) was developed by Robertson and Seymour in a
series of 23 papers, between 1984 and 2009. Among them, the second paper of
the series was published in the Journal of Algorithms while all the rest were pub-
lished in the Journal of Combinatorial Theory Series B. The main theoretical
achievement of this project was the proof of Wagner’s conjecture, now known as
the Robertson & Seymour Theorem, stating that graphs are well-quasi-ordered
under the minor containment relation. Besides its purely mathematical impor-
tance, GMT induced a series of powerful algorithmic results and techniques that
had a deep influence on theoretical computer science. More particularly, GMT
has been one of the most powerful “mathematical engines” in the theory and
design of parameterized algorithms. In particular, a considerable part of the ba-
sic techniques in parameterized algorithm design is directly or indirectly linked
to results from GMT. Moreover, GMT offered the theoretical base for the un-
derstanding and resolution of some of the most prominent graph-algorithmic
problems in parameterized complexity. In what follows, we give a brief presen-
tation of the main results and techniques in this area.
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Our presentation is organized as follows. In Section 2 we give the definitions
of some basic combinatorial and algorithmic concepts. In Section 3.1 we present
the main algorithmic consequences of the GMT, mainly from the parameterized
complexity viewpoint. Section 4 is devoted to the celebrated grid-exclusion theo-
rem and its applications to bidimensionality theory. Finally, Section 5, attempts
a short presentation of the irrelevant vertex technique and its applications.

2 Basic Definitions

All graphs we consider are finite, undirected and simple, i.e., they do not have
multiple edges or loops. Given a graph G we denote by V (G) and E(G) its
vertex and edge set respectively. The size (reps. magnetite) of a graph G is the
number of its vertices (reps. edges) and is denoted by n(G) (reps. m(G)), i.e.,
n(G) = |V (G)| (m(G) = |E(G)|). We denote by G \ v the graph obtained by
removing v (along with its incident edges) from G. The neighborhood of a vertex
v ∈ V (G), denoted by NG(v), is the set of edges in G that are adjacent to v.
The degree of a vertex v ∈ V (G) is the cardinality of its neighborhood in G.
We denote by Kr the complete graph on r vertices and by Kr,q the complete
bipartite graph with r vertices in its one part and q in the other. Finally, we
denote by Gk the (k× k)-grid, i.e., the Cartesian product of two paths of length
k − 1 (see Figure 1).

Fig. 1. The (11, 11)-grid G11

2.1 Relations on Graphs and Obstructions

We say that a graph H is a subgraph of a graph G if H can be obtained by G by
removing edges or vertices. The contraction of an edge e = {x, y} from G is the
removal from G of all edges incident to x or y and the insertion of a new vertex
ve that is made adjacent to all the vertices of (NG(x) \ {y}) ∪ (NG(y) \ {x}).
Given two graphs H and G, we say that H is a contraction of G, denoted by
H ≤c G, if H can be obtained from G by a (possibly empty) series of edge
contractions.
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Fig. 2. The graph H is the result of the contractions of the bold edges in G to the
vertex v

H is a minor of G if H is a contraction of some subgraph of G. A graph H is
a topological minor of G (denoted by H ≤t G) if G contains as a subgraph some
subdivision of H (a subdivision of a graph H is any graph obtained by replacing
some of its edges by paths between the same endpoints). Given a partial ordering
relation ≤ on graphs, we say that a graph class G is closed under ≤ if for every
G ∈ G, H ≤ G implies that H ∈ G. Let G be a graph class that is closed under
the minor relation. An ≤-anti-chain is a set of graphs that are pairwise non-
comparable with respect to ≤. For example the set of graphs A = {K2,r | r ≥ 2}
is a ≤c-antichain but not an ≤m-antichain or a ≤t-antichain.

We define the ≤-obstruction set of a graph class G, denoted by obs≤(G), as
the set of all ≤-minimal graphs that do not belong to G. Clearly, by definition,
the ≤-obstruction set of a graph class is an ≤-anti-chain. Obstruction sets can be
seen as alternative characterizations of graph classes and, in many cases, reveal a
good deal from their structural characteristics. For example, it easy to verify that
obs≤m(T ) = obs≤t(T ) = {K3}, obs≤m(O) = obs≤t(O) = {K4, K2,3}, where
T and O are the classes of all acyclic and all outerplanar graphs respectively,
and obs≤c(O∗) = {K4, K2,3, K

+
2,3} where O∗ are the connected outerplanar

graphs and K+
2,3 is the graph obtained from K5 by removing a triangle. The

most classic theorems on obstruction characterization of graph classes are the
Kuratowski-Pontryagin’s theorem [87] and Wagner’s theorem [121], stating that
obs≤m(P) = {K5, K3,3} and obs≤t(P) = {K5, K3,3} respectively, where P is
the class of all planar graphs.

2.2 Parameterized Problems and Algorithms

The idea of problem parameterization is to treat algorithmic problems as param-
eterized entities and to evaluate the complexity of the corresponding algorithms
by considering the way parameters appear in their running times. As here we
deal with problems on graphs, we adapt the classic definitions of parameterized
complexity to the case where problem inputs represent graphs.

Formally, a parameterized problem on graphs is a subset Π of Σ∗ × N, where
Σ is some alphabet and, in each (I, k) ∈ Σ∗ × N, I encodes a combinatorial
structure related to one, or more, graphs. For this, we agree that n (resp. m) is
the maximum size (resp. magnitude) of the graphs encoded in I and we insist
that |(I, k)| = O(m). We call I the main part of the input and we say that
k is the parameter of the problem. Two instances (I, k), (I ′, k′) ∈ Σ∗ × N are
equivalent with respect to Π if (I, k) ∈ Π ⇐⇒ (I ′, k′) ∈ Π .
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We say that Π is fixed parameter tractable if there exists a function1 f : N→ N

and an algorithm deciding whether (I, k) ∈ Π in O(f(k) · nc) steps, where c is
a constant not depending on the parameter k of the problem. We call such an
algorithm FPT-algorithm or, to express concretely the choice of f and c, we
say that Π ∈ O(f(k) · nc)-FPT. A parameterized problem on graphs belongs to
the parameterized class FPT if it can be solved by an FPT-algorithm. In fact,
not all parameterized problems belong to the class FPT. There is a hierarchy of
parameterized complexity classes, namely

FPT ⊆W[1] ⊆W[2] ⊆W[3] ⊆ . . . ⊆W[SAT ] ⊆W[P] ⊆ XP,

and appropriate parameter-preserving reductions such that, when a problem is
hard for some of them (other than FPT), it is not expected to have an FPT-
algorithm (all inclusions in this hierarchy are believed to be strict). See the
monographs [39, 44, 97] for more details on parameterized complexity.

Time bounds for parameterized algorithms have two parts. The term f(k) is
called parameter dependence and, is typically a super-polynomial function. On
the other hand, the term nc is a polynomial function and we call it polynomial
part. In most of the problems that we examine here, I will encode a simple graph.
To simplify notation, we frequently write “Ok(nc)” instead of “f(k) · (nc)” for
some recursive function f : N→ N” and, in this case, we refer to the function f
hidden in the Ok notation as the parameter dependence.

3 Algorithmic Consequences of the GMT

3.1 Well-Quasi-Ordering

The main combinatorial result of the GMT fits in the more general framework of
the theory of Well-Quasi-Orderings, first developed by Graham Higman2 under
the name “finite basis property” [65]. Given a set X and a partial ordering ≤
on X we say that X is well-quasi-ordered under ≤ if none of its subsets is an
infinite ≤-antichain.

Theorem 1 (Robertson & Seymour Theorem [110]). The set of all graphs
is well-quasi-ordered under minors.

In other words, Theorem 1 says that If G is an infinite set of graphs then there ex-
ist two graphs H, G ∈ G such that H is a minor of G. The proof of theorem 1 was
concluded in paper XX of the Graph Minors Series. Before its proof, the state-
ment of Theorem 1 was known as Wagner’s conjecture. However, as mentioned
by Diestel in [32], Wagner said that he had never made such a conjecture. A sim-
ilar conjecture, on the well-quasi-ordering of trees under the topological minor
1 Notice that in the definition of FPT f is not necessarily a recursive function.
2 As mentioned in [86], the same theory was also developed in some unpublished

manuscript of Erdős and Rado, while its first hints can be traced back to B. H. Neu-
mann [96]
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relation was made by Vázsonyi and was proved in 1960 independently3 by Joseph
Kruskal and S. Tarkowski [91]. Interesting results on the meta-mathematics of
Kruskal’s tree theorem as well as Roberson & Seymour’s theorem can be found
in [55] and [54] respectively.

Consider the following parameterized problem:

H-Minor Checking

Instance: Two graphs G and H .
Parameter: k = |V (H)|.
Question: Is H a minor of G?

The main algorithmic contribution of the GMT is the following result.

Theorem 2 (Robertson and Seymour[108]). One can construct an algo-
rithm that, given a n-vertex graph G and a k-vertex graph H, checks whether H
is a minor of a graph G in Ok(n3) steps. In other words, H-Minor Checking ∈
Ok(n3)-FPT.

Actually, Robertson and Seymour in [108] describe an Ok(n3)-step algorithm
that solves a generalization of the H-Minor Checking and another celebrated
problem, namely the k-Disjoint Paths problem. In Section 5, we give a rough
description of the main ingredients of the algorithm in Theorem 2 especially for
the k-Disjoint Paths problem. Recently, this running time was improved to a
quadratic one for the k-Disjoint Paths problem in [74].

The good news about Theorem 2 is that it is constructive (contrary to The-
orem 1) and there is a recursive function hidden in the Ok notation. The bad
news is that, according to the algorithm in [108] and the proof of its correctness
in [111] and [107], the values of this function are immense4, even for small values
of k. David Johnson mentioned in [67]:

“for any instance G = (V, E) that one could fit into the known universe,
one would easily prefer |V |70 to even constant time, if that constant had
to be one of Robertson and Seymour’s”.

Moreover, in [67], David Johnson estimates that just one constant in the param-
eter dependence of Theorem 2 is roughly

2↑2
22

2↑2↑Θ(r)

where 2↑r denotes a tower 222. . .

involving r 2’s. Clearly, such type of constants
may create reasonable doubts to computer scientists on whether such an algo-
rithm may be considered to be an “algorithm” of some practical meaning. In fact,
to investigate until which point these constants can be improved is an open and
challenging problem in parameterized complexity and algorithms (see e.g. [3]).

3 A shorter and quite elegant proof of Vázsonyi’s conjecture was given by Nash-
Williams in 1963 [95].

4 Perhaps the word “immense” is somehow moderate here. Instead, Fellows and
Langston used the expression “mind-boggling” in [43].
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3.2 Minor-Closed Graph Parameters

A parameter on graphs (or a graph parameter) is any function that maps graphs
to integers and with the property that it is invariant under graph isomorphism.
Let ≤ be a relation on graphs. We say that a graph parameter p is closed under
≤ (or, simply, ≤-closed ) if for every two graph H and G, H ≤ G implies that
p(H) ≤ p(G). We define the ≤-obstruction family of p as the parameterized
graph class

O≤
p,k = obs≤({G | p(G) ≤ k}).

Consider the following parameterized meta-problem.

k-Parameter Checking for p
Instance: a graph G and an integer k ≥ 0.
Parameter: k
Question: p(G)≤ k?

Theorems 1 and 2 together have the following dramatic consequence.

Theorem 3. For every parameter p that is closed under minors there exists an
algorithm that solves the problem k-Parameter Checking for p in f(k) · n3

steps for some function f .

Proof. Recall that, by definition, no two graphs in O≤m

p,k can be comparable
graphs under the minor relation. It follows, from Theorem 1, that O≤m

p,k is a
finite set. Let g(k) = |O≤m

p,k |. As p is closed under minors, it holds that

p(G) ≤ k ⇐⇒ ∀H ∈ O≤m

p,k H �≤m G.

Therefore, to check whether p(G) ≤ k it is enough to apply g(k) times the
Ok(n3) step algorithm of Theorem 2 and check whether some member of O≤m

p,k

is contained as a minor in G.

Theorem 3 had a great impact in parameterized complexity as it implied a
massive classification of problems in the class FPT. In that sense, Theorem 3
is an algorithmic meta-theorem because it provides a generic condition (minor-
closedness) for a parameterized problem that automatically implies the existence
of an FPT-algorithm for it. Unfortunately, the proof of Theorem 1 does not
provide any general “meta-algorithm” to compute the set O≤m

p,k and, that way,
construct the claimed algorithm for each p. In fact, due to the meta-mathematics
of Theorem 1 [54], such an meta-algorithm does not exist. As observed in [43],
there is no algorithm that, given a Turing machine accepting precisely the graphs
of a minor-closed graph class F , outputs obs≤m(F) (see also [119]). However,
Theorem 3 gave important (mathematical) energy to Parameterized Algorithms
as it acted as an “encouraging factor”. The knowledge that an algorithm exists
for a specific problem, induces the challenge to construct one and, in a sense,
provides the courage to try to accomplish such a task.
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In order to cope with the inherent non-constructivity of Theorem 3 one may
study specific parameters where the computation of the set O≤m

p,k (or, at least, of
some upper bound to the function g(k)) in the proof of Theorem 3 is possible.
However, this is not an easy task, even for simple parameters. According to [34],
if the problem of checking whether p(G) ≤ k is NP-complete, then |O≤m

p,k | is a
super-polynomial function of k, unless the polynomial hierarchy collapses to ΣP

3 .
Characterizations of p(G) ≤ k (yielding better lower bounds for |O≤m

p,k |) have
been provided for several parameters [10, 20, 40, 58, 84, 98, 99, 115, 117, 118].
However, to our knowledge, there is not yet a natural parameter p for which a
complete characterization of O≤m

p,k is known. A more promising strategy towards
detecting constructive fragments of Theorem 3, is to detect parameters – or
families of parameters – where O≤m

p,k is recursive. For this one may either prove
upper bounds for |O≤m

p,k |, as done in [57] for the case of branchwidth5, or provide
partial characterizations of O≤m

p,k , as done in [2, 19, 21, 89, 94], that permit its
recursive computation.

At this point, we should mention that all theorems of this section have their
counterparts in another partial relation on graphs, the one of immersion. The
lift of two incident edges is the operation of removing two edges e1 = {x, y}
and e2 = {x, z} (incident to a common vertex x) and adding the edge {y, z}.
We say that a graph H can be immersed in a graph G, denoted by H ≤im G,
if H can be obtained from a subgraph of G by a (possibly empty) sequence of
edge lifts. According to the last paper of the Graph Minor series [112], graphs
are well-quasi-ordered under immersions, i.e., Theorem 1 holds also if we replace
minors by immersions. Therefore, in order to prove a counterpart of Theorem 3
for the case of immersion-closed parameters, we need an algorithm that given an
n-vertex graph G and a k-vertex graph H , checks where H ≤im G in Ok ·(n(G))3

steps. Recently, a construction of such an algorithm was given in [61]. This makes
it possible to derive the following meta-algorthmic result.

Theorem 4. If p is a parameter that is closed under immersions, then there
exists an algorithm that solves the problem k-Parameter Checking for p in
f ′(k) · n3 steps for some function f ′.

In fact, the main result of [61] proves the FPT membership of topological minor
testing, i.e., given two graphs H and G, check whether H ≤t G (the parameter
is the size of H). This means that there is a counterpart of Theorem 2 for the
topological minor relation as well. This might create some hope that Theorem 3
holds for topological minors as well. Unfortunately, this requires an analogue of
the combinatorial Theorem 1 which does not exist as it is possible to construct
an infinite class of graphs that are pairwise non-comparable with respect to
the topological minor relation: just take all cycles with their edges duplicated.

5 Branchwidth was introduced in the paper X of the Graph Minor Series [106] and,
from that point and then, was used as an alternative for treewidth (defined formally
in Section 4). Treewidth and branchwidth can be seen as twin parameters, as the
one is a constant factor approximation of the other.
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An other argument for the non-existence of analogues of Theorems 1 and 3 for
topological minors is given by the Topological Bandwidth problem asking
whether the topological bandwidth of a graph is at most k. The topological
bandwidth of a graph G is denoted by tbw(G) and is defined as

tbw(G) = min{k | ∃q ≥ 1: G ≤t P k
q }

(P k
q is obtained by a path Pq of length q if we make adjacent any two vertices of

distance ≤ k in Pq). It is easy to observe that tbw is closed under topological
minors. In [42] it is mentioned that Topological Bandwidth is W[t]-hard for
all t ≥ 1 – the proof is a modification of the proof for the case of Bandwidth

in [15]. This implies that, under reasonable assumptions in parameterized com-
plexity theory, the anti-chain corresponding to the ≤t-obstruction family O≤t

tbw,k

is infinite for an infinite set of values of k.

4 Grid-Exclusion and Bidimensionality

4.1 Treewidth

Treewidth has been one of the main contributions of GMT to algorithmic graph
theory. While, as a concept, its indices can be traced back to the work of Gavril
in [56], its formal birth as a graph parameter occurred in the second paper of the
Graph Minors series [104]. Currently, there are at least six equivalent definitions
of tree-width. We present the original one from [104].

A tree decomposition of a graph G is a pair (X , T ) where T is a tree and
X = {Xi | i ∈ V (T )} is a collection of subsets of V (G) such that:

1.
⋃

i∈V (T ) Xi = V (G);
2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all
tree decompositions of G.

If, in the above definitions, we restrict the tree T to be a path then we define
the notions of path decomposition and pathwidth. We write pw(G) to denote the
pathwidth of a graph G. Pathwidth was defined earlier than treewidth in the
first paper is the Graph Minors Series [102].

Treewidth can intuitively be seen as a measure of the topological resemblance
of a graph to a tree or, alternatively, as a measure of the “global connectivity”
of a graph. Similarly, pathwidth can be seen as a measure of the topological
resemblance of a graph to a path.

Counting Monadic Second Order Logic (CMSOL) is a logic on graphs6 where
the domain is the set of vertices and edges, there are predicates for vertex-vertex
6 We should stress that CMSOL is not only a logic on graphs but also on more general

combinatorial objects called strucures.
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adjacency and edge-vertex incidence, there is quantification over edges, vertices,
edge sets and vertex sets, and there is a predicate Cardr,p(S) which expresses
whether the size of a set S is r modulo p.

The importance of treewidth for algorithmic graph theory is illustrated by the
celebrated Courcelle’s theorem stating that if Πk is a parameterized property
of graphs expressible by a CMSOL formula φk, then there is an algorithm that,
given as input a graph G, can check whether G satisfies property Πk (i.e., whether
G ∈ Πk) in O|φk|+tw(G)(n) steps. Moreover, there exists a meta-algorithm that,
given φk, outputs such an algorithm. A proof of Courcelle’s theorem can be
found in [39, Chapter 6.5] and [44, Chapter 10] and similar results appeared by
Arnborg, Lagergren, and Seese in [8] and Borie, Parker, and Tovey in [17]. An
alternative game-theoretic proof has appeared recently in [81, 82].

Courcelle’s theorem had a deep influence in parameterized algorithms as it
automatically yields FPT-algoriths for a wide family of problems, provided that
the treewidth of their instances is bounded by a function of the parameter k. The
natural challenge is whether and when a parameterized problem can be reduced
to its bounded treewidth variant. For this, an important step is to detect what
kind of combinatorial structures are contained in a graph with big treewidth.
The most prominent structure of this type is the grid Gk. Let gm(G) be the
maximum k for which G contains Gk as a minor. A valuable theoretical tool in
this direction was given by the following result of the GMT.

Theorem 5 ([105]). There exists a recursive function f : N → N such that
tw(G) ≤ f(gm(G)).

While the above result appeared in the fifth paper of the series, a preliminary
variant of it, where G is planar, appeared earlier in [103]. As every graph con-
taining Gk as a minor has treewidth at least k, Theorem 5 implies that tw and
gm are parametrically equivalent: a bound to the one of them implies a bound
to the other. The initial estimation of the parameter dependence in Theorem 5
was huge. However, a better one appeared in [113] where it was proven that
tw(G) = 202·(gm(G))5 . An alternative, and relatively simpler, proof of Theo-
rem 5 was given in [33]. To see the use of Theorem 5 in parameterized algorithm
design, consider a parameter p that satisfies the following properties:

i. p is closed under taking of minors.
ii. there exists a recursive function t : N→ N such that p(Gt(k)) > k for every

non-negative integer k.
iii. One can construct an algorithm that, given a tree-decomposition of G of

width at most q and an integer k, checks whether p(G) ≤ k in l(k, q) · nO(1)

steps for some recursive function l : N× N→ N.

Clearly, the first two conditions are easy to check for most instantiations of p.
Moreover, the third one follows directly from Courcelle’s theorem if for each
k, Πk = {G | p(G) ≤ k} is expressible by a CMSOL formula φk. There are
many examples of such parameters. Typical examples are the vertex cover of a
graph, i.e., the minimum number of vertices that meets all vertices of G and the
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feedback vertex set of a graph, i.e., the minimum number of vertices meeting all
cycles of G. A direct consequence of Theorem 5 is the following (constructive)
special case of Theorem 3:

Lemma 1. Let p be a parameter satisfying conditions i–iii above for some t and
l. Then it is possible to construct an algorithm that, given as input a graph G
and an integer k, checks whether p(G) ≤ k in (2O(f(t(k)) + l(k, 4 ·f(t(k)))) ·nO(1)

steps where f is the function in Theorem 5.

Proof. The algorithm in Lemma 1 works as follows: First of all, it uses an FPT-
approximation algorithm for treewidth, i.e., an algorithm that given a graph G
and an integer q, either outputs a tree decomposition of G of width at most α · q
or reports that tw(G) > q in z(q) · nβ steps. Various algorithms of this type
have been proposed in [7, 14, 88, 100, 108] for different trade-offs between z,
α, and β. Among them, we pick the one form [7] where z(q) = 24.38·q, α = 4,
and β = 2. We run this algorithm for G and q = f(t(k)). If it outputs a tree
decomposition of width ≤ 4 · f(t(k)) then we use the algorithm of Property iii
and solve the problem in l(k, 4·f(t(k)))·nO(1) steps. If the algorithm reports that
the treewidth of G is more than f(t(k)), then from Theorem 5, G contains Gt(k)

as a minor. In such a case, the algorithm directly outputs a negative answer as,
from Properties i and ii, p(G) ≥ p(Gt(k)) > k.

The idea of the above proof is also known as the Win/win approach: we either
have an answer to the problems directly because the treewidth is big enough
or we solve the problems use dynamic programming on a tree-decomposition of
bounded width.

Clearly, the running time of the algorithm in Lemma 1 depends on the func-
tions f, t, and l. In what follows, we comment on the current bounds on each
one of them.

l: As we have already mentioned, the (constructive) existence of l, follows from
Courcelle’s theorem for the wide family of problems that are expressible in
CMSOL. However, the bounds on l, derived from the proof, are huge and this
may dismiss any hope for a good parameter dependence (see [53]). However,
for many problems it is possible to directly apply dynamic programing on
the tree decomposition and derive moderate bounds on l such as l(k, q) =
2O(q2)·kO(1), or l(k, q) = 2O(q log q)·kO(1) or, even better, l(k, q) = 2O(q)·kO(1).
Clearly, time bounds of the third type are more attractive. For this reason,
we say that a parameter p is single exponentially solvable with respect to
treewidth if there exists an algorithm that, given G and k, checks whether
p(G) ≤ k in 2O(tw(G)) · nO(1) steps. There is a quite extended bibliography
on how to do fast dynamic programming on graphs of bounded treewidth;
as a sample of this, we just mention [5, 6, 9, 11, 13, 16, 22, 35, 35, 36, 37,
37, 38, 114, 120, 120].

t: Bounds are much better for the function t. For most natural graph param-
eters, it holds that t(k) = O(k) while for some of them, including tw and
pw, it holds that t(k) = Θ(k). However, there is a wide family of parameters
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where t(k) = O(
√

k). This intuitively says that a certificate for the value
of such a parameter spreads “bidimensionally” inside a (k × k)-grid. For in-
stance any vertex cover of Gk should have size at least k ·�k

2 � = Ω(k2) as the
vertices of such a set should cover edges all over the “area” of the grid. Sim-
ilarly, a feedback vertex set of Gk should have size at least (�k

2 �)2 = Ω(k2)
as the vertices of such a set should cover all (�k

2 �)2 members of a packing of
“squares” in Gk.
If such a parameter is also closed under taking of minors then we call it
minor bidimensional.

f : To improve the function f , i.e., the parameter dependence in Theorem 5,
is an important challenge as, even for the parameters with most moderate
instantiations of l and t, k-Parameter Checking for p could be only clas-

sified in 22kO(1)

· nO(1)-FPT. Robertson, Seymour, and Thomas conjectured
in [113] that f can be a polynomial function. This would directly imply that
k-Parameter Checking for p belongs to 2kO(1) · nO(1)-FPT for a wide
family of parameters (see [30] for more discussions and conjectures on this
issue).
Another interesting problem is to lower bound the contribution of f in The-
orem 5. As mentioned by Robertson, Seymour, and Thomas in [113] there
are graphs excluding Gk as a minor that have treewidth Ω(k2 · log k). To
see this, one may use the result in [23] (see also [41, 122]) to construct an
O(1)-regular Ramanujan graph G on n vertices that has girth Ω(log n). One
can easily verify that gm(G) = O(

√
n

log n ). The claimed bound follows because
Ramanujan graphs are expanders and thus tw(G) = Ω(n). It is a challenging
question whether any bound better than this one can be proven.
Towards achieving a polynomial dependance between treewidth and the size
of an excluded grid, Reed and Wood defined in [101] the notion of a grid-
like-minor. A grid-like-minor of order k in a graph G is a set of paths in G
whose intersection graph is bipartite and contains a Kk as a minor. Clearly,
the rows and columns of the (k×k)-grid are a grid-like-minor of order k +1.
In [101] it is proved that every graph with treewidth Ω(k4

√
log k) contains

a grid-like minor of order k. Meta-algorithmic implications of the results
in [101], analogous to those of Theorem 1, can be found in [85].

4.2 Bidimensionality

Theorem 5 has several refinements that are important for improving the
parameter dependence of the algorithm in Lemma 1. The first variant of
Theorem 5 for special graph classes appeared in [113] (proved for the twin pa-
rameter of branchwidth) from which it follows that if G is a planar graph, then
tw(G) ≤ 6 · gm(G). Actually, with some more careful application of the results
of [113] it can also be proven that tw(G) ≤ 5 · gm(G), which can be improved
further to tw(G) ≤ 9

2 · gm(G) using the results of [62]. An analogous upper
bound holds also for graphs embedded in surfaces. From the results in [27], it
follows that tw(G) ≤ 6 · (eg(G) + 1) · gm(G) where eg(G) is the Euler genus
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of G. Also in [30], it was proven that if G is a K3,r-minor free graph, then
tw(G) ≤ 204r · gm(G). At this point, the natural question is whether this lin-
ear dependence holds for every non-trivial minor-closed graph class. This was
resolved in [29], where the following theorem has been proved.

Theorem 6. Let r be a positive integer. If G is a Kr-minor free graph, then
tw(G) = Or(gm(G)).

The proof of Theorem 6 is heavily based on GMT. More specifically, it depends
on the Structure Theorem of the GMT [109] which implies immense bounds for
the parameter dependence of the bound in Theorem 6. The improvement of the
parameter dependance of Theorem 6 is an interesting problem and this might
be possible without making use of the structural results of [109].

As mentioned in the previous Section, a parameter p is minor-bidimensional
if it is closed under taking of minors and for every non-negative integer k it holds
that p(G	√k
) = Ω(k). A major consequence of Lemma 1, Theorem 6, and the
discussion above is the following meta-algorithmic result.

Theorem 7. Let H be an r-vertex graph and let p be a graph parameter that is
minor-bidimensional and single exponentially solvable with respect to treewidth.
Then k-Parameter Checking for p restricted to H-minor free graphs belongs
(constructively) to 2Or(

√
k) ·nO(1)-FPT, i.e., one can construct a sub-exponential

FPT-algorithm that solves it.

Notice that the above result is, in a sense, optimal, as, due to the complexity
bounds in [18], a 2O(

√
k) ·nO(1)-step parameterized algorithm is the best we may

expect for several bidimensional parameters, even on planar graphs. The meta-
algorithmic machinery that we employed above in order to prove Theorem 7 is
known as Bidimensionality Theory and was introduced for the first time in [27],
while some preliminary ideas had already appeared in [4, 52].

Theorem 7 concerns only minor-closed parameters. A typical parameter that
does not fit in the framework of minor-bidimensionality is the dominating set
number, denoted by ds(G) and defined as the minimum size of a dominating set
in G, i.e., a set S of vertices such that every vertex not in S has some neighbor
in S.

The dominating set number is not minor-closed as it may increase by removing
edges. However this is not the case when we do only contractions. To develop
the contraction counterpart of bidimensionality, one has to find a counterpart
of Theorem 6 for contractions, i.e., to detect what types of graphs appear as
contractions in graphs with big treewidth. This line of research was developed
in [26, 31] and concluded in [46]. Before we present the the results in [46], we
need first some definitions.

Let Γk (k ≥ 2) be the graph obtained from the (k × k)-grid by triangulating
internal faces of the (k× k)-grid such that all internal vertices become of degree
6, all non-corner external vertices are of degree 4, and then one corner of degree
two is joined by edges with all vertices of the external face (the corners are
the vertices that in the underlying grid have degree two). Graph Γ6 is shown
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Fig. 3. The graph Γ6

in Fig. 3. Let also Πk be the graph obtained from Γk by adding a new vertex
adjacent to all vertices of Γk.

A consequence of the results in [46] is the following.

Theorem 8. There exists a function α : N → N such that every connected
graph of treewidth at least α(k) contains some of the graphs in {Kk, Γk, Πk} as
a contraction.

Theorem 8 has several refinements. One of them is the following counterpart of
Theorem 6.

Theorem 9. There exists a function β : N→ N such that every connected Kr-
minor-free graph of treewidth at least β(r) · k2 contains either Γk or Πk as a
contraction.

Notice that in the above theorem, the quadratic dependence (on k) is optimal.
Indeed, let Zk2 be the graph obtained by adding to Gk2 a new vertex adjacent
to all the k2 vertices with both coordinates in the underlying grid divisible by k.
Then Zk2 excludes K6, Gk+2, and Πk+2 as contractions and is of treewidth at
least k2. This means that, in order to have a “linear counterpart” of Theorem 6,
we should restrict further the graphs that we exclude. An apex graph is a graph
that can become planar by the removal of one vertex. It appears that the linear
dependence in the bound of Theorem 6 is also possible for contractions when
we consider graphs excluding some apex graph as a minor. For this, we define
tgm(G) as the maximum k for which G contains Γk as a contraction.

Theorem 10. Let H be an apex graph with r vertices. If G is a connected H-
minor-free graph, then tw(G) = Or(tgm(G)).

We say that a parameter p is contraction bidimensional if it is closed under
taking of contractions and if p(Γ	√k
) = Ω(k) for every non-negative integer
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k. Using now Theorem 10 one can derive the following contraction counterpart
of Theorem 7.

Theorem 11. Let H be an r-vertex apex graph and let p be graph parameter
that is contraction-bidimensional and single exponentially solvable with respect
to treewidth. Then k-Parameter Checking for p restricted to H-minor free
graphs belongs (constructively) to 2Or(

√
k) · nO(1)-FPT, i.e., one can construct a

sub-exponential FPT-algorithm that solves it.

The algorithmic consequence of Theorems 6 and 10 are not restricted in the
design of sub-exponential parameterized algorithms (i.e., Theorems 7 and 11).
Bidimensionality theory had meta-algorthmic applications in the automatic
derivation of linear-time kernels for wide families of parameterized problems [12,
51]. Apart from its applications to parameterized complexity, Bidimensionality
Theory was also used for the automated design of Fast Polynomial Time Ap-
proximation Schemes (FPTAS) in [28] and [48].

Proving extensions of Theorems 7 and 11 for wider families of graph classes
(possibly with worse – but still moderate – time bounds) is a open challenge in
parameterized algorithm design. For this, one may either need to find extensions
of Theorems 6 and 10 for graph classes that are wider than H-minor free and
apex-minor free graphs respectively (see [50] for an important step in this direc-
tion) or to invent alternative notions of grid-like structures whose presence in a
graph is still able to certify a big enough value for the parameter p (see [85, 101]
and the end of Subsection 4.1).

5 The Irrelevant Vertex Technique

One of the most powerful tools in parameterized algorithm design is the irrel-
evant vertex technique, introduced in [108] in order to derive (among others)
FPT-algorithms for the H-Minor Checking (Theorem 2) and the k-Disjoint

Paths Problem. The formal definition of the latter is the following.

k-Disjoint Paths

Instance: A graph G and a sequence of pairs
terminals T = (s1, t1), . . . , (sk, tk) ∈ (V (G)× V (G))k.

Parameter: k.
Question: Are there k pairwise vertex disjoint paths

P1, . . . , Pk in G such that for every i ∈ {1, . . . , k},
Pi has endpoints si and ti?

We stress that, in [108], both H-Minor Checking and k-Disjoint Paths

where treated simultaneously and the methodology that we present below is
similar for both of them. In this section we give an outline of the Ok(n3) algo-
rithm in [108] for the k-Disjoint Paths problem and we present some of the
most important combinatorial results that supported the proof of its correctness.
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5.1 The General Framework

Given an instance (G, T, k) of the k-Disjoint Paths problem, we say that a
vertex v ∈ V (G) is an irrelevant vertex of G if (G, T, k) and (G \ v, T, k) are
equivalent instances of the problem.

The general scheme of the algorithm in [108] is the following:

Irrelevant Vertex for the class Gk

Input: An instance (G, T, k) of k-Disjoint Paths

Output: A (reduced) equivalent instance of k-Disjoint Paths

1. while G �∈ Gk,
2. find an irrelevant vertex v in G
3. set G← G \ v
4. output (G, T, k)

Clearly, each variant of the above scheme depends on the parameterized class
Gk and creates an equivalent instance that belongs to Gk. The algorithm in [108]
applies the above scheme in two phases: the first phase considers

Gk = {G | G is a Kh(k)-minor free graph}

for some recursive function h and produces equivalent instances where the input
graph does not contain a “big clique” as a minor. The second phase assumes
that the input graph excludes such a clique and considers

Gk = {G | G is a Gg(k)-minor free graph},

for some recursive function g : N→ N. This produces an equivalent instance that,
from Theorem 5, has treewidth bounded by Ok(1) and, in this case, the problem
can by solved in Ok(n) steps, using dynamic programming or, alternatively, by
just using Courcelle’s theorem.

It now remains to explain how Step 2 of the above scheme (i.e., finding an
irrelevant vertex) is implemented in each of these two phases.

We omit the description of the first phase. Instead, we restrict ourselves to
the second phase, as it encompasses the most combinatorially rich part of [108].
We just mention that the function h is determined from the results in [108] on
the correctness of the first phase. The function g will be defined in the course of
the description of the second phase below.

Assume now that we have an instance (G, T, k) of k-Disjoint Paths where
G excludes a clique Kh(k) as a minor but, however, it still contains a the grid
Gg(k) as a minor which means that tw(G) ≥ g(k). A big part of [108] is devoted
to the characterization of such graphs, i.e., of H-minor free graphs with “big”
treewidth. In particular, a major achievement of [108] was to show the Weak
Structure Theorem of GMT, stating that such graphs contain some portion
that is, in a sense, “almost flat”. At this point we postpone the description of
the irrelevant vertex technique to Subsection 5.3 in order to give the precise
statement of this theorem.
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5.2 The Weak Structure Graph Minors Theorem

Walls. A wall of height k, k ≥ 1, is the graph obtained from a ((k+1)×(2·k+2))-
grid with vertices (x, y), x ∈ {1, . . . , 2 ·k +2}, y ∈ {1, . . . , k +1}, by the removal
of the “vertical” edges {(x, y), (x, y + 1)} for odd x + y, and then the removal
of all vertices of degree 1. We denote such a wall by Wk. The corners of the
wall Wk are the vertices c1 = (1, 1), c2 = (2 · k + 1, 0), c3 = (2 · k + 1 + (k + 1
mod 2), k+1) and c4 = (1+(k +1 mod 2), k +1). We let C = {c1, c2, c3, c4}. A
subdivided wall W of height k is a graph obtained from Wk by replacing some of
its edges by paths without common internal vertices. We call the resulting graph
W a subdivision of Wk. The perimeter P of a subdivided wall is the cycle defined
by its boundary. The layers of a subdivided wall W of height k are recursively
defined as follows. The first layer of W is its perimeter. For i = 2, · · · , �k

2 �,
the i-th layer of W is the (i − 1)-th layer of the subwall W ′ obtained from W
by removing from W its perimeter and all occurring vertices of degree 1 (see
Figure 4).

Fig. 4. A subdivided wall of height 5 and its two first layers. The first layer is its
boundary

Compasses and Rural Divisions. Let W be a subdivided wall in G. Let K ′ be
the connected component of G \ P that contains W \ P . The compass K of W
in G is the graph G[V (K ′) ∪ V (P )]. Observe that W is a subgraph of K and K
is connected. We say that a path of K is perimetric if its endpoints lie in the
perimeter P of W . Let P1 and P2 be two perimetric paths of K with endpoints
a1, b1 and a2, b2 respectively. We say that P1 and P2 cross in K if (a1, a2, b1, b2)
is the cyclic ordering of their endpoints in P . We say that a wall is flat in G if
K does not contain any pair of crossing and vertex-disjoint perimetric paths.

If J is a subgraph of K, we denote by ∂KJ the set of all vertices v ∈ V (J)
such that either v ∈ C or v is incident with an edge of K that is not in J . A
rural division D of the compass K is a collection (D1, D2, . . . , Dm) of subgraphs
of K with the following properties:

1. {E(D1), E(D2), . . . , E(Dm)} is a partition of non-empty subsets of E(K),
2. for i, j ∈ [m], if i �= j then ∂KDi �= ∂KDj and V (Di) ∩ V (Dj) = ∂KDi ∩

∂KDj ,
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3. for each i ∈ [m] and all x, y ∈ ∂KDi there exists a (x, y)-path in Di with no
internal vertex in ∂KDi,

4. for each i ∈ [m], |∂KDi| ≤ 3, and
5. the hypergraph HK = (

⋃

i∈[m]

∂KDi, {∂KDi | i ∈ [m]}) can be embedded in a

closed disk Δ such that c1, c2, c3 and c4 appear in this order on the boundary
of Δ and for each hyperedge e of HK there exist |e| mutually vertex-disjoint
paths between e and C in K.

We call the elements of D flaps. A flap D ∈ D is internal if V (D) ∩ V (P ) = ∅.
We can now state one of the main results in [108], known as the Weak Structure
Graph Minors theorem.

Theorem 12 ([108]). There exist recursive functions g1 : N × N → N and
g2 : N → N, such that for every two graphs H and G and every q ∈ N, one of
the following holds:

1. H is a minor of G,
2. tw(G) ≤ g1(q, r), where r = |V (H)|
3. ∃X ⊆ V (G) with |X | ≤ g2(r) such that G \X contains as a subgraph a flat

subdivided wall W where W has height q and the compass of W has a rural
division D such that each internal flap of D has treewidth at most g1(r, q).

While the statement of Theorem 12 above is somehow complicated, the intuition
behind it is simpler. It says that when a graph excludes some “small” graph H as
a minor and has “big enough” treewidth, it is enough to remove a “few” vertices
from it, i.e., the vertices in X , and take a graph G \ X where it is possible
to detect a subdivided wall W that is situated in a “flat” territory inside its
perimeter P . The part of G that is inside P is the compass K of W which can
be seen as the union of a collection of graphs (flaps) that are tree-like (have
bounded treewidth) and are “planted” in that territory. Theorem 12 was used
also in [2, 24] with the name “the Trinity Lemma”. However, a more depictive
alternative nomenclature might be the “Sunny Forest Lemma”, in the sense that
the compass K is a forest, whose trees are the flaps, and X is the sun throwing
its rays at it!

In [59], an optimized version of the above result was proved where g1(r, q) =
Or(q) and g2(r) is equal to the apex number of H , i.e., the minimum number
of vertices that, when removed from H , leave a planar graph. This improved
version can easily yield both Theorems 6 and 10. In case H is an apex graph,
i.e., it can become planar with the removal of a single vertex, the result in [59]
implies that X = ∅ which gives an analogue of Theorem 12 for apex minor-free
graphs. As, in this case, the “sun” X does not exist, we are tempted to call this
“apex”-variant of Theorem 12 the “Dark Forest Lemma”.

5.3 Irrelevant Vertices and Linkages

We now go back to the task of detecting an irrelevant vertex in a graph G that
excludes Kh(k) and has treewidth bigger than g(k). Recall that, at this point, h
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has already been determined so that the previous phase of the algorithm runs
correctly. In what follows, we set g(k) = g1(f0(k) ·f1(λ(k)), h(k)) where g1 is the
function in Theorem 12, f0(k) = �

√
2k� + 1, and f1 and λ will be determined

later.
According to [108], it is possible, in Ok(n2) steps, to detect in G a set X and a

subdivided wall W of height q = f0(k) · f1(λ(k)) of G \X where |X | ≤ g2(h(k)),
as indicated in Theorem 12. For simplicity, we restrict our presentation to the
case where X is an empty set, i.e., |X | = 0. Even if the ideas for the more general
case are of the same flavor, they are quite more complicated and we prefer to
omit them here.

Using a counting argument based on the definition of f0, it is easy to see that
W contains a subdivided wall W ′ of height q′ = f1(λ(k)) whose compass K ′

avoids all terminals of the pairs in T .
The next step of the algorithm in [108] is based on the claim that if we take

q′ to be “big enough”, then any vertex vmid of the inner layer Lin of W ′ is an
irrelevant vertex and therefore it can be safely removed from G. While such a
vertex is easy to detect, to proof that it is indeed irrelevant – for some suitable
choice of q′ – is not easy. We just mention that papers XXI [111] and XXII [107]
of the Graph Minor series where devoted to it. Below, we present only some
basic notions and ideas used in this proof. For this, we first need the definition
of a k-linkage, introduced in [111].

A k-linkage in a graph G is a set of k pairwise disjoint paths of it. The
endpoints of a linkage L are the endpoints of the paths in L. The pattern of L is
defined as

π(L) = {{s, t} | L contains a path from s to t}

Two k-linkages are equivalent if they have the same pattern.
W.l.o.g. we assume that all terminals involved in T are distinct. This implies

that every solution to the k-Disjoint Paths problem is a k-linkage, whose
pattern is determined by the pairs in T . To prove the irrelevance of the vertex
vmid, it is enough to show that any linkage L whose paths meet Lin can be
replaced with an equivalent one that avoids it. To obtain an idea of how paths
in L may reside inside K ′, we need to make some observations.

Let R be the linkage defined by the connected components of (
⋃

L∈L L)∩K ′,
i.e., the subpaths of the paths in L that are “cropped” by the compass K ′ (notice
that all paths in R are perimetric). By the flatness of W ′, it is not possible that
two paths in R cross in K ′. Moreover, by the definition of the the rural division
D′ of K ′, each layer of W ′, different than the inner one, is a separator of G.
Therefore, if a path in R meets layers Li and Lj for i ≤ j, then it should also
meet layer Lμ for every μ ∈ {i, . . . , j}. These observations argue that, intuitively,
paths in R cross K ′ as if K ′ where a graph embedded in a disk bounded by P –
see Figure 5 for a visualization of this. One may now claim that the infrastruc-
ture of a “big enough” subdivided wall W ′ should provide enough space inside K ′
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Fig. 5. A subdivided wall W ′ and the way a 13-linkage L is traversing its compass K′.
The only vertices that are depicted are the endpoints of the paths in L (white vertices).
The only edges that are depicted are those of the paths in L and the edges of W ′. The
grey area contains the vertices and the edges of the graph G that do not belong to K′.

so that the paths of L could be rerouted to an equivalent linkage that does not
enter very deeply inside K ′. To formalize this claim Robertson and Seymour
defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of
G and if there is no other linkage in G that is equivalent to L. An example of
a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the
k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant
vertex can be detected. The main result of [111] asserts that this possible “lack
of flexibility” of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function λ : N → N such that every
graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth
in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109],
the upper bound for λ that follows from [111] is immense. However it was proved
in [3] that in the case of planar graphs it holds that λ(k) = 2O(k). Moreover, this
bound is, in a sense, tight: as argued in [3], for each k it is possible to construct
a planar graph that contains a vital k-linkage and has treewidth 2Ω(k) (the 5-
linkage in the graph of Figure 6 already gives the flavor of such a construction).

Let now G′ be the subgraph of G defined by the union of the paths in L, and
the compass K ′ of W ′. At this point, a naive idea might be to directly apply
Theorem 13 and set q′ = λ(k) so that the linkage L of G′, corresponding to a
solution of the k-Disjoint Paths problem, cannot be vital. However, from this
alone, we cannot expect nothing better than avoiding some vertices that will not
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Fig. 6. A graph of treewidth 17 and a vital 5-linkage in it

necessarily be the vertices in Lin. Therefore, a non-vital linkage alone does not
provide the flexibility we need in order to reroute in G′ the paths of L in a way
that Lin is avoided.

Curiously, it appears that the importance of non-vital linkages is rather qual-
itative than quantitative. Based on their “elementary” flexibility, it is possible
to prove that none of the paths in R “bounces” much. In particular, L can be
chosen in a way that if a path in R meets some layer Li in two different vertices
x and y, then its subpath between x and y will not meet any layer Lj where
|i − j| ≥ f1(λ(k)), for some recursive function f1. This directly implies that
paths in R do not go deeper than layer Lf1(λ(k)) and thus they avoid Lin when
q′ = f1(λ(k)). That way, it is possible to prove what we need: if the height of
W ′ is f1(λ(k)), then another linkage, equivalent to L exists in G′ (and therefore
in G as well) that avoids Lin.

We should stress that even if the above sketch might be “convincing” for a
good-tempered reader, it is far from being a formal proof. In the more realistic
case where X is non-empty, a more complicated criterion for the choice of the
subdivided wall W ′ should be devised and a bigger lower bound for the height
of W ′ is necessary so that it contains an irrelevant vertex. In fact, this requires
bigger lower bounds for both f0 and f1. The whole proof is quite technical and
has been the main purpose of [107].

According to the above discussion, the second phase of the algorithm runs
in Ok(n3) steps and outputs a graph of treewidth at most g(k). As proved
in [116], the k-Disjoint Paths problem can be solved by a f2(k)·n step dynamic
programming algorithm where f2(k) = 2O(k log k) (see [1, 90] for results related
to this problem). As the parameter dependence of the running time of this last
step is dominant in the running time of the algorithm, we conclude that the
overall parameter dependence is:

O(f2(g1(f0(k) · f1(λ(k)), h(k)))).

Clearly, an improvement on the existing bounds for any of the functions
g1, h, f0, f1, f2, and λ would be an important step towards reducing the
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parameter dependence of the algorithm for the k-Disjoint Paths problem.
In fact, the only function that is “really immense” is λ, because the proof of its
existence was based on the Structure Theorem of the GMT [109]. In this direc-
tion an alternative, relatively simpler, proof was given in [80] that avoids the
core results of [109]. Using a rough estimation, the proof in [80] should give that

that λ(k) = 222O(k)

which changes the status of the parameter dependence in
Roberson and Seymour’s algorithm from “immense” to “huge”. Clearly, any fur-
ther improvements, even for special cases or variants of the problem, are highly
welcome (see [3]).

5.4 Applications

The above description already outlines a powerful algorithmic framework that
could not be of use for just one problem. Below, we mention a series of results in
parameterized algorithms where the irrelevant vertex technique (or extensions
of it) has been applied. We sort them in chronological order of their appearance.

[24] A proof of the following meta-agorithmic result: Let C be a class of graphs
excluding and h-vertex graph H as a minor. Then any first-order defin-
able decision problem can be solved in time Oh+|φ|(nO(1)), where f is a
computable function and φ is the sentence defining the decision problem.

[77] A 2O(g) ·n step algorithm that, given a graph G and a non-negative integer
g either outputs an embedding of G in a surface of genus g or a minor of
G that belongs to obs≤m(Gg) where Gg contains all graphs embeddible in
a surface of Euler genus g. A previous result of this type, but not with
single-exponential parameter dependence appeared previously in [94].

[2] A proof that it is possible to construct an algorithm that, given the ob-
struction sets of two minor-closed graph classes G1 and G2, outputs the
obstruction set of the class G = G1 ∪ G2. Also, in the same paper, it was
proved that it is possible to construct an algorithm that given the ob-
struction set of a minor-closed graph class G and a non-negative integer
k, outputs the obstruction set of the class k-almost(G) = {G | ∃S ⊆
V (G) : |S| ≤ k and G \ S ∈ G} (see also [19, 71, 93] for related results).

[83] An Ok(nO(1)) time algorithm for solving the Induced Cycle Through

Terminals problem: Given a graph G, embedded in some surface, and a
set S ⊆ V (G) of terminals, does G contain an induced cycle that meets
all vertices in S?

[60] An 2O(k3/2) ·nO(1) time algorithm for the Odd Induced Cycle Packing

on planar graphs: Given a graph G and an integer k, does G contains k
induced odd cycles?

[79] An Ok(nO(1)) time algorithm for the Odd Cycle Packing problem:
Given a graph G and an integer k, does G contains k vertex-disjoint odd
cycles?
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[64] An Ok(n) time algorithm for the Bipartite Contraction problem:
Given a graph G and an integer k, can we obtain a bipartite graph from
G by a sequence of at most k edge contractions in G?

[49] Subexponential 2O(
√

k)·n time algorithms for the PartialVertex Cover

and PartialDominatingSet problems for apex minor-free graphs:Given
a graph G and integers k, t, can we cover (resp. dominate) at least t edges
(resp. vertices) with at most k vertices?

[61] An Ok(n3) algorithm for the Topological Minor Containment and
the Immersion Containment problems: Given two graphs G and H ,
where n(H) = k, does G contain H as a topological minor (resp. immer-
sion). The results in [61] can be seen as a major extension of the algorithm
in [108].

[45] A proof of the following result on kernelization: Let Gr be the class of
all Kr-minor free graphs. Then the Dominating Set Problem and the
Connected Dominating Set problem, asking whether a graph G has a
(connected) dominating set of size k, has a linear Or(k)-size kernel when
restricted in graphs in Gr.

[69] An Ok+g(n3) algorithm for the Contraction Containment problem
restricted to graphs of Euler genus g. The Contraction Containment

problem asks, with input two graphs G and H , where n(H) = k, whether
H is a contraction of G.

Clearly, the above list is just indicative and is expected to grow more. Further
algorithmic applications of the weak structure theorem and/or the irrelevant
vertex technique can be found in [66, 68, 70, 72, 73, 75, 76, 78]. Also results
where the irrelevant vertex idea is applied an a more general sense, without
using directly results of the GMT, can be found in [25, 47, 63, 92].

6 Conclusions

Covering the whole range of the contributions of the GMT to the design of
parameterized algorithms is a task that cannot fit in the space of this short
presentation. The progress over the last years towards building an Algorithmic
Graph Minors Theory has been noticeable and we believe that there is much more
“algorithmic material” to be extracted from this deep and fascinating theory.
As we expect more results to emerge from GMT, not only in parameterized
algorithms by also in other fields of algorithm design, we hope that this small
portion of the material covered will be of use as in invitation to this direction.
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