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Abstract. It is known that the treewidth of a planar graph with a
dominating set of size d is O(

√
d) and this fact is used as the basis

for several fixed parameter algorithms on planar graphs. An interesting
question motivating our study is if similar bounds can be obtained for
larger minor closed graph families. We say that a graph family F has
the domination-treewidth property if there is some function f(d) such
that every graph G ∈ F with dominating set of size ≤ d has treewidth
≤ f(d). We show that a minor-closed graph family F has the domination-
treewidth property if and only if F has bounded local treewidth. This
result has important algorithmic consequences.

1 Introduction

The last ten years has witnessed the of rapid development of a new branch of
computational complexity: parameterized complexity (see the book of Downey
& Fellows [9]). Roughly speaking, a parameterized problem with parameter k is
fixed parameter tractable if it admits an algorithm with running time f(k)|I|β .
(Here f is a function depending only on k, |I| is the length of the non parameter-
ized part of the input and β is a constant.) Typically, f(k) = ck is an exponential
function for some constant c.

A d-dominating set D of a graph G is a set of d vertices such that every
vertex outside D is adjacent to a vertex of D. Fixed parameter version of the
dominating set problem (the task is to compute, given a G and a positive integer
d, a d-dominating set or to report that no such set exists) is one of the core
problems in the Downey & Fellows theory. Dominating set is W [2] complete and
thus widely believed to be not fixed parameter tractable. However for planar
graphs the situation is different and during the last five years a lot of work was
done on fixed parameter algorithms for the dominating set problem on planar
graphs and different generalizations of planar graphs. For planar graphs Downey
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and Fellows [9] suggested an algorithm with running time O(11dn). Later the
running time was reduced to O(8dn) [2]. An algorithm with a sublinear exponent

for the problem with running time O(46
√

34dn) was given by Alber et al. [1].

Recently, Kanj & Perkovuć [16] improved the running time to O(227
√

dn) and

Fomin & Thilikos to O(215.13
√

dd+n3 +d4) [13]. The fixed parameter algorithms
for extensions of planar graphs like bounded genus graphs and graphs excluding
single-crossing graphs as minors are introduced in [10, 6].

The main technique to handle the dominating set problem which was ex-
ploited in several papers is that every graph G from a given graph family F with
a domination set of size d has treewidth at most f(d), where f is some func-
tion depending only on F . With some work (sometimes very technical) a tree
decomposition of width O(f(d)) is constructed and standard dynamic program-
ming techniques on graphs of bounded treewidth are implemented. Of course
this method can not be used for all graphs. For example, a complete graph Kn

on n vertices has dominating set of size one and the treewidth of Kn is n − 1.
So the interesting question here is: Can this ’bounding treewidth method’ be
extended for larger minor-closed graph classes and what are the restrictions of
these extensions?

In this paper we give a complete characterization of minor-closed graph fam-
ilies for which the ’bounding treewidth method’ can be applied. More precisely,
a minor-closed family F of graphs has the domination-treewidth property if there
is some function f(k) such that every graph G ∈ F with dominating set of size
≤ k has treewidth ≤ f(k). We prove that any minor-closed graph class has the
domination-treewidth property if and only if it is of bounded local treewidth.
Our proof is constructive and can be used for constructing fixed parameter algo-
rithms for dominating set on minor-closed families of bounded local treewidth.
The proof is based on Eppstein’s characterization of minor-closed families of
bounded local treewidth [11] and on a modification of the Robertson & Seymour
excluded grid minor theorem due to Diestel et al.[8].

2 Definitions and preliminary results

Let G be a graph with vertex set V (G) and edge set E(G). We let n denote the
number of vertices of a graph when it is clear from context. For every nonempty
W ⊆ V (G), the subgraph of G induced by W is denoted by G[W ]. We define the
r-neighborhood of a vertex v ∈ V (G), denoted by N r

G[v], to be the set of vertices
of G at distance at most r from v. Notice that v ∈ N r

G[v]. We put NG[v] = N1
G[v].

We also often say that a vertex v dominates subset S ⊂ V (G) if NG[v] ⊇ S.
Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G

by contracting the edge e; that is, to get G/e we identify the vertices x and y
and remove all loops and duplicate edges. A graph H obtained by a sequence of
edge contractions is said to be a contraction of G. A graph H is a minor of a
graph G if H is the subgraph of a contraction of G. We use the notation H ' G
(resp. H 'c G) for H a minor (a contraction) of G.



The m×m grid is the graph on {1, 2, . . . , m2} vertices {(i, j) : 1 ≤ i, j ≤ m}
with the edge set

{(i, j)(i′, j′) : |i − i′| + |j − j′| = 1}.

For i ∈ {1, 2, . . . , m} the vertex set (i, j), j ∈ {1, 2, . . . , m}, is referred as the
ithrow and the vertex set (j, i), j ∈ {1, 2, . . . , m}, is referred to as the ith column
of the m × m grid.

The notion of treewidth was introduced by Robertson and Seymour [17].
A tree decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )), with
{Xi | i ∈ I} a family of subsets of V (G) and T a tree, such that

–
⋃

i∈I Xi = V (G).
– For all {v, w} ∈ E(G), there is an i ∈ I with v, w ∈ Xi.
– For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆

Xi1 .

The width of the tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1.
The treewidth tw(G) of a graph G is the minimum width of a tree decomposition
of G.

We need the following facts about treewidth. The first fact is trivial.

– For any complete graph Kn on n vertices , tw(Kn) = n − 1, and for any
complete bipartite graph Kn,n, tw(Kn,n) = n.

The second fact is well known but its proof is not trivial. (See e.g., [7].)

– The treewidth of the m × m grid is m.

A family of graphs F is minor-closed if G ∈ F implies that every minor of G
is in F . Graphs with the domination-treewidth property are the main issue of
this paper. We say that a minor-closed family F of graphs has the domination-
treewidth property if there is some function f(d) such that every graph G ∈ F
with dominating set of size ≤ d has treewidth ≤ f(d).

The next fact we need is the improved version of the Robertson & Seymour
theorem on excluded grid minors [18] due to Diestel et al.[8]. (See also the
textbook [7].)

Theorem 1 ([8]). Let r, m be integers, and let G be a graph of treewidth at

least m4r2(m+2). Then G contains either Kr or the m × m grid as a minor.

The notion of local treewidth was introduced by Eppstein [11] (see also [15]).
The local treewidth of a graph G is

ltw(G, r) = max{tw(G[N r
G[v]]) : v ∈ V (G)}.

For a function f : N → N we define the minor closed class of graphs of bounded
local treewidth

L(f) = {G : ∀H ' G ∀r ≥ 0, ltw(H, r) ≤ f(r)}.



Also we say that a minor closed class of graphs C has bounded local treewidth
if C ⊆ L(f) for some function f .

Well known examples of minor closed classes of graphs of bounded local
treewidth are planar graphs, graphs of bounded genus and graphs of bounded
treewidth.

Many difficult graph problems can be solved efficiently when the input is
restricted to graphs of bounded treewidth (see e.g., Bodlaender’s survey [5]).
Eppstein [11] made a step forward by proving that some problems like subgraph
isomorphism and induced subgraph isomorphism can be solved in linear time
on minor closed graphs of bounded local treewidth. Also the classical Baker’s
technique [4] for obtaining approximation schemes on planar graphs for different
NP hard problems can be generalized to minor closed families of bounded local
treewidth. (See [15] for a generalization of these techniques.)

An apex graph is a graph G such that for some vertex v (the apex ), G− v is
planar. The following result is due to Eppstein [11].

Theorem 2 ([11]). Let F be a minor-closed family of graphs. Then F is of
bounded local treewidth if and only if F does not contain all apex graphs.

3 Technical Lemma

In this section we prove the main technical lemma.

Lemma 1. Let G ∈ L(f) be a graph containing the m×m grid H as a subgraph,
m > 2k3, where k = 2f(2) + 2. Then H contains the (m/k2 − 2k) × (m − 2k)
grid F as a subgraph such that for every vertex v ∈ V (G), |NG[v]∩ V (F )| < k2,
i.e. no vertex of G has ≥ k2 neighbors in F .

Proof. We partition the grid H into k2 subgraphs H1, H2, . . . , Hk2 . Each sub-
graph Hi is the m/k2 × m grid induced by columns 1 + (i − 1)m/k2, 2 + (i −
1)m/k2, . . . , im/k2, i ∈ {1, 2, . . . , k2}. Every grid Hi contains inner and outer
parts. Inner part Inn(Hi) is the (m/k2 − 2k)× (m− 2k) grid obtained from Hi

by removing k outer rows and columns. (See Fig. 1.)
For the sake of contradiction, suppose that every grid Inn(Hi) contains a set

of vertices Si of cardinality ≥ k2 dominated by some vertex of G. We claim that

H contains as a contraction the k × k2 grid T such that in a graph

GT obtained from G by contracting H to T for every column C of T

there is a vertex v ∈ V (GT ) such that NGT
[v] ⊇ C. (1)

Before proving (1) let us explain why this claim brings us to a contradiction.
Let T be a grid satisfying (1). Suppose first that there is a vertex v of GT that
dominates (in GT ) all vertices of at least k columns of T . Then these columns
are the columns of a k × k grid which is a contraction of T . Thus GT can be
contracted to a graph of diameter 2 containing the k × k grid as a subgraph.
This contraction has treewidth ≥ k.
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If there is no such vertex v, then there is a set D of k vertices v1, v2, . . . , vk

of GT such that every vertex vi ∈ D dominates all vertices of some column of T .
Let v1, v2, . . . , vl, l ≤ k, be the vertices of D that are in T . Then T contains as
a subgraph the k/2 × k/2 grid P such that at least k − l/2 ≥ k/2 vertices of D
are outside P . Let us call these vertices D′. Every vertex of D′ is outside P and
dominates some column of P . By contracting all columns of P into one column
we obtain k/2 vertices and each of these k/2 vertices is adjacent to all vertices of
D′. Thus G contains the complete bipartite graph Kk/2,k/2 as a minor. Kk/2,k/2

has diameter 2 and treewidth k/2. In both cases we have that G contains a minor
of diameter ≤ 2 and of treewidth ≥ k/2 > f(2). Therefore G -∈ L(f) which is a
contradiction.

The remaining proof of the technical lemma is devoted to the proof of (1).
For every i ∈ {1, 2, . . . , k2}, in the outer part of Hi we distinguish k ver-

tices li1, l
i
2, . . . , l

i
k with coordinates (k + 1, 1), (k + 2, 1), . . . , (2k, 1) and k vertices

ri
1, r

i
2, . . . , r

i
k with coordinates (k + 1, m/k2), (k + 2, m/k2), . . . , (2k, m/k2). (See

Fig. 1.)
We define west (east) border of Inn(Hi) as the column of Inn(Hi) which is

the subcolumn of the (k+1)st ((m/k2−k)th) column of Hi. North (south) border
of Inn(Hi) is therow of Inn(Hi) that is subrow of the (k + 1)st ((m− k)th)row
in Hi

By assumption, every set Si contains at least k2 vertices in Inn(Hi). Thus
there are either k columns, or krows of Inn(Hi) such that each of these columns
orrows has at least one vertex from Si. This yields that there are k vertex disjoint
paths either connecting north with south borders, or east with west borders and
such that every path contains at least one vertex of Si.

The subgraph of Hi induced by the first k columns and the first krows is
k-connected and by Menger’s Theorem, for any k vertices of the west border of
Inn(Hi) (for any k vertices of the north border) there are k vertex disjoint paths
connecting these vertices to the vertices li1, l

i
2, . . . , l

i
k. By similar arguments any k

vertices of the south border (east border) can be connected by k vertex disjoint
paths with vertices ri

1, r
i
2, . . . , r

i
k. (See Fig. 1.)

We conclude that for every i ∈ {1, 2, . . . , k2} there are k vertex disjoint
paths in Hi with endpoints in li1, l

i
2, . . . , l

i
k and ri

1, r
i
2, . . . , r

i
k such that each path

contains at least one vertex of Si. Gluing these paths by adding edges (ri
j , l

i+1
j ),

i ∈ {1, 2, . . . , k2 − 1}, j ∈ {1, 2, . . . , k}, we construct k vertex disjoint paths
P1, P2, . . . , Pk in H such that for every j ∈ {1, 2, . . . , k}

– Pj contains vertices l1j , r
1
j , l2j , r

2
j , . . . , lk

2

j , rk2

j ,
– For every i ∈ {1, 2, . . . , k2} Pj contains a vertex from Si.

The subgraph of G induced by the paths P1, P2, . . . , Pk contains as a contraction
a grid T satisfying (1). This grid can be obtained by contracting edges of Pj ,
j ∈ {1, 2, . . . , k} in such way, that at least one vertex of Si of the subpath of Pj

between vertices lij and ri
j is mapped to lij . This grid has k2 columns and each

of the k2 columns of T is dominated by some vertex of GT . This concludes the
proof of (1) and the lemma follows.



Corollary 1. Let G ∈ L(f) be a graph containing the m × m, m > 2k3, where
k = 2f(2) + 2, grid H as a minor. Then every dominating set of G is of size

> m2

k4 .

Proof. Assume that G has a dominating set of size d. G contains as a contraction
a graph G′ such that G′ contains H as a subgraph. Notice that G′ also has a
dominating set of size d. By Lemma 1, H contains the (m/k2 − 2k) × (m − 2k)
grid F as a subgraph such that no vertex of G′ has ≥ k2 neighbors in F . Thus

d ≥
(m/k2 − 2k) × (m − 2k)

k2 + 1
>

m2

k4
.

4 Main theorem

Theorem 3. Let F be a minor-closed family of graphs. Then F has the domination-
treewidth property if and only if F is of bounded local treewidth.

Proof. In one direction the proof follows from Theorem 2. The apex graphs Ai,
i = 1, 2, 3, . . . obtained from the i × i grid by adding a vertex v adjacent to all
vertices of the grid have a dominating set of size 1, diameter ≤ 2 and treewidth
≥ i. So a minor closed family of graphs with domination-treewidth property
cannot contain all apex graphs and hence it is of bounded local treewidth.

In the opposite direction the proof follows from the following claim

Claim. For any function f : N → N and any graph G ∈ L(f) with dominating

set of size d, we have that tw(G) = 2O(
√

d log d).

Let G ∈ L(f) be a graph of treewidth m4r2(m+2) and with dominating set of
size d. Let r = f(1) + 2 and k = 2f(2) + 2. Then G has no complete graph
Kr as a minor. By Theorem 1, G contains the m × m grid H as a minor and
by Corollary 1 d ≥ m2

k4 . Since k and r are constants depending only on f , we

conclude that m = O(
√

d) and the claim and thus the theorem follows.

5 Algorithmic consequences and concluding remarks

By general results of Frick & Grohe [14] the dominating set problem is fixed
parameter tractable on minor-closed graph families of bounded local treewidth.
However Frick & Grohe’s proof is not constructive. It uses a transformation of
first-order logic formulas into a ’local formula’ according to Gaifman’s theorem
and even the complexity of this transformation is unknown.

Theorem 3 yields a constructive proof of the fact that the dominating set
problem is fixed parameter tractable on minor-closed graph families of bounded
local treewidth. It implies a fixed parameter algorithm that can be constructed
as follows.

Let G be a graph from L(f). We want to check if G has a dominating set of
size d. We put r = f(1)+2 and k = 2f(2)+2. First we check if the treewidth of



G is at most (
√

dk2)4r2(
√

dk2+2). This step can be performed by Amir’s algorithm
[3], which for a given graph G and integer ω, either reports that the treewidth of
G is at least ω, or produces a tree decomposition of width at most 3 2

3ω in time

O(23.698ωn3ω3 log4 n). Thus by using Amir’s algorithm we can either compute a

tree decomposition of G of size 2O(
√

d log d) in time 22O(
√

d log d)

n3+ε, or conclude
that the treewidth of G is more than (

√
dk2)4r2(

√
dk2+2).

– If the algorithm reports that tw(G) > (
√

dk2)4r2(
√

dk2+2) then by Theorem 1
(G contains no Kr), G contains the

√
dk2 ×

√
dk2 grid as a minor. Then

Corollary 1 implies that G has no dominating set of size d.
– Otherwise we perform a standard dynamic programming to compute domi-

nating set. It is well known that the dominating set of a graph with a given
tree decomposition of width at most ω can be computed in time O(22ωn)

[1]. Thus this step can be implemented in time 22O(
√

d log d)
n.

We conclude with the following theorem.

Theorem 4. There is an algorithm such that, for every minor-closed family F
of bounded local treewidth and a graph G ∈ F on n vertices and an integer d,
either computes a dominating set of size ≤ d, or concludes that there is no such

a dominating set. The running time of the algorithm is 22O(
√

d log d)
nO(1).

Finally, some questions. For planar graphs and for some extensions it is known
that for any graph G from this class with dominating set of size ≤ d, we have
tw(G) = O(

√
d). It is tempting to ask if the same holds for all minor-closed

families of bounded local treewidth. This will provide subexponential fixed pa-
rameter algorithms on graphs of bounded local treewidth for the dominating set
problem.

Another interesting and prominent graph class is the class of graphs con-
taining no minor isomorphic to some fixed graph H . Recently Flum & Grohe
[12] showed that parameterized versions of the dominating set problem is fixed-
parameter tractable when restricted to graph classes with an excluded minor.
Our result shows that the technique based on the dominating-treewidth prop-
erty can not be used for obtaining constructive algorithms for the dominating
set problem on excluded minor graph families. So constructing fast fixed param-
eter algorithms for these graph classes requires fresh ideas and is an interesting
challenge.

Addendum

Recently we were informed (personal communication) that a result similar to
the one of this paper was also derived independently (with a different proof) by
Erik Demaine and MohammadTaghi Hajiaghayi.
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