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Abstract. Community subgraphs are characterized by dense connections or
interactions among their nodes. Community detection and evaluation is an important
task in graph mining. A variety of measures have been proposed to evaluate the quality
of such communities. In this paper, we evaluate communities capitalizing on the k-core
structure, as means of evaluating their collaborative nature – a property not captured
by the single node metrics or by the established community evaluation metrics. Based
on the k-core concept, which essentially measures the robustness of a community under
degeneracy, we extend it to graphs with weighted edges, devising the novel concept
of fractional core for undirected graphs with edge-weighted edges. We applied these
approaches to large real-world graphs investigating the co-authorship case for citation
datasets from Computer Science (DBLP) and High Energy Physics (ARXIV.hep-th).
Our findings are intuitive and we report interesting results and observations with
regards to collaboration among authors.
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1. Introduction

Large and evolving graphs constitute an important element in current large-scale

information systems. Common cases of such graphs are the Web, social networks,

citation graphs, CDRs (Call Data Records) where nodes – featured with, in some

cases, many attributes – are connected to each other with directed edges, representing

a relation such as endorsement, recommendation or friendship. In all cases, due to the

economic significance of these networks, the ranking of individual nodes is a cornerstone

necessity.

Graphs of real-word data with community structure have vertex degree with a wide

range. As pointed out in [1], nodes of low degree coexist with nodes of high degree

making the graph inhomogeneous both globally and locally which usually indicates

particularities in its structure, for instance, communities.

Community sub-graphs are characterized by dense connections or interactions

among its nodes. Community detection and evaluation is an important task in graph

mining. A variety of measures has been proposed to evaluate the quality of such

communities. In this paper, we evaluate communities based on the k- core concept, as a

means of evaluating their collaborative nature. A k-core (or a core of index k) in a graph

G is a subgraph H with all vertices having at least k neighbors in H. If the vertices of

a graph G represent a set of entities and its edges represent collaboration links between

them, then a core of high index in a graph G can be seen and treated as a community

of entities that demonstrates a strong collaboration between them. The degeneracy of

a graph G is the maximum index k of a non-empty core in G and can be seen as a

measure of the overall density of a graph. The graph theoretic study of degeneracy and

k-cores dates back to the 60’s [2–5]. Moreover, both notions have been extensively used,

in an experimental level, for evaluating and detecting strongly cohesive communities in

real-word graphs [6–12]. In this paper, we use and extend these concepts in order to

evaluate cohesiveness in bipartite graphs where edges represent relations between two

di↵erent types of entities. Our experiments concern bipartite graphs corresponding to

author/paper relations in several bibliographical databases.

Let G = (A,P,E) be a bipartite graph where edges represent relations between

two disjoint sets A and P . For instance, such a graph G may represent a bibliographic

dataset where A are the authors, B are the papers, and an edge {a, p} belongs in E

if a is an author of the paper p. A natural way to extract the collaboration graph

relating the authors of A is the following: we define the co-authorship graph HG where

the vertices are the authors and where we add an edge between two authors if and only

if they are co-authors of some paper. As a first step of our work, we construct this graph

for the considered bibliographical datasets and we use the k-core structure in order to

detect in them groups of authors with a strong collaborative relation. We stress that a

di↵erent graph is defined by the “dual” construction where the vertices are the papers

of the dataset and an edge is added between two papers if and only of they have some

common author (this alternative approach has been adopted in [13]).
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As our experiments indicate, the high rank cores of the co-authorship graph HG

are strongly biased towards including papers written by many authors. Moreover, the

same criterion of building a co-authorship graph does not take into account neither

the number of papers two authors may have in common nor the number of authors

contributing to each paper. For these reasons and towards defining a more objective

way of quantifying collaboration, we introduce an edge-weighted enhancement of HG

where weights of edges reflect the “essential collaboration e↵ort” between the authors

represented by their endpoints (see Section 3 for details). As this weighting assigns

fractional weights to the edges, the degrees of the vertices are now fractional. For

this reason, we introduce a fractional analogue of the k-core concept in order to study

and detect coherent communities of authors with a high level of collaboration. Also

we define the fractional analogues of the main combinatorial concepts related to the

cores and the degeneracy of a graph. To our knowledge, this is the first time that the

concept of k-cores is adapted edge-weighted graphs and we believe that this new concept

has independent interest both in theory and in practice, especially when dealing with

relations represented by hypergraphs (represented by their incident bipartite graph)

where relations may have arbitrary arity.

Our experiments concern two datasets: the DBLP and the ARXIV on High Energy

Physics - Theory (ARXIV.hep-th). We perform an extended experimental evaluation

studying in depth the core subgraphs, both integer and fractional, of their edge-weighted

co-authorship graphs and we visualize a series of cores, selected under certain filtering

criteria. Also, for each dataset, we visualize the connected component forests (a concept

defined in [13]) depicting the way connected components of fractional cores evolve as

their index is increasing. Our experiments resul in several interesting and intuitive

findings. A fully functional demonstrator for the DBLP co-authorship graph available

at:

http://www.graphdegeneracy.org/

A preliminary version of this work appeared in [14]. In this paper we significantly

extended that preliminary work as follows:

• We articulate the method and the metrics in a more principled and rigorous manner.

• We define the additional concepts of fractional core sequence and fractional index

sequence. This concepts are critical for obtaining a deeper intuition on the concept

of degenerate graphs, especially in what concerns our proposed extension from the

integer to the fractional setting.

• We extended our experimental evaluation by introducing an additional biblio-

graphic dataset from theoretical Physics ARXIV.hep-th and we applied an extensive

comparison and evaluation of the derived experiments.

• We additionally used the Core Decomposition Forest of a graph in order to visualize

and discuss the interesting properties of the connected components in the k-cores

–integer or fractional– for both considered datasets.

http://www.graphdegeneracy.org/
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The paper is organized as follows. In Section 2, we present related work on cores

and their use to evaluate the behavior and structure of complex network topologies while

in Section 3 we introduce the theoretical aspects of our methodology. In Section 4 we

present our experiments on the integer and fractional cores of our datasets and we make

several visualizations of the extracted information. The notion of Core Decomposition

Forest is introduced in Section 5, where we use it in order to visualize the evolution

of the cores (both integer or fractional) of our datasets. We conclude in Section 6, by

presenting several issues on further work and experimentation based on the concepts

defined in this paper.

2. Related work

A thorough review on community detection in graphs is o↵ered by Fortunato in [1]. In

that work techniques, methods, and datasets are presented for detecting communities

in sociology, biology and computer science, disciplines where systems are typically

represented by graphs. Most existing relevant methods are presented, with a special

focus on statistical physics, including discussion of crucial issues like the significance of

clustering and how methods should be tested and compared against each other.

Cohesion measures on graphs. Studying the general behavior and properties of real

graphs, both edge-weighted and unweighted, is the subject of [15] where a pattern on

the behavior of connected components over time is observed and, upon that, a generative

model is build.

In recent literature, various metrics are proposed relevant to the graph structure

of a social network. Such are “Betweenness” [16], “Centrality” [17], and “Clustering

coe�cient (a measure of the likelihood that two associates of a node are associates

themselves. A higher clustering coe�cient indicates a greater “cliquishness”, i.e.

cohesion degree or density. Of special interest here is the eigenvector centrality – a

measure of the importance of a node in a network. It assigns relative scores to all nodes

in the network based on the principle that connections to nodes having a high score

contribute more to the score of the node in question. Other measures include “path

length” (i.e. distances between pairs of nodes in the network), “prestige/authority”,

a measure in directed graphs to describe a node’s centrality, and “radiality”, a notion

representing an individual’s capacity to reach out the whole network (i.e., its influence).

Other interesting measures include “Structural cohesion” - the minimum number of

members who, if removed from a group, would disconnect the group [18]. In [19] an

alternative “core notion” is considered for the case of directed graphs where a core is

seen as a complete bipartite graph where all edges are directed from the one part to the

other. In [19], such cores are detected and are then fed to a generalized HITS algorithm

used to expand the communities within them. In [20], greedy approximation algorithms

are proposed for finding the dense components of a graph. Both undirected and directed

graphs are examined. In the case of directed graphs the vertices are divided into hubs
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(S) and authorities (T ). Then, based on a value of |S|/|T |, a greedy algorithm removes

the vertex of minimum degree from either S or T until both sets are empty. Also, in [21],

the subject of finding dense subgraphs, based on query nodes, is studied, where the issue

is to find a community that contains certain given nodes.

Cores. The k-cores are fundamental structures in graph theory and their study dates

back to the 60’s [2–5]. A k-core of a graph G is the maximum subgraph of G where

each vertex in H has at least k neighbors in H. The degeneracy of a graph is defined as

the biggest k for which a graph contains a non-empty k-core [22]. The same notion has

appeared with several names such as width [23], linkage [24,25], or coloring number [26]

and has been proven to be equal to the smallest k for which we can find a linear ordering

of the vertices of the graph such that for each vertex v, the number of its neighbors that

appear before v in the ordering is at most k (see [4, 22, 24]).

The existence of k-cores of large size in su�ciently dense graphs has been

theoretically studied by [27] for random graphs generated by the Erdős-Rényi model [28].

As shown in [27], a k-core whose size is proportional to the size of G (i.e. a “giant”

k-core) “suddenly” appears in a random graph with n vertices and m edges when m

reaches a threshold ck · n, for some constant ck that depends exclusively on k. Also, it

was proved in [29,30] that, in the Erdős-Rényi model, almost all k-cores are k-connected

(see [31] for more recent results on this topic).

An e�cient algorithm for the computation of the k-core of a graph was given in [32]

and its running time is proportional to the number of edges of the input graph. Actually,

the algorithm in [32] can compute the core decomposition of a graph consisting of the

sequence of all the non-empty the i-cells of G where each i-cell is defined as the vertices

contained in the i-core but not in the (i + 1)-core. Core decompositions give useful

information on the way subgraphs of a graph are clustered according to their degrees and

has been used extensively in several topics such as the study of internet topology [6,7],

large scale network visualization [8–10], networks of protein interaction [11, 12], and

complex network modeling and organization [33, 34]. A more general notion of k-cores

was introduced in [35] where, instead of vertex degrees, more general functions where

considered.

3. The fractional core method

Our motivation is the detection of the cohesive parts of community graphs with

special emphasis to the DBLP and the ARXIV.hep-th co-authorship datasets. Our main

theoretical tolls are the notions of k-cores and fractional k-cores that will be defined in

the next two subsections.
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3.1. Preliminaries

All graphs we consider are undirected and simple (i.e. they do not have multiple edges or

loops). We denote the vertex and the edge set of a graph by V (G) and E(G) respectively.

We also refer to the cardinality of V (G) as the size of G. We also consider edge-weighted

graphs (or, simply weighted graphs) and we denote them by pairs (G,w) where w is a

weighting function assigning rational numbers to the edges of G. We say that a graph

H is a subgraph of a graph G if H occurs from H after removing vertices or edges (the

removal of an edge implies the removal of all edges that are incident to it). A graph is

connected if for every pair of its vertices there is a path connecting them. A connected

component of a graph is a maximal connected subgraph of it. Given a graph G, we

denote by g(G) the size of the biggest connected component of G and we call it giant

component.

Given a vertex v 2 V (G), the degree of v in G is the number of edges that are

incident to it. We also denote by �(G) the minimum degree of a vertex in G. The

degeneracy of a graph G is defined as follows.

�⇤(G) = max{�(H) | H is a non-empty subgraph of G}.

Definition 3.1 Given a graph G and a non-negative integer k, the k-core of G is defined

as the maximum size subgraph H of G where �(H) � k. It is easily to see that such a

subgraph is unique. Given a k-core, we refer to k as its core index or simply index.

Notice that, for each i  j, the j-core of a graph is a subgraph of its i-core. Notice

that the degeneracy of a graph is the maximum k for which G contains a non-empty

k-core. Given a graph G where �⇤(G) = d and an integer i where 0  i  d, we denote

by Gi the i-core of G and we define G(G) = G0, G1, . . . , Gd as the core sequence of G,

where G0 = G and Gd is the densest core of G. For every i � 0, the graph Gi+1 can be

computed by the following simple procedure.

Procedure Trim(G, k)

Input: An undirected graph G and positive integer k.

Output: the (k + 1)-core of G

1. let F := G.

2. while there is a node x in F such that degF (x)  k

delete node x from F .

3. return F .

The Trim(G, k) procedure runs in O(kn) steps, thus computations are feasible even

in large scale graphs [32]. Applying successively Trim(G, i), for i = 0, . . . , �⇤(G) � 1,

gives a fast way to compute the core sequence of G. In fact an optimal implementation

of the above pruning procedure that is able to produce the core sequence of a graph in

O(�⇤(G) · n) steps has been given in [32]. In fact, the procedure in [32] works for much

more general variants of the core notion, including the fractional core notion that will

be defined later in this section.
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Definition 3.2 The core index of a vertex v of G is the maximum k for which v belongs

in the k-core of G.

Notice that one may also define the core index of a set S of vertices in G as the

maximum k for which all vertices of S belong in the k-core of G [35]. It is easy to see

that this number is the minimum core index of all the vertices in S.

3.2. Cores for bipartite graphs

The datasets that we study are represented by bipartite graphs where edges denote

relations between papers and authors. We denote such a graph by G = (A,P,E) where

A is the set of authors, P is the set of papers, and E is a set of edges. Each edge {x, y}
(where x 2 A and y 2 P ) expresses the fact that x is one of the authors of paper y. As

what we aim is to evaluate the collaboration between authors, we restrict our study to

the papers that are written by at least two authors, i.e., we assume that all the vertices

in P have degree at least two.

The co-authorship graph corresponding to G is defined as follows:

HG = (A, {{x, x0} | 9y 2 P : {x, y}, {x0, y} 2 E), (1)

i.e., two authors are adjacent if they appear as co-authors in at least one paper. Notice

that the above definition ofHG is radically di↵erent from the one used in [13], where they

study graphs whose vertices correspond to authors and edges indicate joint publications

between two authors. In fact, the construction in [13] can be seen as being the dual of

the one we used for creating HG in the sense of vertex-edge duality of hyper-graphs.

For each dataset (represented by a bipartite graph G), we compute �⇤(HG) and the

core index of each vertex/set of vertices in HG in order to evaluate the collaboration

behavior in the bipartite graph G and the dataset that it represents. The idea of our

criterion is to locate communities of authors with a high collaboration between them in

the sense that we do not just demand that they have authored many papers but also

that they have all authored them with authors in the same community.

However, this is not an entirely satisfactory evaluation, since the number of authors

on a paper has no impact in this measure. For this reason, we introduce below a more

refined way to define cores based on the notion of a fractional core.

3.3. Fractional k-cores for edge-weighted graphs

Let G = (A,P,E) be a bipartite graph where all vertices in P have minimum degree

2. Given an author vertex X 2 A, we define the neighborhood NG(x) of x as the set

containing each paper y 2 P for which {x, y} 2 E, i.e., NG(x) is the set of papers

co-authored by x. Symmetrically, we define the neighborhood NG(y) of a paper y 2 P ,

i.e., the set of the authors of paper y. Also, given an author x we denote by EG(x), the

set of all edges that are incident to x in G. In what follows, we denote by Q+ the set of

all non-negative rational numbers.
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Figure 1. An example of a bipartite graph G and its edge-weighted co-authorship
graph, (HG,w).

Definition 3.3 Given a bipartite graph G = (A,P,E), we define the edge-weighted co-

authorship graph, denoted by (HG,w), by taking HG, as defined in (1), and setting up

a rational weight function w : E ! Q+ on the edges of HG as follows: For every edge

e = {x, x0} we set

w(e) =
X

y2NG(x)\NG(x0)

1

NG(y)
.

Notice that,
P

e2HG
w(e) = |V (P )|, i.e. the sum of all the weights on the edges is

the size of the graph, i.e., the number of its vertices. For example, in Figure 1, in order

to compute the weight of the edge e = {a1, a3}, one should observe that the authors a1
and a3 are co-authors of the papers p1 and p3. As p1 and p3 have 3 authors each, they

contribute 1/3 to the weight of e, that is w(e) = 2/3. This weighting of e expresses the

fact that the collective e↵ort of author a1 to the papers he/she co-authored with p3 is

of 2/3 papers, and vice versa.

As we agreed before, we use notation (G,w) for the graph G to denote that it is

edge-weighted by w.

Definition 3.4 Given an edge-weighted graph (G,w) and a vertex x 2 V (G), we define

the fractional-degree of x in (G,w) as

degG,w(x) =
X

e2EG(x)

w(e)

In our co-authorship context, the degree degG,w(x) of an author x is the collective

e↵ort of author x for all the papers she/he wrote. For instance, in Figure 1, the

degree author a4 is the sum of all the weights of the edges that are incident to it, i.e.,

1/3 + 2/3 + 4/3 = 13/6.

We say that (H,wH) is an edge-weighted subgraph of (G,w) if H is a subgraph

of G and wH is the restriction of w on E(H). Given any such subgraph (H,wH) of

(G,w), we define

�(H,wH) = min{degH,wH
(x) | x 2 V (H)}.
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For example, if (G,w) is the edge-weighted graph in Figure 1, then �(G,w) =

degG,w(a2) = 7/6. If H is the subgraph of G containing all edges that are incident to

the vertices a1, a2, and a4, then �(H,wH) = degH,wH
(a1) = 2/3.

Definition 3.5 Let (G,w) be an edge-weighted graph. The fractional-degeneracy of

(G,w) is defined as follows:

�⇤(G,w)= max{�(H,wH) | (H,wH) is a non-empty edge-weighted

subgraph of (G,w)}.

Let k 2 Q+. Then the k-core of (G,w) is the maximun-size edge-weighted subgraph

(H,wH) of (G,w) where �(H,wH) � k.

The Trim procedure can also compute k-cores where k is a rational number. The

only modification is that degF (x)  k should be replaced by degF,wF
(x)  k, i.e., we

check the fractional degree of x in the edge-weighted graph (F,wF ), where wF is the

restriction of w to the edges of F . In fact, we have to be more careful in the definition

of the fractional analogue of the core sequence, as it now should be indexed by rational

numbers. For his, consider the infinite sequence G = Gh0 , Gh1 , . . . , recursively defined as

follows: Gh0 = G, h0 = 0, and for i > 0, Ghi
= Trim(Ghi�1 , hi�1) where hi = �(Gi,wGi

).

Then, the fractional core sequence of an edge-weighted graph (G,w) is the prefix of G
that contains all non-empty graphs of G and is denoted by G(G,w). The size of a

fractional core sequence is the number of its terms minus one. Notice that the size l of

the fractional core sequence of an edge-weighted graph (G,w) can never exceed the size

of G. We finally call the sequence h1, . . . , hl fractional index sequence of (G,w).

The fractional core index of a vertex of an edge-weighted graph (G,w) is the

maximum rational number k for which v belongs in the k-core ofG. As in the unweighted

case, the fractional core index definition can be naturally extended to sets instead of

vertices. Again the fractional core index of a set of vertices is the minimum fractional

core index of its members.

As an example of the above definitions, the edge-weighted graph (HG,w) depicted

in Figure 1, has fractional degeneracy 7
6 , i.e. �(HG,w) = �⇤(HG,w). Indeed if we apply

Trim(HG,
7
3) then the first vertex to be removed is a2. This removal drops the fractional

degrees of a1, a3, and a4 below 7
3 . Therefore, they are also removed and, for the same

reason, the remaining vertex a5 is removed as well. Therefore, G1 is the empty graph,

the fractional core sequence contains only graph G0 = G, and the length of the fractional

index sequence of (HG,w) is 0. We should mention that a less trivial example would be

too complicated to present in a figure and even more complicated to be processed by

the reader.

At this point we stress that, as a graph-theoretic notion, fractional cores are defined

on bipartite graphs, encoding relations between two sets representing di↵erent entities

(in our case, papers and authors). Equivalently, we can define fractional cores in

hypergraphs by considering the fractional cores of their (bipartite) incident graphs.

In this case, the hypergraph corresponding to the graph G would contain the authors
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Figure 2. Distribution of number of publications versus cardinality of co-author set
for DBLP and ARXIV.

as vertices and the papers as hyperedges. In this paper we chose to avoid hypergraph

notation and, for simplicity, we adopted the definition that uses bipartite graphs.

4. Experimental evaluation of the DBLP and ARXIV.hep-th datasets

In this section we present the application of the above defined framework on the bipartite

graphs corresponding to the DBLP dataset, concerning publications in computer science,

and the ARXIV on High Energy Physics - Theory (ARXIV.hep-th) dataset. From now
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Figure 3. Distribution of the core sizes vs core indices in HDBLP.

on, for notational convenience, we use ARXIV as an abbreviation of ARXIV.hep-th. Our

aim is to detect, in each dataset, the sets of authors that correspond to the most coherent

community in terms of co-authorship collaboration.

4.1. Data set description and preprocessing

The DBLP dataset is freely available in XML format at

http : //dblp.uni-trier.de/xml/

and the ARXIV dataset on High Energy Physics Theory is available in simple text format

at:

http : //snap.stanford.edu/data/ca-HepTh.html

We extracted, from these datasets, the bipartite graphs DBLP and ARXIV. In the current

snapshot, DBLP has 2208512 papers while ARXIV has 25170 papers. Among them, 817
of the papers in DBLP have only one author, while the same holds for 7196 of the papers

of ARXIV. Also, DBLP has 825761 authors and ARXIV has approximately 8862 authors.

In total, DBLP has 4446765 edges and ARXIV has 56065 edges.

In Figure 2, one can see the distribution of the number of co-authors per publication

in the DBLP graph and the ARXIV graph. It is clear the vast majority of the papers

are authored by few authors. However, there are some extremities where one specific

paper in DBLP has 114 authors! On the other side all papers in ARXIV have at most 8
co-authors.

We computed, as described in Subsections 3.2 and 3.3, the unweighted graphsHDBLP

and HARXIV and their edge-weighted versions (HDBLP,w) and (HARXIV,w). Clearly,

http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/
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Figure 4. Distribution of the core sizes vs core indices in HARXIV.

HDBLP Name of author Index

Serge Abiteboul 28

Christos Faloutsos 28

Gerhard Weikum 22

Christos H. Papadimitriou 17

Paul Erdős 16

Andrew Tanenbaum 48

HARXIV

Mirjam Cvetic 9

Riccardo D’Auria 8

Christoph Schweigert 7

John Ellis 6

Jürgen Fuchs 6

Dimitris Nanopoulos 6

Table 1. Ranks of selected authors in HDBLP and HARXIV.

single-author papers will not create any edge between authors and all isolated vertices

in HDBLP and HARXIV correspond to authors that have written only single-author papers.

4.2. k-cores in co-authorship graphs

We applied the Trim procedure to find the core sequences of the graphs HDBLP and

HARXIV. In this computation, we took into account all the papers regardless of the

number of the authors each may have. In Figure 4, we can see the distribution of cores

sizes for each graph.

In Table 1, we present a ranking of a few selected authors for both datasets. As
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Figure 5. Distribution of the core sizes vs core indices in H⇤
DBLP.

mentioned before, one paper with a large number of co-authors can “push” authors with

otherwise low co-authorship to the densest k-core. For example, in DBLP, at k = 113
we have 114 authors all of which have participated in the same publication and some of

them do not appear anywhere else on the dataset. Actually, the results on the HDBLP

graphs are apparently quite biased, i.e. a maximum-index 113-core exists in HDBLP

because of the existence of a single paper regardless of their other publication activity.

In graph theoretic termsHDBLP this core is a clique of 114 vertices that is created because

of the existence of a vertex in DBLP of degree 113. However, this does not hold for the

case of the – smaller in size – graph HARXIV where the maximum number of authors in a

paper is 8. The densest core in HARXIV is the 9-core and is a clique on 10 vertices. The

members of this core are presented in the lower part of Table 2. It is interesting to note

that the edges of this clique are formed by many di↵erent papers. In fact there are at

least 118 papers in ARXIV that have been co-authored by at least two of the members

of the 9-core of HARXIV.

The biased situation that we detected in HDBLP motivated us to consider filtering

out papers with excessively high number of co-authors. In this case, we computed a

filtered version of HDBLP, by taking into account only the the papers whose number of

co-authors is within the 99% of the corresponding distribution shown in Figure 2. This

excludes from DBLP papers with more than 15 co-authors. We call this version of the

graph HDBLP filtered and we denote it by H⇤
DBLP.

We applied the Trim procedure to find the core sequence of the graph H⇤
DBLP. The

distribution of the resulting core sizes appears in Figure 5. In the filtered case, the

densest core of H⇤
DBLP has index 15 and has a size of 76 authors. These authors appear

in the upper part of Table 2.
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H⇤
DBLP

Pankaj K. Agarwal Hee-Kap Ahn Oswin Aichholzer Greg Aloupis
Helmut Alt Esther M. Arkin Boris Aronov Tetsuo Asano
Mark de Berg Therese C. Biedl Prosenjit Bose David Bremner
Hervé Brönnimann Sergio Cabello Timothy M. Chan Bernard Chazelle
Otfried Cheong Sébastien Collette Mirela Damian Erik D. Demaine
Martin L. Demaine Olivier Devillers Vida Dujmovic Herbert Edelsbrunner
Alon Efrat David Eppstein Je↵ Erickson Hazel Everett
Sándor P. Fekete Joachim Gudmundsson Leonidas J. Guibas Dan Halperin
Sariel Har-Peled John Hershberger Ferran Hurtado John Iacono
Christian Knauer Danny Krizanc Stefan Langerman Sylvain Lazard
Giuseppe Liotta Anna Lubiw Rolf Klein Mark Jiŕı Matousek
Kurt Mehlhorn Henk Meijer Joseph S. B. Mitchell Pat Morin
Joseph O’Rourke Mark H. Overmars Belén Palop Richard Pollack
Suneeta Ramaswami David Rappaport Günter Rote Vera Sacristan
Otfried Schwarzkopf Raimund Seidel Micha Sharir Thomas C. Shermer
Michiel H. M. Smid Jack Snoeyink Michael A. Soss Diane L. Souvaine
Bettina Speckmann Ileana Streinu Subhash Suri Perouz Taslakian
Godfried T. Toussaint Marc J. van Kreveld Jorge Urrutia Sue Whitesides
David R. Wood Stefanie Wuhrer Chee-Keng Yap Emo Welzl

HARXIV

Mirjam Cvetič Michael J. Duf P Hoxha R Martinez-Acosta
James T. Liu Hong Lu Jian-Xin Lu Christopher N. Pope
Hisham Sati Tuan A. Tran

Table 2. Authors of the 15-core of H⇤
DBLP (up) and the 9-core of HARXIV (down).

Name of author Index

Serge Abiteboul 14
Paul Erdős 14
Christos Faloutsos 14
Christos H. Papadimitriou 14
Gerhard Weikum 14
Andrew Tanenbaum 12

Table 3. Ranks of selected authors in H⇤
DBLP.

As expected, in the filtered graph HDBLP, several of the authors “move down” in

cores of smaller index. The new indices for the selected sets of authors of Table 1 for

DBLP are now depicted in Table 3. As we can see, in the case of HDBLP, the authors of

Table 3 get now accumulated in the second densest core, i.e the 14-core.
It is interesting that for some authors of DBLP, such as Andrew Tanenbaum,

the core index in the filtered case is much lower (12) that in the unfiltered one (48).
Apparently, this happens due to his participation in multi-author papers that were
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DBLP
34.0 34.3 35.2 36.4 37 37.3 38.8 42.7 44.2 47.8 48.4 53.8 55.3 64.6 77.8 149.2
42 39 35 31 29 25 22 20 18 16 13 11 8 6 4 2
8 7 7 4 4 3 3 3 3 3 3 3 2 2 2 2

ARXIV
10.4 10.5 10.6 10.7 11.0 11.4 11.5 12.0 13.1 13.4 13.7 14.9 16.0 21.7 24.5 34.9
51 50 36 35 33 26 23 21 16 14 11 9 6 5 4 2
37 36 20 19 19 16 16 14 6 6 6 6 6 5 2 2

Table 4. Data of the last 16 graphs of the fractional core sequence of (HDBLP,w)
(up) and (HARXIV,w) (down). For each dataset, the first line depicts hi, the second
line contains the size of the hi-core and the third one contains the size of the biggest
connected component of the hi-core.

H Lu

C N Pope

35.08

M Cvetic

12.37

11.37

S D Odintsov

0.33

Shinich Nojiri

0.33

34.9

Figure 6. The 27.1-core of (HARXIV,w).

filtered out.

4.3. Fractional cores on the weights graph

Here we articulate the need for assigning weights to the edges of the previously defined

co-authorship graphs. Assume that two authors x, y have co-authored several papers

and therefore they are connected by an edge e = {x, y}. This co-authorship relation

represents a strong collaboration among the two that escapes the unweighted setting of

the previous section. This collaborative e↵ort is apparently larger as the number of co-

authored papers increases. On the other hand, the e↵ort to author a paper is naturally

divided among all the co-authors (we assume in equal parts). This justifies the definition

in Section 3.3 of an edge-weighted co-authorship graph where the contribution of each

author is now fractional.

In the fractional case, we do not need to apply any filtering of papers with a

huge number of authors, as they are now filtered indirectly because the weight they

contribute to their authors is tiny. Recall that the weight w(e) assigned to each edge is

proportional to the number of papers they have co-authored and inversely proportional

to the number of co-authors per co-authored paper. Thus w(e) represents the “essential

amount” of collaboration among authors x, y in terms of the e↵ort committed for

common publications (which is normalized in each case by the number of contributing

co-authors). This implies that the best fractional k-core communities contain authors

that are intensively co-authoring with others and, while the number of co-authors is not
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Figure 7. Distribution of the fractional core sizes vs core indices in the edge-weighted
co-authorship graph of DBLP (up) and ARXIV (down).
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Mahmut T. Kandemir

Narayanan Vijaykrishnan
19.99

Mary Jane Irwin27.88

Luca Benini

0.67
30.96

0.5

0.17

Giovanni De Micheli

28.28

Enrico Macii
16.64

Massimo Poncino
13.33

0.17

0.17

3.84

2.85
26.76

Diego Calvanese

Giuseppe De Giacomo
27.96

Maurizio Lenzerini
25.94 29.56

Divyakant Agrawal

Amr El Abbadi
64.7

Louise E. Moser

P. M. Melliar-Smith

39.03

Patrick Bosc

Henri Prade
2.2

Olivier Pivert
32.73

Didier Dubois1.03
1.03

78.07

0.7

Grzegorz Rozenberg

Andrzej Ehrenfeucht

48.57

Flemming Nielson
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Elizabeth Chang

Tharam S. Dillon
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Makoto Takizawa
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20.66
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Teresa Maria Altomare Basile
13.21

Floriana Esposito
17.66

12.46

11.63

11.63

Nadia Nedjah

Luiza de Macedo Mourelle

44.25

Sudhakar M. Reddy

Irith Pomeranz
149.28

Philippe Wenger

Damien Chablat

34.6

Figure 8. The 34.30-core of (HDBLP,w)

high, it follows that the share of collaborative e↵ort is high.

In Figure 7, we can see the size distribution of the graphs in the fractional core

sequence of (HDBLP,w) and (HARXIV,w), i.e. the edge-weighted co-authorship graph

of DBLP and ARXIV respectively. For both (HDBLP,w) and (HARXIV,w), the behavior

is of similar flavor in terms of the relation of the hi-core size and hi. The fractional

index sequence of (HDBLP,w) contains a big number of rational numbers that becomes

“sparsest” as it increases, i.e., the di↵erences between two consecutive elements is

increasing, especially in the end. The 16 last terms of the fractional index sequence

of (HDBLP,w) and (HARXIV,w) are depicted in Table 4.

4.4. Rank vs size

For (HDBLP,w), the densest fractional core has index 149.2 and contains only two authors

(Sudhakar M. Reddy, Irith Pomeranz) whose publication record indeed verifies the

claims as they have co-authored 373 papers, 256 of which as the only authors! The

second densest core of (HDBLP,w) is the 77.8-core that includes the additional authors:

Henri Prade, Didier Dubois whose intense collaboration is verified by the number of

co-authored papers (223 according to DBLP). In other words, the 77.8-core of HDBLP

consists of just two isolated edges. This trend continues for some of the next members
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John Ellis

N E Mavromatos
8.62

D V Nanopoulos
9.35

7.28

H Lu

C N Pope

35.08

M Cvetic

12.37

11.37

S D Odintsov

0.33

Jurgen Fuchs

Christoph Schweigert

14.87

S Ferrara

Laura Andrianopoli
7.04

Riccardo DAuria
12.98

6.63

Shinich Nojiri0.33

E Elizalde

0.8334.9

20.83

Figure 9. The 13.40-core of (HARXIV,w)

of the fractional core sequence until the cores become greater and thus more complex.

In the case of (HARXIV,w), similar behavior is observed for the densest cores.

However now the cores swiftly develop large connected components. The densest

(HARXIV,w) core, the 34.9-core, contains only two authors: H. Lu and C. N. Pope that

have co-authored 114 papers. The second densest 24.5-core contains two more authors:

Shinich Nojiri and Sergey D. Odintsov who co-authored 76 papers. Interestingly, this set
of authors becomes connected in the next 27.1-core because of the insertion of Mirjam

Cvetic in it who has published papers with all aforementioned authors. The 21.7-core
of (HARXIV,w) is depicted in Figure 6.

To amortize the e↵ect of having tiny dense cores or dense cores of small connected

components, we introduce two criteriatwo criteria to focus on dense cores:

• SVR (Size Versus Rank) Criterion: we discard from the core sequence of HG all Ghi

for which hi > |V (Ghi
)|, i.e., we do not consider the cores whose size is less than

their index.

• GCVR (Giant Component Versus Rank) Criterion: we discard from the core

sequence of HG all Ghi
for which hi > g(Ghi

), i.e., we do not consider the cores for

which the size of their giant component is less than their index.

Both above criteria are balancing the high index with some quantity criterion on

the number of authors that generate it. SVR asks that the essential degree of e↵ort of

each author (i.e. the fractional degree of each vertex) is bigger than the total number

of authors in the core with whom this e↵ort has been shared. Clearly, GCVR is at least

as strict as SVR and reflects the fact that, as cores grow in size, most of their authors

are accumulated in on the giant component (see Section 5). The application of GCVR
on (HDBLP,w) considers the 34.3-core (depicted in Figure 8): it has 39 authors while

the next 35.2-core has 35 authors. The same criterion applied to (HARXIV,w) considers

the 13.4-core that has 14 authors (depicted in Figure 9). Notice that in both Figures 8
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Figure 10. The 27.70-core of (HDBLP,w)

and 9, the graphs are still quite fragmented and, at the same moment, already big

enough to reveal several collaboration communities.

Our next step is to apply the GCVR criterion on HDBLP. In this case, the biggest k

in the fractional index sequence of HDBLP for which the giant component of the k-core

is bigger than k is 27.7. Indeed, the 27.7-core has 132 authors and its giant component

has 42 authors, while the next index is 28.0 and the 28.0-core has size 122 and its giant

component has 23 authors. The 27.7-core is depicted in Figure 10 (as it has 122 vertices,
we do not include the names of the authors).

The application of the GCVR criterion on HARXIV implies that the the 12-core, that
has 21 vertices, is the last one whose giant component has more vertices, that is 12 than

its index. Indeed, the next index is 13.1 and the 13.1-core has 16 authors and, among

them, 6 are in its giant component. The 12-core of HARXIV is depicted in Figure 11.

4.5. Hop-1 lists

In Table 5 we depict the index of the previous sample of selected authors of both DBLP
and ARXIV, based on the fractional cores computation. It is interesting that indices are

di↵erent in this case due to the weighting scheme that favors not just a big number of

publications but also repetitive co-authorship with limited number of co-authors. In this

case, intensive collaboration with certain co-authors over a long series of publications
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Figure 11. The 12-core of (HARXIV,w)

Name of author Index

(HDBLP,w)

Christos H. Papadimitriou 20.8
Serge Abiteboul 20.5
Christos Faloutsos 18.7
Gerhard Weikum 16.3
Paul Erdős 13.9
Andrew Tanenbaum 13.0

(HARXIV,w)

Mirjam Cvetic 21.7
John Ellis 14.9
Dimitris Nanopoulos 14.9
Christoph Schweigert 13.7
Riccardo D’Auria 13.1

Table 5. Ranks of selected authors in (HDBLP,w) and (HARXIV,w).

increases the mutual edge weights and thus the indices in the fractional k-cores.

Assuming an author x in HDBLP it should be stressed that his/her best hop-1 co-

authorship k-core (i.e. immediate co-authors) are those that have at least k co-authors

in the same core.

In Table 6, we see the relevant data for fractional cores for a selection of well known

and seminal authors from DBLP representing their degree of collaboration with their co-

authors. C. H. Papadimitriou has a top score in this measure (20.8) while having a very

small but cohesive community of co-authors, with the prominent example of Michalis

Yannakakis contributing an awesome weight (19.62) to the vertex fractional degree of
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Author Fractional Rank Size
C.H. Papadimirtiou 20.80 417
Michalis Yannakakis (19.62) Erik D. Demaine (0.14) Georg Gottlob (1.00)
Gerhard Weikum 16.30 1506
Hans-Jörg Schek (7.43) Surajit Chaudhuri (5.05) Yuri Breitbart (1.49)
Gautam Das (0.70) Je↵rey F. Naughton (0.57) Divesh Srivastava (0.53)
DanSuciu (0.50) Rakesh Agrawal (0.48) Gustavo Alonso (0.43)
Raghu Ramakrishnan (0.41) Catriel Beeri (0.33) Michael Backes (0.33)
Serge Abiteboul (0.33) Divyakant Agrawal (0.29) Amr El Abbadi (0.29)
Stefano Ceri (0.275) Yannis E. Ioannidis (0.23) Henry F. Korth (0.23)
S. Sudarshan (0.20) Jennifer Widom (0.19) David J. DeWitt (0.19)
Abraham Silberschatz (0.17) David Maier (0.16) Krithi Ramamritham (0.15)
Hector Garcia-Molina (0.14) Christos Faloutsos (0.13) Victor Vianu (0.13)
Edward A. Fox (0.09) Beng Chin Ooi (0.08) Richard Snodgrass (0.07)
Je↵rey D. Ullman (0.07) Timos K. Sellis (0.07) Umeshwar Dayal (0.17)
Michael J. Carey (0.14)
Andrew Tanenbaum 13.0 4016
M. Frans Kaashoek (7.00) Robbert van Renesse (5.40) Maarten van Steen (4.68)
Frances M. T. Brazier (0.98) Anne-Marie Kermarre (0.25) Howard Jay Siegel (0.13)
Michael S. Lew (0.02)
Paul Erdős 13.9 2678
János Pach (2.53) Boris Aronov (0.28) Leonard J. Schulman (0.28)
Ronald L. Graham (1.83) Fan R. K. Chung (1.74) Zoltán Füredi (1.58)
Noga Alon (0.50) Endre Szemerédi (1.40) Vojtech Rödl (1.33)
Nathan Linial (1.0) Miklós Ajtai (0.25) János Komlós (0.25)
László Lovász (0.33) Shlomo Moran (0.53) Andreas Blass (0.33)
Michael E. Saks (0.33) Richard Pollack (0.25) Shmuel Zaks (0.20)

Table 6. Fractional indices and hop-1 list for selected authors from DBLP.

Papadimitriou. This implies that they have co-authored many papers together (46) out
of which more than 30 are co-authored by the two of them only! On the other hand,

G. Weikum has a much more distributed collaboration circle in terms of co-authors

that almost uniformly (except the case of Scheck, that is 7.43) contribute to his vertex

fractional degree. Finally, Andrew Tanenbaum with a vertex fractional degree 13.0 has

a rather small collaboration community with main collaborators Maarten van Steen

(contributing a weight 4.68) and Robbert van Renesse (5.4) while the rest is uniformly

distributed to the others.

In Table 7, we see the respective data for selected authors from ARXIV. There
we also see very well known names in the scientific area together with their closet

collaborators. Actually in this case all authors indicated in Figure 7 are present both

the 13.40-core an the 12-core of (HARXIV,w). Especially in the 13.40 they appear

in di↵erent connected components. Observe that, in the 12-core, Mirjam Cvetic and

Riccardo D’Auria appear in the same component while this is not the case in the higher

rank 13.40 core. However, the “clusters” of John Ellis, and Christoph Schweigert are
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Author Fractional Rank Size
Mirjam Cvetic 21.7 5
H Lu (12.36) C N Pope (11.36) Shinich Nojiri (0.33)
S D Odintsov (0.33)
John Ellis 14.9 9
N E Mavromatos (8.61) D V Nanopoulos 9.35
Christoph Schweigert 13.7 11
Jurgen Fuchs (14.86)
Riccardo D’Auria 13.1 16
S Ferrara (12.98) Laura Andrianopoli (6.62)

Table 7. Fractional indices and hop-1 list for selected authors from ARXIV.

already becoming disconnected in the 12-core. Observe also that S D Odintsov enters

the hop-1 list of Mirjam Cvetic because of a link of relatively low weight, i.e., 0.33.
However, S D Odintsov enters in the hop-1 list of Mirjam Cvetic because of his strong

collaboration with Shinich Nojiri and E Elizaide (that, however is not in the hop-1 list

of Mirjam Cvetic).

4.6. Community-focused rankings

In our final experiment, we focus on authors belonging to specific scientific communities

and compare their rankings according to our fractional cores method against rankings

determined using simpler measures of collaborativeness. More precisely, we extracted

the names of programme committee members of SIGMOD, SIGIR, and SIGKDD

for the years 2009, 2010, and 2011 to obtain subsets of the database, information

retrieval, and data mining community, respectively. Most of the authors could be

mapped automatically to their entries in DBLP using string matching; for some we

had to perform a best-e↵ort manual mapping (e.g., because of missing middle initials or

nicknames in the programme committee lists); about a handful of authors could not be

mapped with confidence and are thus missing from our rankings. For each community,

we rank authors therein according to the following measures:

(a) fractional index

(b) number of co-authors

(c) number of publications

(d) average number of co-authors per publication

(e) years active

The resulting top-10 rankings are given in Table 8, Table 9, and Table 10. Note that

for our fractional cores method, as before, an author’s fractional index is determined

on the entire DBLP co-authorship graph and not only based on collaborations with

authors within the same scientific community. When looking at the top-10 rankings

presented, we observe that across all communities rankings according to (b), (c), and
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(a)

Amr El Abbadi
Divyakant Agrawal
Christian S. Jensen
Richard T. Snodgrass
Sourav S. Bhowmick
Beng Chin Ooi
Kian-Lee Tan
Pierangela Samarati
Sabrina De Capitani

di Vimercati
Mong-Li Lee

(b)

Wei Wang
Hans-Peter Kriegel
Christos Faloutsos
Divyakant Agrawal
Elke A. Rundensteiner
Kian-Lee Tan
Amr El Abbadi
Christian S. Jensen
Ming-Syan Chen
Richard T. Snodgrass

(c)

Wei Wang
Christos Faloutsos
Michael Stonebraker
Michael J. Carey
Wolfgang Nejdl
Stefano Ceri
Christian S. Jensen
Raghu Ramakrishnan
Jian Pei
Beng Chin Ooi

(d)

Michael Stonebraker
David B. Lomet
Theo Härder
Philip A. Bernstein
Hans-Peter Kriegel
Michael Hatzopoulos
Carlo Zaniolo
Umeshwar Dayal
Stefano Ceri
Meral Ozsoyoglu

(e)

Nesime Tatbul
Anastasia Ailamaki
Laura M. Haas
Mitch Cherniack
John McPherson
Brian Cooper
Daniel J. Abadi
Jayavel Shanmugasundaram
Tim Kraska
Fatma Ozcan

Table 8. Database community ranking.

(e) are biased in favor of senior authors (e.g., Michael Stonebraker, W. Bruce Croft,

and Jiawei Han) and overlap sometimes significantly. This is natural, given that authors

who have been active longer, tend to have more publications, co-authored with di↵erent

people at di↵erent points in time. The rankings according to (e), the average number of

co-authors per publication, contain for all three communities relatively junior alongside

senior authors. However, it can also be seen that this is not a robust measure, bringing

up authors who have published and collaborated modestly, but happen to have one

publication with a large number of publications. Finally, the rankings according to (a),

our fractional cores method, seem less biased toward senior authors, bringing up a mix

of prolific authors with long-lasting intensive collaborations between them (e.g., Amr El

Abbadi and Divyakant Agrawal, Ophir Frieder and Abdur Chowdhury, Annalisa Appice

and Donato Malerba).

5. Core Decomposition Forest

In this section we examine the relation between core structure of a graph and the

connected components of its cores. We need first some definitions.

Definition 5.1 Let G = G0, G1, . . . , Gd be a sequence of graphs such that for each
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(a)

Ee-Peng Lim
Paolo Boldi
Jie Lu
Steven M. Beitzel
Abdur Chowdhury
Ophir Frieder
Juan M. Fernández-Luna
Juan F. Huete
Wei-Ying Ma
Yong Yu

(b)

Lei Zhang
Jun Wang
Gerhard Weikum
Hsinchun Chen
Tao Li
Wei-Ying Ma
Qiang Yang
C. Lee Giles
Lee Giles
Ricardo A. Baeza-Yates

(c)

Lei Zhang
Jun Wang
Yi Zhang
Tao Li
Qiang Yang
Wei-Ying Ma
Jun Xu
Gerhard Weikum
Hsinchun Chen
Yong Yu

(d)

Michael Lesk
Erich J. Neuhold
Jun-ichi Tsujii
W. Bruce Croft
Fredric C. Gey
Donald H. Kraft
Jaime G. Carbonell
David Lewis
William R. Hersh
Nicholas J. Belkin

(e)

Michael Taylor
Gerald Benoit
Yifen Huang
Claus-Peter Klas
Mark Greenwood
Yantao Zheng
Maria M. Nikolaidou
Jinhui Tang
Jayavel Shanmugasundaram
David Smith

Table 9. Information retrieval community ranking.

size
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[1000,10000)
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Figure 12. The Core Decomposition Forest of the core sequence of H⇤
DBLP

i, j where i  j, Gi is a subgraph of Gj (we call such a sequence monotone). The

Decomposition Forest of a monotone graph sequence G is the graph DF(G) that is

defined as follows. For each i = 0, . . . , d we denote the connected components of Gi

by G1
i , . . . , G

mi
i and each such connected component is a vertex of DF(G) (we treat

isomorphic graphs as di↵erent graphs). The pair (Gj
i , G

j0

i0 ) is a directed edge of DF(G)
if j0 = j + 1 and Gj

i contains Gj0

i0 as a subgraph.
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(a)

Floriana Esposito
Ee-Peng Lim
Annalisa Appice
Donato Malerba
Charu C. Aggarwal
Alok N. Choudhary
Diane J. Cook
Alberto Del Bimbo
Je↵rey Xu Yu
Carlo Zaniolo

(b)

Jiawei Han
Christos Faloutsos
Alok N. Choudhary
Alberto Del Bimbo
C. Lee Giles
Gonzalo Navarro
Ee-Peng Lim
Je↵rey Xu Yu
Floriana Esposito
Carlo Zaniolo

(c)

Jiawei Han
Christos Faloutsos
Gang Wang
Alok N. Choudhary
C. Lee Giles
Jian Pei
Bing Liu
Je↵rey Xu Yu
Aoying Zhou
Ee-Peng Lim

(d)

Andrzej Skowron
Carlo Zaniolo
Christos Faloutsos
Heikki Mannila
Daniel Barbara
Dennis Shasha
Alberto Del Bimbo
Foto N. Afrati
David Poole
C. Lee Giles

(e)

Jonathan Chang
Je↵rey Yu
Byron J. Gao
Jennifer Dy
Edwin V. Bonilla
Gui-Rong Xue
Ashok Savasere
Benoit Huet
Jiangtao Ren
Dou Shen

Table 10. Data mining community ranking.

size
(0,5)
[5,10)

[10,50)

[50,100)

[100,500)

[500,1000)

[1000,10000)

[10000,....)

Figure 13. The Core Decomposition Forest of the core sequence of HARXIV

It is easy to verify that the directed graph defined above is a rooted forest. In fact,

each of its components is a rooted tree where all its edges are directed away from the

root and each root is a connected component of G0. Given that the core sequence of

G is monotone, we define the Core Decomposition Forest of a graph (edge-weighted or

not) as the decomposition forest corresponding to its core sequence. The notion of the

core decomposition forest appeared for the first time in [13] under the name hierarchical

degree core tree and was used in order to visualize the connected components of several



Evaluating cooperation in citation datasets using core structures 26

size
(0,5)
[5,10)

[10,50)

[50,100)

[100,500)

[500,1000)

[1000,10000)

[10000,....)

Figure 14. The Core Decomposition Forest of the core sequence of (HDBLP,w)

size
(0,5)
[5,10)

[10,50)

[50,100)

[100,500)

[500,1000)

[1000,10000)

[10000,....)

Figure 15. The Core Decomposition Forest of the core sequence of (HARXIV,w).
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real-word graphs including the graph extracted by the common-author relation of the

papers of the DBLP citation graph. As the graphs that we extract from DBLP and

ARXIV are expressing relations between authors, the cores decomposition forests that

we describe below are of radically di↵erent nature than the one extracted in [13].

In our study, we computed the Core Decomposition Forests DF(G(H⇤
DBLP)),

DF(G(HARXIV)), DF(G(HDBLP),w), and DF(G(HARXIV),w). The results for the case

of H⇤
DBLP and HARXIV are depicted in Figures 12 and 13 respectively, while the results

for (HDBLP,w) and (HARXIV,w) are depicted in Figures 14 and 15 respectively. We stress

that these figures depict only an approximation of these trees as their sizes are too big

to fit in a visible way. To facilitate the visualization of the core decomposition forests

we applied the following relaxations parameterized by ↵ and n:

(1) suppress in G consecutive terms that are the same,

(2) consider only the members of the resulting sequence that are indexed by multiples

of ↵, and

(3) in the core decomposition forest of the (fractional) core sequence remaining after

relaxations (1) and (2), exclude all subtrees that do not have ancestors after the

n-th core, of this sequence.

For the visualization of the core decomposition forest for H⇤
DBLP and HARXIV we

applied steps (1)–(3) for ↵ = 1, n = 8 and ↵ = 1, n = 1 respectively. For the

visualization of the core decomposition forests for (HDBLP,w) and (HARXIV,w), we only

applied the relaxation steps (2) and (3) (relaxation step (1) is unnecessary on fractional

sequences) for ↵ = 5, n = 10 and ↵ = 5 and n = 8 respectively. In each case the

values of the parameter n and ↵ have been chosen as to optimize the visualization of

the corresponding datasets.

As we see in Figure 12, the H⇤
DBLP dataset presents the following behavior in terms

of connected components: There is clearly a giant component that evolves as k increases

and survives until the last 15-core. It is interesting that many connected components

survive until core index 11, thus the H⇤
DBLP dataset is rather robust under degeneracy.

In Figure 13 we see the robustness of the cores of the ARXIV co-authorship graph

under degeneracy. Again there is a giant component that evolves as k increases and

survives until the last 9-core. It is interesting that many connected components survive

until core index 5.
As for the edge-weighted graphs there is a remarkable behavior. In Figure 14 we

see the evolution of the connected components of the (HDBLP,w) graph. In this case the

graph is much more robust as the steps of degeneracy are fractional while we see again a

giant component that splits into other components that merge before they shrink again.

In Figure 15 the evolution of the connected components of the (HARXIV,w) graph

is depicted. In this case the graph is much less robust as the number of connected

components is swiftly shrinking and only a few - together with the giant component

survive until the highest index fractional core.
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6. Conclusions

Large graphs constitute an important element in current large scale information systems.

Common cases of such graphs are the Web graph, social networks, citation graphs,

CDRs (call data records) where nodes (featured with attributes - in some cases with a

large cardinality) are connected to each other with edges representing a relation such as

endorsement, recommendation, and/or friendship. Community detection and evaluation

is an important task in graph mining. A variety of measures have been proposed to

evaluate the quality of such communities. In this paper, we evaluated communities,

using the k-core concept, as a means of evaluating their collective collaborative nature

- a property not captured by individual node metrics or by other community evaluation

metrics. Based on the k-core concept, which essentially measures the collaboration

robustness of a community, we extended it to edge-weighted graphs, devising a novel

concept of fractional k-cores on weighted graphs. We applied the (fractional) k-core

approach on large real-world graphs – such as DBLP and report interesting results.

Notice that further research in this direction could study di↵erent ways to weight

edges and vertices of a collaboration graph. For example, as a continuation of our

research, one might also weight vertices according to, for example, the H-Index of the

corresponding author. This would reveal communities where the collaborative strength

of an author would be would be mixed with his/her standing in research. We believe

that the semantics of such type of weightings under the k-core methodology are worth

to investigate.

The findings of the experiments of this paper, as well as an applet visualizing the

hop-1 lists of each individual author, can be accessed online at

http://www.graphdegeneracy.org/#kfcores
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