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ABSTRACT

The diversity of application areas relying on tree-structured data results in wide
interest in algorithms which determine differences or similarities among trees. One way
of measuring the similarity between trees is to find the smallest common superstructure
or supertree, where common elements are typically defined in terms of a mapping or
embedding. In the simplest case, a supertree will contain exact copies of each input
tree, so that for each input tree, each vertex of a tree can be mapped to a vertex in the
supertree such that each edge maps to the corresponding edge. More general mappings
allow for the extraction of more subtle common elements captured by looser definitions
of similarity.
We consider supertrees under the general mapping of minor containment. Minor con-
tainment generalizes both subgraph isomorphism and topological embedding; as a con-
sequence of this generality, however, it is NP-complete to determine whether or not G is
a minor of H, even for general trees. By focusing on trees of bounded degree, we obtain
an O(n3) algorithm which determines the smallest tree T such that both of the input
trees are minors of T , even when the trees are assumed to be unrooted and unordered.
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1. Introduction

The breadth of algorithmic research on trees stems from both the simplicity of
the structure and the variety of application domains. When information about a
data set can be derived from its tree structure, comparisons among two or more
data sets can entail determining similarities among two or more trees. Algorithms
of this type have been developed in areas such as compiler design, structured text
databases, theory of natural languages, computer vision [18], and computational bi-
ology (the reader is directed to a previous paper on trees [10] for further references).

Comparisons of trees range from the classical tree pattern matching problem
(finding an exact copy of one tree in another) to numerous variants, including
problems on multiple trees and inexact matches. Each problem can be viewed as
finding a way to relate trees by mappings, where trees are related if it is possible
to map vertices to sets of vertices and edges to sets of edges subject to certain con-
straints. Researchers have considered different types of trees (ordered, unordered,
labeled, unlabeled) and different mappings between pairs of trees (exact matching,
approximate matching, subgraph isomorphism, topological embedding, minor con-
tainment) [3, 5, 9, 13, 14]. In addition, researchers have measured the similarity
between trees by finding the largest common subtree or smallest common supertree
under various constraints [1, 4, 7, 8, 10, 12, 19].

In this paper we consider the problem of finding the smallest common supertree
under minor containment. Concisely, a graph G is a minor of a graph H if it is
possible to map all the vertices in G to mutually disjoint connected subgraphs in
H and there exists a bijection, from the edges of G to the edges of H that are not
in any of these subgraphs, such that the images of the endpoints of any edge e in
G contain the endpoints of the image of e through this bijection; equivalently we
can view the mapping as taking edges to paths. Minor containment is of interest
due to its generality; it encompasses both subgraph isomorphism and topological
embedding and is fundamental in the work of Robertson and Seymour on graph
minors [17]. However, due in large part to the generality, many problems which are
tractable under subgraph isomorphism and topological embedding are NP-complete
for minor containment. In particular, it is NP-complete to determine whether or
not one tree is a minor of another [6], but this can be determined in polynomial
time when there is a degree bound of O(log n/ log log n) [9]. We thus restrict our
attention to trees of bounded degree, noting that the resultant supertree will also
be of bounded degree (in contrast, a common subtree of two bounded degree trees
may not have bounded degree).

Interest in supertrees under minor containment arises from their applications to
editing, image clustering, genetics, chemical structure analysis, and evolution [12,
19]. Previous algorithms to find supertrees have been limited to special cases:
in ordered minor containment, there is an order imposed on the children of each
vertex in each input tree, and this order must be preserved by the mapping [12];
for evolutionary trees, the leaves have distinct labels and are constrained to map to
other leaves [19].
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2. Preliminaries

Each input to our algorithm is a bounded-degree tree (a connected undirected
graph with no cycles). V (T ) denotes the vertices of T and E(T ) the edges of T . A
tree T may be rooted at a distinguished vertex r; in this case we can view the rooted
tree as a directed graph, with children and parents defined as in standard graph-
theoretic references [2]. When processing rooted trees we will consider a subtree Tv

of T , defined to be the subgraph of T induced by v and all its descendants. More
generally, for A a subset of the children of some vertex v, we define TA to be the
subgraph induced by v, the vertices in A, and all descendants of vertices in A.

For A an arbitrary subset of vertices, T [A] is defined to be the subgraph of T

induced by A. Our algorithm will rely on relationships between neighborhoods of
sets. We use NG(v) to denote the neighborhood of the vertex v in the graph G.
We say that two subsets S1, S2 of the vertex set of a graph G are touching if either
S1 ∩ S2 6= ∅ or there exists an edge (v1, v2) ∈ E(G) for vi ∈ Si, i = 1, 2.

Given input trees Q and R, we wish to find a tree T such that both Q and R are
minors of T and T is as small as possible. There are several equivalent definitions of
minors; the most relevant one for our purposes is given below. Intuitively, a graph
G is a minor of a graph H (or H is a major of G) if G can be obtained from H by
a series of vertex and edge deletions and edge contractions, where a contraction of
an edge (u, v) in G is the operation that replaces u and v by a new vertex whose
neighbors are the vertices that were adjacent to u or v. It is not difficult to see
that, for trees, the following definition is equivalent:
Definition 1 A tree Q is a minor of a tree T if and only if there exists a surjection
f : V (T ) → V (Q) such that

1. for each a ∈ V (Q), T [f−1(a)] is connected;

2. for each pair a, b ∈ V (Q), a 6= b, f−1(a) ∩ f−1(b) = ∅; and

3. for S = {(u, v) ∈ E(T ) | f(u) 6= f(v)}, there exists a bijection ξ : S → E(Q)
such that for each e = (s, t) ∈ S, ξ(e) = (f(s), f(t)).

We call f a minor embedding of T into Q. Intuitively, f−1(a) is the set of vertices
of T contracted into a; (2) captures the notion that each vertex of T corresponds to
exactly one vertex of Q; and (3) ensures that uncontracted edges of T are preserved
in Q.

The problem we wish to solve is that of determining the smallest common
acyclic major of Q and R, henceforth called the smallest common tree major. For
sctmj(Q,R) the minimum number of vertices in a common tree major of Q and R,
it is not difficult to see that max{|V (Q)|, |V (R)|} ≤ sctmj(Q,R) ≤ |V (Q)|+ |V (R)|.
We observe that sctmj(Q,R) = |V (Q)| if and only if R is a minor of Q. Duchet [6]
proved that it is NP-complete to determine whether one tree is a minor of another.
It is thus easy to prove that deciding whether sctmj(Q,R) ≤ k for two general trees
Q,R is NP-complete. In view of this, we will restrict our attention to the case where
the input graphs are both trees with maximum degree bounded by a fixed constant.
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In the remainder of the paper we will make use of the following notational
conventions. Since we will be finding a graph T such that Q and R are both minors
of T , we will use f to denote the minor embedding of T into Q and g to denote
the minor embedding of T into R. We will use letters near the beginning of the
alphabet for vertices of Q and letters near the end of the alphabet for vertices of R.

3. Expansions

Our algorithm makes use of an expansion, a graph E representing the correlations
between vertices and edges of Q and R. In the remainder of the section we establish
various properties of expansions, culminating in Theorem 1, which explicitly links
expansions and smallest common tree majors.

To facilitate understanding of the algorithm, it is beneficial to consider the
mappings between Q, R, and a common tree major T . The edges of T correspond
to edges in the input trees Q and R; we distinguish between strong edges, which
correspond to edges in both Q and R, and weak edges, each of which corresponds to
an edge in only one of Q and R. For f and g the minor embeddings of T into Q and
R, respectively, f−1(a) and g−1(u) describe connected subgraphs of T . Since for
a ∈ V (Q) each vertex in f−1(a) is in g−1(u) for some u ∈ V (R), we can associate a

with a set of vertices in V (R) whose preimages in T overlap the preimage of a. This
notion of association can be formalized in a graph with bipartition (V (Q), V (R))
and edge set {(a, u) | f−1(a)∩ g−1(u) 6= φ}. However, since we are searching for an
unknown minimum T , we instead define (below) an expansion E of Q and R solely
in terms of the properties of this kind of graph. In Lemma 2 we demonstrate that
a common tree major can be extracted from any expansion; in Lemma 3 we show
that there exists an expansion isomorphic to a smallest common tree major.
Definition 2 For Q and R trees on disjoint sets of vertices, an expansion of Q and
R is a bipartite graph E = (V (E), E(E)) with bipartition (V (Q), V (R)) such that

1. the neighborhood in E of any vertex of V (R) (respectively, V (Q)) induces a
connected subgraph of Q (respectively, R);

2. E has no isolated vertices;

3. the neighborhoods in E of two vertices in V (Q) (respectively, V (R)) intersect
in at most one vertex; and

4. for every edge (a, b) in E(Q), either there are edges (a, u) and (b, u) in E
for some u ∈ V (R), or there are edges (a, u) and (b, v) in E for some edge
(u, v) ∈ E(R) (and symmetrically for edges in R).

Given an expansion E of Q and R, we define TE to be a graph whose vertices are
edges in E and whose edges are formed by condition 4 in the definition above. For
an edge (a, b) ∈ E(Q), if there are edges (a, u) and (b, u) in E , then {(a, u), (b, u)}
is an edge in TE , and if there are edges (a, u) and (b, v) in E for some (u, v) ∈ E(R),
and neither (a, v) nor (b, u) is in E , then {(a, u), (b, v)} is in TE . Edges (u, v) ∈ E(R)
define edges in TE in a similar fashion. In the former case we call the edge (a, b)
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Fig. 1. An expansion E of Q and R.

weak; in the latter case, (a, b) and (u, v) are strong. Figure 1 gives an example of
an expansion E between two trees Q and R; Figure 2 shows the corresponding TE ,
which by inspection is a common tree major of Q and R.

We will denote the weak (strong) edges of Q as weak(Q) (strong(Q)) and we will
use analogous notation for R. We call the edges of TE that are defined on the basis
of weak edges of Q (R), Q-weak (R-weak). If an edge of TE is not Q or R-weak, then
we call it strong. There exist natural bijections between the weak edges of Q (R) and
the Q-weak (R-weak) edges of TE , between the strong edges of Q (R) and the strong
edges of TE , and between strong edges in E(Q) and strong edges in E(R), the last
of which we denote fE . As direct consequences of the definition of weak and strong
edges, |strong(Q)| = |strong(R)| and |E(TE)| = |weak(Q)|+|weak(R)|+|strong(Q)|.
We define |E(TE)| to be the size of the expansion E .

For convenience, if E is an expansion of two trees Q and R, (a, b) is a strong edge
of Q, and (u, v) = fE((a, b)), we will say that (a, b) and (u, v) are E-counterparts
of each other and conclude that (a, u), (b, v) ∈ E . Given a vertex t in TE which
corresponds to an edge (a, u) ∈ E(E) where a ∈ V (Q) and u ∈ V (R), a is the
Q-side of t and u is the R-side of t. Finally, we use PG(p1, p2) to denote the set of
vertices in the (unique) path between two vertices p1 and p2 in the tree G.

The next lemmas are essential tools used in the proof of Theorem 1.
Lemma 1 For any expansion E of Q and R and any edge e = (a, b) ∈ E(Q)
(e ∈ E(R)), NE(a) and NE(b) are touching in R.

Proof. By condition 4 of the definition of E , for any edge (a, b) ∈ E(Q) either
there is a vertex w in R such that (a, w), (b, w) ∈ E(E) or there is an edge (u, v) ∈
E(R) such that (a, u), (b, v) ∈ E(E). In the first case the connected graphs R[NE(a)]
and R[NE(b)] have a common point w, and in the second, they contain u and v

respectively, and (u, v) ∈ E(R). Therefore, in both cases, their vertex sets are
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Fig. 2. A graph TE derived from E.

touching. 2

Lemma 2 If E is an expansion of two trees Q and R, then TE is a common tree
major of Q and R.

Proof. We will prove first that TE is a tree. By property 1 of the definition of
an expansion, for any vertex a in Q, NE(a) induces in R a tree T a, and hence the
number of edges of E with a as endpoint is equal to |E(T a)|+ 1. Moreover, all the
edges in T a are weak edges of R and any weak edge e of R is in exactly one tree
T b where b is the vertex of Q adjacent to both endpoints of e. As a consequence of
the above observations,

|V (TE)| = |E(E)| =
∑

a∈V (Q)

(|weak edges in R[NE(a)]|+ 1)

= |V (Q)|+ |weak(R)| = 1 + |E(Q)|+ |weak(R)|
= 1 + |weak(Q)|+ |strong(Q)|+ |weak(R)|
= 1 + |E(TE)|.

Showing that TE is connected will prove that it is a tree. Let t1, t2 be two
vertices in TE and let a1 and a2 be their Q-sides (recall the definition of Q-side
in the discussion following the definition of an expansion). We will use induction
on j = |PQ(a1, a2)| to show that there exists a path connecting t1 and t2. Since
a path exists trivially for j = 1, we suppose first that j = 2 and let (a1, u1) and
(a2, u2) be the edges of E corresponding to t1 and t2 respectively. By Lemma 1,
NE(a1) and NE(a2) are touching. Therefore, either PR(u1, u2) contains a vertex u ∈
NE(a1) ∩NE(a2) or it contains an edge (u, u′) where u ∈ NE(a1) and u′ ∈ NE(a2).
In the first case (a1, u) and (a2, u), and in the second, (a1, u) and (a2, u

′) define two
adjacent vertices t and t′ of TE . For any pair of edges (v1, v2), (v2, v3) of PR(u1, u),
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there is a pair of edges (r1, r2) and (r2, r3) in E(TE) where r1, r2, r3 correspond to
(a1, v1), (a1, v2), and (a1, v3) respectively. Using this observation, it is easy to see
that t1 and t are connected in TE . The proof of the existence of a path connecting t

and t2 in TE is similar. Since t1 and t2 are connected, the base case of the induction
holds.

Suppose now that the claim holds for j < k, k ≥ 3 and let t1 and t2 be two
vertices in TE whose Q-sides are a1 and a2 and |PQ(a1, a2)| = k. Let a′ be the
vertex in PQ(a1, a2) that is adjacent to a1. There are two cases: (1) (a1, a

′) is a
strong edge with E-counterpart (u∗, u′) and thus TE contains two adjacent vertices
r, t′ corresponding to the edges (a1, u

∗) and (a′, u′) respectively, or (2) (a1, a
′) is

a weak edge whose endpoints are both connected to some vertex u∗ in R, and TE
contains two adjacent vertices r, t′ corresponding to the edges (a1, u

∗) and (a′, u∗),
respectively.

In either case, since |PQ(a′, a2)| < k, we can apply the induction hypothesis for
t′ and t2 to show that t′ and t2 are connected in TE . The edge (t′, r) shows that
r and t2 are connected. We need only consider the case where r is different from
t1. The crucial property of r and t1 is that the edges of E corresponding to them,
(a1, u1) and (a1, u

∗), both contain a1 as the Q-side. Since the neighborhood of a1

induces a tree R, u1 and u∗ are connected in R. Using the same arguments on
t1 and r as we did for t1 and t in the base case, we can prove that t1 and r are
connected in TE and therefore t1 and t2 are connected. Thus TE is connected and
is a tree.

In order to prove that TE is a common major of Q and R we have to provide
functions f and ξ as in Definition 1. We define f : V (TE) → V (Q), such that f

maps every vertex of TE to its Q-side and define ξ to map any edge in TE whose
endpoints have different Q-sides to the edge of Q that connects them. Condition 1
of Definition 1 holds because the vertices in TE with the same Q-side induce a
connected subgraph of TE . Conditions 2 and 3 are direct consequences of the way TE
is defined. The intuition behind the above definition of f is that a graph isomorphic
to Q can be obtained from TE if we contract all the R-weak edges of TE . This proves
that Q is a minor of TE . The proof that R is a minor of TE is symmetric. 2

Lemma 3 For T a smallest common tree major of Q and R, there exists an ex-
pansion E such that TE is isomorphic to T .

Proof. Given minor embeddings f and g of T into Q and R, for each a ∈ V (Q)
and each u ∈ V (R), |f−1(a)∩ g−1(u)| ≤ 1, since otherwise the minor of T obtained
after contracting the edges in the graph induced by {f−1(a) ∩ g−1(u)} would be
a smaller common tree major of Q and R. We define the expansion E to be the
set {(a, u) : |f−1(a) ∩ g−1(u)| = 1}. It is straightforward to verify that E is an
expansion of Q and R. 2

As a corollary of Lemmas 2 and 3, we can conclude that sctmj(Q,R) is the
number of edges in the minimum expansion of Q and R, resulting in Theorem 1,
which reduces the problem to the computation of the rooted version of expansions.
Theorem 1 For trees Q and R and for any a ∈ V (Q), sctmj(Q,R) is the minimum
over all u ∈ V (R) of the number of edges in the smallest expansion E of Q and R
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such that (a, u) is an edge in E.
The next six lemmas establish properties of expansions; these are used in proving

necessary technical lemmas in Section 4. The proof of the following lemma is a direct
consequence of the definition of an expansion and is omitted.
Lemma 4 Let Ei be a minimum size expansion of two trees Qi and Ri for i = 1, 2,
V (Q1) ∩ V (Q2) = {a}, V (R1) ∩ V (R2) = {u}, and (a, u) ∈ E1 ∩ E2. Then E1 ∪ E2

is an expansion of minimum size (among those containing (a, u)) of Q1 ∪ Q2 and
R1 ∪R2.

The following two lemmas are direct applications of Lemma 4.
Lemma 5 Let Ei be a minimum size expansion of two trees Qi and Ri, ai ∈ Qi for
i = 1, 2, V (Q1) ∩ V (Q2) = ∅, V (R1) ∩ V (R2) = {u}, (a1, u) ∈ E1, and (a2, u) ∈ E2.
Then E1 ∪ E2 is an expansion of minimum size (among those containing at least
one of (a1, u) and (a2, u)) of the graph with vertex set V (Q1)∪ V (Q2) and edge set
E(Q1) ∪ E(Q2) ∪ {(a1, a2)} and the graph R1 ∪R2.
Lemma 6 Let Ei be a minimum size expansion of two disjoint trees Qi and Ri,
ai ∈ V (Qi), ui ∈ V (Ri), and (ai, ui) ∈ Ei for i = 1, 2. Then E1 ∪ E2 is an expansion
of minimum size (among those containing at least one of (a1, u1) and (a2, u2)) of
the graph with vertex set V (Q1)∪V (Q2) and edge set E(Q1)∪E(Q2)∪{(a1, a2)} and
the graph with vertex set V (R1) ∪ V (R2) and edge set E(R1) ∪E(R2) ∪ {(u1, u2)}.

The lemma below is a useful tool in proving properties of expansions; it shows
that if two pairs of vertices are related by an expansion, the paths joining the
vertices are also related.
Lemma 7 For any expansion E of Q and R, if (ai, ui) ∈ E , i = 1, 2, then every
vertex in PQ(a1, a2) is adjacent in E to a vertex in PR(u1, u2).

Proof. We will prove the lemma by contradiction, using induction on j, the
size of PQ(a1, a2). Since the lemma holds trivially for j ≤ 2, it suffices to show that
the lemma holds for j = k, assuming that it holds for all values j < k.

We call a vertex b in in PQ(a1, a2) bad if NE(b) ∩ PR(u1, u2) = φ, and good
otherwise. If any interior vertex in PQ(a1, a2) is a good vertex, then we can show
that every vertex on the path has a neighbor in PR(u1, u2). That is, if b is a good
vertex with neighbor v in PR(u1, u2), then we can apply the induction hypothesis on
the smaller problem PQ(a1, b) and PR(u1, v) and also the smaller problem PQ(b, u2)
and PR(v, u2) to reach our conclusion. We can now assume that every interior
vertex in PQ(a1, a2) is bad.

Furthermore, we can assume that there is no vertex v in PR(u1, u2) which is a
neighbor of both a1 and a2, since if there were, then by property 1 in the definition
of an expansion every vertex in PQ(a1, a2) would also be in the neighborhood of v.
Thus NE(a1) ∩NE(a2) ∩ PR(u1, u2) is empty.

For each bad vertex a, we can define a vertex v(a) in PR(u1, u2) which is the
vertex in PR(u1, u2) closest to NE(a) in R; this vertex is unique due to property 1
in the definition of E . We let bi be the neighbor of ai in PQ(a1, a2) and show that
v(bi) ∈ NE(ai) ∩ PR(u1, u2). Suppose instead v(bi) 6∈ NE(ai) ∩ PR(u1, u2). As R is
a tree, we can partition the vertices of R \ PR(u1, u2) into connected subgraphs on
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the basis of the closest vertex in PR(u1, u2). Since NE(bi) ∩ PR(u1, u2) = ∅, NE(bi)
must be contained entirely in one partition, namely that associated with v(bi). We
observe that v(bi) is a cutset separating NE(ai) and NE(bi) and not contained in
either set. This contradicts Lemma 1, which states that since (ai, bi) ∈ E(Q),
NE(ai) and NE(bi) are touching.

By a similar argument we can show that if a and b are bad neighbors in Q, then
v(a) = v(b). Since there is a path from b1 to b2, v(b1) = v(b2). Since for i = 1, 2,
v(bi) ∈ NE(ai) ∩ PR(u1, u2), then v(b1) ∈ NE(a1) ∩NE(a2) ∩ PR(u1, u2), which we
proved to be empty. 2

We finish this section with the following observation, which will prove useful
when justifying the recurrence used by our algorithm.
Lemma 8 For any trees Q and R where |E(Q)|, |E(R)| ≥ 1 and for any a ∈ V (Q)
and u ∈ V (R), the smallest expansion of Q and R that contains (a, u) as an edge
has size smaller than |E(Q)|+ |E(R)|.

Proof. As |E(Q)|, |E(R)| ≥ 1, there exist edges (a, b) and (u, v) with a and
u as endpoints. Let Q1 and Q2 (R1 and R2) be the connected components of the
graph formed by removing the edge (a, b) from Q (the graph formed by removing
the edge (u, v) from R) that contain a and b (u and v) respectively. It is easy to
verify that E = (V (Q) ∪ V (R), E) where

E = {(c, u) | c ∈ V (Q1)} ∪ {(c, v) | c ∈ V (Q2)} ∪
{(a,w) | w ∈ V (R1)} ∪ {(b, w) | w ∈ V (R2)}

is an expansion of Q and R containing (a, u). Since |E| = |E(Q)|+|E(R)|, |E(TE)| =
|E(Q)|+ |E(R)| − 1. 2

4. Smallest common tree major algorithm

4.1. Algorithm overview

For algorithmic convenience, we construct a rooted tree major, where any vertex
of either input tree could be associated with the root. We fix a root for one tree and
then try all possible rootings of the other tree; the following description concerns
one possible choice of a root.

Our algorithm proceeds by dynamic programming, at each stage building tree
majors of various subtrees of the inputs. After topologically sorting each tree with
respect to the chosen root, we process each vertex a in V (Q) in order from leaves
to root, pairing a with each u in V (R) in order from leaves to root.

For a given pair (a, u) we wish to determine the size of the largest common tree
major T such that Qa is a minor of T and Ru is a minor of T where for r the root of
T , f(r) = a and g(r) = u (recall the definitions of Qa and Ru in the first paragraph
of Section 2). We solve this problem using subproblems involving children of a and
u, where in each subproblem we specify not only the roots of the subtrees of Q and
R, but also the subsets of the children included thus far in the mapping.
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Fig. 3. The different ways possible smaller expansions involving subtrees rooted
at the children of a and u can be combined in a general expansion.

Expansions, as defined in the previous section, give a convenient framework for
expressing the progress of the algorithm, where expansions involving subgraphs of
Q and R are augmented to form expansions of larger subgraphs of Q and R. The
dynamic programming formulation of the problem relies on a set of subproblems at
a ∈ V (Q) and u ∈ V (R), where each subproblem corresponds to one choice of how
the children of a and the children of u are related, assuming that (a, u) is to be
an edge in the expansion and that all subproblems rooted at children have already
been solved.

4.2. Technical lemmas

When processing (a, u), we are assuming that (a, u) ∈ E(E) and attempting to
see where subsets of the children of a and u can map. To build our intuition, we
consider the process from the point of view of Q (viewing from R is symmetric and
hence the reasoning is identical). Each child b of a must eventually be involved in
E . There are four different cases for a child b of a, reflecting four different possible
smaller expansions involving subtrees rooted at the children of a and u (for an
illustration of the case analysis that follows, see Figure 3). The definitions of weak
edges and E-counterparts follow the definitions of expansion in Section 3.

1. (epsilon child) The subtree rooted at b is not involved in any previous expan-
sion. It will be included by creating an edge in E from each vertex in the
subtree to u.

2. (terminal child) The subtree rooted at b has been mapped to a subtree rooted
at a child v of u, where (a, v) is not an edge in any previous expansion. In this
case the edges (a, b) and (u, v) will be strong edges that are E-counterparts.

3. (one-many child) The subtree rooted at b is mapped to subtrees rooted at a
set of children of u, where (b, u) is an edge in a previous expansion. In this
case (a, b) is a weak edge.

4. (many-one child) A set of subtrees rooted at children of a is mapped to a
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subtree rooted at a child v of u, where (a, v) is an edge in a previous expansion.
In this case (u, v) is a weak edge.

We formalize the possible associations of children by a tuple for each possible
pair of subsets A of children of a and X of children of u and each possible mapping
among vertices.
Definition 3 Given two sets A, X we define Π(A,X) as the set containing all
tuples

({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ)

that satisfy the following properties:

1. {Ae, At, Ao, Am} is a partition of A (some parts may be empty);

2. {Xe, Xt, Xo, Xm} is a partition of X (some parts may be empty);

3. τ : At → Xt is a bijection;

4. α : Xm → Ao is a surjection; and

5. χ : Am → Xo is a surjection.

It is not difficult to show that in the trees Q rooted at a and R rooted at u,
fE preserves the parent-child orientation of the strong edges. Suppose instead that
(a1, a2) and (u1, u2) are E-counterparts where a1 is in the path between a and a2

in Q but, in R, u2 is in the path connecting u and u1. Applying Lemma 7 for paths
PQ(a, a2) and PR(u, u2), we conclude a1 ∈ PQ(a, a2) is adjacent, in E , to a vertex
in PR(u, u2). But a1 is also adjacent to u1 (in E), and hence by property 1 of the
definition of an expansion a1 must be adjacent to u2, a contradiction as (a1, a2)
and (u1, u2) are strong edges. Using this observation we will always assume from
now on that if (a1, a2) is strong and (u1, u2) is its E-counterpart, then a1 (u1) is
the endpoint closer to a (u) in Q (R). In general, whenever we mention an edge,
the first endpoint of the pair will be the one that is closer to the root of the tree to
which it belongs.

We call two edges of a rooted tree comparable if one of them is in the path
connecting the other with the root. If we have three mutually incomparable edges
such that exactly two of them have a vertex different from the root as a common
ancestor, we call the two edges the close pair of the triple. The definitions of Qa

and Ru below are found in the first paragraph of Section 2.
Lemma 9 For any expansion E of two trees Q = Qa and R = Ru such that (a, u) ∈
E, if e1, e2 are strong edges of Q and e′1 and e′2 are their E-counterparts in R, then
e1 is comparable with e2 if and only if e′1 is comparable with e′2.

Proof. We prove the lemma by contradiction. Without loss of generality,
e1 = (a1, a2) is in the path connecting e2 = (a3, a4) and a, and e′1 = (u1, u2) and
e′2 = (u3, u4) are not comparable. The incomparability of e′1 and e′2 means that u2

is not in PR(u1, u4). By applying Lemma 7 for paths PQ(a1, a4) and PR(u1, u4),
a2 ∈ PQ(a1, a4) will be adjacent, in E , to some vertex in PR(u1, u4). As a2 is also
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adjacent to u2 in E , property 1 of the definition of an expansion requires that a2 be
adjacent to u1. Since e1 and e′1 are strong edges we have obtained a contradiction.
The proof of the other direction is symmetric. 2

Lemma 10 For any expansion E of two trees Q = Qa and R = Ru such that
(a, u) ∈ E, if e1, e2 and e3 are strong mutually incomparable edges of Q and e′1, e

′
2

and e′3 are their E-counterparts in R, then e1, e2 is the close pair of e1, e2, e3 if and
only if e′1, e

′
2 is the close pair of e′1, e

′
2, e

′
3.

Proof. In a proof by contradiction, we let ei = (ai, bi), i = 1, 2, 3, e′i =
(ui, vi), i = 1, 2, 3, and suppose that e1 and e2 form a close pair and e′2 and e′3
form a close pair. Let b be the common ancestor of e1 and e2 and v be the common
ancestor of e′2 and e′3. As a consequence of Lemma 7 applied to PQ(b1, b2) and
PR(v1, v2), b must be adjacent in E to some vertex in PR(v1, v2). Similarly, we can
prove that b must be adjacent in E to some vertex in PR(v1, v3) and to some vertex
in PR(v2, v3). It is not hard to see that these three facts and property 1 of the
definition of E prove that b and v must be adjacent.

Using the same technique, by applying Lemma 7 to PQ(b2, b3) and PR(v2, v3),
we conclude that a ∈ PQ(b2, b3) will be adjacent, in E , to some vertex in PR(v2, v3).
As a is also adjacent to u, by property 1 of the definition of an expansion, a must be
adjacent to v. By Lemma 7 for PQ(b1, b2) and PR(v1, v2), by symmetry we can show
that b is connected to u in E . We have shown that {(a, u), (a, v), (b, u), (b, v)} ⊆ E(E)
which violates property 3 of the definition of an expansion. The proof of the other
direction is symmetric. 2

Given a child b of a in Qa we denote as Q̃b the graph Qb augmented with the
edge (a, b), and given a child v of u in Ru we denote as R̃v the graph Rv augmented
with the edge (u, v).
Lemma 11 For any expansion E of two trees Q = Qa and R = Ru such that
(a, u) ∈ E, there exists a tuple ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ) in
Π(children(a), children(u)), such that the following hold:

1. there are no strong edges in QAe or RXe ;

2. all edges from a to vertices in At and from u to vertices in Xt are strong;

3. all edges from a to vertices in Ao and from u to vertices in Xo are weak;

4. for all b ∈ At, v ∈ Xm, and c ∈ Am, fE maps (a, b) to (u, τ(b)), the strong
edges in Qb to the strong edges in Rτ(b), the strong edges in Rv to the strong
edges in Qα(v), and the strong edges in Qc to the strong edges in Rχ(c).

Proof. We let Ea be the set of edges induced in Q by a and its children and
let Eu be the set of edges induced in R by u and its children. To construct the
desired partition, we first define sets Ae, At, Xe, and Xt as follows: Ae is the
maximum subset of the children of a in Q with the property that for each b in Ae,
Qb contains no strong edges; At consists of the the children b of a such that (a, b)
is the E-counterpart of an edge (u, v) in Eu; Xe and Xt are defined analogously.
We form the bijection τ by setting τ(b) = v for (a, b) and (u, v) E-counterparts, for
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b ∈ At. We have now satisfied conditions 1 and 2, and it is straightforward to see
that, for all b ∈ At, fE maps (a, b) to (u, τ(b)).

We now claim that for any b ∈ At, fE maps the strong edges of Qb to the
strong edges of Rτ(b). Suppose instead that edges (a, b) ∈ Ea, (c, d) ∈ E(Qb),
(u, v) = fE((a, b)), and (w, x) = fE((c, d)) 6∈ E(Rτ(b)) were a counterexample.
Then, since (a, u), (d, x) ∈ E(E), we can apply Lemma 7 to PQ(a, d) and PR(u, x)
in order to conclude that the neighborhood of b in E contains a vertex in PR(u, x).
As (w, x) is not an edge of Rτ(b), v = τ(b) is not a vertex of this path. Since v

is adjacent to b in E , by property 1 of the definition of an expansion, u must be a
neighbor of b in E . This results in a contradiction, as (a, b) and (u, v) are strong
edges of Q and R respectively.

We now define Ao to include any child b of a for which Q̃b contains strong edges
whose E-counterparts are in more than one of the trees R̃w for children w of u.
Notice that Ao and At are disjoint, as for any b ∈ At, the counterparts of the strong
edges of Q̃b are all in one tree R̃w, namely R̃τ(b). Furthermore, we define Xm so
that, for any b ∈ Ao, Xm contains the children v1, . . . , vr of u such that R̃v1 , . . . , R̃vr

are the trees that contain E-counterparts of strong edges in Q̃b. The surjection α

maps any vertex vi in Xm to the corresponding vertex b of Ao.
We claim that for any b ∈ Ao the edge (a, b) is weak. Suppose instead that

(a, b) were strong; since b 6∈ At, its E-counterpart (x, w) must be in Q̃v for some
child v of u. Since b ∈ Ao, the E-counterparts of the strong edges in Q̃b are
in more than one tree in Ru, and thus some tree R̃v′ different from R̃v contains
at least one E-counterpart (y, z) of a strong edge (c, d) in Q̃b. Clearly (a, b) and
(c, d) are comparable, contradicting Lemma 9 as (x,w) and (y, z) are incomparable.
Therefore, all the edges connecting a with vertices in Ao are weak. As a consequence,
Xm and Xt are disjoint as for any vi ∈ Xm the E-counterparts of the strong edges
of R̃vi belong to trees Q̃b for children b of a such that (a, b) is weak.

To show that the E-counterparts of the strong edges in the R̃vi ’s are all in Q̃b,
for Xm = {v1, . . . , vr}, we suppose instead that some tree (without loss of generality
R̃v1) containing a strong edge e′1 with its E-counterpart e1 in Q̃b′ for some child
b′ 6= b of a. By definition, R̃v1 contains a strong edge e′2 different from e′1 that is
the counterpart of a strong edge in Q̃b. In addition, also by definition, Q̃b contains
at least one strong edge e3 different from e2 whose E-counterpart e′3 is in a tree
(without loss of generality R̃v2) different from R̃v1 . By Lemma 9, e2 and e3 (e′1 and
e′2) are incomparable as their E-counterparts e′2 and e′3 (e1 and e2) are incomparable.
Moreover, the close pair of the first triple is e2 and e3 and the close pair of the second
triple is e′2 and e′1, violating Lemma 10. We can conclude that E-counterparts of
the strong edges in the R̃vi ’s are all in Q̃b. This completes the proofs of conditions
3 and 4 as far as sets Xm and Ao are concerned.

Working symmetrically, we can include in Xo all the children v of u such that
the strong edges of R̃v have E-counterparts in more than one tree in Q̃b for children
b of a. As before, Xo and Xt are disjoint. Moreover, Xo and Xm are also disjoint
as, according to the discussion above, for any vi ∈ Xm the strong edges of R̃vi are
all in a single Q̃b. Applying the same arguments as before, we can define the set
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Am and surjection χ : Am → Xo and verify that conditions 3 and 4 are satisfied for
Xo, Am, and χ.

The construction of the desired tuple is not yet complete. If b is a child of
a that has not yet been classified as a member of Ae, At, Ao, or Am, then the
E-counterparts of the strong edges of Q̃b are all in exactly one tree R̃v but (a, b)
and (u, v) are not both strong edges. We can make a similar claim for unclassified
children v of u. Therefore, there is a bijection σ between the unclassified children
of a and the unclassified children of u that allows us to classify each one of them
arbitrarily in Ao and Xm respectively or in Am and Xo respectively. For each such
arbitrary choice α or χ is augmented by σ on the new pair of elements. By repeating
the same arguments one can prove that, after this enhancement, the sets defined
still satisfy properties 3 and 4 while α and χ remain surjections. In conclusion, the
tuple ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ) satisfies properties 1-5 and the
lemma holds. 2

In order to define the recurrence for our dynamic programming algorithm, we
need to be able to decompose a minimum size expansion of two trees into minimum
size expansions of pairs of subtrees. The following two lemmas consider decom-
positions induced by removal of a strong edge or a weak edge, respectively. For
notational convenience, we will use short forms for various subgraphs of Qa and
Ru. For b a child of a in Qa, we define Q¬b to be Qa \ Qb; similarly, for v a child
of u in Ru, we define R¬v to be Ru \Rv. For any subset X of children of u in Ru,
we define R¬X to be R[(V (R) \ V (RX)) ∪ {u}].
Lemma 12 If E is a minimum size expansion of Q = Qa and R = Ru, (a, b) is a
strong edge of Q, and (u, v) = fε((a, b)) is its E-counterpart, then E is the union of
a minimum size expansion of Q¬b and R¬v containing (a, u) and a minimum size
expansion of Qb and Rv containing (b, v).

Proof. We first claim that E1 = E [V (Qb)∪V (Rv)] is an expansion of Qb and Rv

containing (b, v). In order to prove this, it is enough to show that all the neighbors
in E of all the vertices in V (Qb) (V (Rv)) are in V (Rv) (V (Qb)). Suppose to the
contrary that E contains an edge (c, w) such that c ∈ V (Qb) and w 6∈ V (Rv). If we
now apply Lemma 7 for PQ(a, c) and PR(u,w), b ∈ PQ(a, c) must be adjacent to
some vertex not in Rv. As b is adjacent to v in E , by property 1 of the definition of
an E, b must be adjacent to u, a contradiction as (a, b) and (u, v) are strong edges.
By symmetry we can prove that E2 = E [V (Q¬b) ∪ V (R¬v)] is an expansion of Q¬b

and R¬v containing (a, u).
It now remains to prove that E1 and E2 are both minimum size expansions.

Suppose instead that there is an expansion E ′ of Qb and Rv, that has size smaller
than the one of E1. Then, by Lemma 6, E ′ ∪ E2 is an expansion of Q and R with
size smaller than E , contradicting the minimality of E . The proof for E2 is similar.
2

Lemma 13 If E is a minimum size expansion of Q = Qa and R = Ru, (a, b) is a
weak edge of Q, and (a, u) and (b, u) are edges of E, then

1. there exists a subset X of the children of u such that E is the union of a
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minimum size expansion of Qb and RX containing (b, u) and a minimum size
expansion of Q¬b and R¬X containing (a, u), and

2. if Qb contains only weak edges, then for any vertex c ∈ V (Qb), NE(c) = {u}.
Proof. We let X be the set containing any child v of u for which Rv contains

a neighbor, in E , of a vertex in Qb. We then let E1 = E [V (Qb) ∪ V (RX)] and E2 =
E [V (Q¬b)∪V (R¬X)]. To show that E1 is an expansion of Qb and RX and that E2 is
an expansion of Q¬b and R¬X by inheriting the properties of an expansion from E , it
will suffice to show that in E all neighbors of vertices in V (Qb) (V (RX),V (Q¬b), and
V (R¬X), respectively) are in V (RX) (V (Qb),V (R¬X), and V (Q¬b), respectively).
The first of the four statements follows from the definition of X.

To prove the third claim by contradiction, suppose instead that a vertex c ∈ Q¬b

is adjacent in E to a vertex w outside of R¬X . Clearly, X 6= ∅ and w is in one of the
connected components of RX − {u}. Let v be the vertex of X such that w ∈ Rv.
In addition, by the definition of X, Qb contains at least one vertex d adjacent, in
E , to a vertex x in Rv. We now apply Lemma 7 to paths PQ(d, c) and PR(w, x)
to conclude that a ∈ PQ(d, c) is adjacent, in E , to some vertex in Rv. Since a is
also adjacent to u in E , by property 1 of the definition of an expansion, a must
be adjacent to v in E . Similarly, we can show that b is adjacent to v. Therefore,
the neighborhoods of a and b have two vertices, i.e. u and v, in common. This
contradicts property 3 of the definition of an expansion and hence the claim holds.
The remaining claims can be proved in a similar manner.

To prove the first statement in the lemma, it now remains to show that E1 and
E2 are both minimum size expansions. Suppose to the contrary that there is an
expansion E ′ of one of the pairs Qb and RX or Q¬b and R¬X that has size smaller
than the one established above, say Qb and RX have an expansion E ′ smaller than
E1. Then, by Lemma 5, E ′ ∪ E2 is an expansion of Q and R with size smaller than
E , contradicting the minimality of E .

To prove the second statement in the lemma, it suffices to show that if Qb

contains only weak edges, then X = ∅. Suppose instead that |X| ≥ 1. Then
|E(RX)| ≥ 1. Since E2 is a minimum size expansion of Qb and RX , and Qb contains
only weak edges, RX contains only weak edges. But then |E(TE2)| = |E(Qb)| +
|E(RX)|, contradicting Lemma 8. 2

The following lemma uses the structural information of Lemma 11, followed by
repeated applications of Lemmas 12 and 13.
Lemma 14 For any minimum size expansion E of two trees Q = Qa and R = Ru

such that (a, u) ∈ E, there is a tuple ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ)
in Π(children(a), children(u)) such that (Ee ∪ Et ∪ Ea ∪ Eu) is a partition of E where

1. Ee relates epsilon children; Ee = {(a, z) | z ∈ V (RXe)}∪{(c, u) | c ∈ V (QAe)}.
2. Et relates terminal children; Et =

⋃
b∈At Et,b where, for any vertex b ∈ At, Et,b

is a minimum expansion of Qb and Rτ(b) that contains (b, τ(b)).

3. Ea relates one-many children; Ea =
⋃

b∈Ao Ea,b where, for any vertex b ∈ Ao,
Ea,b is a minimum expansion of Qb and Rα−1(b) that contains (b, u).
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4. Eu relates many-one children; Eu =
⋃

v∈Xo Eu,v where, for any vertex v ∈ Xo,
Eu,v is a minimum expansion of Qχ−1(v) and Rv that contains (a, v).

Proof. We will prove the lemma by decomposing E in groups of subexpansions
of the four types described in Lemma 11. This decomposition will proceed step by
step by applying Lemmas 12 and 13, inductively, as appropriate, depending on the
type of subexpansion it is possible to extract.

Let ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ) ∈ Π(children(a), children(u)) be
as determined by Lemma 11. We will extract the decomposition of E using induc-
tion on j = |Ae| + |Xe| + |At| + |Ao| + |Xo|. If j = 0, the result is trivial. We
assume that it holds if 0 ≤ j < k and we will prove that it also holds when
j = k. Let b ∈ Ae ∪ Xe ∪ At ∪ Ao ∪ Xo. We may assume that b is a vertex in
Ae ∪ At ∪ Ao, as the case where b is a vertex in Xe ∪ Xo is symmetric. We set
E¬b = E [(V (Q \ Qb) ∪ V (R \ Rσ(b))] where, if b ∈ Ae, (resp. b ∈ At, b ∈ Ao), then
σ(b) = ∅, (resp. σ(b) = τ(b), σ(b) = α−1(b)).

We claim that E¬b is a minimum size expansion of Q¬b and R¬σ(b) and that
Eb = E [V (Qb) ∪ V (Rσ(b))] is a minimum size expansion of Qb and Rσ(b). When
b ∈ At, the claim is a consequence of Lemma 12 and when b ∈ Ae ∪ Ao, the claim
is a consequence of Lemma 13.

We now apply the induction hypothesis on E¬b and derive the tuple ({Ae
¬b, A

t
¬b,

Ao
¬b, Am

¬b}, {Xe
¬b, X

t
¬b, X

o
¬b, X

m
¬b}, τ¬b, α¬b, χ¬b) ∈ P (children(a) \ {b}, children(u) \

{σ(b)}) and the corresponding partition (Ee,¬b, Et,¬b, Ea,¬b, Eu,¬b) of E¬b satisfying
conditions 1–4. If b ∈ At, and v is as defined in Lemma 12, for each member m of
the tuple, m = m¬b with the following exceptions: At = At

¬b∪{b}, Xt = Xt
¬b∪{v},

and τ = τ¬b ∪ {(b, v)}. Suppose now that b ∈ Ae ∪ Ao and X is as defined in
Lemma 13. In this case, it is easy to see that if X = ∅, then Ae = Ae

¬b ∪ {b}, and
for each other member m of the tuple m = m¬b. Finally, if X 6= ∅, Ao = Ao

¬b ∪{b},
Xm = Xm

¬b ∪ X, and α = α¬b ∪ {(w, b) | w ∈ X}, with all other members of the
tuple unchanged. We construct the partition (Ee ∪ Et ∪ Ea ∪ Eu) of E as follows.

If b ∈ Ae, then, by Lemma 13, Eb = {(c, u) | c ∈ V (Qb)}. We set Ee = Eb ∪Ee,¬b,
Et = Et,¬b, Ea = Ea,¬b, and Eu = Eu,¬b.

If b ∈ Ao, then, by Lemma 13, Eb is a minimum expansion of Qb and Rα−1(b)

= Rσ(b). We set Ee = Ee,¬b, Et = Et,¬b, Ea = Eb ∪ Ea,¬b, and Eu = Eu,¬b.
If b ∈ At, then, by Lemma 12, Eb is a minimum expansion of Qb and Rτ(b) =

Rσ(b). We set Ee = Ee,¬b, Et = Eb ∪ Et,¬b, Ea = Ea,¬b, and Eu = Eu,¬b.
It now remains to verify that, in all cases, the tuple

({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ)

along with the partition (Ee ∪ Et ∪ Ea ∪ Eu) satisfy conditions 1–4. This check is
straightforward except for conditions 2 and 3 where we have to prove that the new
expansions Et and Ea are minimum expansions. This follows from Lemmas 5 and 6
as, by their construction, Et and Ea are unions of minimum expansions. 2
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4.3. Algorithm details

Procedure Expansion(Q,R, a, u)
Input: Two trees Q, R and two vertices a ∈ V (Q), u ∈ V (R).
Output: min{|E| : E is an expansion of Q and R and (a, u) ∈ E}.

1: Root Q and R at a and u respectively.
2: Topologically sort V (Q), giving LQ := {a1, . . . , a|V (Q)|} where a = a|V (Q)|.
3: Topologically sort V (R), giving LR := {u1, . . . , u|V (R)|} where u = u|V (R)|.
4: for i := 1 . . . |V (Q)| do
5: for j := 1 . . . |V (R)| do
6: if ai and uj are leaves then I(ai, uj , ∅, ∅) := 1
7: else
8: for all X ⊆ children(uj) and A ⊆ children(ai) do
9: x := |V (Q)|+ |V (R)|

10: for all ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm}, τ, α, χ) ∈ Π(A,X) do
11: x := min{x, |V (QAe)|+ |V (RXe)| − 1 + (i)∑

b∈At I(b, ft(b), children(b), children(τ(b))) + (ii)∑
b∈Ao I(b, ui, children(b), α−1(b)) + (iii)∑
v∈Xo I(ai, v, χ−1(v), children(v)) } (iv)

12: I(ai, ui, A, X) := x

13: return I(a, u, children(a), children(u))
14: end

Theorem 2 For any trees Q and R rooted at a and u respectively, Expansion

(Q,R, a, u) returns the minimum number of edges in any expansion E containing
(a, u).

Proof. We prove that for Q and R rooted at a and u respectively, for any
c ∈ V (Q), z ∈ V (R), and any A ⊆ children(c) and X ⊆ children(z), the quantity
I(c, z, A,X) computed by the algorithm is the minimum number of edges over all
expansions E of QA and RX , where (c, z) ∈ E . The proof is by induction on the
order of computation.

Consider the computation of I(c, z, A, X). As LQ and LR are topological sorts
of V (Q) and V (R) respectively, we can conclude that I(d, y, Ad, Xy) has already
been computed in the following three cases, which cover the expressions on the
right-hand side of step 11.

1. d ∈ children(c), y ∈ children(z), Ad ⊆ children(d), and Xy ⊆ children(y).

2. d ∈ children(c), y = z, Ad ⊆ children(d), and Xy ⊆ children(z).

3. d = c, y ∈ children(z), Ad ⊆ children(c), and Xy ⊆ children(y).

If we assume by the inductive hypothesis that the values I(d, y, Ad, Xy) are cor-
rect, then, by Lemma 14, there is a choice of ({Ae, At, Ao, Am}, {Xe, Xt, Xo, Xm},
τ, α, χ) that results, at step 11, in x taking on the minimum number of edges in an
expansion E of QA and RX containing (c, z), as required. 2

17



Theorem 3 For any pair of trees Q and R of bounded degree, sctmj(Q, R) can be
computed in O(n3) time where n = max{|V (Q)|, |V (R)|}.

Proof. The if-statement at step 6 is invoked O(n2) times, and because the
maximum degrees of Q and R are bounded by a constant, the loops at steps 8 and
10 result in a constant number of iterations of step 11. This quantity is multiplied
by O(n), the number of rootings to check. 2

5. Extensions of the algorithm

In this section we describe how our algorithm can be generalized to the problem
of determining the edit distance (under certain conditions) of a pair of a edge-
labeled, unrooted, unordered trees. The set of operations used is edge contraction,
edge relabeling, and edge insertion. In this last operation, a vertex v is chosen,
replaced by a pair of vertices v1 and v2 such that N(v1) and N(v2) partition N(v),
and a labeled edge (v1, v2) is inserted. The final condition we impose on the edit
sequence is that all insertions must be completed before any other operations.

Let Q and R be edge-labeled trees, i.e. for some given alphabet Σ, there exist
two functions q : E(Q) → Σ and r : E(R) → Σ. We denote as g, h the cost
functions where for any σ ∈ Σ, g(σ) and h(σ) represent the cost of the contraction
and the insertion respectively of an edge labeled with σ. Finally, for σ, ρ ∈ Σ, we
denote as l(σ, ρ) the cost of changing the label of an edge from σ to ρ. We can
now define as dist(Q,R) the smallest possible total cost of a sequence of operations
which transforms Q to R, subject to the constraint that all insertions occur first.

Given such a sequence, we can reorder it (without altering its cost) so that
the relabelings precede the contractions and follow the expansions. Let T1 be the
tree after all expansions, and T2 the tree after all relabelings. Clearly, if labels are
removed, T1 is isomorphic to T2, and both are majors of both Q and R. Thus, for
every edit sequence, there is a natural common supertree.

Conversely, let T be a common major of Q and R corresponding to some ex-
tension E of Q and R. It is easy to see that Q can be transformed to R after the
following sequence of operations: first insert in Q all the edges in E(T ) − E(Q),
then relabel all the strong edges of T to the labelings they should have in R, and,
finally, contract all the edges in E(T ) − E(R). Notice that, if S(T ) contains the
strong edges of T , the total cost of this sequence of operations is

∑

e∈E(T )−E(Q)

h(q(e)) +
∑

e∈E(T )−E(R)

g(r(e)) +
∑

e∈S(T )

l(q(e), r(e))

which, in turn, is equal to
∑

e∈E(T )

h(q(e)) +
∑

e∈E(T )

g(r(e)) +
∑

e∈S(T )

l(q(e), r(e))− C(R,Q) =

∑

e∈E(T )

(h(q(e)) + g(r(e))) +
∑

e∈S(T )

l(q(e), r(e))− C(R,Q)
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where C(R, Q) =
∑

e∈E(Q) h(q(e)) +
∑

e∈E(R) g(r(e)). Therefore, in order to com-
pute dist(Q,R) we have to find an expansion E with major T where the quantity

Q(T ) =
∑

e∈E(T )

(h(q(e)) + g(r(e))) +
∑

e∈S(T )

l(q(e), r(e))

is minimized. Following the methodology of the previous sections we set up a
general version of I(c, z, A, X), representing the minimum value of Q(T ) over the
T ’s corresponding to all expansions E of QA and QX where (c, z) ∈ E . The only
modification required for Procedure Expansion(Q,R, a, u) concerns the way x is
computed in line 11, which should change to the following:

11: x := min{x,
∑

e∈E(QAe ) h(q(e)) +
∑

e∈E(RXe ) g(r(e)) + (i)∑
b∈At( I(b, ft(b), children(b), children(τ(b)))+

l(q((ai, b)), r((ui, ft(b)))) ) + (ii)∑
b∈Ao( I(b, ui, children(b), α−1(b)) + h(q((ai, b))) ) + (iii)∑
v∈Xo( I(ai, v, χ−1(v), children(v)) + g(r((uj , v))) ) } (iv)

For completeness, in line 9, x should now be initialized as C(R, Q).
Clearly, the above modifications do not require more time asymptotically, and

we have the following:
Theorem 4 The edit distance (under operations edge contraction, edge relabeling,
and edge insertion, where all insertions come first) of any pair of edge-labeled
trees Q and R of bounded degree, can be computed in O(n3) time where n =
max{|V (Q)|, |V (R)|}.

6. Conclusions and further work

We have demonstrated an O(n3) algorithm for finding the smallest common tree
major of two trees Q and R, where both Q and R are unrooted and undirected, and
have degree bounded by a fixed constant. The degree restriction can be relaxed to
maximum degree O(log n/ log log n) while keeping the running time of the algorithm
polynomial, since the multiplicative factor is dO(d) for trees of maximum degree d

(this factor arises from the number of tuples examined at line 10 of the algorithm).
Our algorithm can be generalized to the problem of determining the edit distance
(under the operations of edge contraction, edge relabeling, and edge insertion, where
all insertions come first) of a pair of a edge-labeled, unrooted, unordered trees, by
incorporating labels into the definition of the expansion. All of our algorithms can be
implemented in NC using the technique of Brent restructuring to parallelize dynamic
programming on trees [9]. Our work is also related to work on intertwines [15]: the
value sctmj(Q,R) is the minimum size of an acyclic intertwine of Q and R.

Although the NP-completeness of minor containment for general trees suggests
the intractability of finding the largest common subgraph under minors, there is
hope for solving other related problems. The problem of determining whether or
not G is a minor of H is solvable in polynomial time for G and H both bounded-
degree partial k-trees [16] or for G and H both k-connected k-paths [11]; solving
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the largest common supergraph problem for each of these graph classes would be
an obvious extension to our work. Another obvious extension would be to solve the
largest common tree major problem for three or more input trees.
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