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Abstract

We present subexponential parameterized algorithms on planar graphs for a family
of problems that consist in, given a graph G, finding a connected (induced) sub-
graph H with bounded maximum degree, while maximising the number of edges (or
vertices) of H. These problems are natural generalisations of Longest Path. Our
approach uses bidimensionality theory combined with novel dynamic programming
techniques over branch decompositions of the input graph. These techniques can
be applied to a more general family of problems that deal with finding connected
subgraphs under certain degree constraints.

Keywords: Parameterized complexity, planar graphs, subexponential algorithm,
branch decomposition, graph minors, bidimensionality, Catalan structures.

1 Introduction
During the last years a considerable amount of work has been devoted to design
subexponential parameterized algorithms for NP-hard optimisation problems
on planar graphs and, more generally, on sparse classes of graphs [2, 3, 4, 5].

In this paper, we apply the general approach of [2, 3, 4, 5] to a family of
problems dealing with finding maximum connected subgraphs under degree
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constraints. Along the way, we introduce novel dynamic programming tech-
niques over branch decompositions that can be applied to more general classes
of problems.

All the graphs considered in this article are simple and undirected. Given
an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y
and remove all loops and replace all multiple edges by simple edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of
G. H is a minor of G if H is a subgraph of a contraction of G. The maximum
degree of a graph G is denoted by Δ(G). We define the following family of
problems for d ≥ 2.

Maximum d-Degree-Bounded Connected Subgraph (MDBCSd)

Input: A graph G and a non-negative integer k.
Question: Does G contain a connected subgraph H with

Δ(H) ≤ d and |E(H)| ≥ k?

If d = 2 the problem is equivalent to the Longest Path problem (or Cycle,
if G is Hamiltonian), hence MDBCSd is a generalisation of it. MDBCSd is
one of the classical NP-hard problems listed in [9] and it has been recently
proved that it is not in Apx for any d ≥ 2 [1]. Without the connectivity
constraint, the problem is known to be in P using matching techniques [12].
When the problem is parameterized by k we denote it by k-MDBCSd. (We
refer to [7] for an introduction to parameterized complexity.) Our target is to

find 2O(
√

k) · O(n) step algorithms to solve this problem and its variants when
the input is restricted to planar graphs.

The paper is organized as follows. Section 2 is devoted to obtain combina-
torial bounds using bidimensionality theory. Section 3 presents new dynamic
programming techniques that can be applied to general graphs. In Section 4
we see how to speed-up these algorithms when the input is restricted to planar
graphs, using Catalan structures. This strategy can be extended to several
related problems asking for a maximum connected subgraph satisfying cer-
tain degree constraints, as discussed in Section 5. An extended version of our
results can be found in [14].

2 Bounds for Branchwidth

We say that a parameter p defined on simple undirected graphs is closed under
taking of minors (or simply minor closed) if G′ � G ⇒ p(G′) ≤ p(G) (here
“�” denotes the minor relation). We define the following parameter on simple
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undirected graphs.

medbcsd(G) = max{|E(H)| | H ⊆ G ∧ H is connected ∧ Δ(H) ≤ d}.

For the proof of the following lemma, see [14].

Lemma 2.1 For any integer d ≥ 1, the parameter medbcsd is minor closed.

Let G be a graph on n vertices. A branch decomposition (T, μ) of a graph
G consists of an unrooted ternary tree T (i.e., all internal vertices are of degree
three) and a bijection μ : L → E(G) from the set L of leaves of T to the edge
set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G) as
follows: Let T1 and T2 be the two connected components of T \ {e}. Then
let Gi be the graph induced by the edge set {μ(f) : f ∈ L ∩ V (Ti)} for
i ∈ {1, 2}. The middle set is the intersection of the vertex sets of G1 and G2,
i.e., mid(e) := V (G1) ∩ V (G2). The width of (T, μ) is the maximum order of
the middle sets over all edges of T , i.e., w(T, μ) := max{|mid(e)| : e ∈ T}.
An optimal branch decomposition of G is defined by a tree T and a bijection
μ which give the minimum width, the branchwidth, denoted by bw(G).

Theorem 2.2 (Robertson, Seymour, and Thomas [13]) Let � ≥ 1 be
an integer. Every planar graph of branchwidth at least � contains an (��/4�×
��/4�)-grid as a minor.

A parameter P is minor bidimensional [2] with density δ if P is minor closed
and for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2). Theorem 2.2 implies the
following useful property.

Lemma 2.3 (Demaine et al. [2]) If P is a bidimensional parameter with
density δ then for any planar graph G, bw(G) ≤ 4

δ
· √P (G) + O(1).

Using Lemmas 2.1 and 2.3 we can obtain a combinatorial bound of the param-
eter medbcsd in terms of the branchwidth of the planar graph G, as stated
in Lemma 2.4. For a proof, see [14].

Lemma 2.4 For any d ≥ 2 and for any planar graph G it holds that bw(G) ≤
4
δ
·√medbcsd(G)+O(1), with δ = 1 if d = 2, δ =

√
3/2 if d = 3, and δ =

√
2

if d ≥ 4.

3 The Algorithms

Let G be in this section a (not necessarily planar) graph on n vertices. We
denote the empty set by ∅ and the empty function by ∅. Let (T, μ) be a branch
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decomposition of width ≤ � of G. We pick an arbitrary edge e∗ ∈ E(T ), we
subdivide it by adding a new vertex vnew and then add a new vertex r and
make it adjacent to vnew. We extend μ by setting μ(r) = ∅ and we root T at
vertex r. For each e ∈ E(T ) let Te be the tree of the forest T\e that does not
contain r as a leaf (i.e., the tree that is “below” e in the rooted tree T ) and let
Ee be the edges that are images, via μ, of the leaves of T that are also leaves
of Te. We denote Ge = G[Ee]. Observe that, if er = {vnew, r}, then Ger = G.

Given a set A, we define a d-weighted packing of A as any pair (A, ψ) where
A is a (possible empty) collection of mutually disjoint nonempty subsets of A
and ψ : A → {0, . . . , d} is a mapping corresponding integers from 0 to d to
the elements of A. It will be convenient to think of such a packing A of A as
a hypergraph G = (A,A). Note that, by definition, A is a matching in G.

Let (A, ψ) and (A′, ψ′) be two d-weighted packings of two sets A and A′.
We define (A, ψ)⊕(A′, ψ′) as the 2d-weighted packing (A′′, ψ′′) of A′′ = A∪A′

where A′′ is the packing of A′′ defined by the connected components of the
hypergraph (A∪A′,A∪A′) (i.e., the nonempty subsets of the packing A′′ are
the vertex sets corresponding to the connected components of the hypergraph
(A∪A′,A∪A′)) and where for any x ∈ A∪A′, ψ′′(x) = ψ(x) (resp. ψ′(x)) if
x ∈ A − A′ (resp. x ∈ A′ − A) and ψ′′(x) = ψ(x) + ψ′(x) if x ∈ A ∩ A′. If
(A, ψ) is a d-weighted packing of a set A and A′ ⊆ A, we define (A, ψ)|A′ as
the d-weighted packing (A′, ψ′) of the set A′ where A′ = {X ∩ A′ | X ∈ A}
and ψ′ = {(x, ψ(x)) | x ∈ A′}.

Let Pe be the collection of all d-weighted packings (A, ψ) of mid(e), and
let � = |mid(e)|. Observe that if er = {vnew, r}, then Per = {(∅, ∅)}. We
use the notation C(H) for the set of connected components of a graph (or
hypergraph) H . Given (A, ψ) ∈ Pe we define

opte(A, ψ)=max{{0} ∪ {|E(H)| : ∃ H ⊆ Ge : Δ(H) ≤ d ∧
if (A �= ∅) then

{V (H ′) ∩mid(e) | H ′ ∈ C(H)} = A ∧
{(v,degH(v)) | v ∈ ∪A∈AA} = ψ

else if (A = ∅) then

|C(H)| ≤ 1 ∧ V (H) ∩mid(e) = ∅ }}
Clearly, opter

(∅, ∅) = medbcsd(G). Let us now see how these values of
opte(A, ψ) can be explicitly computed using dynamic programming over a
branch decomposition of G. Let e, e1, e2 be three edges of T that are incident
to the same vertex and such that e is closer to the root of T than the other
two. To perform the join/forget operations in the middle set mid(e), we
distinguish two cases: (1) A �= ∅; and (2) A = ∅.
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(1) opte(A, ψ)= max{{0} ∪ {l : ∃(Ai, ψi) ∈ Pei
, i = 1, 2, such that

(A1, ψ1) ⊕ (A2, ψ2) is a d-weighted packing of

mid(e1) ∪ mid(e2) ∧
(A, ψ) = ((A1, ψ1) ⊕ (A2, ψ2))|mid(e) ∧
if (A1 = ∅) then l = opte2

(A2, ψ2)

if (A2 = ∅) then l = opte1
(A1, ψ1)

else l = opte1
(A1, ψ1) + opte2

(A2, ψ2) }}
(2) opte(∅, ψ) = max{{0} ∪ {l : ∃(Ai, ψi) ∈ Pei

, i = 1, 2, such that

(A1, ψ1) ⊕ (A2, ψ2) is a d-weighted packing of

mid(e1) ∪ mid(e2) ∧
(∅, ψ) = ((A1, ψ1) ⊕ (A2, ψ2))|mid(e) ∧
if (A1 = ∅ ∧ A2 = ∅) then l = max{opte1

(A1, ψ1), opte2
(A2, ψ2)}

if (A1 �= ∅ ∧ A2 = ∅) then

l = max{opte2
(A2, ψ2), {opte1

(A1, ψ1)|X : X ∈ A1}}
if (A1 = ∅ ∧ A2 �= ∅) then

l = max{opte1
(A1, ψ1), {opte2

(A2, ψ2)|X : X ∈ A2}}
if (A1 �= ∅ ∧ A2 �= ∅) then

l = max{opte1
(X, ψ1)|mid(e1) + opte2

(X, ψ2)|mid(e2) :

X ∈ C(mid(e1) ∪ mid(e2),A1 ∪ A2)} }}
Finally, suppose that eleaf = {x, y} ∈ E(T ) is an edge such that x is a leaf

of T . Let {v1, v2} ∈ E(G) be the image of x under μ. Then opteleaf
(A, ψ) = 1

if A = {{v1, v2}} and ψ = {(v1, 1), (v2, 1)}, otherwise opteleaf
(A, ψ) = 0.

Running time. The size of the tables of the dynamic programming over
the branch decomposition of the input graph, namely |Pe|, determines the
running time of our algorithms. The number of ways a set of � elements can
be partitioned into nonempty subsets is well-known as the �-th Bell number [6]
and is denoted by B�. We can express |Pe| in terms of the Bell numbers:

|Pe| = (d + 1)� ·
�∑

i=0

(
�

i

)
B�−i ≤ (d + 1)� · 22�·log �, (1)

where the last inequality is an easy exercise using that B� ≤ e�−1
(log �)� �! [6]. At

each edge e of the branch decomposition, to compute all the values opte(A, ψ)
we test all the possibilities of combining d-weighted packings of the two middle
sets mid(e1) and mid(e2). The operations (A1, ψ1) ⊕ (A2, ψ2) and (A, ψ)|A′

take O(|mid(e)|) time. Let m = |E(G)|. Hence, by Eq. (1), given a branch de-
composition of a general graph G of width at most �, the value of medbcsd(G)
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can be computed in (d + 1)2� · 24�·log � · � · m steps.

4 Speed-up for Planar Graphs using Catalan Structures

In this section we will see that when the input is restricted to planar graphs
the term 2O(�·log �) in Eq. (1) can be reduced to 2O(�).

Let G be a planar graph embedded on a sphere S. A noose is a Jordan
curve in S not intersecting the edge set of G. A sphere cut decomposition
or sc-decomposition (T, μ, π) of G is a branch decomposition of G with the
following property: for every edge e of T , there exists a noose Oe meeting
every face at most once and bounding the two open discs Δ1 and Δ2 such
that Gi ⊆ Δi ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and its
length is |mid(e)|. A clockwise traversal of Oe in the embedding of G defines
the cyclic ordering π of mid(e). We always assume that the vertices of every
middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.

Theorem 4.1 (Seymour and Thomas [15]) Let G be a planar graph of
branchwidth at most � without vertices of degree one embedded on a sphere.
Then there exists an sc-decomposition of G of width at most �.

In addition, such an sc-decomposition can be constructed in time O(n3) [10].
The size of the tables of the dynamic programming algorithm is given by in
how many ways a solution of k-MDBCSd in Ge can intersect mid(e). Let
(T, μ, π) be a sphere cut decomposition of width ≤ �, and we can assume
� ≤ bw(G) by Theorem 4.1. Then the vertices of mid(e) are situated around
a noose. A non-crossing partition (ncp) is a partition P (n) = {P1, . . . , Pm} of
the set S = {1, . . . , n} such that there are no numbers a < b < c < d where
a, c ∈ Pi, and b, d ∈ Pj with i �= j.

When we restrict the input graph G to be planar, then the subgraph given
by the intersection of a partial solution of k-MDBCSd in Ge with mid(e) is
also planar. The reduction from 2O(�·log �) to 2O(�) is based on calculating in
how many ways we can draw hyperedges inside a cycle such that they touch
the cycle on its vertices and they do not share common internal points in the
plain (they do not intersect).

The number of such configurations is closely related to the number of
non-crossing partitions over � vertices, which is equal to the �-th Catalan
number CN(�) = 1

�+1

(
2�
�

) ∼ 4�√
π�3/2

≤ 4� [11]. Indeed, in the same spirit of

Eq. (1), |Pe| = (d + 1)� · ∑�
i=0

(
�
i

)
CN(� − i) ≤ (d + 1)� · ∑�

i=0

(
�
i

)
4�−i =

(d + 1)�4� · ∑�
i=0

(
�
i

) (
1
4

)i
= (d + 1)�4� · (1 + 1

4

)�
= (d + 1)� · 5�.

Since G is planar, |E(G)| = O(|V (G)|), hence so is the number of middle
sets in any branch decomposition of G. Therefore,
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Proposition 4.2 For every planar graph G and given a sphere cut decompo-
sition (T, μ, π) of G of width ≤ �, the value of medbcsd(G) can be computed
in O (

(d + 1)2� · 52� · � · n)
steps.

Let δ be the constant defined in Lemma 2.4. Summarizing,

Theorem 4.3 k-Planar Maximum d-Degree-Bounded Connected Subgraph is
solvable in time O

(
2log(5(d+1))8

√
k/δ

√
k · n + n3

)
.

Proof. First, using Theorem 4.1, we construct in time O(n3) an optimal
sphere cut decomposition of G of width bw(G). We distinguish two cases ac-
cording to bw(G). If bw(G) > 4/δ ·√k, then by Lemma 2.4 the answer to the
parameterized problem is automatically YES. Otherwise, if bw(G) ≤ 4/δ·√k,
the value of the parameter medbcsd(G) can be computed by Proposition 4.2

in time O
(
(d + 1)8

√
k/δ · 58

√
k/δ · 4/δ√k · n

)
= O

(
2log(5(d+1))8

√
k/δ

√
k · n

)
. �

5 Extensions and Conclusions

In this article we obtained a 2O(
√

k)nO(1) algorithm for k-MDBCSd on planar
graphs. Appropriate modifications of the dynamic programming algorithm of
Section 3 allow us to obtain subexponential parameterized algorithms for the
variant of the problem in which the aim is to maximise the number of vertices
of the subgraph H , as well as for the variant in which the output subgraph is
required to be induced (for both the edge and vertex maximisation versions).
Another variant for which subexponential parameterized algorithms exists is
when the list of prescribed degrees of the vertices belongs to a subset of Zq

for a fixed integer q. The details can be found in [14]. The subexponential
parameterized algorithms we have presented on planar graphs can be naturally
transformed to exact subexponential algorithms by using that for any planar
graph G, bw(G) ≤ √

4.5 · |V (G)| [8].

Several interesting problems remain open. First, it seems natural to try
to improve the worst-case running time of our algorithms. Much more chal-
lenging is to find subexponential parameterized algorithms for the edge- or
node-weighted versions of the problem. Actually, the weighted versions of our
parameters remain minor closed (by an easy modification of Lemma 2.1), how-
ever the fundamental difference is that the combinatorial bound of Lemma 2.4
does not hold anymore. Finally, the natural extension of this article would
be to conceive subexponential parameterized algorithms for k-MDBCSd on
other sparse graph classes, like graphs of bounded genus and, more generally,
minor-free families of graphs.
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