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Isomorphism for Graphs of Bounded Distance Width1

K. Yamazaki,2 H. L. Bodlaender,3 B. de Fluiter,4 and D. M. Thilikos5

Abstract. In this paper we study the GRAPHISOMORPHISMproblem on graphs of bounded treewidth, bounded
degree, or bounded bandwidth. GRAPH ISOMORPHISMcan be solved in polynomial time for graphs of bounded
treewidth, pathwidth, or bandwidth, but the exponent depends on the treewidth, pathwidth, or bandwidth. Thus,
we look for special cases where “fixed parameter tractable” polynomial time algorithms can be established.
We introduce some new and natural graph parameters: the (rooted) path distance width, which is a restriction
of bandwidth, and the (rooted) tree distance width, which is a restriction of treewidth. We give algorithms
that solve GRAPH ISOMORPHISMin O(n2) time for graphs with bounded rooted path distance width, and in
O(n3) time for graphs with bounded rooted tree distance width. Additionally, we show that computing the
path distance width of a graph is NP-hard, but both path and tree distance width can be computed inO(nk+1)

time, when they are bounded by a constantk; the rooted path or tree distance width can be computed inO(ne)
time. Finally, we study the relationships between the newly introduced parameters and other existing graph
parameters.

Key Words. Graph isomorphism, Fixed parameter tractability, Distance pathwidth, Distance treewidth.

1. Introduction. In this paper we consider the GRAPH ISOMORPHISMproblem, for
graphs for which certain parameters can be assumed to be small constants. We are
especially interested in GRAPH ISOMORPHISM on graphs where either the treewidth,
bandwidth, or degree of the graph is bounded, as there are many interesting graph classes
which have a bound on one of these parameters (see, e.g., [2]). For these parameters,
it has been shown that when the parameter is a constant, then GRAPH ISOMORPHISMis
polynomial time solvable (see [15] for bounded degree, and [3] for bounded treewidth and
bandwidth). However, in each of these three cases, the exponent of the algorithm grows
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with the parameter. Thus, a question is whether algorithms exist for GRAPHISOMORPHISM

with a running timeO( f (k)nc), wherec is a small constant andk is the maximum degree/
treewidth/ bandwidth/ . . . / of the graph; in other words, whether GRAPHISOMORPHISM

is fixed parameter tractable(in the sense of the fixed parameter complexity theory of
Downey and Fellows, see, e.g., [10] and [11]), with the maximum degree/ treewidth/
bandwidth/ . . . / as a parameter.

Thus, we are looking for answers to the questions whether GRAPH ISOMORPHISM

is fixed parameter tractable for the case that the parameter is the degree, treewidth, or
bandwidth of the graph. These questions are apparently hard. In this paper we are able
to solve some interesting special cases of these problems.

For this, several natural graph parameters are introduced: the (rooted) path distance
width and the (rooted) tree distance width. The notion of path distance width can be
seen to have a close relation to bandwidth; the notion of tree distance width is a natural
tree-like generalization of this notion, with a close relationship to treewidth.

If a parametrized problem is hard for one of the complexity classesW[1], W[2], . . . ,
W[ P], then it is unlikely that there exists an algorithm for the problem running in time
at most f (p) · nc (p is the parameter,n is the input size,f is an arbitrary function,
andc is a constant). In other words, if such an algorithm would exist, then this would
imply the collapse of certain complexity classes (see [10] and [11]). Proving that GRAPH

ISOMORPHISMis (e.g.)W[1]-hard with maximum degree, treewidth, or bandwidth as a
parameter can be expected to be very hard, as such a result would imply that GRAPH

ISOMORPHISMwould not belong toP unlessW[1] collapses withFPT. In other words,
W[1]-hardness of GRAPHISOMORPHISMwould give a very strong indication that GRAPH

ISOMORPHISMis not solvable in polynomial time, but it would not show NP-hardness of
GRAPH ISOMORPHISM. While it seems most likely that such aW[1]-hardness proof of
GRAPH ISOMORPHISMcannot be found, the (intriguing) possibility that such a proof can
be found is also still present.

This paper is organized as follows. In Section 2 we prove that the rooted path (tree)
distance width of a graph can be computed inO(ne) time, that computing the path
distance width of a graph is NP-hard, but if the path or tree distance width is at most
some fixed constantk, then the minimum path (tree) distance width can be computed
in O(nk+1) time. The main results of the paper can be found in Section 3: it is shown
that GRAPH ISOMORPHISMis solvable inO(n2) time for graphs with bounded rooted
path distance width, thus solving a significant special case of GRAPH ISOMORPHISMfor
graphs of bounded bandwidth. Furthermore, it is shown that GRAPH ISOMORPHISMis
solvable inO(n3) time for graphs with bounded rooted tree distance width, which solves
a special case for GRAPH ISOMORPHISMfor graphs of bounded treewidth. In Section 4
the relations between the different parameters considered are investigated.

2. Definitions and Complexity Results for Distance Width. The graphs we consider
are simple, undirected, and connected, and contain no self loops. For a graphG, we
denote its set of vertices byV(G) and its set of edges byE(G). Also, we denote by
G[S] the subgraph ofG induced byS ⊆ V(G). For two graphsG and H , a function
f : V(G)→ V(H) is called anisomorphism(from G to H ) if f is a bijection and, for
eachv,w ∈ V(G), {v,w} ∈ E(G) iff { f (v), f (w)} ∈ E(H). Two graphsG andH are
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isomorphicif there is an isomorphism fromG to H . The GRAPH ISOMORPHISMproblem
is the problem of checking for two given graphs whether they are isomorphic.

A graph parameteris a function which maps each graph to a positive integer.
We first review a number of graph parameters.

• A tree decompositionof a graphG = (V, E) is a pair({Xi | i ∈ I }, T = (I , F)),
where{Xi | i ∈ I } is a collection of subsets ofV andT is a tree, such that
—
⋃

i∈I Xi = V(G),
—for each edge{v,w} ∈ E, there is ani ∈ I such thatv,w ∈ Xi , and
—for eachv ∈ V the set of nodes{i | v ∈ Xi } forms a subtree ofT .
Thewidthof a tree decomposition({Xi | i ∈ I }, T = (I , F))equals maxi∈I (|Xi |−1).
Thetreewidthof a graphG is the minimum width over all tree decompositions ofG.
The corresponding graph parameter (which is the function that maps each graph to its
treewidth) is denoted byT W.

A (linear) layoutof a graphG is a one-to-one functionf : V(G)→ {1, . . . , |V(G)|}.
• Thebandwidthof a layout f of a graphG is defined as max{u,v}∈E(G) | f (u)− f (v)|.

The bandwidth of a graphG is the minimum bandwidth over all layouts ofG. The
corresponding graph parameter is denoted byBW.

For a given graphG and two verticesu, v ∈ V(G), dG(u, v) denotes the distance
betweenu andv, which is the number of edges on a shortest path betweenu andv. For
a setS⊆ V(G) and a vertexw ∈ V(G), dG(S, w) denotes minv∈S dG(v,w).

• A tree distance decompositionof a graphG = (V, E) is a triple({Xi | i ∈ I }, T =
(I , F), r ), where
—
⋃

i∈I Xi = V(G) and, for alli 6= j , Xi ∩ Xj = ∅,
—for eachv ∈ V , if v ∈ Xi , thendG(Xr , v) = dT (r, i ), and
—for each edge{v,w} ∈ E, there arei, j ∈ I such thatv ∈ Xi , w ∈ Xj and either

i = j or {i, j } ∈ F .
—r ∈ I .
Noder is calledthe rootof the treeT , andXr is called theroot setof the tree distance
decomposition. The width of a tree distance decomposition({Xi | i ∈ I }, T, r ) is
equal to maxi∈I |Xi |. Thetree distance widthof a graphG is the minimum width over
all possible tree distance decompositions ofG. The corresponding graph parameter is
denoted byT DW.
• A rooted tree distance decompositionof a graphG = (V, E) is a tree distance

decomposition({Xi | i ∈ I }, T = (I , F), r ) of G in which |Xr | = 1. Therooted
tree distance widthof a graphG is the minimum width over all rooted tree distance
decompositions. The corresponding graph parameter is denoted byRT DW.
• The (rooted) path distance decompositionand the parameter of (rooted) path distance

width of a graphG = (V, E) are defined similar to the (rooted) tree distance de-
composition and (rooted) tree distance width, but now the treeT is required to be a
path and the root has degree one inT . For reasons of simplicity we denote a (rooted)
path distance decomposition as(X1, X2, . . . , Xt ), whereX1 is the root set of the de-
composition. We denote the corresponding graph parameters byPDW andRPDW,
respectively.
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It is easy to check that, for any graphG, T W(G) ≤ 2T DW(G) − 1, T DW(G) ≤
RT DW(G),BW(G) ≤ 2PDW(G)−1, andT DW(G) ≤ PDW(G) ≤ RPDW(G).
Moreover, as|E(G)| ≤ O(|V(G)|T W(G)) (see, e.g., [4] and [13]), we get thatE(G) ≤
O(|V(G)|RPDW(G)), O(|V(G)|PDW(G)), O(|V(G)|RT DW(G)), O(|V(G)|
T DW(G)).

Notice that fixed parameter tractability of GRAPH ISOMORPHISMfor T W implies the
same forT DW andRT DW, and fixed parameter tractability of GRAPH ISOMORPHISM

for BW implies the same forPDW andRPDW. Also, showing that GRAPH ISOMOR-
PHISM is fixed parameter tractable for, e.g.,RPDW might give more insight in whether
it is fixed parameter tractable forBW. Therefore, we study the complexity of GRAPH

ISOMORPHISMon graphs for whichPDW,RPDW, T DW, orRT DW is bounded.
For a given graphG andS⊆ V(G), there is a unique path distance decomposition

of G with root setS, and this decomposition can be found inO(e) time (e= |E(G)|):
for each vertexv ∈ V(G), computedG(S, v) using breadth first search. Then for each
possible distanced, make a nodeXd containing all vertices with distanced to S.

DEFINITION. Let D = ({Xi | i ∈ I }, T = (I , F), r ) be a tree distance decomposition
of G. Given a vertexv ∈ I we denote asTv the connected subtree ofT induced by all
the nodes inI that are connected withr via paths containingv. Finally, given a node
i ∈ I we setV(D, i ) =⋃w∈V(Ti )

Xw.

For a given graphG and setS⊆ V(G), there may be more than one tree distance de-
composition with root setS. However, we define theminimaltree distance decomposition
of a graphG with root setSas follows.

DEFINITION. Let D = ({Xi | i ∈ I }, T = (I , F), r ) be a tree distance decomposition
of G. We callD minimal if, for eachi ∈ I , G[V(D, i )] is connected.

An immediate consequence of the definition above is that given a graphG and a root
setS the minimal tree distance decomposition is uniquely defined. Also, it can be found
with procedure GET-TDD presented in Figure 1, which can be made to run inO(e) time.

THEOREM2.1. Given a graph G and a set S⊆ V(G), we can compute in O(|E(G)|)
time the unique path distance decomposition with root set S, or the unique minimal tree
distance decomposition with root set S.

PROOF. Let D = ({Xi | i ∈ I }, T = (I , F), r ) be some output of GET-TDD. It is easy
to see thatD is a tree distance decomposition ofG.

We will prove that, for anyi ∈ I , G[V(D, i )] is connected. Letm= maxi∈I dT (r, i ).
We use induction onm− dT (r, i ). If dT (r, i ) = m, then it is clear from the algorithm
thatG[V(D, i )] is connected.

Assume that, for anyi ∈ I such thatdT (r, i ) > n (0 < n ≤ m), G[V(D, i )]
is connected. Leti ∈ I such thatdT (r, i ) = n. Let also{i1, . . . , i t } ⊆ I be such
that for all iσ , 1 ≤ σ ≤ t , dT (r, iσ ) = n + 1 and{{i, i1}, . . . , {i, i t }} ⊆ F . We will
prove thatG[V(D, i )] is connected, that is, we will show that, for any pair of vertices
v,u ∈ V(D, i ), there exists a path connectingu andv in G[V(D, i )]. From the induction
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ProcedureGET-TDD

Input: a graphG = (V, E) and a root setS.
Output: the minimal tree distance decomposition({Xi | i ∈ I }, T = (I , F), r ), (Xr = S).

1. for anyv ∈ V set distance(v) = dG(S, v);
2. m := maxv∈V distance(v);
3. I := ∅, F := ∅, andh := 0;
4. for anyi,0≤ i ≤ m+1 setVi = {v ∈ V | distance(v) = i };
5. for i := m down to 0 do
6. Compute the connected components ofG[{v ∈ V | i ≤

distance(v) ≤ i + 1}];
/* We call the connected componentsS1, . . . , St*/

7. for j := 1 to t do
8. Xh+ j := Sj − Vi+1;
9. Add edges{v,u}, v,u ∈ Xh+ j to E(G) such that

G[Xh+ j ] becomes connected;
/* (For example, choose a vertexv ∈ Xh+ j and makev

adjacent to any other vertex inXh+ j .)*/
10. I := I ∪ {h+ j };
11. F := F ∪ {{h+ j, k} | Xk ⊂ Sj ∧ k ≤ h};
12. od
13. h := h+ t ;
14. od
15. end.

Fig. 1.Procedure GET-TDD(G, S).

hypothesis and the fact that all vertices inLn+1 = Xi1 ∪ · · ·∪ Xit are adjacent to a vertex
in Xi , we have that there exist two verticesv′, u′ in Xi connected by some paths in
G[V(D, i )] with v andu, respectively. The connectivity ofG[V(D, i )] now follows
easily in the case whereG[Xi ∪ Ln+1] is connected. Suppose thatG[Xi ∪ Ln+1] is
not connected. In this case we notice thatXi ∪ Ln+1 must induce one of the connected
components computed during the(m− n + 1)th execution of step 5 (m is defined at
step 2). Clearly, each of these connected components became connected because of the
addition of some number of edges connecting vertices inXiσ ,1 ≤ σ ≤ t , during the
(m−n)th execution of loop 7–12. We call these edgesnew edgesand denote the current
graph after the(n−1)th loop byGn. As there exists inGn[Xi ∪ Ln+1] a path connecting
v′ andu′, such a path must contain a number of new edges (see Figure 2). From the
induction hypothesis we have that any new edge corresponds to a path inG[V(D, iσ )]
connecting its endpoints for someσ,1 ≤ σ ≤ t . Thus, we can construct a path in
G[V(D, i )] connectingu′ andv′. Therefore, there exists a walk (hence path) connecting
u andv and the connectivity ofG[V(D, i )] follows.

Step 1 uses breadth first search to assign for each vertex in the graph its distance from
the root set. This costsO(|E(G)|) time. Also loop 5–14 needs in totalO(|E(G)|) time
as the executions of step 6 use in totalO(|E(G)|) time and each call of line 9 can be
executed inO(|V(Xh+ j )|) time.
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Fig. 2. An example for the procedure GET-TDD. (a) The original graph. (b) The graph after the second
execution of the loop defined by steps 6–13 in GET-TDD.

From Theorem 2.1 and the fact that if a graph has (rooted) tree or path distance width
at mostk, thene= O(kn), we get the following result.

COROLLARY 2.2. There is an algorithm that computes a rooted path(tree) distance
decomposition of minimum width of a graph G in O(kn2) time, where k is the rooted
path(tree) distance width of the graph. There is an algorithm that computes a path(tree)
distance decomposition of minimum width of a graph in O(knk+1) time, where k denotes
the path(tree) distance width of the graph.

The following result concerns the complexity of (rooted) path (tree) distance width.

THEOREM2.3. The following problem is NP-complete even if the input graphs are trees.
Given a graph G and an integer k, does G have path distance width at most k?
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PROOF. The proof is based on a reduction from the following strongly NP-complete
problem:

3PARTITION

Instance: A set A = {a1, . . . ,a3m} of positive integers and an integer valueB such that
B/4< ai < B/2,1≤ i ≤ 3m,m> 1, and

∑
1≤i≤3m ai = mB.

Question: Is there a partition ofA into m disjoint setsA1, A2, . . . , Am such that
∑

a∈Ai
a

= B,1≤ i ≤ m?

We describe a transformation that, given an instance of the 3PARTITION problem, outputs
a treeT such thatT has path distance width at mostd iff the answer for the 3PARTITION

problem is yes.
Let c = 57m+ 1 andd = c · B+ 9m. T is constructed as follows: First we setUi =

{ui,1, . . . ,ui,m}, Vi = {vi,1, . . . , vi,cai },1≤ i ≤ 3m, andW = {w1, . . . , w2d−12m}. Then
we defineTi = ({x}∪Ui ∪Vi , {{x,ui,1}}∪{{ui, j ,ui, j+1} | 1≤ j ≤ m−1}∪{{vi, j ,ui,m} |
1 ≤ j ≤ c · ai }),1 ≤ i ≤ 3m. Now setT = (W ∪⋃1≤i≤3m V(Ti ), {{x, wi } | 1 ≤ i ≤
2d − 12m} ∪ (⋃1≤i≤3m E(Ti ))) (see also Figure 3).

Fig. 3.The reduction of Theorem 2.3.
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We will now prove that the 3PARTITION instance has a solution iffT has a path distance
decomposition(X1, X2, . . . , Xt ) with width at mostd.

Let {A1, A2, . . . , Am} be a solution of the 3PARTITION problem. We construct a
path distance decomposition as follows. We first definef : {1,2, . . . ,3m} 7→ {x} ∪⋃

1≤i≤3m Ui such thatf (i ) = x iff ai ∈ A1 and f (i ) = ui, j−1 iff ai ∈ Aj ,2 ≤ j ≤ m.
We setS= {w1, w2, . . . , wd−3m} ∪ { f (1), . . . , f (3m)}. Let (X1 = S, X2, . . . , Xr ) be
the path distance decomposition ofG with root setS.

Now we prove that for alli , 1≤ i ≤ r , |Xi | ≤ d. By the construction, we have that
the cardinality of the root setS= X1 is no more thand. We also observe thatX2 contains
d−9mvertices fromW, and at most 3m+2·3mvertices fromUT = {x}∪

⋃
1≤i≤3m Ui . So

|X2| ≤ d. It is now easy to see that, for anyi > 2, Xi must contain at most 3·3m vertices
from UT andcai1 + cai2 + cai3 vertices fromVi1 ∪ Vi2 ∪ Vi3 whereAj = {ai1,ai2,ail } is
some setAj of the solution of the 3PARTITION problem. Thuscai1+cai2+cai3 = cBand,
for anyi > 2, Xi must contain at mostd = cB+ 9m vertices. Therefore,(X1, . . . , Xr )

has distance width at mostd.
Suppose now that(X1, . . . , Xt ) is a path distance decomposition ofT that has width

at mostd. We prove that there exists a partition ofA = {a1, . . . ,a3m} into m disjoint
setsA1, . . . , Am such that

∑
a∈Ai

a = B,1≤ i ≤ m. We distinguish two cases:

Case1: x ∈ X1. In this case we easily observe thatW ⊆ X1 ∪ X2 and thus we have
|X1 ∩W| + |X2 ∩W| = |W| = 2d − 12m. Using this and the fact that|X1|, |X2| ≤ d,
we have that 2d ≥ |X1| + |X2| = |X1 −W| + |X1 ∩W| + |X2 −W| + |X2 ∩W| =
|X1−W|+|X2−W|+2d−12m≥ |Xi −W|+2d−12m⇒ |Xi −W| ≤ 12m, i = 1,2.

Let {Rj | j ≥ 1} be a collection of subsets of{1,2, . . . ,3m} such thati ∈ Rj iff
|Xj ∩ Vi | ≥ cai − 12m.

We first claim that for alli , 1≤ i ≤ 3m, there exists at most onej ≥ 1 such thati ∈ Rj

Suppose that for somei , there arej and j ′ such thatj 6= j ′, i ∈ Rj , andi ∈ Rj ′ . In such a
case we have that|Xj ∩Vi | ≥ cai −12mand|Xj ′ ∩Vi | ≥ cai −12m. As Xj ∩Xj ′ = ∅, we
conclude that|Vi | ≥ 2cai − 24m⇒ cai ≥ 2cai − 24m⇒ 24m≥ cai ≥ c = 57m+ 1,
a contradiction.

We now claim that for alli , 1 ≤ i ≤ 3m, there exists aj ≥ 1, such thati ∈ Rj .
Choosej ′ such thatui,m ∈ Xj ′ . Notice that, for allv ∈ Vi , eitherv ∈ X1 orv ∈ Xj ′+1. As
X1∩Vi ⊆ X1−W, we have that|X1∩Vi | ≤ 12m and thus|Xj ′+1∩Vi | ≥ cai −12m⇒
i ∈ Rj ′+1.

We claim that if j = 1,2, then Rj = ∅. Indeed, suppose, on the contrary, that
for some j = 1,2 there exists ani,1 ≤ i ≤ 3m, such thati ∈ Rj . In this case
we have that|Xj ∩ Vi | ≥ cai − 12m. However, as|Xj − W| ≤ 12m, j = 1,2, and
Xj ∩ Vi ⊆ Xj − W, j = 1,2,1 ≤ i ≤ 3m, we conclude that 12m ≥ |Xj − W| ≥
|Xj ∩ Vi | ≥ cai − 12m ≥ c− 12m = 57m+ 1− 12m = 45m+ 1, a contradiction.
Notice also that, asx ∈ X1, we have thatV(T) ⊆ X1 ∪ · · · ∪ Xm+2 and thus, for all
j ≥ m+ 3, Rj = ∅.

We now setAj = {ai | i ∈ Rj+2},1 ≤ j ≤ m. Clearly, A1, . . . , Am is a partition
of A.

We claim that for all j , 1 ≤ j ≤ m, |Aj | ≤ 3. Suppose, on the contrary that
for some j,1 ≤ j ≤ m, |Aj | ≥ 4. Then

∑
ai∈Aj
|Xj+2 ∩ Vi | ≥

∑
ai∈Aj

(cai − 12m) ≥∑
ai∈Aj

(c((B+1)/4)−12m) ≥ 4(cB/4+c/4−12m) ≥ cB+c−48m≥ cB+9m+1>
d, a contradiction.
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From the claims above, we conclude that the setsA1, . . . , Am form a partition ofA
into sets consisting of at most three elements.

What now remains to be proven is that for allj , 1 ≤ j ≤ m,
∑

a∈Aj
a = B.

Clearly, as
∑

1≤i≤3m ai = mB, it is sufficient to prove that for allj , 1 ≤ j ≤ m,∑
a∈Aj

a ≤ B. For this, we first notice thatc
∑

ai∈Aj
ai ≤

∑
ai∈Aj

(|Xj+2∩Vi |+12m) ≤
|Xj+2| + 36m ≤ d + 36m = cB + 9m+ 36m ≤ cB + 45m. Finally, we have that∑

ai∈Aj
ai ≤ B+ 45m/c which implies

∑
ai∈Aj

ai ≤ B+ b45m/cc = B (b45m/cc = 0
becausec = 57m+ 1> 45m).

Case2: x 6∈ X1. In this case we can easily see thatX1 ∩W 6= ∅ because otherwise,
if x ∈ Xi for somei , thenW ⊆ Xi+1, but |W| > d. So,x ∈ X2, andW ⊆ X1 ∪ X3⇒
|X1∩W|+|X3∩W| = 2d−12m. Using the fact that|X1|, |X3| ≤ d and using a similar
argument as in Case 1, we have that|Xi −W| ≤ 12m, i = 1,3.

We define{Rj | j ≥ 1} as in Case 1 and following similar argumentation, we
deduce that anyi ∈ {1, . . . ,3m} belongs to exactly oneAj . Also very similarly to
Case 1 we have that ifi = 1 or 3, thenRj = ∅. Moreover, we claim thatRm+2 = ∅.
Suppose, on the contrary, thati ∈ Rm+2. This means that|Xm+2 ∩ Vi | ≥ cai − 12m
and thus there exists some vertexw ∈ Xm+2 that belongs inVi . Notice now that as
dT (X1, w) = m+ 1 ≥ 3 we have that for allh, 1 ≤ h ≤ m, ui,h ∈ Xh+1 and thus
x ∈ X1, a contradiction (ifx ∈ Xi , i > 2, thenW ⊆ Xi+1, a contradiction). Finally,
asx ∈ X2, and for allw ∈ V(T), dT (x, w) ≤ m+ 1, we easily conclude that, for all
j ≥ m+ 4, Xj = ∅ ⇒ Rj = ∅.

We set A1 = {ai | i ∈ R2}, Aj = {aj | i ∈ Rj+2},2 ≤ j ≤ m − 1, and
Am = {ai | i ∈ Rm+3}. Following the same steps as in Case 1, one can prove that
A1, . . . , Am is a partition ofA into sets consisting of at most three elements such that
for all j , 1≤ j ≤ m,

∑
a∈Aj

a = B.

Recently, the tree distance width problem was also shown to be NP-complete by
Caprara et al. [5]. Another proof for the same theorem was suggested by an anonymous
referee.

THEOREM2.4. The following problem is NP-complete. Given a graph G and an integer
k, does G have tree distance width at most k?

3. Graph Isomorphism for Graphs of Bounded Distance Width. In this section it
is shown that the GRAPH ISOMORPHISMproblem is fixed parameter tractable for graphs
of bounded rooted path distance width or bounded rooted tree distance width.

We present an algorithm with running timeO(n2) that tests isomorphism for two
graphs with rooted path distance width at most some constantk, and an algorithm with
running timeO(n3) that tests isomorphism for graphs with rooted tree distance width at
most some constantk.

DEFINITION. Let DG = (XG
1 , . . . , XG

tG)andDH = (XH
1 , . . . , XH

tH
)be two path distance

decompositions of graphsG andH , respectively. We callDG andDH isomorphicif there
exists an isomorphismf : V(G)→ V(H) from G to H such that for alli , 1≤ i ≤ tG,
∀v ∈ XG

i , f (v) ∈ XH
i .
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Algorithm RPDW-ISO(G, H)

Input: graphsG andH of rooted path distance width at mostk.
Output: “Yes,” if G is isomorphic toH , “No,” otherwise.

1. LetDG = (XG
1 , . . . , XG

tG)be a rooted path distance decompo-
sition ofG with root setXG

1 = {vG} and rooted path distance
width at mostk.

2. for eachvH ∈ V(H) do
3. let DH = (XH

1 , . . . , XH
tH
) be a rooted path distance

decomposition ofG with root setXH
1 = {vH };

4. if SUB-RPDW(DG, DH ) = true
5. then return “Yes”;
6. od
7. return “No”;
8. end

ProcedureSUB-RPDW(DG, DH )

Input: decompositionsDG = (XG
1 , . . . , XG

tG), DH = (XH
1 , . . . , XH

tH
).

Output: “true,” if DG is isomorphic toDH , “false,” otherwise.

1. if tG 6= tH then return false
2. elselet t ← tG;
3. for i := 1 to t do
4. if |XG

i | = |XH
i | then return false;

5. let Rt be the set of isomorphisms fromG[XG
t ] to H [XH

t ];
6. if Rt = ∅ then return false;
7. for i := t − 1 downto 1 do
8. let Ri ← ∅;
9. for each isomorphismf from G[XG

i ] to H [XH
i ]

10. if there exists a bijectiong ∈ Ri+1 such thatf ∪ g is an
isomorphism fromG[XG

i ∪ XG
i+1] to G[XH

i ∪ XH
i+1]

11. then Ri ← Ri ∪ { f };
12. od
13. if R1 6= ∅
14. then return true
15. else return false;
16. end.

THEOREM3.1. The algorithmRPDW-ISO(G, H), above, checks whether two input
graphs G and H of rooted path distance width at most k are isomorphic. The algorithm
runs in O(k!2k2n2) time, where n= |V(G)|.

PROOF. For input graphsG and H , the algorithm works as follows. There are two
phases. In the first phase (step 1 of RPDW-ISO(G, H)), a rooted path distance decom-
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position of minimum width is computed forG. By Corollary 2.2 this phase costsO(kn2)

time (as|E(G)| = O(k|V(G)|)).
In the second phase of the algorithm, we compute for eachvH ∈ V(H) the unique

rooted path distance decompositionDH = (XH
1 , . . . , XH

tH
) of H where XH

1 = {vH }
(step 3 of RPDW-ISO(G, H)). The main part of the algorithm is step 4 where procedure
SUB-RPDW(DG, DH ) computes whether decompositionsDG andDH are isomorphic.
If DG and DH are isomorphic, then we may conclude thatG and H are isomorphic.
On the other hand, if there is no rooted path distance decomposition ofH which is
isomorphic toDG, thenG andH cannot be isomorphic: iff is an isomorphism fromG
to H , then the rooted path decomposition ofH with XH

1 = { f (vG)}must be isomorphic
to the rooted path decomposition ofG with XG

1 = {vG}. So the given algorithm correctly
computes whetherG andH are isomorphic.

What now remains is to show that, given two path distance decompositionsDG

and DH , SUB-RPDW(DG, DH ) indeed checks whether they are isomorphic. During
steps 1–4 SUB-RPDW(DG, DH ) checks iftG = tH and whether, fori = 1, . . . , tG,
|XG

i | = |XH
i |. If not, then clearlyDG and DH cannot be isomorphic. In the sequel

(steps 5–12), for eachi,1 ≤ i ≤ t = tG, SUB-RPDW(DG, DH ) computes the setRi ,
which contains all isomorphisms fromG[XG

i ] to H [XH
i ] that are extendible, i.e.,Ri

contains all isomorphismsf from G[XG
i ] to H [XH

i ] for which there is an isomorphism
g from G[XG

i ∪· · ·∪ XG
t ] to H [XH

i ∪· · ·∪ XH
t ], such that, for allx ∈ XG

i , f (x) = g(x)
and for all j , i ≤ j ≤ t , for all x ∈ XG

j , g(x) ∈ XH
j . Now, it is clear thatR1 is not empty

iff DG and DH are isomorphic. The setR1 is computed in a bottom-up way, by first
computingRt , and then, for eachi,1≤ i ≤ t−1, computingRi from Ri+1. The setRt is
easily computed by checking, for each bijectionf : XG

t → XH
t , if it is an isomorphism.

If so, SUB-RPDW(DG, DH ) puts f in Rt (step 5). This takes constant time, since there
are at mostk! such bijections.

For eachi , 1 ≤ i < t , SUB-RPDW(DG, DH ) computesRi as follows: for each
bijection, f : XG

i → XH
i checks if there is ag ∈ Ri+1 such thatf ∪ g : XG

i ∪ XG
i+1→

XG
i ∪ XH

i+1 is an isomorphism fromG[XG
i ∪ XG

i+1] to H [XH
i ∪ XH

i+1]. If so, then putf
in Ri (step 11). This can again be done in constant time. As there are no edges inXG

i
(XH

i ) adjacent with vertices inXG
i+σ (XH

i+σ ) for σ = 2, . . . , t − i , it is now easy to see
that Ri is the set of all the extendible isomorphisms fromXG

i to XH
i .

The running time of RPWD-ISO(G, H) is O(k!2k2n2): computing the rooted path
distance decomposition ofH for each possible root set takesO(kn) time. Further-
more, checking if two decompositions are isomorphic can be done inO(k!2k2n) time:
computing Ri for somei takes a constant time ofO(k!2k2), and there are at most
O(n) nodes.

Notice that it is not necessary that the input path decompositions of SUB-RPDW are
rooted. Using this fact we can modify algorithm RPDW-ISO(G, H) in order to check
isomorphism of graphs with small path distance width.

COROLLARY 3.2. There exist an algorithm that checks whether two graphs G and H
of path distance width at most k are isomorphic in O(k!2k2nk+1) time(n = |V(G)|).
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Algorithm RTDW-ISO(G, H)

Input: graphsG andH of rooted tree distance width at mostk.
Output: “Yes,” if G is isomorphic toH , “No,” otherwise.

1. Use GET-TDD to compute a minimum width rooted tree
distance decompositionDG of G with width at mostk and
root set consisting of an arbitrary vertexvG ∈ V(G);

2. for eachvH ∈ H do
3. Use GET-TDD to compute a rooted tree distance decom-

positionDH of H with root set{vH };
4. if the width ofDH is at mostk
5. if ISO-CHECK(DG, DH )

6. then return “Yes”;
7. od
8. return “No”;
9. end.

Fig. 4.Algorithm RTDW-ISO.

PROOF. We first compute an optimal path distance decompositionDG (this requires
O(nk) time), and then we check, using SUB-RPDW(DG, DH ), if there exists some root
setXH

1 ⊆ V(H) (|XH
1 | ≤ k) for which the corresponding path distance decomposition

DH is isomorphic toDG (this requiresO(k!2k2nk+1) time).

We now present an algorithm that computes whether two input graphs which have
rooted tree distance width at mostk for some fixedk are isomorphic. The running time
of the algorithm isO(n3). The algorithm can be found in Figures 4–6.

ProcedureISO-CHECK(DG, DH )

Input: decompositionsDG = ({XG
i | i ∈ I G}, TG = (I G, FG), rG),

DH = ({XH
i | i ∈ I H }, T H = (I H , F H ), r H ).

Output: “true,” if DG is isomorphic toDH , “false,” otherwise.

1. if TG andT H are not isomorphic
2. then return false;
3. letm be the depth ofTG

4. for l := m down to 0 do
5. for eachpair (p,q), p ∈ V(TG) andq ∈ V(T H )

6. such thatdTG(p, rG) = dT H (q, r H ) = l do
7. ComputeRp,q

l usingGET-I B(p,q, l );
8. if RrG,r H

0 = ∅
9. then return false

10. else return true;
11. end.

Fig. 5.Procedure ISO-CHECK.
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SubprocedureGET-IB(p,q, l )

Input: nodesp in TG andq in T H such thatdTG(rG, p) = dT H (r H ,q) = l .
Output: Rp,q

l .

1. Rp,q
l := ∅;

2. if |XG
p | 6= |XH

q | then return ;
3. Count the number of children ofp in TG;
4. Count the number of children ofq in T H ;
5. if the numbers of children ofp and q are differentthen

return ;
6. for eachbijection f : XG

p 7→ XH
q that is an isomorphismdo

7. SetchildrenP := { p̂ : p̂ is a child of p};
8. SetchildrenQ := {q̂ : q̂ is a child ofq};
9. for each p̂ ∈ childrenPdo

10. for each q̂ ∈ childrenQdo
11. for each g ∈ Rp̂,q̂

l+1 do
12. if G[XG

p ∪ XG
p̂ ] and H [XH

q ∪ XH
q̂ ] are isomorphic

under the functionf ∪ g
13. then childrenP := childrenP− { p̂};
14. childrenQ := childrenQ− {q̂};
15. gotostep 20;
16. od
17. od
18. gotostep 22;
19. od
20. Rp,q

l := Rp,q
l ∪ f ;

21. od
22. end.

Fig. 6.Sub-procedure GET-IB.

DEFINITION. Let DG = ({XG
i | i ∈ I G}, TG = (I G, FG), rG) andDH = ({XH

i | i ∈
I H }, T H = (I H , F H ), r H ) be two rooted tree distance decompositions of the graphs
G andH , respectively. We callDG andDH isomorphicif there exists an isomorphism
f : V(G) → V(H) from G to H and an isomorphismg : I G → I H from TG to T H

such thatg(r G) = r H and for eachi , i ∈ I G, and eachx ∈ XG
i , f (x) ∈ XH

g(i ).

THEOREM3.3. AlgorithmRTDW-ISO(G, H) checks whether two input graphs G and
H of rooted tree distance width at most k are isomorphic. The algorithm runs in
O(k!2k2n3) time, where n= |V(G)|.

PROOF. The basic structure of the algorithm is the same as for graphs of bounded rooted
path distance width: there are again two phases. In the first phase (step 1 of RTDW-
ISO(G, H)), a rooted tree distance decomposition of minimum width is computed for
G. This is done in the following way. For each vertexv ∈ V , GET-TDD is used to



118 K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos

compute the unique minimal rooted tree distance decomposition ofG with root set{v}.
Then the decompositionDG of smallest width, sayk is selected. LetDG = ({XG

i |
i ∈ I G}, TG = (I G, FG), r G) denote this decomposition. By Corollary 2.2, this phase
needsO(kn2) time.

In the second phase of the algorithm (steps 2–11), RTDW-ISO(G, H) computes, for
eachw ∈ V(H), the unique minimal rooted tree distance decompositionDH of H
with root set{w}. Let DH = ({XH

i | i ∈ I H }, T H = (I H , F H ), r H ) denote such a
decomposition. If the width ofDH equalsk, then procedure ISO-CHECK(DG, DH )

is used to test whether decompositionsDG and DH are isomorphic. In the same way
as for the rooted path distance decompositions, we may conclude thatG and H are
isomorphic if DG and DH are isomorphic. On the other hand, if there is no minimal
rooted tree distance decomposition ofH which is isomorphic toDG, thenG and H
cannot be isomorphic. So the given algorithm correctly computes whetherG andH are
isomorphic, assuming that procedure ISO-CHECK is correct.

What now remains is to see that procedure ISO-CHECK(DG, DH ) indeed tests
whether two rooted tree distance decompositions are isomorphic.

SupposeDG = ({XG
i | i ∈ I G}, TG = (I G, FG), r G) and DH = ({XH

i | i ∈
I H }, T H = (I H , F H ), r H ) are minimal rooted tree distance decompositions of graphs
G and H , respectively. Note thatDG and DH cannot be isomorphic ifTG and T H

are not isomorphic. Therefore, ISO-CHECK(DG, DH ) first tests whetherTG andT H

are isomorphic (step 1). This test uses the rooted tree isomorphism checking algorithm
from [8] and requiresO(n) time. Now supposeTG andT H are isomorphic. The depth of a
node in a rooted tree is the length of a path from this node to the root (so the root has depth
zero). Letmdenote the maximum depth of a node inTG (and hence inT H ). The nodes of
depthl are callednodes on level l. Now, for each levell , 0≤ l ≤ m, and each pair of nodes
p,q, with p ∈ I G andq ∈ I H , both on levell , we compute the setRp,q

l of isomorphisms
f : XG

p → XH
q from G[XG

p ] to H [XH
q ] which areextendible. The definition of an

extendible isomorphism for tree distance decompositions is a generalisation of the one
used in the proof of Theorem 3.1 and is the following:

DEFINITION. Let Gp = G[V(DG, p)] and Hq = H [V(DH ,q)]. We say an isomor-
phism f from G[XG

p ] to H [XH
q ] is extendibleif there exists an isomorphismg′ :

V(TG
p )→ V(T H

q ) from TG
p to T H

q and an isomorphismf ′ : V(Gp)→ V(Hq) from Gp

to Hq such that, for eacha ∈ V(TG
p ) and eachv ∈ XG

a , f ′(v) ∈ XH
g′(a), and furthermore,

for eachv ∈ XG
p , f (v) = f ′(v) (see Figure 7).

From the definition above it is clear thatRr G,r H

0 is not empty iff DG and DH are

isomorphic. The setRr G,r H

0 is computed in a bottom-up way, by first computingRp,q
m for

all nodesp ∈ I G andq ∈ I H on levelm, and then, for eachl , 0 ≤ l < m, computing
Rp,q

l for all nodesp ∈ I G andq ∈ I H on level l , by using the values ofRp̂,q̂
l+1 for all

children p̂ of p andq̂ of q.
The setsRp,q

m (p andq are nodes of levelm in TG andT H , respectively) are computed
during the first execution of loop 4–7 of ISO-CHECK(DG, DH ): if |XG

p | 6= |XH
q |, then

Rp,q
m = ∅ (step 2 of GET-IB(p,q, l )). Otherwise, for each bijectionf : XG

p → XH
q ,
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Fig. 7.An example of extendibility of isomorphism fromG[XG
i ] to H [XH

j ]. (a) GraphG, H , (b) decomposition

DG, DH , and (c) the functionsf , f ′, andg′.

GET-IB(p,q, l ) checks if it is an isomorphism (step 6), and, if so, putsf in Rp,q
m (step 21).

This takes constant time for eachp andq.
For eachl , 0 ≤ l < m, and eachp ∈ I G andq ∈ I H on level l of TG and T H

respectively, GET-IB(p,q, l ) proceeds computingRp,q
l as follows. First, it checks if

|XG
p | = |XH

q | and the number of children ofp equals the number of children ofq. If not,
then Rp,q

l = ∅. Otherwise, for each bijectionf : XG
p → XH

q from G[XG
p ] to H [XH

q ]
that is an isomorphism, GET-IB(p,q, l ) tries to make a matching between the children
of p and the children ofq, i.e., it tries to match each child̂p of p to a child q̂ of q,
in such a way that there exists ag ∈ Rp̂,q̂

l+1 for which f ∪ g : XG
p ∪ XG

p̂ → XH
q ∪ XH

q̂

is an isomorphism fromG[XG
p ∪ XG

p̂ ] to H [XH
q ∪ XH

q̂ ] (steps 9–20). As there are no

vertices inXG
p (XH

q ) adjacent with vertices belonging to someXG
σ (XH

σ ′ ) whereσ (σ ′)
is an ancestor ofp (q) in TG (T H ) that is not a child ofp (q), it is easy to see that there
exists such a matching ifff is extendible (see Figure 8).

Toward computing a matching as described above, GET-IB(p,q, l ) tries to match
the children ofp one by one to a child ofq as follows: Take a child̂p of p which has
not yet been matched (step 9). For each unmatched childq̂ of q, try to matchp̂ to q̂
(steps 10–18). As soon as aq̂ is found that can be matched tôp, then matchp̂ to q̂, and
go on with the next child ofp. If there is noq̂ which can be matched tôp, then there
cannot be a matching between the children ofp and ofq, and hencef is not extendible.
On the other side, it is clear that iff is extendible, such a matching exists. Now, if it is
possible to match each child ofp to a child ofq, then GET-IB(p,q, l ) adds f to Rp,q

l
(step 21). (We can actually use this “greedy matching algorithm,” and need not use the
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Fig. 8.An example of a matching between children ofXG
i andXH

j .

standard “maximum flow” matching algorithm, because of transitivity of isomorphism.)
We can easily observe that during thel th execution of the loop defined by steps 4–7

of ISO-CHECK(DG, DH ), the number of the execution times of the loop defined by
steps 11–17 of GET-IB(p,q, l ) is quadratic in the number of edges inTG (or T H ) that
have one endpoint in levell and one in levell + 1. As the number of edges inTG is
O(n) we can easily conclude that the overall complexity of ISO-CHECK(DG, DH ) is
O(k!2k2n2).

The running time of the second phase of algorithm RTWD-ISO(G, H) is O(k!2k2n3):
computing the minimal rooted tree distance decomposition ofH for a root set{w}
takesO(n2) time. Moreover, as ISO-CHECK(DG, DH ) needsO(k!2k2n2) time and the
number of different root sets forH is n, the running time ofO(k!2k2n3) now follows.

Notice that it is not necessary that the inputs of ISO-CHECK(DG, DH ) are rooted.
Using this fact we can modify algorithm RTDW-ISO(G, H) in order to check the iso-
morphism of graphs with small tree distance width.

COROLLARY 3.4. There exist an algorithm that checks whether two graphs G and H
of path distance width at most k are isomorphic in O(k!2k2nk+2) time(n = |V(G)|).

PROOF. We first compute an optimal path distance decompositionDG (this requires
O(nk) time), and then we check, using ISO-CHECK(DG, DH ), if there exists some root
setXH

r H
⊆ V(H) (|XH

r H
| ≤ k) for which the corresponding tree distance decomposition

DH is isomorphic toDG. This requiresO(nk) calls of ISO-CHECK(DG, DH ) and thus
O(k!2k2nk+2) time.

4. Relationships Among Classes of Bounded Width. In this section, first we give
the definitions of some known graph parameters in order to investigate their relations
with (rooted) path distance width and (rooted) tree distance width.

• A strong tree decompositionof a graphG = (V, E) is a pair({Xi | i ∈ I }, T =
(I , F)), where{Xi | i ∈ I } is a collection of subsets ofV andT is a tree, such that
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—
⋃

i∈I Xi = V and, for alli 6= j , Xi ∩ Xj = ∅,
—for each edge{v,w} ∈ E, there arei, j ∈ I with v ∈ Xi andw ∈ Xj , such that

eitheri = j or {i, j } ∈ F .
The width of a strong tree decomposition({Xi | i ∈ I }, T = (I , F)) equals
maxi∈I (|Xi |). Thestrong treewidthof a graphG is the minimum width over all pos-
sible strong tree decompositions ofG. The corresponding graph parameter is denoted
by ST W. See [17].
• A connected strong tree decompositionof a graphG = (V, E) is a strong tree decom-

position({Xi | i ∈ I }, T = (I , F)) of G such that, for eachi ∈ I , G[Xi ] is connected.
Theconnected strong treewidthof G is the minimum width over all connected strong
tree decompositions ofG. The corresponding graph parameter is denoted byCST W.
• A path decompositionof a graphG is a tree decomposition({Xi | i ∈ I }, T = (I , F))

in which T is a path (i.e., two nodes inT have degree 1, and all others have degree
2). The pathwidth of a graphG is the minimum width over all path decompositions
of G. The corresponding graph parameter is denoted byPW.

In the same way, we can define the notions ofstrong pathwidth, and connected
strong pathwidth. We denote the corresponding graph parameters bySPW andCSPW,
respectively.

• Thecutwidthof a layout f of a graphG is defined as

max
1≤i<|V(G)|

|{{u, v} ∈ E(G) : f (u) ≤ i < f (v)}|.

The cutwidth of a graphG is the minimum cutwidth over all layouts ofG. The
corresponding graph parameter is denoted byCW.
• For a given graphG, asubdivisionis the operation which adds a new vertexu to G and

replaces an edgee= {v,w} ∈ E(G) by two edges{v,u} and{u, w} (i.e., it splits an
edge ofG into two edges). Arefinementof a graphG is a graphG′ which is obtained
from G by a number of subsequent subdivisions.
• The topological bandwidthof a graphG is the minimum bandwidth over all refine-

ments ofG. The corresponding graph parameter is denoted byT BW.
• ByD we denote the graph parameter which maps each graph to the maximum degree

of any vertex in the graph.

Let f and f ′ be two graph parameters. We say thatf ′ defrays f, denoted byf ¹ f ′,
if there is a functiong : N → N, such that, for each graphG and each integerk, if
f (G) ≤ k, then f ′(G) ≤ g(k) (we also say thatf is defrayed byf ′). For instance,
if we take f = BW and f ′ = CW, then f ¹ f ′: for each graphG, CW(G) ≤
BW(G)(BW(G)− 1)/2. Hence if we takeg(k) = k(k− 1)/2, then, for each graphG
and each integerk, if BW(G) ≤ k, thenCW(G) ≤ g(k).

If a graph parameterf is not defrayed by a parameterf ′, we denote this byf 6¹ f ′.
If f ¹ f ′ but f ′ 6¹ f , then we say thatf ′ strictly defrays f, denoted byf ≺ f ′. If
f ¹ f ′ and f ′ ¹ f , then we sayf ≈ f ′. If f 6¹ f ′ and f ′ 6¹ f , then we say thatf
and f ′ arenot related, and we denote this byf ‖ f ′ (note that saying thatf ‖ f ′ is not
equivalent to saying thatf ≈ f ′ does not hold). It is easy to see that≺, ¹, and≈ are
transitive relations.
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Fig. 9.Relations between graph parameters.

The notion of defraying is interesting in the following sense. Suppose we have a graph
problemP (for example, the isomorphism problem), and we have two graph parameters
f and f ′, such thatf ¹ f ′. If problem P is fixed parameter tractable for parameter
f ′, then we can conclude immediately thatP is fixed parameter tractable forf . On the
other hand, if we can show that problemP is fixed parameter tractable for parameterf ,
then this might help to get more insight into whetherP is fixed parameter tractable for
parameterf ′.

We now give a number of relations for the graph parameters that are defined in Sec-
tion 2 and this section. See also Figure 9. Parameters that areknownto bring GRAPH

ISOMORPHISMinto FPT are in the shaded rectangle. By [1] and [15], GRAPH ISOMOR-
PHISM belongs toP if any of these parameters is bounded by a constant.

THEOREM4.1. The following relations hold(see also Figure9):

(1) T W‖D, (2) CW ≺ T W, (3) CW ≺ D,
(4) CW ≈ T BW, (5)BW ≺ CW, (6)SPW ≈ BW,
(7)RT DW 6¹ BW, (8)RPDW ≺ PDW, (9)PDW ≺ BW,

(10)CSPW ≺ RPDW, (11)CST W‖T DW, (12)RT DW‖CST W.
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Fig. 10.A counterexample forCW 6¹ BW.

PROOF. (1) In order to see thatT W 6¹ D it is sufficient to observe that trees have
treewidth 1 and arbitrary large maximum degree. ForD 6¹ T W, we may notice that
grids have maximum degree≤ 4 and arbitrary large treewidth (see [16]).

(2) CW ¹ T W follows immediately from the fact that, for any graphG, T W(G) ≤
CW(G) (see [1]). Also, it is known that, for any complete binary treeBk with depth
k ≥ 2, CW(Bk) = d(k− 1)/2e + 1 (see [6]). HenceT W 6¹ CW.

(3) It is easy to see thatCW(G) ≥ D(G)/2 for any graphG. Thus,CW ¹ D.
Moreover, as we mention in the proof of (2), the complete binary treesBk with depth
k > 3 have cutwidth equal tod(k− 1)/2e + 1. As1(Bk) = 3 we have thatD 6¹ CW.

(4) It is known thatT BW(G) ≤ CW(G) for any graphG (see [6]), and that there
exists a functionf such that, for any graphG,CW(G) ≤ f (T BW(G)) (see [7]). Hence,
we haveCW ¹ T BW andT BW ¹ CW.

(5) In [1] it is shown that, for any graphG, BW(G)(BW(G) + 1)/2 ≥ CW(G).
Therefore,BW ¹ CW.

Consider the classL of graphs shown in Figure 10. It is clear that these graphs have
bounded cutwidth but arbitrary large bandwidth (use the well-known formula(|V(G)|−
1)/diam(G) ≤ BW(G), where diam(G) is the diameter ofG, see [7]). ThusCW 6¹ BW.

(6) Let G be a graph which has a strong path decomposition(X1, X2, . . . , Xt ) with
width at mostk. We will prove that the bandwidth ofG is bounded byg(k) = 2k − 1.
Consider a linear layoutl such that ifu ∈ Xi , v ∈ Xj , andi < j , then f (u) < f (v). Let
{u, v} be an edge inG, and leti and j be the subscripts such thatu ∈ Xi andv ∈ Xj .
Since|Xh| ≤ k for eachh,1≤ h ≤ t and|i − j | ≤ 1, |l (u)− l (v)| ≤ 2k− 1. HenceG
has bandwidth≤ 2k− 1. Thus, we have thatSPW ¹ BW.

Let G be a graph with bandwidth≤ k. We will prove thatSPW(G) ≤ k. There
exists a linear layoutf such that, for all{u, v} ∈ E(G), | f (u) − f (v)| ≤ k. For each
i , 1≤ i ≤ dn/ke, let Xi = {u | u ∈ V(G), (i − 1)k + 1 ≤ f (u) ≤ ik} (n = |V(G)|).
Clearly,(X1, X2, . . . , Xdn/ke) is a strong path decomposition with strong pathwidthk.
Thus we have thatBW ¹ SPW.

(7) It is easy to see thatRT DW 6¹ BW by considering the class of complete
binary trees. (It is well known that the bandwidth of ak-depth complete binary tree is
d(2k − 1)/ke, see [18].)

(8) We straightforwardly obtainRPDW ¹ PDW from the definitions.
Consider the classL of graphs described in Figure 11. It is clear that any graph in

L has bounded path distance width and arbitrary large rooted path distance width. Thus
PDW 6¹ RPDW.
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Fig. 11.A counterexample forPDW 6¹ RPDW.

(9) As any path distance decomposition is also a strong path decomposition of the
same width, we have thatPDW ¹ SPW (and hencePDW ¹ BW).

We prove thatSPW 6¹ PDW. We call the graph in Figure 12(a) adouble ribbon
with sizek (in Figure 12(a)k = 3). We call the rightmost vertex and the leftmost vertex
in a double ribbonendpoints. The middle vertex in a double ribbon is called thecenter.
Let Hk be a graph consisting ofk + 1 double ribbons of sizek (see Figure 12(c)). The
strong pathwidth ofHk is at most 3 for eachk (see Figure 12(b,c)). We show that, for
eachk, the path distance width ofHk is at leastk + 1. Suppose, on the contrary, that
there exists a path distance decomposition ofHk with root setS and width at mostk.
Since the size ofS is at mostk, there exists at least one double ribbonR which does not
have vertices inS. Let a andb be the endpoints ofR, and letc be the center ofR. We
setda = dHk(S,a),db = dHk(S,b), anddc = dHk(S, c). Without loss of generality, we
assume thatda ≤ db. Then we havedc = da + 2k + 2k = da + 2k+1 and this means that
there exist at leastk + 2 vertices with distanceda + 2k+1 which is a contradiction (see
Figure 12(a)). Hence, we haveSPW 6¹ PDW (and thusBW 6¹ PDW).

(10) Let G be a graph withCSPW(G) ≤ k. We show thatRPDW(G) ≤ k2. Let
(X1, X2, . . . , Xm) be a connected strong path decomposition ofG of width at mostk.
We will construct a rooted path distance decomposition ofG of width at mostk2.

Let r be an arbitrary vertex fromX1, let {r } be the root set. Furthermore, letLi =
maxv∈Xi dG(r, v), Si = minv∈Xi dG(r, v), rt(i ) = max{ j | Xj contains a vertexv with
dG(r, v) = i }, and lt(i ) = min{ j | Xj contains a vertexv with dG(r, v) = i }. For
example, in Figure 13L2 = 3, S2 = 1, rt(3) = 4, and lt(3) = 2.

Notice that (i) asG[Xi ] is connected, we have that for alli , 1≤ i ≤ m, Li−Si ≤ k−1,
(ii) for all i , 1≤ i ≤ m− 1, Si+1 − Si ≥ 1, and (iii) for all i , 1≤ i ≤ m− 1, for all j ,
1≤ j ≤ m− i , Si + j ≤ Si+ j .

We will now show that∀d, 1 ≤ d ≤ maxv∈V(G) dG(r, v), rt(d) − lt(d) < k, or in
other words, the number of setsXi which have a vertex with distanced from the root is
at mostk. Suppose, on the contrary, that lt(d)+ k ≤ rt(d) for somed. Since there exists
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Fig. 12.A counterexample forSPW 6¹ PDW.

a vertex with distanced in Xlt(d) and because of (i), we have that

d ≤ L lt(d) ≤ Slt(d) + k− 1.(1)

Also, using (ii), (iii), the assumption above, and the fact that there exists a vertex inXrt(d)

with distanced from the root, we have that

Slt(d) + k ≤ Slt(d)+k ≤ Srt(d) ≤ d.(2)

From (1) and (2) we have thatd ≤ Slt(d)+k−1< Slt(d)+k ≤ d, which is a contradiction.
Hence, for any integerd the number of sets of the strong path decomposition that have
a vertex with distanced from the root is at mostk. Therefore, the number of vertices
having distanced from the root is at mostk2 and thus, we can construct a rooted path
distance decomposition ofG with width at mostk2.

It is easy to see (using the class of cycles as a counterexample) thatRPDW 6¹
CSPW.

Fig. 13.(a) A connected strong path decomposition and (b) an example of labeled decomposition.



126 K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos

Fig. 14.A counterexample forCST W 6¹ T DW.

(11) We call the graphGk in Figure 14 abook of k pages. Let G′k, k ≥ 1, be the
graph constructed usingk+ 1 books ofk pages as in Figure 14. Clearly, this graph has
connected strong treewidth equal to 2. Now, toward provingCST W 6¹ T DW, we show
that, for anyk ≥ 1, the tree distance width ofG′k is greater than or equal tok + 1.
Suppose, on the contrary that there exists a tree distance decomposition ofG′k with root
setSand width at mostk. Since the size ofS is at mostk, there exists at least one copy,
say H , of a book ofk pages inG′k such thatH does not have vertices inS. Let bi be
the base (see Figure 14) ofH , and letdbi be the distance betweenS andbi in G′k. It is
not hard to see thatH has exactlyk + 1 vertices which are of distancedbi + 1 from S,
a contradiction. Finally, using again the class of cycles as a counterexample, we have
T DW 6¹ CST W.

(12) It is easy to see thatRT DW 6¹ CST W (the class of cycles is again a coun-
terexample). Using again the class of graphs in Figure 14 as a counterexample, we have
CST W 6¹ RT DW.

An immediate consequence of the above relations and Theorem 3.1 is that graph
isomorphism is fixed parameter tractable (can be solved inO(n2) time) when the input
graphs have bounded connected strong pathwidth.

5. Open Problems. An interesting open problem is to find in the hierarchy depicted in
Figure 9, the boundary between the parameters that give fixed parameter tractability for
GRAPH ISOMORPHISM, and the parameters that (probably) do not, i.e., for which GRAPH

ISOMORPHISMis W[t ]-hard for somet (as defined by [10] and [11]): until now, we only
know that GRAPH ISOMORPHISMis fixed parameter tractable for parametersRT DW,
RPDW, andCSPW, but for all other parameters in the figure, the problem is still open.
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