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Abstract

The celebrated grid exclusion theorem states that for every h-vertex planar graph H, there
is a constant ch such that if a graph G does not contain H as a minor then G has treewidth
at most ch. We are looking for patterns of H where this bound can become a low degree
polynomial. We provide such bounds for the following parameterized graphs: the wheel
(ch = O(h)), the double wheel (ch = O(h2 · log2 h)), any graph of pathwidth at most 2
(ch = O(h2)), and the yurt graph (ch = O(h4)).
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1 Introduction

Treewidth is one of the most important graph invariants in modern graph theory. It has been
introduced in [16] by Robertson and Seymour as one of the cornerstones of their Graph Minors
series. Apart from its huge combinatorial value, it has been extensively used in graph algorithm
design (see [3] for an extensive survey on treewidth). In an intuitive level, treewidth expresses
how close is the topology of the graph to the one of a tree and, in a sense, can be seen as a
measure of the “global connectivity” of a graph.

Formally, a tree decomposition of a graph G is a pair (T,X ) where T is a tree and X a family
(Xt)t∈V (T ) of subsets of V (G) (called bags) indexed by elements of V (T ) and such that

(i)
⋃
t∈V (T )Xt = V (G);

(ii) for every edge e of G there is an element of X containing both ends of e;

(iii) for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ Xt} is connected.

The width of a tree decomposition is equal to maxt∈V (T ) |Xt| − 1, while the treewidth of G,
written tw(G), is the minimum width of any of its tree decompositions. Similarly one may
define the notions of path decomposition and pathwidth by additionally asking that T is a path
(see Section 2).

We say that a graph H is a minor of a graph G if a graph isomorphic to H can be obtained by
a subgraph of G after applying a series of edge contractions and we denote this fact by H 6m G.
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The grid exclusion theorem. One of the most celebrated results from the Graph Minors
series of Robertson and Seymour is the following result, also known as the grid exclusion theorem.

Proposition 1 ([17]). There exists a function f : N→ N such that, for every for every planar
graph H on h vertices, every graph G that does not contain a minor isomorphic to H has
treewidth at most f(h).

The original proof the the above result in [17] did not provided any explicit estimation for
the function f . Later, in [18], Robertson, Seymour, and Thomas proved the same result for

f(h) = 2O(h5), while a less complicated proof appeared in [9]. For a long time, the insisting
open problem was whether this result can be proved for a polynomial f . In [18], an Ω(h2 · log h)
lower bound was provided for the best possible estimation of f and was also conjectured that
the optimal estimation should not be far away from this lower bound. In fact, a more precise
variant of the same conjecture was given by Demaine, Hajiaghayi, and Kawarabayashi in [8]
where they conjectured that Proposition 1 holds for f(h) = O(h3). The estimation of [18] was
recently improved by Kawarabayashi and Kobayashi [13], where they show that Proposition 1

holds for f(h) = 2O(h2·log h). Until recently, the best known estimation of f followed by be the
result of Leaf an Seymour [14] who proved Proposition 1 for f(h) = 2O(h·log h).

Very recently, in a breakthrough result [6], Chekuri and Chuzhoy proved that Propostion 1
holds for f(h) = O(h228). The remaining open question is whether the degree of this polyno-
mial bound can be substantially reduced in general. In this direction, one may still consider
restrictions either on the graph G or on the graph H that yield a low polynomial dependence
between the treewidth and the size of the excluded minor. In the first direction, Demaine and
Hajiaghayi proved in [7] that, when G is restricted to belong in some graph class excluding some
fixed graph R as a minor, then Proposition 1 (optimally) holds for f(h) = O(h). Similar results
have been proved by Fomin, Saurabh, and Lokshtanov, in [12], for the case where G is either a
unit disk graph or a map graph that does not contain a clique as a subgraph.

In the second direction, one may consider H to be some specific planar graph and find a good
upper bound for the treewidth of the graphs that exclude it as a minor. More generally, we can
consider a parametrized class of planar graphs Hk where each graph in Hk has size bounded by
a polynomial on k, and prove that the following fragment of Proposition 1 holds for some low
degree polynomial function f : N→ N:

∀k > 0 ∀H ∈ Hk, ifH 66m G then tw(G) 6 f(k). (1)

The question can be stated as follows: find pairs (Hk, f) for which (1) holds where Hk is as
general as possible and f is as small as possible (and certainly polynomial). It is known, for
example, that (1) holds for the pair ({Ck}, k), where Ck is the cycle or a path of k vertices (see
e.g. [2, 11]), and for the pair ({K2,k}, 2k − 2), (see [5]). Two more results in the same direction
that appeared recently are the following: according to the result of Birmele, Bondy, and Reed
in [1], (1) holds for the pair (Pk, O(k2)) where Pk contains all minors of K2×Ck (we denote by
K2 × Ck the Cartesian product of K2 and the cycle of k vertices, also known as the k-prism).
Finally, one of the consequences of the recent results of Leaf and Seymour in [14], implies that (1)
holds for the pair (Fr, O(k)), where Fr contains every graph on r vertices that contains a vertex
that meets all its cycles.

Our results. In this paper we provide polynomially bounded minor exclusion theorems for
the following parameterized graph classes:

H0
k: containing all graphs on k vertices that have pathwidth at most 2.

H1
k: containing all minors of a wheel on k + 1 vertices – see Figure 1.
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H2
k: containing all minors of a double wheel on k + 2 vertices – see Figure 1.

H3
k: containing all minors of the yurt graph on 2k + 1 vertices (i.e. the graph obtained it we

take a (2× k)-grid and add a new vertex adjacent with all the vertices of its “upper layer”
– see Figure 4).

Notice that none of the above classes is minor comparable with the classes Pk and Fk treated
in [1] and [14]. Moreover, H1

k ⊂ H2
k ⊂ H3

k, while H0
k is not minor comparable with the other

three. In this paper we prove that (1) holds for the pairs:

• (H0
k, O(k2)),

• (H1
k, O(k)),

• (H2
k, O(k2 log2 k)), and

• (H3
k, O(k4)).

The above results are presented in detail, without the O-notation, in Section 3. All of our proofs
use as a departure point the results of Leaf and Seymour in [14].

2 Definitions

All graphs in this paper are finite and simple, i.e., do not have loops nor multiple edges. We
use the notation V (G) (resp. E(G)) for the sets of vertices (resp. edges) of G. Logarithms are
binary.

Definition 1 (path decomposition, pathwidth). A path decomposition of a graph G is a tree
decomposition T of G such that T is a path. Its width is the width of the tree decomposition T
and the pathwidth of G, written pw(G), is the minimum width of any of its path decompositions.

Definition 2 (minor model). A minor model (sometimes abbreviated model) of a graph H in a
graph G is a pair (M, ϕ) whereM is a collection of disjoint subsets of V (G) such that ∀X ∈M,
G [X] is connected and ϕ : V (H) → M is a bijection that satisfies ∀{u, v} ∈ E(H),∃u′ ∈
ϕ(u),∃v′ ∈ ϕ(v), {u′, v′} ∈ E(G). We say that a graph H is a minor of a graph G (H 6m G)
if there is a minor model of H in G. Notice that H is a minor of G if H can be obtained by a
subgraph of G after contracting edges.

Definition 3 (linked sets). Let G be a graph and S ⊆ V (G). The set S is said to be linked in
G if for every two subsets X1, X2 of S (not necessarily disjoint) such that |X1| = |X2|, there is
a set Q of |X1| (vertex-)disjoint paths between X1 and X2 in G whose length is not one (but
can be null) and whose endpoints only are in S.

Definition 4 (separation). A pair (A,B) of subsets of V (G) is a called a separation of order k
in G if k = |A ∩B| and there is no edge of G between A \B and B \A.

Definition 5 (left-contains, [14]). Let H be a graph on r vertices, G a graph and (A,B) a
separation of order r in G. We say that (A,B) left-contains H if G [A] contains a minor model
M of H such that ∀M ∈M, |M ∩ (A ∩B)| = 1

Definition 6 (Trees and cycles). Given a tree T we denote by L(T ) the set of its leaves,
i.e. vertices of degree 1 and by diam(T ) its diameter, that is the maximum length (in number
of edges) of a path in T.
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For every two vertices u, v ∈ V (T ), there is exactly one path in T between u and v, that we
denote by uTv. Also, given that uTv has at least 2 vertices, we denote by ůT v (resp. uT v̊) the
path uTv without vertex u (resp. v).

Let C be a cycle on which we fixed some orientation. Then, there is exactly one path following
this orientation between any two vertices u, v ∈ V (C). Similarly, we denote this path by uCv
and we define ůCv and uCv̊ as we did for the tree.

In a rooted tree T of root r, the least common ancestor of two vertices u and v, written
lcaT (u, v) is the first common vertex of the paths uTr and vTr. We refer to the root of T by
the notation root(T ).

For every integer h > 0, we denote by Bh the complete binary tree of height h.

3 Results

We present in this paper bounds on the treewidth of graphs not containing the following
parametrized graphs: the wheel of order k (section 5), the double wheel of order k (section 6),
any graph on k vertices and pathwidth at most 2 (section 7) and the yurt graph of order k (sec-
tion 8). The definitions of these graphs can be found in the corresponding sections. In section
4, we recall some propositions that we will use and we prove two lemmata which will be useful
later. The theorems we then prove are the following.

Theorem 1. Let k > 0 be an integer and G be a graph. If tw(G) > 36k − 5
2 , then G contains

a wheel of order k as minor.

Theorem 2. Let k > 0 be an integer and G be a graph. If tw(G) > 12(8k log(8k) + 2)2 − 4,
then G contains a double wheel of order at least k as minor.

Theorem 3. Let k > 0 be an integer, G be a graph and H be a graph on k vertices and of
pathwidth at most 2. If tw(G) > 3k(k − 4) + 8 then G contains H as minor.

Theorem 4. Let k > 0 be an integer and G be a graph. If tw(G) > 6k4−24k3+48k2−48k+23,
then G contains the yurt graph of order k as minor.

4 Preliminaries

Proposition 2 ([14, (4.3)]). Let k > 0 be an integer, let T be a tree on k vertices and let G be
a graph. If tw(G) > 3

2k − 1, then G has a separation (A,B) of order k such that

• G [B \A] is connected;

• A ∩B is linked in G [B];

• (A,B) left-contains T .

Proposition 3 ([15]). If G is an n-vertex graph of pathwidth at most 2 then G is a minor of Ξn.

Proposition 4 (Erdős–Szekeres Theorem, [10]). Let k and ` be two positive integers. Then
any sequence of (`− 1)(k − 1) + 1 distinct integers contains either an increasing subsequence of
length k or a decreasing subsequence of length `.

Lemma 1. For every tree T , |L(T )| · diam(T ) + 1 > |V (G)|.
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Proof. Root T to an arbitrarily chosen vertex r ∈ V (T ). For each leaf x ∈ L(T ), we know that
|V (xT r̊)| 6 diam(T ). Observe that V (T ) = {r} ∪

⋃
x∈L(T ) V (xT r̊). Therefore,

|V (G)| 6
∑

x∈L(T )

|V (xT r̊)|+ 1

|V (G)| 6 |L(T )| · diam(T ) + 1

as required.

Definition 7 (The set Λ(T )). Let T be a tree. We denote by Λ(T ) the set containing every
graph obtained as follows: take the disjoint union of T , a path P where |V (P )| >

√
|L(T )|, and

an extra vertex vnew, and add edges such that

(i) there is an edge between vnew and every vertex of P ;

(ii) there are |V (P )| disjoint edges between P and L(T );

(iii) there are no more edges than the edges of A and P and the edges mentioned in (i) and (ii).

Lemma 2. Let n > 1 be an integer, T be a tree on n vertices an let G be a graph. If tw(G) >
3n− 1, then H 6m G for some H ∈ Λ(T ).

Proof. Let n, T , and G be as in the statement of the lemma. Let P be a path on n vertices.
We denote by H the disjoint union of P and T and let H∗ be the tree obtained from H after
adding an edge with endpoints in P and T .

The graph G has treewidth at least 3n− 1, then by Proposition 2, G has a separation (A,B)
of order 2n such that

(i) G [B \A] is connected;

(ii) A ∩B is linked in G [B] ;

(iii) (A,B) left-contains the graph H∗.

Let (M, ϕ) be the a model of H∗ in G [A] that witnesses (iii). According to (ii), there is a
family P of n disjoint paths in G such that for every path Q ∈ P of this family:

• Q is of length at least 2 and its internal vertices are in B \A;

• for the one endpoint, say x, of Q there exists some vertex x′ of T such that x ∈ ϕ(x′) and
for the other, say y, there exists some vertex y′ of P such that y ∈ ϕ(y′).

We call P ′ the subset of P containing all paths whose T -endpoint is mapped to a leaf of T via ϕ.
We set U = G[B \A] and let Y be the graph obtained from G[B] after removing all edges in

G[A ∩B].
We define TU be the tree obtained from U as follows:

1. contract all edges that belong to some path in P ′. From Condition (i), this transforms U
to a connected graph U∗. That way each path of U that is a subpath of some path in P ′
is shrinked to a vertex of U∗. We denote the set of these vertices by I.

2. Let T ∗ be a minimum size tree of U∗ that spans all vertices in I. Remove from U∗ all
edges that are not edges of T ∗.

3. Create TU by dissolving in T ∗ all vertices of degree 2 that do not belong to I.
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We also define the graph TY by first removing from Y all edges incident to vertices in A∩B that
are not edges of some path in P ′ and then applying the same steps as above to the remaining
edges and vertices that belong to U . Notice that TY is a subtree of TU andthat |V (TU )| > |P ′| =
|L(T )| .

Also observe that G− = T ∪ P ∪ TY is a minor of G and that G− contains a collection Q of
|L(T )| disjoint paths, each between some vertex of P and some vertex of L(T ) and with only
one internal vertex that is a vertex of the tree TU .

Let s =
√
|V (TU )|. We consider two cases:

Case 1. There is a path in TU of length at least s in TU .
As s >

√
|L(T )| there exists a path R in TU of length at least

√
|L(T )|. Every vertex v of R

is of one of the following types.

1. A leaf of TU . Then v ∈ I, by the minimality of T ∗ in the second step of the construction
of TU . We then mark v as one of the privileged vertices of I.

2. A vertex of degree 2 in TU . This means that v ∈ I, because of the third step of the
construction of TU . Again we mark v as one of the privileged vertices of I.

3. A vertex of degree > 3 in TU . In this case, such a vertex v is either a vertex in I or it is
connected to a leaf u ∈ I of TU with a path of TU in a way such that v̊TUu and R are
disjoint. If v ∈ I, then we mark v as one of the privileged vertices of I, otherwise we yield
this status to vertex u.

We call R′ the path obtained from TU by contracting in it every edge not belonging to R. We
insist that, while applying a contraction of an edge with one privileged vertex v, the resulting
vertex has the same name as v and heritages its privileged status. Notice that R and R′ have
the same length and that all vertices of R′ are privileged and therefore are members of I. Let
Q′ be the subset of Q containing paths with privileged vertices.

We call G′′ the minor of G′ obtained as follows:

(1) We remove from G′ all edges of the paths in Q \ Q′.

(2) Apply to the edges of TU the same contractions that we applied before in order to create R′

from TU .

(3) In the resulting graph, we contract all edges of P to a single vertex vnew.

We also define T ∗Y as the graph obtained if we first apply on TY all operations one edges that
we applied in steps (1) and (2), remove all edges of R′, and then identify all remaining vertices
that are vertices of P to a single vertex vnew.

Notice that G′′ = T ∪ T ∗Y ∪ R′ where |V (R′)| >
√
|L(T )|. This implies that G′′ ∈ Λ(T ),

therefore, by the transitivity of the minor relation, G contains a graph in Λ(T ) as a minor.

Case 2. All paths in TU have length strictly less than s.
From Lemma 1, |L(()TU )| >

√
|V (TU )|. Observe that L(()TU ) ⊆ I (this follows by the

minimality of T ∗ in the second step of the construction of TU ). Let Q′ be the subset of Q of the
paths that contain an element of L(()TU ). Clearly, |Q′| = |L(()TU )|. We create the graph G′′

as follows:

1. Remove all internal vertices of the paths in Q \ Q′.

2. Remove every edges in TY that is incident to L(T ) ∪ V (P ) and does not belong in a path
in Q′.
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3. For every path Q ∈ Q′ contract the unique edge with one endpoint in P and the other in
L(()TU ).

4. Contract all edges of TU that are not incident to one of its leaves to a single vertex vnew.

5. Dissolve each vertex in P that is the endpoint of a path in Q \ Q′. We denote by P ′ the
path obtained by applying the same operations on P .

Notice that G′′ 6m G′. Moreover |V (P ′)| = |Q′| = |L(()TU )| >
√
|V (TU )| which implies that

that G′′ ∈ Λ(T ). By the transitivity of the minor relation, G contains a graph in Λ(T ) as a
minor.

5 Excluding a wheel with a linear bound on treewidth

Definition 8 (wheel). Let r > 2 be an integer. The wheel of order r (denoted Wr) is a cycle
of length r whose each vertex is adjacent to an extra vertex, in other words it is a the graph of
the form

V (G) = {o, w1, . . . , wr}
E(G) = {{w1, w2} , {w2, w3} , . . . , {wr−1, wr} , {wr, w1}} ∪ {{o, w1} , . . . , {o, wr}}

(see Figure 1 for an example)

w1 w2

w3

w4w5

w6
o

w1 w2

w3

w4w5

w6
o1

o2

Figure 1: A wheel of order six (left) and a double wheel of order 6 (right)

Lemma 3. Let h > 2 be an integer. Let G be a graph of the following form: the union of the tree
T = Bh and a path P such that for every l ∈ L(T ), {l, ψ(l)} ∈ E(G), where ψ : L(T ) → V (P )
is a bijection. Then G contains a wheel of order 2h−2 + 1.

Proof. Let h, ψ, T , P = p1 . . . p2h and G be as above. Let r be the root of T .
In the sequel, if t ∈ V (T ), we denote by Tt the subtree of T rooted at t (i.e. the subtree of

T whose vertices are all the vertices t′ ∈ V (T ) such that the path t′Tr contains t).
We consider the vertices u = ψ−1(p1) ∈ L(T ) and v = ψ−1(p2h) ∈ L(T ) and w = lcaT (u, v) ∈

V (T ) \ L(T ).
Let τ be the biggest complete subtree of T which is disjoint from uTv. Let Lτ be the set of

leaves of the subtree τ and let Q = ψ(Lτ ) ⊆ P . We first show that G contains a W|Q|+1-model.
We denote by q1, . . . , q|Q| the elements of Q and we assume that these vertices appears in this
order in P . We now present a W|Q|+1-model (M, ϕ) in G by setting:
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∀i ∈ J1, |Q| − 1K , Mi = V (qiP ˚qi+1)

M|Q| = {q|Q|}
M|Q|+1 = V ( ˚q|Q|Pp2h−1) ∪ V (vTu) ∪ V (p0P q̊1)

M|Q|+2 = V (τ) ∪ V (root(τ)Tẘ)

and

ϕ :

 V (W|Q|+1) → M
∀i ∈ J1, |Q|+ 1K , wi 7→ Mi

o 7→ M|Q|+2

Let us make some remarks on (M, ϕ).

Remark 1. Every element of M induces a subgraph of G which is connected:

• for every i ∈ J1, |Q|K, Mi is defined as the set of vertices of a path or of meeting paths,
thus it induces a connected graph in G;

• the set M|Q|+2 contains the subtree τ (connected) and either the path from root(τ) to w
or the first vertices of this path.

Remark 2. Every two different elements of M are disjoint.

Remark 3. For all x, y ∈ V (W|Q|+2) if {x, y} is an edge in W|Q|+2 then there is an edge in G
between a vertex of ϕ(x) and a vertex of ϕ(y).

In fact, W|Q|+2 has edges {{wi, wi+1}}i∈J1,|Q|K,
{
w|Q|+1, w1

}
and {{wi, o}}i∈J1,|Q|+1K .

1. For every i ∈ J1, |Q| − 1K , Mi contains the vertices of the path qiQ ˚qi+1 and qi+1 ∈ Mi+1,
so ϕ(wi) = Mi and ϕ(wi+1) = Mi+1 are linked by an edge;

2. M|Q| contains the vertices of vT ẘ and w ∈ M|Q|+1, so ϕ(w|Q|) = M|Q| and ϕ(w|Q|+1) =
M|Q|+1 are linked by an edge;

3. M|Q|+1 contains the vertices of wTů and u ∈M1, so ϕ(w|Q|+1) = M|Q|+1 and ϕ(w1) = M1

are linked by an edge;

4. for every i ∈ J1, |Q|K, Mi contains a element of Q which is by definition of G and Q
connected by an edge to a leaf of τ and V (τ) ⊇M|Q|+2, so ϕ(wi) = Mi and ϕ(o) = M|Q|+2

are linked by an edge;

5. M|Q|+2 contains the vertices of the path to rT ẘ and w ∈M|Q|+1, so ϕ(w|Q|+1) = M|Q|+1

and ϕ(o) = M|Q|+2 are linked by an edge.

According to the previous remarks, (M, φ) is a model of W|Q|+1.
Depending on G, |Q| may take different values. However, we show that it is never less than

2h−2. Remember, |Q| is the number of leaves of the biggest complete subtree of T that is disjoint
from uTv. The root r of T has two children r1 and r2, inducing two subtrees Tr1 and Tr2 of T .

Case 1. w 6= r. As w 6= r, w is a vertex of one of {Tr1 , Tr2}, say Tr1 , which contains also u and
v, and thus the path uTv. The other subtree Tr2 is then disjoint from uTv, it have height h− 1
and is complete so it have 2h−1 leaves. Consequently, in this case |Q| > 2h−1.

Case 2. w = r. In this case, the path uTv contains r (and r 6= u, r 6= v as u and v are leaves)
so u and v are not in the same subtree of {Tr1 , Tr2} and uTv contains the two edges {r, r1} and
{r, r2}. For every i ∈ {1, 2}, we denote by ri,1 and ri,2 the two children of ri in T . We assume
without loss of generality that u ∈ V (Tr1,1) and v ∈ V (Tr2,1) (if not, we just rename the ri’s
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ans ri,j ’s). Notice that the path uTv is the concatenation of the paths uTr1r1, r1Tr2, r2Tr2v.
Since the tree Tr1,2 is disjoint from uTv, is complete and is of height h− 2, it have 2h−2 leaves.
Therefore we have |Q| > 2h−2.

In both cases, |Q| > 2h−2 and according to what we proved before, G contains a model of
W|Q|+2. As every wheel contains a model of every smaller wheel, we have proved that G contains

a wheel of order at least 2h−2.

Theorem 5. Let k > 0 be an integer and G be a graph. If tw(G) > 36k − 5
2 , then G contains

a Wk-model.

Proof. Let k > 0 be an integer, G be a graph such that tw(G) > 36k− 5
2 , and let h = dlog 4ke .

Since every wheel contains a model of every smaller wheel, we have

Wk 6m W2dlog ke+1

6m W2d(log 4k)−2e+1

6m W2h−2+1

Therefore, if we prove that G contains a W2h−2+1-model, then we are done because the minor
relation is transitive. Let Y −h be the graph of the following form: the disjoint union of the
complete binary tree Bh of height h with leaves set YL and of the path YP on 2h vertices, and
let Yh be the set of graphs of the same form, but with the extra edges {{l, φ(l)}}l∈YL

, where
φ : YL → V (YP ) is a bijection. As we proved in Lemma 3 that every graph of Yh contains the
wheel of order 2h−2 + 1 as minor, showing that G contains a graph of Yh as minor suffices to
prove this lemma. That is what we will do. Let H be a graph of Yh.

From our initial assumption, we deduce the following.

tw(G) > 36k − 5

2

>
3

2
(3 · 2log 8k − 1)− 1

>
3

2
(3 · 2blog 4kc+1 − 1)− 1

tw(G) >
3

2
(3 · 2h − 1)− 1

According to Proposition 2, G has a separation (A,B) of order 3 · 2h − 1 such that

(i) G [B \A] is connected;

(ii) A ∩B is linked in G [B];

(iii) (A,B) left-contains the graph Y −h .

By definition of left-contains, G [A] contains a model (M−, ϕ−) of Y −h and every element of
M− contains exactly one element of A∩B. For every x ∈ A∩B, we denote by M−x the element
of M− that contains x. Let L (resp. R) be the subset of A ∩ B of vertices that belong to an
element of M related to the leaves of Bh in Y −h (resp. to the path P ). We remark that these
sets are both of cardinality 2h.

Since A ∩ B is linked in G [B] (see (ii)), there is a set P of 2h disjoint paths between the
vertices of L and the elements of R. Let ψ : L→ V (P ) be the function that match each element
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l of L with the (unique) element of R it is linked to by a path (that we call Pl) of P. Observe
that ψ is a bijection. We set

∀l ∈ L, Ml = M−l ∪ V (lPlψ̊(l))

∀r ∈ (A ∩B) \ L, Mr = M−r

M =
⋃

x∈A∪B
Mx

and

ϕ :

{
V (H) → M
x 7→ Mx

We claim that (M, ϕ) is a model of H. This is a consequence of the following remarks.

Remark 4. Every element of M is either an element of M−, or the union of a element M of
M− and of the vertices of a path that start in M , thus every element ofM induces a connected
subgraph of G.

Remark 5. The paths of P are all disjoint and are disjoint from the elements of M−. Every
interior of path of P is in but one element of M, therefore the elements of M are disjoint.

Remark 6. The elements {ml}l∈L are in bijection with the elements of {mr}r∈R (thanks to the
function ψ) and every two vertices l ∈ L and ψ(l) ∈ R are such that there is an edge between
ml and mψ(l) (by definition of M+).

We just proved that (M, ϕ) is a model of a graph of Yh in G. Finally, we apply Lemma 3
to find a model of the wheel of order 2h−2 + 1 = 2dlog ke + 1 > k in G and this concludes the
proof.

6 Excluding a double wheel with a (l log l)2 bound on treewidth

Definition 9 (double wheel). Let r > 2 be an integer. The double wheel of order r (denoted
W2
r) is a cycle of length r whose each vertex is adjacent to two different extra vertices, in other

words it is the graph of the form

V (G) ={o1, o2, w1, . . . , wr}
E(G) ={{w1, w2} , {w2, w3} , . . . , {wr−1, wr} , {wr, w1}}

∪ {{o1, w1} , . . . , {o1, wr}}
∪ {{o2, w1} , . . . , {o2, wr}}

(see Figure 1 for an example)

Lemma 4. Let G be a graph and h > 0 be an integer. If tw(G) > 6 · 2h − 4, then G contains

as minor a double wheel of order at least 2
h
2 −2

2h−3 .

Proof. Let h and G be as above. Observe that tw(G) > 3(2h+1 − 1) − 1. As the binary tree
T = Bh has 2h+1 − 1 vertices, G contains a graph H ∈ Λ(Bh) as minor (by Lemma 2). Let us

show that any graph H ∈ Λ(Bh) contains a double wheel of order at least 2
h
2 −2

2h−3 as minor.
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Let P be the path of length at least 2
h
2 in the definition of H. Let L be the set, of size at

least 2
h
2 , of the leaves of T that are adjacent to P in H. Such a set exists by definition of Λ(Bh).

We also define u (resp. u′) as the vertex of L(T ) that is adjacent to one end of P (resp. to the
other end of P ) and Q = uTu′.

As T is a binary tree of height h, Q has at most 2h − 1 vertices. Each vertex of Q is of
degree at most 3 in T except the two ends which are of degree 1. Consequently, T \ Q has at

most 2h − 3 connected components that are subtrees of T. Notice that every vertex of the 2
h
2

elements of L is either a leaf of one of these 2h− 3 subtrees, or one of the two ends of Q. By the

pigeonhole principle, one of these subtrees, say T1, has at least 2
h
2 −2

2h−3 leaves that are elements
of L.

Let Mo1 be the set of vertices of this subtree T1. We also set Mo2 = {oH}. Let us consider
the cycle C made by the concatenation of the paths of H uPu′ and u′Tu.

By definition of Mo1 , there are at least 2
h
2 −2

2h−3 vertices of C adjacent to vertices of Mo1 . Let

J =
{
j1, . . . , j|J|

}
be the set of such vertices of C, in the same order as they appear in C (we

then have |J | > 2
h
2 −2

2h−3 ).
We arbitrarily choose an orientation of C and define the sets of vertices M1,M2, . . . ,M|J| as

follows.

∀i ∈ J1, |J | − 1K , Mi = V (jiC ˚ji+1)

M|J| = V (j|J|Cj̊1)

Let M =
{
M1, . . . ,M|J|,Mo1 ,Mo2

}
and ψ : V (W2

|J|)→M be the function defined by

∀i ∈ J1, |J |K , ψ(wi) = Mi

ψ(o1) = Mo1

ψ(o2) = Mo2

Notice that ψ maps the vertices of W2
|J| to connected subgraphs of H such that ∀(v, w) ∈

E(W2
|J|), there is a vertex of ψ(v) adjacent in H to a vertex of ψ(w). Therefore, (M, ψ) is a

W2
|J|-model in H.

Since |J | > 2
h
2 −2

2h−3 , H contains a double wheel of order at least 2
h
2 −2

2h−3 , what we wanted to
show.

Corollary 1. Let l > 0 be an integer and G be a graph. If tw(G) > 12l − 4 then G contains a

double wheel of order at least
√
l−2

2 log l−5 as minor.

Proof. Let l and G be as above. First remark that

dlog le − 1 6 log l 6 dlog le (2)

Our initial assumption on tw(G) gives the following.

tw(G) > 12l − 4

> 6 · 2log(2l) − 4

> 6 · 2log l+1 − 4

> 6 · 2dlog le − 4 by (2)

11



By Lemma 4, G contains a double wheel of order at least

q =
2
dlog le

2 − 2

2 dlog le − 3

>
2

1
2 log l − 2

2(log l − 1)− 3
by (2)

>

√
l − 2

2 log l − 5

Therefore, G contains a double wheel of order at least q >
√
l−2

2 log l−5 , as required.

Theorem 6 (follows from Corollary 1). Let k > 0 be an integer and G be a graph. If tw(G) >
12(8k log(8k) + 2)2 − 4, then G contains a double wheel of order at least k as minor.

Proof. Applying Corollary 1 for l = (8k log(8k) + 2)2 yields that G contains a double wheel of
order at least

q >

√
l − 2

2 log l − 5

>
8k log(8k)

4 log(8k log(8k) + 2)− 5

>
8k log(8k)

4 log(8k log(8k))− 1

>
8k log(8k)

4(log(8k) + log log(8k))− 1

>
8k log(8k)

8 log(8k)− 1

> k

Consequeltly G contains a double wheel of order at least q > k and we are done.

7 Excluding a graph of pathwidth at most 2 with a quadratic
bound on treewidth

Definition 10 (graph Ξr). We define the graph Ξr as the graph of the following form (see
figure 2). {

V (G) = {x0, . . . , xr−1, y0, . . . , yr−1, z0, . . . , zr−1}
E(G) = {{xi, xi+1} , {zi, zi+1}}i∈J1,r−1K ∪ {{xi, yi} , {yi, zi}}i∈J0,r−1K

7.1 Graphs of pathwidth 2 in Ξr

Instead of proving that having a graph H of pathwidth 2 as minor forces a treewidth quadratic
in |V (H)| , we prove that a Ξr-minor forces a treewidth quadratic in r and that every graph of
pathwidth at most 2 on r vertices is minor of Ξr−1. For this, we first need somme lemmata and
remarks about path decompositions.
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z0 z1 z2 z3 z4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 2: The graph Ξ5

Definition 11 (nice path decompostion, [4]). A path decomposition
(
p1p2 . . . pk, {Xpi}i∈J1,kK

)
of a graph G is said to be nice if |Xp1 | = 1 and

∀i ∈ J2, kK ,
∣∣(Xpi \Xpi−1

) ∪ (Xpi−1
\Xpi)

∣∣ = 1

It is known [4] that every graph have an optimal path decomposition which is nice and that in
such decomposition, every node Xi is either an introduce node (i.e. either i = 1 or |Xi \Xi−1| =
1) or a forget node (i.e. |Xi−1 \Xi| = 1).

Remark 7. It is easy to observe that for every graph G on n vertices, there is an optimal path
decomposition with n introduce nodes and n forget nodes (one of each for each vertex of G),
thus of length 2n.

Remark 8. Let G be a graph and (p1p2 . . . pk,X ) with X = {Xpi}i∈J1,kK be a nice path decom-

position of G.
For every i ∈ J2, k − 1K, if pi is a forget node and pi+1 an introduce node, then by setting

X ′i = Xi−1 ∪Xi+1

∀j ∈ J1, kK , j 6= i, X ′j = Xj

X ′ =
{
X ′j
}
j∈J1,kK

we create from (p1p2 . . . pk,X ′) a valid path decomposition of G, where pi is now an introduce
node and pi+1 a forget node.

Remark 9. Let G be a graph and P = (p1p2 . . . pk,X ) be a nice path decomposition of G. For
every i ∈ J1, kK, the path p1 . . . pi contains at most as much forget nodes as introduce nodes and
the difference between these two numbers is at most w + 1 where w is the width of P.

Lemma 5. Let G be a graph on n vertices . Then G has an optimal path decomposition P such
that

(i) every bag of P has size pw(G) + 1;

(ii) every two ajacent bags differs by exactly one element, i.e. for every two adjacent vertices
u and v of P , |Xu \Xv| = |Xv \Xu| = 1.

Proof. Let P = (p1p2 . . . pk,X ) with X = {Xpi}i∈J1,2kK be a nice optimal path decomposition of
G with as much introduce nodes (resp. forget nodes) as there are vertices in G.

Let s = pw(G) + 1. According to Remarks 8 and 9, P can be modified into a path decom-
position of G of the same width and such that

(a) the s first vertices of P are introduce nodes and ps+1 is a forget node;

(b) the s last vertices of P are forget nodes and p2k−s is an introduce node;
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(c) for every i ∈ Js, 2k − sK , pi and pi+1 are nodes of different type.

In the sequel, we assume that P satisfies this property.

Remark 10. Introduce nodes all have bags of cardinal s.

Remark 11. For every i ∈ J0, k − sK , the node ps+2i is an introduce node and the node ps+2i+1 is
a forget node, what implies Xps+2i ( Xps+2i+1 . Also note that for every i ∈ J1, s− 1K , Xi ( Xs

and for every i ∈ J2k − s+ 1, 2kK, Xi ( X2k−s.

Intuitively, every bag X that is included in one of its adjacent bags X ′ contains no more
information than what X ′ already contains, so we will just remove it.

We thus define P ′ = psps+2 . . . ps+2i . . . p2k−s (a path made of all introduce nodes of P ).
Clearly, P and P ′ have the same width and as we deleted only redundant nodes, P ′ is still a
valid path decomposition of G.

Since every two ajacent nodes of P ′ were introduce nodes separated by a forget node in P,
they only differ by one element. According to Remark 10 and since every node of P ′ was an
introduce node in P, every bag of P ′ have size pw(G) + 1. Consequently, P ′ is an optimal path
decomposition that satisfies the conditions of the lemma statement.

Remark 12. The path decomposition of Lemma 5 has length V (G)− pw(G).

Proof. Let (P,X ) be such a path decomposition. Remember that the first node of P has a bag
of size pw(G) + 1 and that every two adjacent nodes of P have bags which differs by exactly
one element. Since every vertex of G is in a bag of P , in addition to the first bag containing
pw(G) + 1 vertices of G, P must have V (G) − pw(G) − 1 other bags in order to contain all
vertices of G. Therefore P has length V (G)− pw(G).

Lemma 6. For every graph G on n vertices and of pathwidth at most 2, there is a minor model
of G in Ξn−1.

Proof. Let G be as in the statement of the lemma. We assume that pw(G) = 2 (if this is not
the case we add edges to G in order to obtain a graph of pathwidth 2 whose G is minor). Let
r = V (G)− pw(G) = n− 2.

Let P = (p1 . . . pr, {Xp1 , . . . , Xpr}) be an optimal path decomposition of G satisfying the
properties of Lemma 5, of length r. Such decomposition exists according to Lemma 5 and
Remark 12).

Using this decomposition, we will now define a labeling λ of the vertices of Ξr+1.When dealing
with the vertices of Ξr+1 we will use the notations defined in Definition 10. Let λ : V (Ξr+1)→
V (G) be the function defined as follows:

(a) λ(x0) and λ(y0) are both equal to one (arbitrarly choosen) element of the Xp1 ∩Xp2 ;

(b) λ(z0) is equal to the only element of Xp1 ∩Xp2 \ {λ(x1)};

(c) ∀i ∈ J2, rK , λ(yi) = Xpi \Xpi−1
and we consider two cases:

Case 1: Xpi−1 ∩Xpi = Xpi ∩Xpi+1

λ(xi) = λ(xi−1) and λ(zi) = λ(zi−1);

Case 2: Xpi−1 ∩Xpi 6= Xpi ∩Xpi+1

if Xpi−1
∩Xpi ∩Xpi+1

= λ(xi−1),

then λ(xi) = λ(xi−1) and λ(zi) = Xpi \Xpi−1 ;

else λ(xi) = Xpi \Xpi−1
and λ(zi) = λ(zi−1).
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Thanks to this labeling, we are now able to present a minor model of G in Ξr+1 :

∀v ∈ V (G), Mv = {u ∈ V (Ξr+1), λ(u) = v}
M = {Mv}v∈V (G)

ϕ :

{
V (G) → M
u 7→ Mu

To show that (M, ϕ) is a G-model in Ξr+1, we now check if it matches the definition of a
minor model.

By definition, every element ofM is a subset of V (Ξr+1). To show that every element ofM
induces a connected subgraph in G, it suffices to show that nodes of Ξr+1 which have the same
label induces a connected subgraph in G (by construction of the elements ofM). This can easily
be seen by remarking that for every i ∈ J2, rK, every vertex yi of Ξr+1 gets a new label and that
every vertex xi (resp. zi) of Ξr+1 receive either the same label as yi, or the same label as xi−1
(resp. zi−1).

Let us show that this labeling ensure that if two vertices u and v of G are in the same bag of
P , there are two adjacent vertices of Ξr+1 that respectively gets labels u and v. Let u, v be two
vertices of G which are in the same bag of P . Let i be such that Xi is the first bag of P (with
respect to the subsripts of the bags of P ) which contains both u and v. The case i = 1 is trivial
so we assume that i > 1. We also assume without loss of generality that Xi \Xi−1 = {v}, what
gives λ(yi) = v. Depending on in what case we are, either either λ(xi) = u (c1) or λ(zi) = u (c1
and c2). In both cases, u and v are the labels of two adjacent nodes of Ξr+1. By construction
of the elements of M, this implies that if {u, v} ∈ E(G), then there are vertices u′ ∈ ϕ(u) and
v′ ∈ ϕ(v) such that {u′, v′} ∈ E(Ξr+1).

Therefore, (M, ϕ) is a G-model in Ξn−1, what we wanted to find.

7.2 Exclusion of Ξr

Lemma 7. For any graph, if tw(G) > 3`− 1 then G contains as minor the following graph: a
path P = p1 . . . p2` of length 2` and a family Q of ` paths of length 2 such that every vertex of
P is the end of exactly one path of Q and every path of Q has one end in p1 . . . pl (the first half
of P ) and the other end in pl+1 . . . p2l (the second half of P ) (see figure 3).

P

Q

first half of P second half of P

Figure 3: Example for Lemma 7
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Proof. Let ` > 0 be an integer and G be a graph of treewidth at least 3` − 1. According to
Proposition 2, G has a separation (A,B) of order 2` such that

(i) G [B \A] is connected;

(ii) A ∩B is linked in G [B];

(iii) (A,B) left-contains a path P = p1 . . . p2` of length 2`.

Let (M, ϕ) be a model of P in G [A] , with M = {M1, . . . ,M2`}. We assume without loss of
generality that ϕ maps pi on Mi for every i ∈ J1, 2`K.

As A ∩ B is linked in G [B], there is a set Q of ` disjoint paths in G [B] of length at least
2 and such that every path q ∈ Q has one end in (A ∩ B) ∩

⋃
i∈J1,`KMi, the other end in

(A ∩B) ∩
⋃
i∈J`+1,2`KMi and its internal vertices are not in A ∩B.

Let G′ be the graph obtained from G
[
(∪q∈QV (q)) ∪

(⋃
M∈MM

)]
after the following oper-

ations.

1. iteratively contract the edges of every path of Q until it reaches a length of 2. The paths
of Q have length at least 2, so this is always possible.

2. for every i ∈ J1, 2`K, contract Mi to a single vertex. The elements of a model are connected
(by definition) thus this operation can always be performed.

As one can easily check, the graph G′ is the graph we were looking for and it has been obtained
by contracting some edges of a subgraph of G, therefore G′ 6m G.

Theorem 7. Let k > 0 be an integer, G be a graph and H be a graph on h vertices satisfying
pw(H) 6 2. If tw(G) > 3h(k − 4) + 8 then G contains H as minor.

Proof. From Proposition 3, every graph of pathwidth at most two on r vertices is minor of Ξr,
so if we show that G contains Ξh−1 as minor then it contains H and we are done.

Let k > 0 be an integer. We prove the following statement: for every graph G, tw(G) >
3k(k − 2) − 1 implies that G >m Ξk. Let G be a graph of treewidth at least 3k(k − 2) − 1.
According to Lemma 7, G contains as minor two paths P = p1 . . . pk(k−2) and R = r1 . . . rk(k−2)
and a family Q of k(k−2) paths of length 2 such that every vertex of P or R is the end of exactly
one path of Q and every path of Q has one end in P and the other end in R. For every p ∈ P , we
denote by ϕ(p) the (unique) vertex of R to which p is linked to by a path of Q. Remark that ϕ
is a bijection. By Proposition 4, there is a subsequence P ′ = (p′1, p

′
1, . . . , p

′
k) of P such that the

vertices ϕ(p′1), ϕ(p′1), . . . , ϕ(p′k) appears in this order in R. Let R′ = (ϕ(p′1), ϕ(p′1), . . . , ϕ(p′k))
and Q′ be the set of inner vertices of the paths from p′i to ϕ(p′i) for all i ∈ J1, kK .

Iteratively contracting in G the edges of P (resp. R) whose one of the ends is not in P ′

(resp. not in R′) and removing the vertices that are not in P , R or Q gives the graph Ξk. The
operations used to obtain it are vertices deletions and edge contractions, thus Ξk is a minor of
G.

What we just proved is that for every graph G, if tw(G) > 3h(h− 4) + 8 then Ξh−1 6m G.
Since H 6m Ξh−1 and by transitivity of the minor relation, we also have tw(G) > 3h(h−4)+8⇒
H 6m G, what we wanted to prove.

8 Excluding a yurt graph

Definition 12 (yurt graph of order r). Let r > 0 be an integer. In this paper, we call yurt
graph of order r the graph Yr of the form

V (Yr) = {x1, . . . , xr, y1, . . . , yr, o}
E(Yr) = {(xi, yi)}i∈J1,rK ∪ {(yi, o)}i∈J1,rK
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(see Figure 4 for an example.)

Figure 4: The yurt graph of order 5, Y5

For every r > 0, we define the comb of order r as the tree made from the path p1p2 . . . pr
and the extra vertices v1, v2, . . . , vr by adding an edge between pi and vi for every i ∈ J1, rK .

Theorem 8. Let k > 0 be an integer and G be a graph. If tw(G) > 6k4−24k3+48k2−48k+23,
then G contains Yk as minor.

Proof. Let k > 0 be an integer and G be a graph such that tw(G) > 6k4−24k3+48k2−48k+23.
Let C be the comb with l = k4− 4k3 + 8k2− 8k+ 4 teeth. As tw(G) > 3 |V (C)| − 1, G contains
some graph of Λ(C) by Lemma 2.

Let us prove that every graph of Λ(C) contains the yurt graph of order k. Let H be a graph
of Λ(C). We respectively call T , P and o the tree, path and extra vertex of Λ(C). Let F be the
subset of edges between P and the leaves of T

Let L = l0, . . . , lk2−2k+2 (resp. Q = q0, . . . , qk2−2k+2) be the leaves of T (resp. of P )that are
the end of an edge of F We assume without loss of generality that they appears in this order.

According to Proposition 4, there is a subsequence Q′ of Q of length k such that the corre-
sponding vertices L′ of L appear in the same order. As one can easily see, this graph contains
the yurt of order k and we are done.
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