
41

T A C


J D́
Department of Languages and Computer Systems

Polytechnical University of Catalunya
c/ Jodi Girona 1-3, 080304 Barcelona, Spain

diaz@lsi.upc.es

Layout problems form a family of problems which seem to be difficult to solve
efficiently. In the present column, D. Thilikos and M. Serna address the pa-
rameterized complexity of graph layout problems. They survey the unifying
methodologies yielding fixed parameter tractability when the layout measure
is taken as parameter and collect a series of open questions related to its
parameterized complexity.

P C 
G L ∗

Maria Serna Dimitrios M. Thilikos

1 Introduction
A relevant class of combinatorial optimization problems is defined by means of
a measure over a liner layout (or ordering) of the elements of a graph. A linear

∗Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
Campus Nord – Edifici Ω, c/Jordi Girona Salgado 1-3, E-08034, Barcelona, Spain. This work was
supported by the spanish CICYT project TIC2002-04498-C05-03. The work of the second au-
thor was also supported by the spanish CICYT project TIN-2004-07925 (GRAMMARS). Emails:
{mjserna,sedthilk}@lsi.upc.edu

BEATCS no 86 THE EATCS COLUMNS

42

layout is a labeling of the vertices or edges of a graph with distinct integers. The
goal of the problem is to find a layout for which a certain function is optimized.
For most of the functions the derived graph layout problem is NP-hard. On the
other hand, a large number of problems in different domains can be formulated as
graph layout problems (see for example [21]). This fact makes clear the need to
overcome theNP-hardness using other algorithmic approaches like approximation
and parameterization.

There are many surveys that deal with different aspects of graph layout prob-
lems [63, 4, 54, 21]. We refer the interested reader to them for information on the
family of problems and their history. We want to emphasize the richness of the use
of linear layouts in the definition of problems, including in this family those prob-
lems that can be defined from a linear layout of the edges of a graph. Notice that
usually only linear layouts of the vertices are considered [21]. In this paper we
address the parameterized complexity of graph layout problems when the value
of the function to be optimized is taken as the parameter. Our aim is to present
the techniques that are common to several graph layout problems and motivate the
research in such problems presenting a series of interesting open problems.

The paper is organized as follows: First of all, in Section 2 we review in-
formally the main concepts of parameterized complexity used in the paper. In
Section 3 we formally define the layout measures and graph layout problems and
introduce the basic parameterized problem. Section 4 surveys the existing results
on the design of FPT-algorithms focusing on the techniques that are common to
a big sub-family of problems. Section 5 states the known parameterized hardness
result. We finish with several open questions in Section 7.

2 Parameterized complexity
The theory of NP-completeness seems to be one of the greatest achievements in
Theoretical Computer Science during the last 35 years. In particular, it offered
a solid background for characterizing and investigating the “hardness” of combi-
natorial problems [43]. However, for practical purposes, such a theory seems to
introduce a rather pessimistic viewpoint as the majority of natural non-trivial com-
binatorial problems seems to be NP-hard and thus one cannot expect that they ad-
mit an efficient (i.e. polynomial time) algorithmic solution. However, a more op-
timistic point of view can be adopted if we take in mind that the NP-completeness
concerns only the worst case complexity of a combinatorial problem. In many
real applications, the inputs of a generally intractable problem may be structured
or restricted in a way that makes them tractable in practice. This motivated the
idea of splitting the input of a combinatorial problem into two parts: themain part
and the parameterized part. The splitting should be done in a way that the size of

The Bulletin of the EATCS

43

the parameterized part is “small” in the majority of the “real word” applications
while the main part is the one that includes elements of the problem that can be
really big. The hope in this splitting is that we may be able to design algorithms
with complexities whose super-polynomial part is exclusively depending on the
“small” parameterized part. In other words, when we fix the parameterized part to
be of constant size then the problem becomes tractable. If this is possible, then we
may consider such a problem “tractable in practice” as it is easy to solve it in most
of the cases where we may require a solution. This idea motivated what is now
called Parameterized Complexity, a theory that during the last 16 years offered
a solid and attractive alternative for investigating the hardness of combinatorial
problems for from both algorithmic and complexity point of view.

Formally, a parameterized problem has as instances pairs (I,K) where I is
the main part and K is the parameterized part. We use the notation n = |I| and
k = |K| for the sizes of I and K respectively. The Parameterized Complexity
settles the question of whether the problem is solvable by an algorithm (we call it
FPT-algorithm) of time complexity

f (k) · nO(1)

where f (k) is a (super-polynomial) function that does not depend on n. If such an
algorithm exists, we say that the parameterized problem belongs in the class FPT.
In a series of fundamental papers (see [24, 25, 1, 22, 23]), Downey and Fellows
invented a series of complexity classes, namely the classes

W[1] ⊆ W[2] ⊆ · · · ⊆ W[S AT] ⊆ W[P]

and proposed special types of reductions such that hardness for some of the above
classes makes it rather impossible that a problem belongs in FPT (we stress that
FPT ⊆ W[1]). The above theoretical framework initiated the classification of sev-
eral parameterized problems according to their parameterized complexity. As it
is expected in such a project, special attention has been given to parameteriza-
tions of problems that emerge from practical applications where fast (or “as fast
as possible”) solutions where really wanted. Parameterized complexity offered in-
sightful results in a great variety of research areas like VLSI-design [37, 34, 35],
Robot Motion Planning [17], Data Bases [45, 29, 67], Logical Programming, [56]
and others (see also [33, 28, 27, 26]). So far, the most complete list of parame-
terized problems along with their classification according to their parameterized
complexity is the compendium of Marco Cesati [16] including more than 200
problems reflecting the huge amount of work that has been devoted on this theory
during the last two decades.

BEATCS no 86 THE EATCS COLUMNS

44

3 A generic definition of linear layout parameters
Given a set S , a linear layout (or ordering) of S is a bijection L : S → {1, . . . , |S |}.
We denote as LS the set of all the linear orderings of set S .

We call graph parameter any function mapping graphs to non-negative inte-
gers. We provide a generic definition for most of the graph parameters that we
will meet in this paper. All of them are defined from a cost function defined over
a linear layout of the set of vertices V(G) or edges E(G) of a graph G.

Formally, a graph parameter par is determined by a quadruple

(U,R, cost, λ)

where U,R ∈ {V(G), E(G)}, costG,L : R → N is a function that depends on G and
the selected layout L ∈ LU , and λ ∈ {max, sum} is a label. The value associated
to graph G is the following

par(G) =
{
minL∈LU maxr∈R costG,L(r) if λ = min
minL∈LU

∑
r∈R costG,L(r) if λ = sum

When λ = max, we say that par is a min-max parameter and when λ = sum,
we say that par is a min-sum parameter. When U = V(G) we say that par is a
vertex layout parameter and when U = E(G) we say that par is an edge layout
parameter.

Let us present the definitions of the main graph parameters:

• Bandwidth (in short bw): (V(G), E(G), cbw,max) where for any L ∈ LV(G)
and any e = {v, u} ∈ E(G),

cbwG,L(e) = |L(v) − L(u)|.

• Cutwidth (in short cw): (V(G),V(G), ccw,max) where for any L ∈ LV(G)
and any v ∈ V(G),

ccwG,L(v) = |{{u,w} ∈ E(G) | L(u) ≤ L(v) < L(w)}|.

• Modified Cutwidth (in short mcw): (V(G),V(G), cmcw,max) where for
any L ∈ LV(G) and any v ∈ V(G),

cmcwG,L(v) = |{{u,w} ∈ E(G) | L(u) < L(v) < L(w)}|.

• Vertex Separation (in short vs): (V(G),V(G), cvs,max) where for any L ∈
LV(G) and any v ∈ V(G),

cvsG,L(v) = |{u ∈ V(G) | L(u) ≤ L(v) and NG(u) ∩ {w ∈ V(G) | L(w) ≥ L(v)} ! ∅}|.

The Bulletin of the EATCS

45

(By NG(u) we denote the set of vertices in G that are adjacent to the vertex u ∈
V(G).)

The vertex separation number of a graph is equivalent (see [50, 51, 64]) to the
parameter of pathwidth, defined in [69] as follows:

A path decomposition of a graph G is defined as a sequence X = [X1, . . . , Xr]
of subsets of V(G) satisfying the following properties.

1. ∪i,1≤i≤rXi ⊆ V(G).

2. ∀{v,u}∈E(G) ∃i,1≤i≤r {v, u} ⊆ Xi.

3. ∀v∈V(G) ∃i, j,1≤i≤ j≤r ∀h,1≤h≤r v ∈ Xh ⇔ i ≤ h ≤ j.

We call the sets X1, . . . , Xr, the nodes of the path decomposition X. The width of
X is equal to max1≤i≤r{|Xi| − 1} and the pathwidth of a graph G (we denote it as
pw(G)) is the minimum width over all path decompositions of G.

• Treewidth (in short tw): (V(G),V(G), ctw,max) where for any L ∈ LV(G)
and v ∈ V(G),

ctwG,L(v) = |{u ∈ V(G) | ∃ a v-u path in GL(u,≥)}|,

where GL(u,≥) = G[{u} ∪ {w ∈ V(G) | L(w) ≥ L(v)}]. We stress that
treewidth dates back to [44] and has been defined in [71] generalizing path
decompositions to tree decompositions. For a proof of the equivalence of
the decomposition definition and the layout definition, see [19].

• Linear-width (in short lw): (E(G), E(G), clw,max) where for any L ∈
LE(G) and e ∈ E(G),

clwG,L(e) = |{v ∈ V(G) | ∃e′, e′′ ∈ E(G) : e′ ∩ e′′ = v and L(e′) ≤ L(e) < L(e′′)}|.

• Edge-Bandwidth (in short ebw): (E(G),V(G), cebw,max) where for any
L ∈ LE(G) and v ∈ V(G),

cebwG,L(v) = max{|L(e) − L(e′)| | e ∩ e′ = {v}}.

Also we may comment the following old parameter, also known as degen-
eracy, linkage, or inductivity (see [61, 73, 57, 62, 40, 52]).

• Width (in short wd): (V(G),V(G), cwd,max) where for any L ∈ LV(G) and
v ∈ E(G),

cwdG,L(v) = |NG(v) ∩ {u | L(u) < L(v)}|.

BEATCS no 86 THE EATCS COLUMNS

46

Problem Introduced in NP-hardness
Bandwidth [46] [66]
Cutwidth [2] [44]
Modified Cutwidth [65] [65]
Vertex separation [59] [55]
Pathwidth [69] [3]
Treewidth [71] [3]
Linear-width [80] [75]
Min-Linear Arrangement [47] [42]
Profile [20, 58, 53] [20, 58]
Edge-bandwidth [48] [81]

Table 1: Basic references for graph layout problems

Although a min-sum version of all the previous graph parameters can be de-
fined, only for few of them the corresponding measure has been considered in the
literature.

• Min-Linear-Arrangement (in short mla): (V(G), E(G), cbw, sum) or
(V(G), E(G), ccw, sum).

• Profile (in short prf): (V(G),V(G), cvs, sum) or (V(G),V(G), cprf, sum)
where for any vertex v ∈ V(G),

cprfG,L(e) = L(v) −min{i | 1 ≤ i < L(V) and {L−1(i), v} ∈ E(G)}.

If par is a graph parameter, the corresponding optimization problem is defined
as follows:

O P  P par
Input: A graph G.
Objective: Find a layout L whose associated cost equals
par(G).

In Table 1 we provide references to the work that introduced the optimization
problem and to the work showing its NP-hardness1. We refer the reader to [63, 4,
54, 21] for further information.

Notice that the variety of parameters that can be defined in this way is quite
extensive, and can be further extended. Also one may suspect that, for most of

1The NP-hardness of dual bandwidth follows from Theorem 5.2 of [81], because for caterpil-
lars with max degree 3, dual bandwidth is a constant factor approximation of bandwidth.

The Bulletin of the EATCS

47

them, the problem of deciding whether their values are at most k is NP-hard.
However we stress that this is not always the case. For example, wd(G) can be
easily computed in polynomial time. Notice also that the min-sum version of wd
is a trivial graph parameter.

If par is a graph parameter the corresponding parameterized problem is de-
fined as follows:

P P  P par
Input: A graph G and a non-negative integer k
Parameter: k
Question: par(G) ≤ k?

We denote the first 6 parameterized problems that emerge from min-max pa-
rameters as k-B, k-C, k-M C, k-V S-
, k-T, and k-L-W respectively. We will postpone the dis-
cussion on the parameterized problem for min-sum parameters to Subsection 6.2
where we will propose a different parameterization.

4 Designing FPT-algorithms
In this section we survey generic tools that have been used to show fixed parameter
tractability for the problems derived from min-max graph layout parameters.

4.1 Non-constructive tools
A powerful tool for proving the existence of an FPT-algorithm for some graph
parameter was given by the theory of Graph Minors developed by Robertson and
Seymour for proving the Wagner’s Conjecture.

To give a general description of the consequences of this theory on the exis-
tence of FPT-algorithms, we consider several types of partial ordering relations
on graphs. Usually such a relation is defined by a set of graph operations such
as vr: vertex removal (and removal of all edges incident to this vertex), er: edge
removal, ec: edge contraction (i.e. the removal of an edge and the identification
of its endpoints), et: edge contraction of an edge that has some endpoint of degree
≤ 2, or le: lifting of a pair of adjacent edges (i.e. the removal of two edges {v, u},
{v,w} that share an endpoint and the addition of the edge {u,w}). Given a set P of
graph operations we say that H ≤P G if H can be obtained from G after applying
to it a series of operations in P.

In the following table we show how known partial orderings can be defined
using different choices of P. In the same table we also introduce the notation used
in this paper.

BEATCS no 86 THE EATCS COLUMNS

48

The meaning of H ≤P when P= notation
H is an induced subgraph of G {vr} ≤is
H is a subgraph of G {vr, er} ≤sb
H is topologically contained in G {vr, er, et} ≤tp
H is a minor of G {vr, er, ec} ≤mn
H can be immersed in G {vr, er, le} ≤im

Given a partial ordering ≤∗ and a graph set G we denote ob≤∗(G) the set of all
the minimal (with respect to ≤∗) elements of the set containing any graph not in G.
We call ob≤∗(G) obstruction set of G with respect to the relation ≤∗. A very deep
and general question in graph theory asks whether, given a pair (G,≤∗), the set
ob≤∗(G) is finite or not. We call a partial ordering simple if for any set of graphs
G, the set ob≤∗(G) is finite.

Another interesting question is whether for some partial ordering ≤∗ and a
graph class G, there is an algorithm that, given a graphG of G as an input, checks
whether H ≤mn G in polynomial (linear) on |V(G)| time. If this holds, we say that
≤∗ is polynomially (linearly) checkable relation on G. In case of polynomially
checkable orderings, if the degree of this polynomial does not depend on H we
say that ≤∗ is uniformly polynomially checkable on G.

We say that a graph class G is ≤∗-closed if G ∈ G and H ≤∗ G implies that
H ∈ G.
It is now easy to prove the following:

Theorem 1. Let ≤∗ be a simple and polynomially checkable relation and let G be
a ≤∗-closed graph class. Then the problem of deciding whether a graph G belongs
in G can be solved in polynomial time.

According to Theorem 1, looking for partial orderings that are simple and
polynomially checkable can be very helpful for massively classifying combina-
torial problems in the class P of polynomially solvable problems. One of the
greatest contributions of the Graph Minors Theory on algorithmic design was to
prove that ≤mn and ≤im are simple partial orderings, while there are counterexam-
ples showing that the same does not hold for ≤is,≤sb and ≤tp (see [70]). Also,
according to the same theory, ≤mn is uniformly polynomially checkable (by an
O(n3) algorithm). However, it is open whether the same holds also for ≤mn. In-
deed, according to [37, 38], ≤im is polynomially checkable for all graphs (by a
O(n|V(H)|+3) algorithm), however it is still an open question whether ≤mn is uni-
formly polynomially checkable on the same class.

From the above remarks, it follows that if we prove that the YES-instances (or
the NO-instances) of some combinatorial problem on graphs form a ≤mn-closed or
a ≤im-closed graph class, we also classify the problem in P. We will now comment

The Bulletin of the EATCS

49

the consequences of this fact to the design of FPT-algorithms (notice that, so far,
we did not demand our relations to be uniformly polynomially checkable).

A graph invariant par is ≤∗-closed if for any integer k ≥ 0, the set G(par, k) =
{G | par(G) ≤ k} is ≤∗-closed. Then Theorem 1 can be rewritten as follows:

Theorem 2. Let ≤∗ be a simple and uniformly polynomially checkable (on all
graphs) relation and let par be a ≤∗-closed graph invariant. Then, the problem of
deciding whether par(G) ≤ k, parameterized by k, belongs in FPT.

Notice that the above result does not follow without the uniformity demand.
Indeed, the only we have in such a case is the existence of a a O(nf (k)) algorithm
that is polynomial for any fixed value of k. Especially for ≤im it is known that is it
uniformly linearly checkable when restricted to graphs of bounded treewidth (or
pathwidth). In fact, there is a O(f (k, |V(H)|) · n) algorithm that checks whether a
fixed graph H is a minor of (can be immersed into) a graphG of treewidth at most
k (see [68, 14, 18]).

So, if we want to show that P P  P par is in
FPT it is enough to prove that par is ≤mn-closed or that par is ≤im-closed and
par(G) ≥ pw(G) (or par(G) ≥ tw(G)). Indeed, it is possible to prove that this
holds for many of the parameters defined in Section 3. In particular, cutwidth is
≤im-closed and cw(G) ≤ pw(G), while vertex separation, treewidth, and linear
width are ≤mn-closed.

Therefore, we conclude to the following:

Corollary 1. The P P  P par belongs to FPT for
par ∈ { cutwidth, vertex separation, treewidth, linear-width }. Moreover, the
corresponding FPT-algorithms are linear on the size of the input graph.

Unfortunately, the result of Robertson and Seymour is non-constructive in the
sense that it does not give any systematic method of constructing the correspond-
ing obstruction set. Therefore, Theorems 1 and 2 only guarantee the existence
of the corresponding algorithms but their proofs do not provide a way to con-
struct them (see [82, 36, 41]). However, this provides a strong motivation towards
finding the corresponding algorithms for a wide range of graph classes and pa-
rameters. It seems that if one knows that an algorithm with certain complexity
exists, this makes it easier to search for a way to construct it. We will devote the
next section to the construction issue.

4.2 The automaton idea
In this section we resume a general method developed, in [9], for proving that
an FPT-algorithm can be constructed for a series of min-max layout parameters.

BEATCS no 86 THE EATCS COLUMNS

50

In particular we present the construction of such an algorithm for the case of
cutwidth. Later, we will discuss how and when the presented ideas can be used to
obtain FPT-algorithms for other parameters.

The main idea resides in the construction, for any given k ≥ 0, of a finite state
automaton that decides whether a graph G has cutwidth ≤ k. We present the idea
gradually. First we give an easy, but non-efficient, solution and then we refine
it until it becomes the desired one. Our automaton will have many final states.
Given an automaton A, as usual, L(A) denotes the set of strings recognized by A.

Consider a graph G = (V, E) and a set of integers K = {0, . . . , k}. We assume
that K and V are disjoint alphabets. For a given L ∈ LV , w(L) is the string of V∗
whose i-th character is the vertex in the i-th position in L, i = 1, . . . , |V |. In our
first automaton AG,k, the input is a string representing an arbitrary ordering of the
vertices ofG. The states of our automaton are strings q = k0u1k1 · · · urkr consisting
of alternating numbers and vertices representing layouts of cost at most k. We
define the automaton AG,k = (Q,V, δ, qs, F) where Q = {w | w ∈ K(VK)∗ and |w| ≤
2|V | + 1}, qs = {0}, F = {s ∈ Q | |s| = 2n + 1}, and for any q = k0u1k1 · · · urkr ∈ Q
and v ∈ V ,

δ(q, v) = {q′ | q′ = n′0u′1n′1u′2 · · · u′r+1n′r+1 where q′ ∈ Q and
∃i,0≤i≤r : ∀h=1,...,iu′h = uh ∧ u′i+1 = v ∧ ∀h=i+1,...,iu′h+1 = uh ∧

∀h=1,...,in′h = nh + |{{v, uj} | {v, uj} ∈ E ∧ j ≤ h}| ∧
∀h= j+1,...,r+1n′h = nh+1 + |{{v, uj} | {v, uj} ∈ E ∧ j ≥ h}|}

The initial state is the sequence containing only the number 0 and the set of final
states contains all sequence of length 2|V | + 1. Any state represents a way to
order some prefix of the input. Let q = k0u1k1 · · · urkr be such a state and let
v the new character that AG,k receives. The transition function “guesses” where
the new vertex v should be inserted. The insertion duplicates some integer in
the sequence representing the current state, then inserts v between the two copies
of this integer and then for each edge {v, ui} of G increases by one all integers
between the positions of ui and v. Clearly, if after this operation all integers of the
new state are at most k then the ordering guessed so far is an ordering of the graph
G[{v1, . . . , vr, v}] of cutwidth ≤ k. It is now easy to verify the following:

Lemma 1. Let G = (V, E) and L ∈ LV, then cw(G) ≤ k iff w(L) ∈ L(AG,k).

Clearly, the description of AG,k cannot be implemented efficiently as both V
and Q have size that depend onG. To improve this, the first step is to modify AG,k
so that its input alphabet has size that depends only on k. To achieve this goal
we take into consideration the fact that pw(G) ≤ l and we use the structure of the
corresponding path-decomposition.

The Bulletin of the EATCS

51

Suppose now that X = [X1, . . . , Xr] is a path decomposition of G of width
≤ l. We say that X = [X1, . . . , Xr] is a nice path decomposition if |X1| = 1 and
∀i,2≤i≤|X| |(Xi − Xi−1) ∪ (Xi−1 − Xi)| = 1. It is easy to see (see e.g. [10, 78]) that,
for some constant l and given a path decomposition of a n-vertex graphG that has
width at most l and O(n) nodes, one can find a nice path decomposition of G that
has width at most l and has at most 2n nodes in O(n) time. We distinguish two
types of nodes in a nice path decomposition X = [X1, . . . , Xr]. We say that Xi is an
introduce node if i = 1 or |Xi−Xi−1| = 1, while Xi is a forget node if |Xi−1−Xi| = 1.
Clearly, any node Xi of a nice path decomposition is either an introduce or a forget
node.

Let G be a graph and let X = [X1, . . . , Xr] be a nice path decomposition of G
of width at most l. It is easy to construct an (l+ 1)-coloring χ : V → {1, . . . , l + 1}
of G such that vertices in the same Xi have always distinct colors (from now on,
whenever we refer to these colors we will use bold characters).

If Xi is an introduce node then set p(i) = ins(t,S) where {t} = χ(Xi−Xi−1) and
S = χ(NG[Xi−1](v)) (if i = 1 then S = ∅). If Xi is a forget node then set p(i) = del(t)
where {t} = χ(Xi−1 − Xi).

Let w(X) be a string whose i-th letter is p(i), i = 1, . . . , r. We define now an
automaton that receives w(X) as input (provided that a path decomposition X of
G is given).

We set up a set of labels T = {–, 1, . . . , l + 1} where bold numbers represent
colors and “–” represents the absence of a vertex. Let also Σ be the set of all
possible ins(v, S) and del(v) (notice that |Σ| = O(l · 2l+1), i.e. its size depends
only on l).

We define the automaton AG,l,k = (Q′,Σ, δ, qs, F) where Q′ = {w | w ∈
K(TK)∗, |w| ≤ 2n + 1 and each label of T appears at most once in w}, qs = [0],
F = {w ∈ Q′ | w = 2n+1}, and for any q = n0t1n1t2 · · · trnr ∈ Q′ and ins(t,S) ∈ Σ
or del(t) ∈ Σ,

δ(q, ins(t,S)) = {q′ | q′ = n′0t′1n′1t′2 · · · t′r+1n′r+1 where q′ ∈ Q′
and ∃i,0≤i≤r : ∀h=1,...,it′h = th ∧ t′i+1 = t ∧ ∀h=i+1,...,it′h+1 = th ∧

∀h=1,...,in′h = nh + |{t j | t j ∈ S ∧ j ≤ h}| ∧
∀h= j+1,...,r+1n′h = nh+1 + |{t j | t j ∈ S ∧ j ≥ h}|}

and

δ(C, del(t)) = {C′ | C′ = n0t1n1t2 · · · ni−1–ni · · · tr+1nr+1
where t = ti}

Notice that the previous definition can be directly extracted from the definition of
AG,k, replacing the vertices by labels. The good news are that the number of labels

BEATCS no 86 THE EATCS COLUMNS

52

depends on the pathwidth of G and not on its size. Finally, what is really new in
AG,l,k is the “delete transition” where the deleted color is just removed from the
corresponding sequence. The following holds (see [9]).

Lemma 2. Let G = (V, E) be a graph and X be a path decomposition of G of
width ≤ l. Then cw(G) ≤ k iff w(X) ∈ L(AG,l,k).

Notice that in the above automaton the definition of δ does not require any
knowledge of G. This is because the adjacency information codified in the string
w(X) is now enough for the definition of δ. However, the number of states Q′
depends still on the size of G. To explain how this problem can be overcome we
give an example.

Suppose we have a substring 54–6–92 in some state of Q′. Then notice the
following: If the automaton accepts the string w(X) and during its operation enters
this state and proceeds by “spliting” the number 6 then it will also accept the same
string if it “splits” instead the number 4. This essentially means that it is not a
problem if we “forget” 6 from this state. As a consequence of this observation,
we can reduce the length of the strings in Q′ by suitably “compressing” them
(see [10, 11, 76, 79, 78]). To explain this we first need some definitions.

Let w ∈ Q′. We say that a z is a portion of w if its is a maximal substring of w
that does not contain symbols from T. We say that a portion of w is compressed
if it does not contain a sub-sequence n1–n2–n3 such that either n1 ≤ n2 ≤ n3 or
n1 ≥ n2 ≥ n3. The operation of replacing in a portion any such a subsequence by
n1–n3 is called compression of the portion. We also call compression of w ∈ Q′
the string that appears if we compress all portions of w. We define Q̃ as the set
occurring from Q′ if we replace each of its strings by their compressions. This
replacement naturally defines a class of equivalence in Q′ where two strings are
equivalent if they have the same compression. That, way Q̃ defines a “set of
characteristics” of Q′ in the sense that it contains all the useful information that an
automaton needs to operate. The good news is that the size of Q̃ is now depending
only on l and k. Indeed, in [10, 78] it was proved that |Q̃| ≤ (l + 1)!8322k and
this makes it possible to construct an automaton that overcomes the big space
drawbacks of the previous one.

In particular define the automaton Ãl,k = (Q̃,Σ, δ̃, qs, Q̃). Here δ̃ = β ◦ δ where
β is the function that receives a set of members of Q′ and outputs the set of all
their compressions. The following holds:

Lemma 3. Let G = (V, E) be a graph and X be a path decomposition of G of
width ≤ l. Then cw(G) ≤ k iff w(X) ∈ L(Ãl,k).

As we mentioned, the construction of the automaton Ãl,k depends only on l
and k. Moreover, as the input is a string of length O(n) the decision can be made

The Bulletin of the EATCS

53

non-deterministically in linear time. As for every non-deterministic finite state
automaton an equivalent deterministic one can be constructed (notice that the state
explosion will be an exponential function on k and l), we deduce the following:

Theorem 3. For any k, l, one can construct an algorithm that given an n-vertex
graph G and a path decomposition of G of width ≤ l, decides whether cw(G) ≤ k
in O(f (k, l) · n) steps where f is a function that depends only on l and k.

Also, in [9] it is described how to turn the decision algorithm to an algorithm
that, in case of a positive answer, also outputs the corresponding layout.

4.3 Extensions
Notice that the kernel of the construction Ãl,k is the transition function. In fact δ̃
incorporates the way that the values encoded in its states of Ãl,k are being updated
each time the automaton reads a ins(t,S) or a del(t) and this follows directly
from the cost function of the graph invariant.

By modifying accordingly the construction of Ãl,k the result of Theorem 3 can
be derived for other parameters. For vertex separation the values of each state of
the automaton should now count, for each gap, instead of the overlapping edges,
the number of their left-side endpoints. In case ofmodified cutwidth one may con-
sider a slightly more complicated version of states where the integers are replaced
by pairs of integers that encode not only the number of edges that cross gaps be-
tween vertices but also the number of edges that cross a vertex. The transition
function should reflect the way that the values of a state are being altered when
the automaton reads an ins(t,S) or a del(t). Avoiding the details, we resume to
the following general result.

Theorem 4. For any k, l, one can construct an O(f (k, l) · n) step algorithm (f
is a function depending only on l and k) that, for an n-vertex graph G and a
path decomposition of G of width ≤ l, decides if the cutwidth/vertex separa-
tion/modified cutwidth of G is at most k and, if so, outputs a linear layout of V(G)
of cutwidth/vertex separation/modified cutwidth at most k.

In [78] it is given a different proof of Theorem 4 for the case of cutwidth
that does not use the automaton machinery. Instead it gives a more direct way
to define and work with the notion of a “set of characteristic of layouts” that is
something analogous –however more compact– to the information we keep in the
states of our automaton. That way, also provides an estimation for function f that
is O(l3k2 · (l + 1)! (83 22k)l+1) (see also [77]).

Recall that according to [50, 51] pw(G) = vs(G). Also it is easy to see that,
given a path decomposition of width ≤ k, a layout of vertex separation number

BEATCS no 86 THE EATCS COLUMNS

54

≤ k can be constructed in linear (on n = |V(G)|) time. This means that pathwidth
can also be added in the list of parameters of Theorem 4.

For the case of vertex-separation the first proof of Theorem 4 was given
in [10] in terms of pathwidth. This was the first time where the technique of
sequence compression appeared. Combining the results of [10] along with the
result of [8] one can prove the following (see also [12]).

Theorem 5. For any k, one can construct an O(f (k) · n) step algorithm that,
for an n-vertex graph G, decides whether pw(G) ≤ k, and, if so, outputs a path
decomposition of G with width at most k.

Notice that from the definitions of cutwidth and vertex separation (that, in turn
is equal to pathwidth) it follows that cw(G) ≥ pw(G). Therefore, if we want
to check if cw(G) ≤ k then we can do the following: check first if pw(G) ≤ k
and if the answer is no then output that cw(G) > k. Otherwise, we have a path
decomposition of G of width ≤ k and we can check whether cw(G) ≤ k applying
Theorem 4 for cutwidth and for l = k. Also the same technique can be useful to
check whether mcw(G) ≤ k as mcw(G) ≥ pw(G) (this follows from [60] where
it is proved that the topological bandwidth of a graph is never greater than its
modified cutwidth plus one and never smaller than its node search number that is
equal to the vertex separation number plus one). We resume with the following.

Theorem 6. For any k, one can construct an O(f (k) · n) step algorithm that
for an n-vertex graph G, decides whether the cutwidth/vertex separation/modified
cutwidth of G is at most k and, in such a case, outputs a linear layout of V(G) of
cutwidth/vertex separation/modified cutwidth at most k.

For the case of modified cutwidth, Theorem 6 also follows from Theorem 5 by
a parameterized reduction of the k-  problem to the k-
problem presented in [9] (see also [39, 64]). Also for similar results (algorithms
and reductions) concerning directed versions of vertex separator, cutwidth, and
modified cutwidth see [9] and [7].

5 When we do not hope for FPT-algorithms

The only parameter where we have strong evidence that does not belong in FPTis
bandwidth. The result appeared in [6] and the proof used a reduction from the
following problem:

The Bulletin of the EATCS

55

E   P
Input: A graph G and a non-negative integer k
Parameter: k
Question: Is there a partition {V1, . . . ,Vr} of V(G) where
|Vi| ≤ k, i = 1, . . . , r and for any edge e ∈ E(G), there exists
some m, 1 ≤ m < r such that e ⊆ Vm ∪ Vm+1 ?

We define the graph invariant emulation in a path as the function that outputs
the minimum k for whichG is a YES-instance of the E   P problem.

In [6] it was proved that E   P isW[P]-hard and this implies that
P P  P par isW[P]-hard when par=bandwidth.

It seems that no hardness result exists on the parameterized complexity of
other layout graph parameters. As several problems remain open, some of them
may be candidates for hardness for some level of the parameterized complexity
class hierarchy (see Subsections 6.2, 6.3, and 6.4).

6 Open problems

6.1 Atomata idea
One may ask what is the most general framework where the automaton idea can
be applied. Actually, the only remaining parameterized problems among those
defined in Section 3 that we know that belongs to FPT are treewidth and linear-
width. Especially for linear-width we believe that there is an automaton-driven
proof of its parameterized tractability. However, here the NFA should “guess”
insertion operations concerning edges and the states should encode vertices that
are incident to edges in both sides. A specific FPT-algorithm for checking whether
lw(G) ≤ k appeared in [13]. This algorithm defines a “set of characteristics”
especially for linear-width that takes in mind the particularities in way the value
of linear-width is being calculated. This fact makes us believe that an automaton-
driven proof of the parameterized tractability of linear-width is possible but not as
easy as in the case of the parameters considered in Theorem 6.

For treewidth it seems that the automaton-idea is not friendly because each
time a vertex is introduced the update in the information encoded in the states is
global in the sense that it cannot be restricted to the neighbors of the inserted ver-
tex; it concerns connected components of the “so-far” considered graph. In fact
this difficulty follows from the fact that guessing the position of new vertices in
a linear layout cannot tame its tree-structure. This indicates that an automaton-
driven proof of the parameterized tractability of treewidth requires the use of tree
automata. For an linear FPT-algorithm for treewidth that uses the idea of a “set of

BEATCS no 86 THE EATCS COLUMNS

56

characteristics” see [10]. We stress that the technique of defining a “set of charac-
teristics” is not exclusive for layout parameters and has been used for several other
“tree-fashion” problems such as carving-widh [79] and branchwidth [11, 76].

6.2 Min-sum prameters
There is a long standing question on what is the correct way to parameterize prob-
lems on min-sum parameters such asmin linear arrangement and profile. Clearly,
the classic way should be to ask whether the value of the invariant is at most k.
However formin linear arrangement, the answer to this question is directly NO if
|E(G)| > k otherwise, we have an equivalent instance of at most 2k vertices where
the answer can be found using brute force whose cost depends only on k. Thus
the “naive” parameterization of the problem is trivially in FPT(a similar argument
also holds for profile). Therefore we suggest more rich parameterizations like the
following:

V  P P  par
Input: A graph G and a non-negative integer k
Parameter: k
Question: par(G) ≤ k · |V(G)|?

E  P P  par
Input: A graph G and a non-negative integer k
Parameter: k
Question: par(G) ≤ k · |E(G)|?

In particular the following three problems are of great interest:

E AM L A
Input: A graph G and a non-negative integer k
Parameter: k
Question: mla(G) ≤ k · |E(G)|?

V AM L A
Input: A graph G and a non-negative integer k
Parameter: k
Question: mla(G) ≤ k · |V(G)|?

V A P
Input: A graph G and a non-negative integer k
Parameter: k
Question: prf(G) ≤ k · |V(G)|?

The Bulletin of the EATCS

57

Notice that the YES-instances of the above problem are “almost” immersion
closed. Indeed they are closed under the operations of edge lifting and edge re-
moval. However, they are not closed under vertex removal.

The parameterized complexity of the three problems defined in this subsection
remain a mystery as it seems that none of the current tools is able to give some
evidence. In fact we will even avoid to make any conjecture on whether they are
fixed parameter tractable or not. However, we would conjecture that they all have
the same type of parameterized complexity.

6.3 Topology vs Geometry
There are some parameters that are defined using layouts and local transforma-
tions. We will give two examples of such parameters.

A subdivision of an edge e is the replacement of e by a path of length 2. We
say that a graph H is a subdivision of G if H can be obtained by G after a finite
sequence of subdivision operations on its edges. We denote as SD(G) the set of all
the subdivisions of G. An edge in G is called pendant if one of its endpoints has
degree 1. Given a graph G we denote as G+ the graph occurring if we subdivide
once all the pendant edges of G.

We define the following parameters:

topological-bandwidth(G) = min{bandwidth(H) | H ∈ SD(G)}.
proper-pathwidth(G) = linear-width(G+).

topological bandwidth has been studied extensively in [60] where it follows that
it is polynomially computable for trees. proper-pathwidth is in FPT because it
is closed under taking of minors. Moreover, a constructive version of this result
follows as there is an easy parameterized reduction of this parameter to linear-
width (see [75]). Curiously, there is also a parameterized reduction of pathwidth to
proper pathwidth – see [5, 75]. proper pathwidth can be computed in polynomial
time for trees using the techniques developed in [74, 32, 72].

In this section we will propose a generic definition of the above parameters
different that the one in Section 3. In particular, we will use the graph rela-
tions ≤sb,≤tp,≤mn,≤im defined in Subection 4.1 to generate bandwidth, topologi-
cal bandwidth, proper pathwidth, and cutwidth.

Let Pkr be the graph obtained if in a r-vertex path Pr we connect all edges of
distance ≤ k in Pr. Then, given a graph relation ≤∗, we define par≤∗(G) = min{k |
G ≤∗ Pkr for some value of r}.

Theorem 7. The following hold
(1) par≤sb = bandwidth,

BEATCS no 86 THE EATCS COLUMNS

58

(2) par≤tp = topological bandwidth,
(3) par≤mn = proper pathwidth

There is also a similar way to define cutwidth if instead of Pkr we use the
immersion relation and a path with all its edges of multiplicity k (we denote
this graph as Qk

r). Also the E   P problem is equivalent to the
problem asking whether a graph G is a subgraph of the graph Rkn for some big
enough n where m = 0 (mod k). Rn is constructed if we take n/k cliques of
size k and add edges between vertices of consecutive cliques. Formally, Rkn =
({1, 2, . . . , n}, {{i, j} | |1 ik2 − 1

j
k 2| ≤ 1}).

Notice that both immersion and minor relation are extensions of the topolog-
ical containment relation (H ≤mn G or H ≤im G implies that H ≤tp G), while the
topological containment relation is an extension of the subgraph relation. In that
sense we can say that the immersion or minor relations represent a more “flexi-
ble” relation between graphs than in the case of the subgraph relation that seems
to be more “rigid”. One may argue that bandwidth incorporates characteristics
of the graphs mostly associated with their geometry while proper pathwidth (and
the related parameters of pathwidth and linear width) are less “strict” or, in a
sense, more topological than geometrical. We feel that this provides some high
level evidence for the differences in the parameterized complexity of these param-
eters. Here what is open is the “intermediate-case” of topological bandwidth. As
the topological containment relation is not simple (in the sense this was defined in
Subsection 4.1) we would guess that topological bandwidth is hard for some class
of the W-hierarchy. This conjecture is supported also by the parameterized in-
tractability of several “geometrically rigid” parameters such as domino-pathwidth
and bounded persistence pathwidth (see [30], where persistence is some sort of
measure for the rigidity of a path decomposition).

Also the same table prompts us to conjecture that E   P remains
NP-complete on trees.

parameter relation parameterized
complexity

complexity
on trees

emulation in
a path ≤tp Rkn NP-complete OPEN

bandwidth ≤sb Pkn W[t]-hard for any t ≥ 1 NP-complete
topological
bandwidth ≤tp Pkn OPEN P

proper
pathwidth ≤mn Pkn FPT P

cutwidth ≤im Qk
n FPT P

Alas, cutwidth cannot be defined in terms of Pkr . However, if par≤im(G) = k

The Bulletin of the EATCS

59

then k/2 ≤ cutwidth(G) ≤ k(k+1)/2. Indeed, this holds as the cutwidth of Pkr is at
most k(k + 1)/2 (for r ≥ 2k the equality holds) and because of the following fact
(we let the proof as an exercise): If G has cutwidth at most k then there exists a
graph H with bandwidth at most 2k and where G ≤im H.

The above result implies that there is an FPT-algorithm that either says that
par≤im(G) > k or returns that par≤im(G) ≤ c ·k2 for some constant c. Does this says
anything about the parameterized tractability of par≤im(G)? Is this contradictory
to the assumption that checking whether par≤im(G) ≤ k is hard for some of the
levels of the parameterized complexity hierarchy?

6.4 Dual-bandwidth
Perhaps the most “unknown” graph layout parameter is dual-bandwidth as there
are just a few combinatorial results on it in [15, 31, 49]. We conjecture that its
complexity (parameterized or not) follows the behavior of bandwidth. We main-
tain some hope that the duality of their definitions can help to construct a param-
eterized reduction of bandwidth to dual bandwidth.

6.5 What about the constants?
For all the graph layout invariants that have been classified so far in FPT the
running times were of the form O(f (k) · n). While one can feel happy with the
“linearity” of these algorithms, we cannot do the same when we really want to
have a “simple” bound for f (k). Usually f (k) is a function of size 2O(k2) or worst
and this makes the algorithms (given that one overcomes the technical difficulties
in implementing them) inefficient even for reasonable values of k. Consequently,
it sounds acceptable to make some “bargain” between the complexity of the poly-
nomial and the exponential part: is there a O(2O(k)na) algorithm for some a ≥ 2
for some of the invariants that we already know that are in FPT?

6.6 Kernels?
Let L be a parameterized problem, i.e. L consists of pairs (I, k) where k is the
parameter of the problem. Reduction to problem kernel is the replacement of
problem inputs (I, k) by a reduced problem with inputs (I′, k′) (the kernel) such
that k′ = O(k), |I′| = f (k) (f is the size of the kernel and is a function depending
only on k) and (I, k) ∈ L ⇔ (I′, k′) ∈ L. (We refer to [26] for discussions on
fixed parameter tractability and the ways of constructing kernels.)

Many problems on graphs admit reductions to problem kernels that in most
cases are of polynomial size (or even linear size). However, no kernel has ever
been found for any linear layout parameter. We would not exclude the existence

BEATCS no 86 THE EATCS COLUMNS

60

of a kernel of exponential size for some graph layout parameter. However, we
would conjecture that no linear size kernel exists for the graph layout parameters
that we considered so far.

Acknowledgements
The authors are grateful to Fedor V. Fomin for his comments and remarks. Also
they wish to thank Hans Bodlaender, as some of the presented results and open
problems were inspired during earlier discussions and research with him. Finally,
the last author dedicates his work to the memory of Γ.M. that passed away while
this article was under construction.

References
[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter tractability

and completeness. IV. On completeness for W[P] and PSPACE analogues. Annals
of Pure and Applied Logic, 73(3):235–276, 1995.

[2] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied
Mathematics, 25(3):403–423, 1973.

[3] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic and Discrete Mathematics, 8:277–284, 1993.

[4] S. Bezrukov. Edge isoperimetric problems on graphs (a survey). In Graph Theory
and Combinatorial Biology, pages 157–197. Janos Bolyai Math. Soc., 1999.

[5] D. Bienstock and P. Seymour. Monotonicity in graph searching. Journal of Algo-
rithms, 12(2):239–245, 1991.

[6] H. Bodlaender, M. R. Fellows, and M. T. Hallet. Beyond NP-completeness for
problems of bounded width: hardness for theW-hierarchy. In 26th. ACM Symposium
on Theory of Computing, pages 449–458, 1994.

[7] H. Bodlaender, J. Gustedt, and J. A. Telle. Linear-time register allocation for a fixed
number of registers. In Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms (San Francisco, CA, 1998), pages 574–583, New York, 1998.
ACM.

[8] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[9] H. L. Bodlaender, M. R. Fellows, and D. M. Thilikos. Starting with nondeter-
minism: the systematic derivation of linear-time graph layout algorithms. In Proc.
26th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2003, volume 2747 of Lectures Notes in Computer Science, pages 239 – 248.
Springer-Verlag, 2003.

The Bulletin of the EATCS

61

[10] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the path-
width and treewidth of graphs. Journal of Algorithms, 21:358–402, 1996.

[11] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for
branchwidth. In Automata, languages and programming (Bologna, 1997), volume
1256 of Lecture Notes in Computer Science, pages 627–637. Springer, Berlin, 1997.

[12] H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear
time. Technical Report UU-CS-1998-05, Dept. of Computer Science, Utrecht Uni-
versity, 1998.

[13] H. L. Bodlaender and D. M. Thilikos. Computing small search numbers in linear
time. In Parameterized and Exact Computation, First International Workshop, IW-
PEC 2004, Bergen, Norway, pages 37–48, 2004.

[14] H. D. Booth, R. Govindan, M. A. Langston, and S. Ramachandramurthi. Fast algo-
rithms for K4 immersion testing. J. Algorithms, 30(2):344–378, 1999.

[15] T. Calamoneri, A. Massini, and I. Vrt’o. New results on edge-bandwidth. Theoret.
Comput. Sci., 307(3):503–513, 2003. Selected papers in honor of Lawrence Harper.

[16] M. Cesati. Compendium of Parameterized Problems. Department of Computer
Science, Systems, and Industrial Engineering, University of Rome “Tor Vergata”,
22 February 2001.

[17] M. Cesati and H. Wareham. Parameterized complexity analysis in robot motion
planning. In In Proceedings of the 25th IEEE International Conference on Systems,
Man, and Cybernetics, volume 1, Los Alamitos, CA, 1995. IEEE Press.

[18] B. Courcelle, R. G. Downey, and M. R. Fellows. A note on the computability of
graph minor obstruction sets for monadic second order ideals. In Proceedings of
the First Japan-New Zealand Workshop on Logic in Computer Science (Auckland,
1997), volume 3, pages 1194–1198 (electronic), 1997.

[19] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive-search games on graphs
and related parameters. Theoret. Comput. Sci., 172(1-2):233–254, 1997.

[20] J. Díaz, A. Gibbons, M. Paterson, and J. Toran. The minsumcut problem. In R. S.
F. Dehen and N. Santoro, editors, Algorithms and data structures, volume 519 of
LNCS, pages 65–79, 1991.

[21] J. Díaz, J. Petit, and M. Serna. A survey on graph layout problems. ACM Computing
Surveys, 34(3):313–356, 2002.

[22] R. Downey and M. Fellows. Fixed-parameter tractability and completeness. III.
Some structural aspects of the W hierarchy. In Complexity theory, pages 191–225.
Cambridge Univ. Press, Cambridge, 1993.

[23] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
In Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics
and Computing (Winnipeg, MB, 1991), volume 87, pages 161–178, 1992.

BEATCS no 86 THE EATCS COLUMNS

62

[24] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness. I.
Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[25] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131,
1995.

[26] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Com-
puter Science. Springer-Verlag, New York, 1999.

[27] R. G. Downey and M. R. Fellows. Parameterized complexity after (almost) ten
years: review and open questions. In Combinatorics, computation & logic ’99
(Auckland), pages 1–33. Springer, 1999.

[28] R. G. Downey, M. R. Fellows, and U. Stege. Computational tractability: the view
from Mars. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, (69):73–97, 1999.

[29] R. G. Downey, M. R. Fellows, and U. Taylor. The parameterized complexity of
relational database queries and an improved characterization of W[1]. In Combi-
natorics, complexity, & logic (Auckland, 1996), Springer Ser. Discrete Math. Theor.
Comput. Sci., pages 194–213. Springer, Singapore, 1997.

[30] R. G. Downey and C. McCartin. Bounded persistence pathwidth. In Parameter-
ized and Exact Computation, First International Workshop, IWPEC 2004, Bergen,
Norway, pages 13–24, 2004.

[31] D. Eichhorn, D. Mubayi, K. O’Bryant, and D. B. West. The edge-bandwidth of theta
graphs. J. Graph Theory, 35(2):89–98, 2000.

[32] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search
number of a graph. Information and Computation, 113(1):50–79, 1994.

[33] M. R. Fellows. Parameterized complexity: The main ideas and some research fron-
tiers. In Algorithms and Computation, 12th International Symposium, ISAAC 2001,
pages 291–307, 2001.

[34] M. R. Fellows and M. A. Langston. Fast self-reduction algorithms for combinatorial
problems of VLSI design. In VLSI algorithms and architectures (Corfu, 1988),
volume 319 of Lecture Notes in Comput. Sci., pages 278–287. Springer, New York,
1988.

[35] M. R. Fellows andM. A. Langston. Layout permutation problems and well-partially-
ordered sets. In Advanced research in VLSI (Cambridge, MA, 1988), pages 315–327.
MIT Press, Cambridge, MA, 1988.

[36] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-
time decidability. J. Assoc. Comput. Mach., 35(3):727–739, 1988.

[37] M. R. Fellows and M. A. Langston. On well-partial-order theory and its application
to combinatorial problems of VLSI design. SIAM Journal on Discrete Mathematics,
5(1):117–126, 1992.

The Bulletin of the EATCS

63

[38] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of
polynomial-time algorithms. J. Comput. System Sci., 49(3):769–779, 1994.

[39] M. R. Fellows and L. M. R. An analogue of the myhill-nerode theorem and its use in
computing finite-basis characterisations (extended abstract). In Proceedings of the
30th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1989,
pages 520–525, 1989.

[40] E. C. Freuder. A sufficient condition for backtrack-free search. J. Assoc. Comput.
Mach., 29(1):24–32, 1982.

[41] H. Friedman, N. Robertson, and P. Seymour. The metamathematics of the graph
minor theorem. In Logic and combinatorics (Arcata, Calif., 1985), volume 65 of
Contemp. Math., pages 229–261. Amer. Math. Soc., Providence, RI, 1987.

[42] M. Garey, D. Johnson, and L.Stockmeyer. Some simplified np-complete graph prob-
lems. Theoretical Computer Science, 1:237–267, 1976.

[43] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory
of NP-completeness. W. H. Freeman and Co., San Francisco, Calif., 1979.

[44] F. Gavril. Some NP-complete problems on graphs. In Proc. 11th Conference on
Information Sciences and Systems, pages 91–95, John Hopkins Univ., Baltimore,
1977.

[45] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002. Knowledge
representation and logic programming (El Paso, TX, 1999).

[46] L. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of
Combinatorial Theory, 1(3):385–393, 1966.

[47] L. H. Harper. Optimal assignments of numbers to vertices. J. Soc. Indust. Appl.
Math., 12:131–135, 1964.

[48] T. Jiang, D. Mubayi, A. Shastri, and D. B. West. Edge-bandwidth of graphs. SIAM
J. Discrete Math., 12(3):307–316 (electronic), 1999.

[49] T. Jiang, D. Mubayi, A. Shastri, and D. B. West. Edge-bandwidth of graphs. SIAM
J. Discrete Math., 12(3):307–316 (electronic), 1999.

[50] N. G. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6):345–350, 1992.

[51] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theoret. Comput.
Sci., 47(2):205–218, 1986.

[52] L. M. Kirousis and D. M. Thilikos. The linkage of a graph. SIAM J. Comput.,
25(3):626–647, 1996.

[53] D. Kuo and G. J. Chang. The profile minimization problem in trees. SIAM J. Com-
put., 23(1):71–81, 1994.

[54] Y. Lai and K. Williams. A survey of solved problems and applictions on bandwidth,
edge-sum and profile of graphs. Journal of Graph Theory, 2:75–94, 1999.

BEATCS no 86 THE EATCS COLUMNS

64

[55] T. Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16:465–
475, 1981.

[56] O. Lichtenstein and A. Pneuli. Chacking that the finite state concurrents programs
satisfy their linear specification. In Proceedings of the 12th ACM Symposioum of
Principles of Programming Languages, pages 97–107, 1997.

[57] D. R. Lick and A. T. White. k-degenerate graphs. Canad. J. Math., 22:1082–1096,
1970.

[58] Lin and Yuan. Profile minimization problem for matrices and graphs. Acta Mathe-
maticae Applicatae Sinica. English series, 10(1):107–112, 1994.

[59] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl.
Math., 36(2):177–189, 1979.

[60] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth.
SIAM Journal on Algebraic and Discrete Methods, 6(3):418–444, 1985.

[61] D. Matula. A min–max theorem for graphs with application to graph coloring. SIAM
Reviews, 10:481–482, 1968.

[62] D. W. Matula, G. Marble, and J. D. Isaacson. Graph coloring algorithms. In Graph
theory and computing, pages 109–122. Academic Press, New York, 1972.

[63] B. Mohar and Poljak. Eigenvalues in combinatorial optimization. In Combinatorial
and Graph-Theoretical Problems in Linear Algebra, volume 50 of IMA volumes in
Mathematics and its Applications, pages 107–151, 1993.

[64] R. H. Möhring. Graph problems related to gate matrix layout and PLA folding. In
Computational graph theory, volume 7 of Comput. Suppl., pages 17–51. Springer,
Vienna, 1990.

[65] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted trees.
Theoretical Computer Science, 58(1-3):209–229, 1988.

[66] C. Papadimitriou. The np-completeness of the bandwidth minimization problem.
Computing, 16:263–270, 1976.

[67] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
J. Comput. System Sci., 58(3):407–427, 1999. Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (Tucson, AZ, 1997).

[68] B. B. Plaut. Theoretical and algorithmic approaches to field-programmable gate
array-paritioning. PhD thesis, The University of Tennessee Nkoxville, 1999.

[69] N. Robertson and P. D. Seymour. Graph minors. I. excluding a forest. Journal of
Combinatorial Theory, series B, 35:39–61, 1983.

[70] N. Robertson and P. D. Seymour. Graph minors—a survey. In Surveys in combina-
torics 1985 (Glasgow, 1985), volume 103 of London Math. Soc. Lecture Note Ser.,
pages 153–171. Cambridge Univ. Press, Cambridge, 1985.

[71] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7(3):309–322, 1986.

The Bulletin of the EATCS

65

[72] K. Skodinis. Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. Journal of Algorithms, 47(1):40–59, 2003.

[73] G. Szekeres and H. S. Wilf. An inequality for the chromatic number of a graph. J.
Combinatorial Theory, 4:1–3, 1968.

[74] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-width.
Theoretical Computer Science, 137(2):253–268, 1995.

[75] D. M. Thilikos. Algorithms and obstructions for linear-width and related search
parameters. Discrete Applied Mathematics, 105:239–271, 2000.

[76] D. M. Thilikos and H. L. Bodlaender. Constructive linear time algorithms for
branchwidth. Technical Report UU-CS-2000-38, Dept. of Computer Science,
Utrecht University, 2000.

[77] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth II: Algorithms for partial
w-trees of bounded degree. Journal of Algorithms, To appear.

[78] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth I: A linear time fixed
parameter algorithm. Journal of Algorithms, To appear.

[79] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Constructive linear time algo-
rithms for small cutwidth and carving-width. In D. Lee and S.-H. Teng, editors,
Proc. 11th ISAAC 2000, volume 1969 of Lectures Notes in Computer Science, pages
192–203. Springer-Verlag, 2000.

[80] R. Thomas. Tree-decompositions of graphs. Lecture notes, School of Mathematics.
Georgia Institute of Technology, Atlanta, Georgia 30332, USA, 1996.

[81] W. Unger. The complexity of the approximation of the bandwidth problem. In
FOCS ’98: Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, page 82, Washington, DC, USA, 1998. IEEE Computer Society.

[82] J. van Leeuwen. Handbook of theoretical computer science (vol. A): algorithms and
complexity, chapter Graph algorithms, pages 525–631. MIT Press, Cambridge, MA,
USA, 1990.

