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Abstract: Immersion is a containment relation on graphs that is weaker
than topological minor. (Every topological minor of a graph is also its im-
mersion.) The graphs that do not contain any of the Kuratowski graphs
(K5 and K3,3) as topological minors are exactly planar graphs. We give a
structural characterization of graphs that exclude the Kuratowski graphs as
immersions. We prove that they can be constructed from planar graphs
that are subcubic or of branch-width at most 10 by repetitively applying
i-edge-sums, for i ∈ {1, 2, 3}. We also use this result to give a structural
characterization of graphs that exclude K3,3 as an immersion. C© 2014 Wiley

Periodicals, Inc. J. Graph Theory 78: 43–60, 2015
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1. INTRODUCTION

A famous graph-theoretic result is the theorem of Kuratowski that states that a graph G
is planar if and only if it does not contain K5 and K3,3 (also known as the Kuratowski
graphs) as a topological minor, that is, if K5 and K3,3 cannot be obtained from the graph
by applying vertex and edge removals and vertex dissolutions. It is well known that the
topological minor relation defines a (partial) ordering on the class of graphs.

In a similar way, the immersion and the minor orderings can be defined in graphs if
instead of vertex dissolutions we ask for edge lifts and edge contractions, respectively.
(For detailed definitions see Section 2.) Notice that the topological minor ordering is
stronger than the minor and the immersion orderings, in the sense, that if a graph G
contains a graph H as a topological minor then it also contains it as an immersion and as
a minor but the inverse direction does not always hold.

In the celebrated theory of Graph Minors, developed by Robertson and Seymour, it
was proven that both the immersion and minor orderings are well-quasi-ordered, that is,
there are no infinite sets of mutually noncomparable graphs [17, 18] according to these
orderings. This result has as a consequence the complete characterization of the graph
classes that are closed under taking immersions or minors in terms of forbidden graphs.
(A graph class is closed under taking immersions, respectively minors, if for any graph
that belongs to the graph class all of its immersions, respectively minors, also belong to
the graph class.) For example, by an extension of the Kuratowski theorem (also known
as Wagner’s theorem), it is also known that a graph is planar if and only if it does not
contain K5 and K3,3 as a minor.

Thus, a question that naturally arises is about the characterization of the structure
of a graph G that excludes some fixed graph H as an immersion or as a minor. While
this subject has been extensively studied for the minor ordering (see [2, 3, 6, 9, 13, 15,
16, 19–21]), the immersion ordering only recently attracted the attention of the research
community [1, 4, 8, 10, 12]. DeVos et al. [4] proved that for every positive integer t,
every simple graph of minimum degree at least 200t contains the complete graph on t
vertices as a (strong) immersion and Ferrara et al., given a graph H, provide a lower
bound on the minimum degree of any graph G in order to ensure that H is contained in G
as an immersion [7]. More recently, Wollan [23] proved a structure theorem for graphs
excluding complete graphs as immersions.
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In terms of graph colorings, Abu-Khzam and Langston [1] provided evidence sup-
porting the immersion ordering analog of Hadwiger’s Conjecture, that is, the conjecture
stating that if the chromatic number of a graph G is at least t, then G contains the complete
graph on t vertices as an immersion, and proved it for t ≤ 4. This conjecture is proven for
t = 5, 6 and t ≤ 7 by Lescure and Meyniel [14] and by DeVos et al. [5] independently.
The most recent result on colorings is an approximation of the list coloring number on
graphs excluding the complete graph as immersion [12].

Finally, in terms of algorithms, Grohe et al. gave a cubic time algorithm that de-
cides whether a fixed graph H is contained in the input graph G as immersion [10] and
Giannopoulou et al. provided sufficient conditions which, when given, make the com-
putation of the minimal graphs not belonging to a graph class closed under immersions
effective [8].

Going back to the subject of the structural characterization of the graphs that exclude
some fixed graph H as an immersion we notice that it is straightforward to find such
characterizations in the cases where H = Ki, j, where i ∈ [2] and j ∈ [3]. In particular,
the graphs that exclude K1,1 are exactly all edgeless graphs, and the graphs that exclude
K1,2 are disjoint unions of (possibly multiple) edges. It is also easy to verify, that the
connected graphs that exclude K1,3 are the subgraphs of the following graphs; the cycle of
length 3, where some of its edges may be multiple, the cycles of length at least four that
have no multiple edges and the paths on at least two vertices where only the edges that are
incident to the endpoints of the path may appear multiple times (for this notice that every
vertex of a graph that excludes K1,3 as an immersion has at most two neighbors). Note
here that the tree-width of graphs that exclude K1, j as an immersion is upper bounded by
j − 1.

Similarly, one can show that the the tree-width of the graphs that exclude K2,2 as an
immersion is upper bounded by 2. The reason for this is that if a graph excludes K2,2

as an immersion then it also has to exclude K2,2, and thus K4, as a (topological) minor.
Furthermore, after careful inspection one can show that these graphs have a much more
specific form; their biconnected components are either single edges (edges that have
multiplicity exactly 1), triangles that may have multiple edges, or edges of multiplicity
at least 2 and also no triangle shares a common vertex with a biconnected component
unless it is an edge of multiplicity 1, and no edge of multiplicity at least 2 shares a vertex
with more than one other edge of multiplicity at least 2.

Finally, for the case where a graph G excludes K2,3 as an immersion it is also easy to see
that the tree-width of G is upper bounded by 3. Indeed, first notice that the following four
graphs contain K2,3 as a minor; K5, the pentagonal prism, the octahedron, and Wagner’s
graph. This implies that if a graph G contains either one of those graphs as a minor, then
it also contains K2,3 as a minor. As the maximum degree of K2,3 is at most 3, a folklore
result ensures that the graph G also contains K2,3 as a topological minor (and therefore
as an immersion). Hence, any graph G that excludes K2,3 as an immersion, also excludes
the four graphs mentioned above as minors. From a well-known result [2] it follows that
the tree-width of G is upper bounded by 3.

In this note we characterize the structure of the graphs that do not contain K5 and K3,3 as
immersions. As these graphs already exclude Kuratowski graphs as topological minors,
they are planar. Additionally, we show that they have a more special structure: they
can be constructed by repetitively joining together simpler graphs, starting from either
graphs of small decomposability or by planar graphs with maximum degree at most 3.
In particular, we prove that a graph G that contains neither K5 nor K3,3 as immersions
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can be constructed by applying consecutive i-edge-sums, for i ∈ [3], to graphs that are
planar subcubic or of branch-width at most 10.

Furthermore, we show that our main result can be employed to obtain a structural
characterization for the graphs that only exclude K3,3 as an immersion.

2. DEFINITIONS

For every integer n, we let [n] = {1, 2, . . . , n}. All graphs we consider are finite, undi-
rected, and loopless but may have multiple edges. Given a graph G we denote byV (G) and
E(G) its vertex set and edge set, respectively. Given a set F ⊆ E(G) (resp. S ⊆ V (G)),
we denote by G \ F (resp. G \ S) the graph obtained from G if we remove the edges in
F (resp. the vertices in S along with their incident edges). We denote by C(G) the set
of the connected components of G. Given a vertex v ∈ V (G), we also use the notation
G \ v = G \ {v}. The neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of
edges in G that are adjacent to v. We denote by EG(v) the set of the edges of G that are
incident with v. The degree of a vertex v ∈ V (G), denoted by degG(v), is the number of
edges that are incident with it, i.e. degG(v) = |EG(v)|. Notice that, as we are dealing with
multigraphs, |NG(v)| ≤ degG(v). The minimum degree of a graph G, denoted by δ(G),
is the minimum of the degrees of the vertices of G, that is, δ(G) = minv∈V (G) degG(v).
A graph is called subcubic if all its vertices have degree at most 3. We also denote by Kr

the complete graph on r vertices and by Kr,q the complete bipartite graph with r vertices
in its one part and q in the other. Let P be a path and v, u ∈ V (P). We denote by P[v, u]
the subpath of P with end-vertices v and u.

We say that a graph H is a subgraph of a graph G, denoted by H ⊆ G, if H can be
obtained from G by removing edges or vertices. An edge cut in a graph G is a nonempty
set F of edges that belong to the same connected component of G and such that G \ F
has more connected components than G. If G \ F has one more connected component
than G then we say that F is a minimal edge cut. Let F be an edge cut of a graph G and
let G′ be the connected component of G containing the edges of F . We say that F is an
internal edge cut if it is minimal and each of the two connected components of G′ \ F
contains at least two vertices. An edge cut is also called i-edge-cut if it has cardinality
≤ i.

In this article, we mostly deal with planar graphs, that is, graphs that are embedded in
the sphere S0. We call such a graph, along with its embedding, �0-embeddable graph. Let
C1, C2 be two disjoint cycles in a �0-embeddable graph G. Let also �i be the open disk
of S0 \ Ci that does not contain points of C3−i, i ∈ [2]. The annulus between C1 and C2 is
the set S0 \ (�1 ∪ �2) and we denote it by A[C1,C2]. Notice that A[C1,C2] is a closed
set. Let A = {C1, . . . ,Cr} be a collection of cycles of a S0-embeddable graph G. We say
that A is nested if for every i ∈ [r − 2], A[Ci,Ci+1] ∪ A[Ci+1,Ci+2] = A[Ci,Ci+2].

Contractions and minors. The contraction of an edge e = {x, y} from G is the removal
from G of all edges incident with x or y and the insertion of a new vertex ve that is made
adjacent to all the vertices of (NG(x) \ {y}) ∪ (NG(y) \ {x}) such that edges corresponding
to the vertices in (NG(x) \ {y}) ∩ (NG(y) \ {x}) increase their multiplicity, that is, if there
was a vertex v ∈ (NG(x) \ {y}) ∩ (NG(y) \ {x}), k edges joining v and x and, l edges
joining v and y then in the resulting graph there will be k + l edges joining v with ve.
Finally, remove any loops resulting from this operation. Given two graphs H and G, we
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FIGURE 1. The graphs G1 and G2 before the edge sum.

FIGURE 2. The graph obtained after the edge sum.

say that H is a contraction of G, denoted by H ≤c G, if H can be obtained from G after
a (possibly empty) series of edge contractions. Moreover, H is a minor of G if H is a
contraction of some subgraph of G.

Topological minors. A subdivision of a graph H is any graph obtained after replacing
some of its edges by paths between the same endpoints. A graph H is a topological minor
of G (denoted by H ≤t G) if G contains as a subgraph some subdivision of H.

Immersions. The lift of two edges e1 = {x, y} and e2 = {x, z} to an edge e is the
operation of removing e1 and e2 from G and then adding the edge e = {y, z} in the
resulting graph. We say that a graph H can be (weakly) immersed in a graph G (or is an
immersion of G), denoted by H ≤im G, if H can be obtained from a subgraph of G after
a (possibly empty) sequence of edge lifts. Equivalently, we say that H is an immersion
of G if there is an injective mapping f : V (H) → V (G) such that, for every edge {u, v}
of H, there is a path from f (u) to f (v) in G and for any two distinct edges of H the
corresponding paths in G are edge-disjoint, that is, they do not share common edges.
Additionally, if these paths are internally disjoint from f (V (H)), then we say that H is
strongly immersed in G (or is a strong immersion of G). The injective mapping f together
with the edge-disjoint paths is called a model of H in G defined by f.

Edge sums. Let G1 and G2 be graphs, let v1, v2 be vertices of V (G1) and V (G2)

respectively such that degG(v1) = degG(v2), and consider a bijection σ : EG1 (v1) →
EG2 (v2), where EG1 (v1) = {ei

1 | i ∈ [k]}. We define the k-edge sum of G1 and G2 on v1

and v2 as the graph G obtained if we take the disjoint union of G1 and G2, identify v1

with v2, and then, for each i ∈ {1, . . . , k}, lift ei
1 and σ (ei

1) to a new edge ei and remove
the vertex v1. (See Figs. 1 and 2.)

Let G be a graph, let F be a minimal i-edge cut in G, and let G′ be the connected
component of G that contains F . Let also C1 and C2 be the two connected components of
G′ \ F . We denote by C′

i the graph obtained from G′ after contracting all edges of C′
3−i

to a single vertex vi, i ∈ [2]. We say that the graph consisting of the disjoint union of the
graphs in C(G) \ {C1,C2} ∪ {C′

1,C′
2} is the F-split of G and we denote it by G|F . Notice

that if G is connected and F is a minimal i-edge cut in G, then G is the result of the i-edge
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sum of the two connected components G1 and G2 of C(G|F ) on the vertices v1 and v2.
From Menger’s Theorem we obtain the following.

Observation 2.1. Let k be a positive integer. If G is a connected graph that does
not contain an internal i-edge cut, for some i ∈ [k − 1] and v, v1, . . . , vi ∈ V (G) are
distinct vertices such that degG(v) ≥ i then there exist i edge-disjoint paths from v to
v1, v2, . . . , vi.

Lemma 2.2. If G is a {K5, K3,3}-immersion free connected graph and F is a minimal
internal i-edge cut in G, for i ∈ [3], then both connected components of G|F are {K5, K3,3}-
immersion free.

Proof. For contradiction assume that G is a {K5, K3,3}-immersion free connected
graph and one of the connected components of G|F , say C′

1, contains K5 or K3,3 as
an immersion, where F is a minimal internal i-edge cut in G, i ∈ [3]. Assume that
H ∈ {K5, K3,3} is immersed in C′

1 and let f : V (H) → V (C′
1) be a model of H in C′

1. Let
also v1 be the newly introduced vertex of C′

1. Notice that if v1 /∈ f (V (H)) and v1 is not
an internal vertex of any of the edge-disjoint paths between the vertices in f (V (H)),
then f is a model of H in C1. As C1 ⊆ G, f is a model of H in G, a contradiction to the
hypothesis. Thus, we may assume that either v1 ∈ f (V (H)) or v1 is an internal vertex in
at least one of the edge-disjoint paths between the vertices in V (H). Note that, as neither
K5 nor K3,3 contain vertices of degree 1, degC′

1
(v1) = 2 or degC′

1
(v1) = 3.

We first exclude the case where v1 /∈ f (V (H)), that is, v1 only appears as an internal
vertex on the edge-disjoint paths. Observe that, as degC′

1
(v1) ≤ 3, v1 belongs to exactly

one path P in the model defined by f . Let v1
1 and v2

1 be the neighbors of v1 in P. Recall
that, by the definition of an internal F-split, there are vertices v1

2 and v2
2 in C2 such that

{v1
1, v1

2}, {v1
2, v2

2} ∈ E(G). Furthermore, as C2 is connected, there exists a (v1
2, v2

2)-path P′

in C2. Therefore, be substituting the subpath P[v1
1, v2

1] by the path defined by the union
of the edges {v1

1, v1
2}, {v1

2, v2
2} ∈ E(G) and the path P′ in C2 we obtain a model of H in G

defined by f , a contradiction to the hypothesis.
Thus, the only possible case is that v1 ∈ f (V (H)). As δ(K5) = 4 and degC′

1
(v1) ≤ 3, f

defines a model of K3,3 in C′
1. Let v1

1, v2
1 and v3

1 be the neighbors of v1 in C′
1. We claim that

there is a vertex v in C2 and edge-disjoint paths from v to v1
1, v2

1, v3
1 in G, thus proving that

there exists a model of K3,3 in G as well, a contradiction to the hypothesis. By the definition
of an internal F-split, there are vertices v1

2, v2
2 , and v3

2 in C2 such that {vi
1, vi

2} ∈ E(G),
i ∈ [3]. Recall that C2 is connected. Therefore, if for every vertex v ∈ C2, degC2

(v) ≤ 2,
C2 contains a path whose endpoints, say u and u′ belong to {v1

2, v2
2, v3

2} and internally
contains the vertex in {v1

2, v2
2, v3

2} \ {u, u′}, say u′′. Then it is easy to verify that u′′ satisfies
the conditions of the claim. Assume then that there is a vertex v ∈ C2 of degree at least
3. Let G′ be the graph obtained from G after removing all vertices in V (C1) \ {v1

1, v2
1, v3

1}
and adding a new vertex that we make it adjacent to the vertices in {v1

1, v2
1, v3

1}. As G
does not contain an internal i-edge cut, i ∈ [2], G′ does not contain an internal i-edge
cut, i ∈ [2]. Therefore, from Observation 2.1 and the fact that v /∈ {v1

1, v2
1, v3

1}, we obtain
that there exist three edge-disjoint paths from v to v1

1, v2
1, v3

1 in G′ and thus in G. This
completes the proof of the claim and the lemma follows. �

Let r and q be integers such that r ≥ 3 and q ≥ 1. A (r, q)-cylinder, denoted by Cr,q,
is the Cartesian product of a cycle on r vertices and a path on q vertices. (See, for
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FIGURE 3. A (4,5)-railed annulus and a (4,5)-cylinder.

example, Fig. 3.) A (r, q)-railed annulus in a graph G is a pair (A,W ) such that A
is a collection of r nested cycles C1,C2, . . . ,Cr that are all met by a collection W of
q paths P1, P2, . . . , Pq (called rails) in such a way that the intersection of a rail and a
path is always connected, that is, it is a (possibly trivial, that is, consisting of only one
vertex) path. (See, e.g. Fig. 3.) Notice that given a graph G embedded in the sphere and
a (k, h)-cylinder ((r, q)-railed annulus, respectively) of G, then any two cycles of the
(k, h)-cylinder ((r, q)-railed annulus, respectively) define an annulus between them.

Branch decompositions. A branch decomposition of a graph G is a pair B = (T, τ ),
where T is a ternary tree and τ : E(G) → L(T ) is a bijection of the edges of G to the leaves
of T , denoted by L(T ). Given a branch decomposition B, we define σB : E(T ) → N as
follows.

Given an edge e ∈ E(T ) let T1 and T2 be the trees in T \ {e}. Then σB(e) = |{v |
there exist ei ∈ τ−1(L(Ti)), i ∈ [2], such that e1 ∩ e2 = {v}}|. The width of a branch de-
composition B is maxe∈E(T ) σB(e) and the branch-width of a graph G, denoted by bw(G),
is the minimum width over all branch decompositions of G. When |V (T )| ≤ 1 the width
of the branch decomposition is defined to be 0.

Theorem 2.3 ([11]). If G is a planar graph and k, h are integers with k ≥ 3 and
h ≥ 1 then G either contains the (k, h)-cylinder as a minor or has branch-width at most
k + 2h − 2.

We now prove the following.

Lemma 2.4. If G is a planar graph of branch-width at least 11, then G contains a
(4,4)-railed annulus as a subgraph.

Proof. Let G be a planar graph of branch-width at least 11. Then by Theorem 2.3, G
contains (4, 4)-cylinder as a minor. By the definition of the minor relation, G contains a
(4, 4)-railed annulus as a subgraph. �

Confluent paths. Let G be a graph embedded in some surface � and let x ∈ V (G). A
disk around x is an open disk �x with the property that each point in �x ∩ G is either x or
belongs to the edges incident with x. Let P1 and P2 be two edge-disjoint paths in G and x
be a vertex of V (P1) ∩ V (P2) that is not an endpoint of P1 or P2. From now on, we restrict
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the disks �x to be such that �x \ P1 and �x \ P2 have exactly two connected components
each. We say that P1 and P2 are confluent if for every x ∈ V (P1) ∩ V (P2), that is not an
endpoint of P1 or P2, and for every disk �x around x, one of the connected components
of the set �x \ P1 does not contain any point of P2. We also say that a collection of paths
is confluent if the paths in it are pairwise confluent.

Moreover, given two edge-disjoint paths P1 and P2 in G we say that a vertex x ∈
V (P1) ∩ V (P2) that is not an endpoint of P1 or P2 is an overlapping vertex of P1 and P2

if there exists a �x around x such that both connected components of �x \ P1 contain
points of P2. For a family of paths P , a vertex v of a path P ∈ P is called an overlapping
vertex of P if there exists a path P′ ∈ P such that v is an overlapping vertex of P and P′.

Finally, given two paths P1 and P2 that share a common endpoint v, we say that they
are well-arranged if their common vertices appear in the same order in both paths.

3. PRELIMINARY RESULTS ON THE CONFLUENCE OF PATHS

Lemma 3.1. Let G be a graph and v, v1, v2 ∈ V (G) such that there exist edge-disjoint
paths P1 and P2 from v to v1 and v2 , respectively. If the paths P1 and P2 are not well
arranged then there exist edge-disjoint paths P′

1 and P′
2 from v to v1 and v2 respectively

such that E(P′
1) ∪ E(P′

2) � E(P1) ∪ E(P2).

Proof. Let U = V (P1) ∩ V (P2) = {v, u1, u2, . . . , uk}, where (v, u1, u2, . . . , uk) is the
order that the vertices in U appear in P1 and, (v, ui1, ui2, . . . , uik ) is the order that they
appear in P2. As the paths are not well arranged there exists λ ∈ [k] such that uλ �= uiλ .
Without loss of generality assume that λ is the smallest such integer. Also, without loss
of generality assume that uλ < uiλ . We define

P′
1 = P1[v, uλ−1] ∪ P2[uλ−1, uiλ] ∪ P1[uiλ , v1]

P′
2 = P2[v, uλ−1] ∪ P1[uλ−1, uλ] ∪ P2[uλ, v2].

and observe that P′
1 and P′

2 satisfy the desired properties. (For an example, see
Fig. 4.) �

Before proceeding to the statement and proof of the next proposition we need the
following definition. Given a collection of paths P in a graph G, we define the function
fP :

⋃
P∈P V (P) → N such that fP (x) is the number of pairs of paths P, P′ ∈ P for

which x is an overlapping vertex. Let

g(P ) =
∑

x∈⋃
P∈P V (P)

fP (x).

Notice that fP (x) ≥ 0 for every x ∈ ⋃
P∈P V (P) and thus g(P ) ≥ 0. Observe also that

g(P ) = 0 if and only if P is a confluent collection of paths.
Lemma 3.1 allows us to prove the main result of this section. We state the result for

general surfaces as the proof for this more general setting does not have any essential
difference than the case where � is the sphere S0.

Proposition 3.2. Let r be a positive integer. If G is a graph embedded in a surface
�, v, v1, v2, . . . , vr ∈ V (G) and P is a collection of r edge-disjoint paths from v to
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FIGURE 4. An example of the procedure in Lemma 3.1.

v1, v2, . . . , vr in G, then G contains a confluent collection P ′ of r well-arranged edge-
disjoint paths from v to v1, v2, . . . , vr where |P ′| = |P| and such that E(

⋃
P∈P ′ P) ⊆

E(
⋃

P∈P P).

Proof. Let Ĝ be the spanning subgraph of G induced by the edges of the paths in
P and let G′ be a minimal spanning subgraph of Ĝ that contains a collection of r edge-
disjoint paths from v to v1, v2, . . . , vr. Let also P ′ be the collection of r edge-disjoint
paths from v to v1, v2, . . . , vr in G′ for which g(P ′) is minimum. It is enough to prove
that g(P ′) = 0.

For a contradiction, we assume that g(P ′) > 0 and we prove that there exists a col-
lection P̃ of r edge-disjoint paths from v to v1, v2, . . . , vr in G′ such that g(P̃) < g(P ′).
As g(P ′) > 0, then there exists a path, say P1 ∈ P ′, that contains an overlapping vertex
u. Let z1 be the endpoint of P1 which is different from v. Without loss of generality
we may assume that u is the overlapping vertex of P1 that is closer to z1 in P1, that is,
there is no other overlapping vertex vertex of P1 that is also a vertex of P1[u, z1]. Then
there is a (v, z2)-path P2 ∈ P ′ such that u is an overlapping vertex of P1 and P2. Let
P̃i = P3−i[v, u] ∪ Pi[u, zi], i ∈ [2] and P̃ = P for every P ∈ P ′ \ {P1, P2}. As Lemma 3.1
and the edge minimality of G′ imply that the paths P1 and P2 are well arranged, we obtain
that P̃i is a path from v to vi, i ∈ [2]. Let P̃ be {P̃ | P ∈ P ′}. It is easy to verify that P̃
is a collection of r edge-disjoint paths from v to v1, v2, . . . , vr. We will now prove that
g(P̃ ) < g(P ′).

First notice that if x �= u, then fP̃ (x) = fP ′ (x). Thus, it is enough to prove that fP̃ (u) <

fP ′ (u). Observe that if {P, P′} ⊆ P ′ \ {P1, P2} and u is an overlapping vertex of P and P′

then u is also an overlapping vertex of P̃ and P′. Furthermore, while u is an overlapping
vertex in the case where {P, P′} = {P1, P2}, it is not an overlapping vertex of P̃1 and P̃2. It
remains to examine the case where |{P, P′} ∩ {P1, P2}| = 1. In other words, we examine
the case where one of the paths P and P′, say P′, is P1 or P2, and P ∈ P ′ \ {P1, P2}. Let

Journal of Graph Theory DOI 10.1002/jgt



52 JOURNAL OF GRAPH THEORY

FIGURE 5. The paths P (black), P1 (red - dotted) and P2 (blue - dashed) and the
paths P̃1 (blue - dashed) and P̃2 (red - dotted).

FIGURE 6. The paths P (black), P1 (red - dotted) and P2 (blue - dashed) and the
paths P̃1 (blue - dashed) and P̃2 (red - dotted).

�u be a disk around u and �1, �2 be the two distinct disks contained in the interior of
�u after removing P. We distinguish the following cases.

Case 1. u is neither an overlapping vertex of P1 and P, nor of P2 and P (see Fig. 5).

Then it is easy to see that the same holds for the pairs of paths P̃1 and P and, P̃2 and P.
Indeed, notice that for every i ∈ [2], Pi intersects exactly one of �1 and �2. Furthermore,
as u is an overlapping vertex of P1 and P2, both paths intersect the same disk. From the
observation that P1 ∪ P2 = P̃1 ∪ P̃2, we obtain that u is neither an overlapping vertex of
P̃1 and P nor of P̃2 and P.

Case 2. u is an overlapping vertex of Pi and P but not of P3−i and P, i ∈ [2] (see Fig. 6).

Notice that exactly one of the following holds.

� Pi[v, u] ∪ P3−i[v, u] intersects exactly one of the disks �1 or �2, say �1. Then
Pi[u, zi] intersects �2 and P3−i[u, z3−i] intersects �1. Therefore, it is easy to see
that, u is not an overlapping vertex of Pi and P anymore but becomes an overlapping
vertex of P̃3−i and P.

� Pi[u, zi] ∪ P3−i[u, z3−i] intersects exactly one of the disks �1 or �2, say �1. Then
Pi[v, u] intersects �2 and P3−i[v, u] intersects �1. Therefore, it is easy to see that
u remains an overlapping vertex of P̃i and P and does not become an overlapping
vertex of P3−i and P.

Case 3. u is an overlapping vertex of both P1 and P and, P2 and P (see Fig. 7).

As above, exactly one of the following holds.
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FIGURE 7. The paths P (black), P1 (red - dotted) and P2 (blue - dashed) and the
paths P̃1 (blue - dashed) and P̃2 (red - dotted).

� P1[v, u] ∪ P2[v, u] intersects exactly one of the disks �1 or �2, say �1. Then
P1[u, z1] ∪ P2[u, z2] intersects �2. It follows that u is an overlapping vertex of both
P̃1 and P and, P̃2 and P.

� P1[v, u] ∪ P2[u, z2] intersects exactly one of the disks �1 or �2, say �1. Then
P1[u, z1] ∪ P2[v, u] intersects �2. It follows that u is neither an overlapping vertex
of P̃1 and P nor of P̃2 and P.

From the above cases we obtain that fP̃ (u) < fP ′ (u) and therefore g(P̃ ) < g(P ′),
contradicting the choice of P ′. This completes the proof of the proposition. �

4. A DECOMPOSITION THEOREM

In this section, we give a decomposition theorem for (K5, K3,3)-immersion free graphs
and use it to obtain as a corollary a decomposition theorem for K3,3-immersion free
graphs.

A. The structure of (K5, K3,3)-immersion free graphs

We first prove the following decomposition theorem for (K5, K3,3)-immersion free graphs.

Theorem 4.1. If G is a graph not containing K5 or K3,3 as an immersion, then G can be
constructed by applying consecutive i-edge sums, for i ∈ [3], to graphs that are planar
and are subcubic or have branch-width at most 10.

Proof. Observe first that a (K5, K3,3)-immersion-free graph is also (K5, K3,3)-
topological-minor-free, therefore, from Kuratowski’s theorem, G is planar. Applying
Lemma 2.2, we may assume that G is a (K5, K3,3)-immersion-free graph G without any
internal i-edge cut, i ∈ [3]. It is now enough to prove that G is either subcubic or has
branch-width at most 10. For a contradiction, we assume that bw(G) ≥ 11 and that G
contains some vertex v of degree at least 4. Our aim is to prove that G contains K3,3 as an
immersion. First, let Gs be the graph obtained from G after subdividing all of its edges
once. Notice that Gs contains K3,3 as an immersion if and only if G contains K3,3 as an
immersion. Hence, from now on, we want to find K3,3 in Gs as an immersion.

From Lemma 2.4, G and thus Gs, contains a (4, 4)-railed annulus as a subgraph.
Observe then that Gs also contains as a subgraph a (2, 4)-railed annulus such that the
vertex v of degree at least 4 does not belong to the annulus between its cycles. (Fig. 8
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FIGURE 8. The (4, 4)-railed annulus and the vertex v .

depicts the case where v is inside the annulus between the second and the third cycle.)
We denote by C1 and C2 the nested cycles and by R1, R2, R3, and R4 the rails of the
aforementioned (2, 4)-railed annulus. Let A be the annulus between C1 and C2. Without
loss of generality we may assume that C1 separates v from C2 and that A is edge-minimal,
that is, there is no other annulus A′ such that |E(A′)| < |E(A)| and A′ ⊆ A.

Let now G1, G2, . . . , Gp be the connected components of A \ (C1 ∪ C2).

Claim 1. For every i ∈ [p] and every j ∈ [2], |NGs (V (Gi)) ∩ V (Cj)| ≤ 1.

Proof of Claim 1. Assume the contrary. Then there is a cycle C′
j such that C′

j and
Cj mod 2+1 define an annulus A′ with A′ ⊆ A and |E(A′)| < |E(A)|; a contradiction to the
edge-minimality of the annulus A. �

For every l ∈ [p], we denote by ul
1 and ul

2 the unique neighbor of Gk in C1 and C2,
respectively (whenever they exist). We call the connected components of A \ (C1 ∪ C2)

that have both a neighbor in C1 and a neighbor in C2 substantial. Let

C = {
Ĝi = G

[
V (Gi) ∪ {

ui
1, ui

2

}]∣∣Gi is a substantial connected component
}
.

That is, C is the set of graphs induced by the substantial connected components and their
neighbors in the cycles C1 and C2. Note that every edge of G has been subdivided in
Gs and thus every edge e ∈ G for which e ∩ C1 �= ∅ and e ∩ C2 �= ∅ corresponds to a
substantial connected component in C.

We now claim that there exist four confluent edge-disjoint paths P1, P2, P3, and P4

from v to C2 in Gs. Indeed, recall first that G, and hence Gs, does not contain an internal
i-edge cut, i ∈ [3]. Moreover, C2 contains at least four vertices, say wi, i ∈ [4]. Then, as
degGs (v) ≥ 4, Observation 2.1 yields that there exist four edge-disjoint paths P1, P2, P3,
and P4 from v to w1, w2, w3, and w4. Finally, from Proposition 3.2, we may assume that
P1, P2, P3, and P4 are confluent.

Let P′
i be the subpath Pi[v, zi] of Pi, where zi is the vertex in V (Pi) ∩ V (C2) whose

distance from v in Pi is minimum, i ∈ [4]. Recall that all edges of G have been subdivided
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in Gs. This implies that there exist four (possibly not disjoint) graphs in C, say Ĝ1, Ĝ2, Ĝ3,
and Ĝ4 such that zi = ui

2, i ∈ [4]. We distinguish two cases.

Case 1. The graphs Ĝ1, Ĝ2, Ĝ3, and Ĝ4 are vertex disjoint.
This implies that the endpoints of P′

1, P′
2, P′

3, and P′
4 in C2 are disjoint. Let G′ be the

graph induced by the cycles C1,C2 , and the paths P′
1, P′

2, P′
3, P′

4 and let P̂1, P̂2, P̂3, and P̂4

be confluent edge-disjoint paths from v to u1
2, u2

2, u3
2, and u4

2 in G′ such that

(i)
∑{e | e ∈ ⋃

i∈[4] E(P̂i) \ E(A)} is minimum, that is, the number of the edges of
the paths that are outside of A is minimum, and

(ii) subject to (i),
∑{e | e ∈ ⋃

i∈[4] E(P̂i)} is minimum.

Let also Ĝ be the graph induced by C1, C2, P̂1, P̂2, P̂3, and P̂4. From now on we
work toward showing that Ĝ contains K3,3 as an immersion. For every i ∈ [4] we call a
connected component of P̂i ∩ C1 nontrivial if it contains at least an edge.

Claim 2. For every i ∈ [4], P̂i ∩ C1 contains at most one nontrivial connected component
Qi and ui

1 is an endpoint of Qi.

Proof of Claim 2. First, notice that any path from v to zi in Ĝ contains ui
1 and

thus, ui
1 ∈ V (P̂i). Observe now that P̂i[ui

1, ui
2] is a subpath of P̂i whose internal vertices

do not belong to C1, thus if ui
1 belongs to a nontrivial connected component Qi of

P̂i ∩ C1, then ui
1 is an endpoint of Qi. We will now prove that any nontrivial connected

component of P̂i ∩ C1 contains ui
1. Assume to the contrary that there exists a nontrivial

connected component P of P̂i ∩ C1 that does not contain ui
1. Let u be the endpoint of P

for which distP̂i
(u, ui

1) is minimum. Let also u′ be the vertex in V (P̂i[u, ui
1] ∩ C1) \ {u}

such that distP̂i
(u, u′) is minimum. Let P′ be the subpath of C1 with endpoints u, u′ such

that P̂i[u, u′] ∪ P′ is a cycle C with C ∩ P = {u}. We further assume that the interior of
P̂i[u, u′] ∪ P′ is the open disk that does not contain any vertices of P̂i. We will prove that for
every path P̂j, j ∈ [4], P̂j ∩ P′ ⊆ {u, u′}. As this trivially holds for j = i we will assume
that j �= i. Observe that, for every j ∈ [4], P̂j[v, u j

1] ∩ A ⊆ C1 as for every connected
component H of A \ (C1 ∪ C2) it holds that |NGs (V (H)) ∩ V (Cj)| ≤ 1. Furthermore,
observe that P̂i[u, u′] ∪ P′ is a separator in Ĝ. This implies that v does not belong to the
interior of P̂i[u, u′] ∪ P′. Thus, if there is a vertex z such that z ∈ P̂j ∩ (P′ \ {u, u′}), j �= i,
there is a vertex z′ ∈ P̂j ∩ P̂i[u, u′], a contradiction to the confluence of the paths. We may
then replace P̂i[u, u′] by P′, a contradiction to (i). �

Let us denote by vi the endpoint of Qi that is different from ui
1 if Qi is a nontrivial con-

nected component of P̂i ∩ C1, i ∈ [4]. Observe that P̂i = P̂i[v, vi] ∪ Qi ∪ P̂i[ui
1, ui

2], where
we let Qi = ∅ in the case where P̂i ∩ C1 is edgeless, i ∈ [4]. We denote by Ti the subpath of
C1 with endpoints ui

1 and ui mod 4+1
1 such that Ti ∩ {{u1

1, u2
1, u3

1, u4
1} \ {ui

1, ui mod 4+1
1 }} = ∅,

i ∈ [4]. From the confluence of the paths P̂i and the fact that ui
1 is an endpoint of Qi it

follows that Qi ⊆ Ti or Qi ⊆ Ti−1, i ∈ [4] where Ti−1 = T3+i mod 4 if i − 1 /∈ [4].

Claim 3. There exists an i0 ∈ [4] such that Ti0 ∩ (Qi0, Qi0 mod 4+1) �= Ti0 .

Proof of Claim 3. Toward a contradiction assume that for every i ∈ [4],
it holds that Ti ∩ (Qi, Qi mod 4+1) = Ti. It follows that either Qi = Ti = P̂i[vi, ui

1],
i ∈ [4], or Qi mod 4+1 = Ti, i ∈ [4]. Notice then that either vi = ui mod 4+1

1 , i ∈
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FIGURE 9. The graphs H1 and H2.

[4], or vi mod 4+1 = ui
1, i ∈ [4], respectively. Then, we let P̃i mod 4+1 = P̂i[v, vi] ∪

P̂i mod 4+1[ui mod 4+1
1 , ui mod 4+1

2 ], or P̃i = P̂i mod 4+1[v, vi mod 4+1] ∪ P̂i[ui
1, ui

2], i ∈ [4], re-
spectively. Notice that the paths P̃1, P̃2, P̃3, and P̃4 are confluent edge-disjoint paths
from v to u1

2, u2
2, u3

2, and u4
2 such that ∪i∈[4] P̃i is a proper subgraph of ∪i∈[4] P̂i. There-

fore, we have that
∑{e | e ∈ ⋃

i∈[4] E(P̃i)} <
∑{e | e ∈ ⋃

i∈[4] E(P̂i)}, a contradiction
to (ii). �

It is now easy to see that Ĝ, and thus G, contains K3,3 as an immersion. Indeed,
first remove all edges of C1 \ Ti0 that do not belong to any path P̂i, i ∈ [4]. Then lift
the paths P̂i to a single edge where i �= i0, i0 mod 4 + 1. Now let ui0 (ui0 mod 4+1, re-
spectively) be the vertex of Ti0 that belongs to P̂i0 (P̂i0 mod 4+1, respectively) whose dis-
tance from v in P̂i0 (P̂i0 mod 4+1, respectively) is minimum and lift the paths P̂i0 [v, ui0 ]
and P̂i0 mod 4+1[v, ui0 mod 4+1] to single edges. Notice now that Ĝ contains the graph
H2 depicted in Fig. 9 as an immersion. Thus, we get that Ĝ contains K3,3 as an
immersion.

Case 2. There exist i1, i2 ∈ [4] such that Ĝi1 and Ĝi2 are not vertex disjoint.

Let Gμ be the graph induced by the cycles C1 and C2 and the graphs in C ′. We will
show that Gμ contains K3,3 as an immersion. First recall that the common vertices of
Ĝi1 and Ĝi2 lie in at least one of the cycles C1 and C2. Without loss of generality as-
sume that they have a common vertex in C1. Recall that, as every edge of G has been
subdivided in Gs, there does not exist an edge e ∈ Gs such that e ∩ Cj �= ∅, j ∈ [2].
This observation and the fact that there exist four rails between C1 and C2 imply that
there exist at least four graphs in C ′ that are vertex disjoint. It follows that there exist
three vertex-disjoint graphs, say Ĝi3, Ĝi4, Ĝi5 , in C ′ with the additional properties that
Ĝi2+r ∩ Ĝi1 ∩ C1 = ∅, r ∈ [3], and that at most one of the Ĝi3, Ĝi4, Ĝi5 has a common
vertex with one of the Ĝi1, Ĝi2 . Note here that none of the Ĝi3, Ĝi4, Ĝi5 can have a
common vertex with one of the Ĝi1, Ĝi2 in C2, in the case where Ĝi1 ∩ Ĝi2 ∩ C2 �= ∅.
It is now easy to see that Gμ contains H1 or (H2, respectively) depicted in Figure 9
as a topological minor when Ĝi1 ∩ Ĝi2 ∩ C2 �= ∅ (Ĝi1 ∩ Ĝi2 ∩ C2 = ∅, respectively). Ob-
serve now that H1 contains H2 as an immersion. Moreover, notice that H2 contains K3,3

as an immersion. Thus Gμ, and therefore Gs and G, contain K3,3 as an immersion, a
contradiction.
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B. A decomposition theorem for K3,3-immersion free graphs

In this subsection, we show how we can obtain a decomposition theorem for K3,3-
immersion free graphs from the decomposition theorem of the previous subsection. We
first need the following definition.

Clique-sums. Let G1 and G2 be two graphs with disjoint vertex sets, let k ≥ 0 be an
integer, and let Xi ⊆ V (G) be a set of pairwise adjacent vertices in Gi of size k, i ∈ [2]. Let
G′

i be the graph obtained from Gi after deleting a (possibly empty) set of edges whose both
endpoints belong to Xi. If f : X1 → X2 is a bijection, the graph G = G′

1 ⊕k G′
2 obtained

from the union of G′
1 and G′

2 by identifying x with f (x), x ∈ X1, is called a k-clique-sum
of G1 and G2.

Theorem 4.2 ([22]). A graph G does not contain K3,3 as a minor if and only if it can be
constructed from planar graphs and K5 by applying i-clique-sums, i ∈ {0} ∪ [2].

Let us note here that the analog of Lemma 2.2 for K3,3-immersion free graphs and
i-clique-sums, i ∈ {0} ∪ [2], also holds.

Lemma 4.3. If G is a K3,3-immersion free graph such that there exist G′
1 and G′

2 with
G = G′

1 ⊕i G′
2, i ∈ [2], that is, if G can be obtained from G′

1 and G′
2 by applying an

i-clique-sum, i ∈ {0} ∪ [2], then there also exist K3,3-immersion free graphs G1 and G2

such that G = G1 ⊕i G2, i ∈ [2].

Proof. Notice first that the graph G is not 3-connected as the vertices occurring in the i-
clique-sum, i ∈ {0} ∪ [2] form a separator of G. Notice also that the lemma trivially holds
in the case where G is not connected as it can be considered as the 0-clique-sum of the
graph induced by exactly one of its connected components and the graph induced by the
rest of its connected components. Thus, notice that it is enough to prove the lemma for the
case where G is either 1-connected or biconnected. We assume first that G is 1-connected
and x is a cut-vertex of G. Let C1, C2, . . . , Cl , be the connected components of G \ {x} and
notice that G = G1 ⊕1 G2, where G1 = G[V (C1) ∪ {x}] and G2 = G[∪l

i=2V (Ci) ∪ {x}].
We claim that G1 and G2 satisfy the requirements of the lemma. Indeed, if K3,3 is an
immersion of G1 or G2 then, as G1 and G2 are subgraphs of G, K3,3 is also an immersion
of G.

Finally, let us consider the case where the graph G is biconnected. We denote by
x and y the vertices of a separator of G of minimum size. Let C1, C2, . . . , Cl be the
connected components of G \ {x, y}. Let also G1 be the graph induced by V (C1) ∪
{x, y} and containing the edge {x, y} (if {x, y} /∈ E(G)) and G2 be the graph induced by
∪l

i=2V (Ci) ∪ {x, y} again containing the edge {x, y} (if {x, y} /∈ E(G)). We claim that the
lemma holds for the graphs G1 and G2. Indeed, to the contrary, let us assume that G1

contains K3,3 as an immersion. Observe that if there is a model h of K3,3 in G∗
1, where

G∗
1 is the graph obtained from G1 after the removal of the edge {x, y}, then as G∗

1 is a
subgraph of G, h is also a model of K3,3 in G, a contradiction to the hypothesis that G does
not contain K3,3 as an immersion. Therefore, every model h of K3,3 in G1 uses the edge
{x, y}. This implies that {x, y} /∈ E(G) as otherwise G1 is a subgraph of G and therefore,
K3,3 is also an immersion of G. However, as {x, y} is a minimal separator of G, there
exists an (x, y)-path P in G[V (C2) ∪ {x, y}]. It follows that by replacing {x, y} with the
path P in h we obtain a model h′ of K3,3 in G, a contradiction to the hypothesis. Similarly,
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FIGURE 10. Simple nonsub-cubic graphs of branch-width 3 without K5 or K3,3 as
immersions.

G2 does not contain K3,3 as an immersion. This completes the proof of the claim and the
lemma. �

Theorem 4.4. If G is a K3,3-immersion free graph then it can be constructed by applying
i-edge-sums, i ∈ [3], and j-clique-sums, j ∈ {0} ∪ [2], to a (possibly empty) set of disjoint
copies of K5 and planar graphs that are sub-cubic or have branch-width at most 10, with
the further restriction that no 2-clique-sum is applied on two edges that belong to two
disjoint copies of K5.

Proof. Let G be a graph that does not contain K3,3 as an immersion. Then, it also
does not contain K3,3 as a topological minor. Furthermore, as the maximum degree of
K3,3 is upper bounded by 3, from a folklore result, it follows that G does not contain K3,3

as a minor as well. Combining Lemmata 4.2 and 4.3 we may also assume that G is either
isomorphic to K5 or planar. Applying Lemma 2.2, we may further assume that G does not
contain any internal i-edge-cut, i ∈ [3]. Therefore, G is internally 4-edge-connected and
is either isomorphic to K5 or planar. Hence, by following along the lines of the proof of
Theorem 4.1, we obtain that G is either K5 or it is a planar graph which is either subcubic
or has branch-width at most 10. Finally, in order to see that no 2-clique-sums are applied
on edges of two disjoint copies of K5, it is enough to observe that K5 ⊕2 K5 contains K3,3

as an immersion. �

Remark 4.5. It is easy to verify that our results hold for both the weak and strong
immersion relations.

We believe that the upper bound on the branch-width of the building blocks of The-
orem 4.1 can be further reduced, especially if we restrict ourselves to simple graphs.
There is an infinite family of graphs that are not subcubic and have branch-width 3; two
of them are depicted in Figure 10. However, we have not been able to find any simple
nonsubcubic graph of branch-width greater than 3 that does not contain K5 or K3,3 as an
immersion.

Finally, let us mention here that finding an exact structural characterization of the
graphs that do not contain K5 as a topological minor (which would also imply a structural
characterization of the graphs that exclude K5 as an immersion) is a long-standing open
problem.
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