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Isomorphism for Graphs of Bounded Distance Width
K. Yamazaki H. L. Bodlaende? B. de Fluiter,* and D. M. Thiliko$

Abstract.  Inthis paperwe study thedPHISoMORPHISMproblem on graphs of bounded treewidth, bounded
degree, or bounded bandwidthrR@H |SOMORPHISMcan be solved in polynomial time for graphs of bounded
treewidth, pathwidth, or bandwidth, but the exponent depends on the treewidth, pathwidth, or bandwidth. Thus,
we look for special cases where “fixed parameter tractable” polynomial time algorithms can be established.
We introduce some new and natural graph parameters: the (rooted) path distance width, which is a restriction
of bandwidth, and the (rooted) tree distance width, which is a restriction of treewidth. We give algorithms
that solve ®APH ISOMORPHISMIn O(n?) time for graphs with bounded rooted path distance width, and in
0O(nd) time for graphs with bounded rooted tree distance width. Additionally, we show that computing the
path distance width of a graph is NP-hard, but both path and tree distance width can be com@uted i

time, when they are bounded by a constaribe rooted path or tree distance width can be computé€xire)

time. Finally, we study the relationships between the newly introduced parameters and other existing graph
parameters.

Key Words. Graph isomorphism, Fixed parameter tractability, Distance pathwidth, Distance treewidth.

1. Introduction. In this paper we consider theR&PH |SOMORPHISM problem, for

graphs for which certain parameters can be assumed to be small constants. We are
especially interested in ®PH ISOMORPHISMON graphs where either the treewidth,
bandwidth, or degree of the graph is bounded, as there are many interesting graph classes
which have a bound on one of these parameters (see, e.g., [2]). For these parameters,
it has been shown that when the parameter is a constant, fRePHESOMORPHISMIS
polynomial time solvable (see [15] for bounded degree, and [3] for bounded treewidth and
bandwidth). However, in each of these three cases, the exponent of the algorithm grows
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with the parameter. Thus, a question is whether algorithms exisHeP&E SOMORPHISM
witharunning timeD ( f (k)n®), wherecis a small constant arkds the maximum degrege
treewidth/ bandwidth/ . .. / of the graph; in other words, whetheR@PH | SOMORPHISM

is fixed parameter tractabl@n the sense of the fixed parameter complexity theory of
Downey and Fellows, see, e.g., [10] and [11]), with the maximum degtesewidth/
bandwidth/ .../ as a parameter.

Thus, we are looking for answers to the questions whethrerP@ |SOMORPHISM
is fixed parameter tractable for the case that the parameter is the degree, treewidth, or
bandwidth of the graph. These questions are apparently hard. In this paper we are able
to solve some interesting special cases of these problems.

For this, several natural graph parameters are introducedrabie@ path distance
width and the footed tree distance widthThe notion of path distance width can be
seen to have a close relation to bandwidth; the notion of tree distance width is a natural
tree-like generalization of this notion, with a close relationship to treewidth.

If a parametrized problem is hard for one of the complexity clag¢gg, W[2], ...,

WI[P], then it is unlikely that there exists an algorithm for the problem running in time
at mostf(p) - n® (p is the parameten is the input size,f is an arbitrary function,
andc is a constant). In other words, if such an algorithm would exist, then this would
imply the collapse of certain complexity classes (see [10] and [11]). Proving tratis
|SOMORPHISMis (e.g.)W[1]-hard with maximum degree, treewidth, or bandwidth as a
parameter can be expected to be very hard, as such a result would implyRikrt G
IsomorPHISMwould not belong tdP unlessW[1] collapses withHFPT. In other words,
W/[1]-hardness of BAPH ISOMORPHISMwouUId give a very strong indication thaR@&PH

| SOMORPHISMIs not solvable in polynomial time, but it would not show NP-hardness of
GRAPH ISOMORPHISM While it seems most likely that suchV&[1]-hardness proof of
GRAPH IsoMORPHISMcannot be found, the (intriguing) possibility that such a proof can
be found is also still present.

This paper is organized as follows. In Section 2 we prove that the rooted path (tree)
distance width of a graph can be computeddiine) time, that computing the path
distance width of a graph is NP-hard, but if the path or tree distance width is at most
some fixed constari, then the minimum path (tree) distance width can be computed
in O(n*+1) time. The main results of the paper can be found in Section 3: it is shown
that GRAPH |SOMORPHISMis solvable inO(n?) time for graphs with bounded rooted
path distance width, thus solving a significant special caseref8 | SOMORPHISMfor
graphs of bounded bandwidth. Furthermore, it is shown tlRtr@ ISOMORPHISMiS
solvable inO(n%) time for graphs with bounded rooted tree distance width, which solves
a special case for &PH |somoRPHISMfor graphs of bounded treewidth. In Section 4
the relations between the different parameters considered are investigated.

2. Definitions and Complexity Results for Distance Width. The graphs we consider
are simple, undirected, and connected, and contain no self loops. For a@rapdh
denote its set of vertices by (G) and its set of edges b (G). Also, we denote by
G[ S the subgraph of5 induced byS € V(G). For two graphss andH, a function
f :V(G) - V(H) is called arisomorphism(from G to H) if f is a bijection and, for
eachv, w € V(G), {v, w} € E(G) iff {f(v), f(w)} € E(H). Two graphsG andH are
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isomorphidf there is an isomorphism froi@ to H. The GRAPH |SOMORPHISMproblem
is the problem of checking for two given graphs whether they are isomorphic.
A graph parameteis a function which maps each graph to a positive integer.
We first review a number of graph parameters.

e A tree decompositionf a graphG = (V,E) isapair({X; | i € 1}, T = (I, F)),
where{X; | i € |}is a collection of subsets &f andT is a tree, such that
—Uia Xi =V(G),
—for each edgév, w} € E, thereisan e | such thab, w € X;, and
—for eachv € V the set of node§ | v € X} forms a subtree of .
Thewidthof atree decompositiof X; | i € I}, T = (I, F)) equals max, (| X;|—21).
Thetreewidthof a graphG is the minimum width over all tree decompositionsf
The corresponding graph parameter (which is the function that maps each graph to its
treewidth) is denoted by W.

A (linear) layoutof a graphG is a one-to-one functiofi: V(G) — {1, ..., [V(G)|}.

e Thebandwidthof a layoutf of a graphG is defined as maxjece) | f (U) — f (v)].
The bandwidth of a grap® is the minimum bandwidth over all layouts &f. The
corresponding graph parameter is denotedby.

For a given graplG and two verticesl, v € V(G), ds(u, v) denotes the distance
betweeru andv, which is the number of edges on a shortest path betwesmv. For
asetSC V(G) and a vertexw € V(G), dg(S, w) denotes mipsdg (v, w).

e A tree distance decompositiari a graphG = (V, E) isatriple({X; |i € I}, T =
(I, F),r), where
—Uia Xi = V(G) and, for alli # j, Xi N X; =4,

—foreachv € V, if v € X, thendg(X;,v) =dr(r,i), and

—for each edggv, w} € E, there ard, j € | such thaw € X;, w € Xj and either
i=jorf{i,j}eF.

—r e l.

Noder is calledthe rootof the treeT, andX; is called thaoot setof the tree distance

decomposition. The width of a tree distance decompositioth | i € |}, T,r) is

equal to may, | X;|. Thetree distance widtlef a graphG is the minimum width over

all possible tree distance decomposition&ofThe corresponding graph parameter is

denoted by7 DW.

e A rooted tree distance decompositiofia graphG = (V, E) is a tree distance
decomposition{X; | i € 1}, T = (I, F),r) of G in which |X;| = 1. Therooted
tree distance widttlof a graphG is the minimum width over all rooted tree distance
decompositions. The corresponding graph parameter is deno@d @)V .

e The (ooted path distance decompositiamd the parameter afoted path distance
width of a graphG = (V, E) are defined similar to the (rooted) tree distance de-
composition and (rooted) tree distance width, but now the Tréerequired to be a
path and the root has degree ondinFor reasons of simplicity we denote a (rooted)
path distance decomposition @, X», ..., X;), whereXj is the root set of the de-
composition. We denote the corresponding graph parameté?$dy andRPDW,
respectively.
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It is easy to check that, for any gra@h 7 W(G) < 2TDW(G) — 1, 7TDW(G) <
RTIDW(G), BW(G) < 2PDW(G) —1,and7 DW(G) < PDW(G) < RPDW(G).
Moreover, a3E(G)| < O(|V(G)|7W(G)) (see, e.g., [4]and [13]), we get tha{G) <
O(IV(G)IRPDW(G)), O(V(G)IPDW(G)), O(V(G)IRTDW(G)), O(V(G)]
TDW(G)).

Notice that fixed parameter tractability oRGPH ISOMORPHISMfor 7 W implies the
same for7 DWW andR7 DWW, and fixed parameter tractability of/R&PH ISOMORPHISM
for BW implies the same faPDW andRPDW. Also, showing that BAPH | SOMOR-
PHISMis fixed parameter tractable for, e & PDW might give more insight in whether
it is fixed parameter tractable f&)V. Therefore, we study the complexity oiRGPH
IsoMORPHISMonN graphs for whiclPDW, RPDW, TDW, or RT DW is bounded.

For a given graplG andS C V(G), there is a unique path distance decomposition
of G with root setS, and this decomposition can be foundQ@te) time (e = |E(G)|):
for each vertex € V(G), computeds (S, v) using breadth first search. Then for each
possible distancd, make a node&Xy containing all vertices with distanakto S.

DEFINITION. LetD = ({Xj |i € I}, T = (I, F),r) be a tree distance decomposition
of G. Given a vertex € | we denote aJ, the connected subtree dfinduced by all
the nodes in that are connected with via paths containing. Finally, given a node

i el wesetV(D,i) = UweV(Ti) Xu.

For a given grapl® and setS C V(G), there may be more than one tree distance de-
composition with root seb. However, we define thminimaltree distance decomposition
of a graphG with root setS as follows.

DEFINITION. LetD = ({Xj |i € I}, T = (I, F),r) be a tree distance decomposition
of G. We callD minimalif, for eachi € I, G[V (D, i)] is connected.

An immediate consequence of the definition above is that given a @aptd a root
setSthe minimal tree distance decomposition is uniquely defined. Also, it can be found
with procedure GET-TDD presented in Figure 1, which can be made to @gentime.

THEOREMZ2.1. Given a graph G and aset S V(G), we can compute in QE(G)|)
time the unique path distance decomposition with root set e unique minimal tree
distance decomposition with root set S

PrOOF LetD = ({Xj|i €|}, T =(,F),r)besomeoutputof GET-TDD. Itis easy
to see thaD is a tree distance decomposition®f

We will prove that, forany € I, G[V (D, i)] is connected. Letn = max, dr(r,i).
We use induction om — dr (r,i). If dr(r,i) = m, then it is clear from the algorithm
thatG[V (D, i)] is connected.

Assume that, for any € | such thatdr(r,i) > n (0 < n < m), G[V(D, )]
is connected. Let € | such thatdy(r,i) = n. Let also{i,...,i;} € | be such
that for alli,, 1 < o < t,dr(r,i,) = n+ 1 and{{i,ii},..., {i,it}} € F. We will
prove thatG[V (D, i)] is connected, that is, we will show that, for any pair of vertices
v,u € V(D,i), there exists a path connectingndv in G[V (D, i)]. From the induction
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ProcedureGET-TDD

Input a graphG = (V, E) and a root se§.
Output the minimal tree distance decompositidX; | i € 1}, T = (I, F),r), (X, = 9).

. foranyv € V set distance@) = dg (S, v);
m := max,cy distancév);
| :=¢,F =@, andh :=0;
. foranyi,0 <i <m+1setV, ={v e V | distancév) = i};
. fori := mdownto0Odo
Compute the connected component&spfv € V | i <
distancév) < i + 1}];
[* We call the connected componer8s ..., S*/
for j:=1totdo
Xntj == § = Vigus
9. Add edges{v,u},v,u € Xn;j to E(G) such that
G[Xh4+j] becomes connected;
* (For example, choose a vertexe Xn;; and makey
adjacent to any other vertex Xn,j.)*/

oUAwNE

© N

10. l:=1Ufth+j};

11. F:=FU{{th+j.k}| Xkc §SAk=<h}
12. od

13. h:=h+t;

14. od

15. end.

Fig. 1. Procedure GET-TDIG, S).

hypothesis and the fact that all verticed.in.; = X;, U- - -U X;, are adjacent to a vertex
in Xj, we have that there exist two vertices u’ in X; connected by some paths in
G[V(D, )] with v andu, respectively. The connectivity @[V (D, i)] now follows
easily in the case wher@[X; U Lpy1] is connected. Suppose th&{X; U Lp.4] is
not connected. In this case we notice tatJ L1 must induce one of the connected
components computed during the — n + 1)th execution of step 5nf is defined at
step 2). Clearly, each of these connected components became connected because of the
addition of some number of edges connecting verticeX;inl < o < t, during the
(m—n)th execution of loop 7-12. We call these edgew edgeand denote the current
graph after theén — 1)th loop byG,,. As there exists ilG,[ X; U L,,1] a path connecting
v andu’, such a path must contain a number of new edges (see Figure 2). From the
induction hypothesis we have that any new edge corresponds to a &N (D, i, )]
connecting its endpoints for somel < o < t. Thus, we can construct a path in
G[V(D, i)] connectingu’ andv’. Therefore, there exists a walk (hence path) connecting
u andv and the connectivity o[V (D, i)] follows.

Step 1 uses breadsth first search to assign for each vertex in the graph its distance from
the root set. This cos®(|E(G)|) time. Also loop 5-14 needs in tot@l(|E(G)|) time
as the executions of step 6 use in tdfal|E(G)|) time and each call of line 9 can be
executed iM(|V (Xn4j)|) time. O
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(b)

Fig. 2. An example for the procedure GET-TDD. (a) The original graph. (b) The graph after the second
execution of the loop defined by steps 6-13 in GET-TDD.

From Theorem 2.1 and the fact that if a graph has (rooted) tree or path distance width
at mostk, thene = O(kn), we get the following result.

COROLLARY 2.2. There is an algorithm that computes a rooted pétiee) distance
decomposition of minimum width of a graph G inKD?) time where k is the rooted
path(tree) distance width of the grapfhere is an algorithm that computes a pétiee)
distance decomposition of minimum width of a graph itk @*1) time, where k denotes
the path(tree) distance width of the graph

The following result concerns the complexity of (rooted) path (tree) distance width.

THEOREM?2.3. The following problem is NP-complete even if the input graphs are.trees
Given a graph G and an integer Boes G have path distance width at mo3t k
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PrROOE The proof is based on a reduction from the following strongly NP-complete
problem:

3PARTITION

Instance A setA = {ay, ..., agm} of positive integers and an integer valBesuch that
B/4d<a <B/2,1<i<3mm>1and) ;_ _3,& = mB.

Question|s there a partition oA into m disjoint setsAy, Ay, ..., Ay suchthad ", . a
=B,1<i<m?

We describe a transformation that, given an instance of thei3RoN problem, outputs
a treeT such thafl has path distance width at makiff the answer for the 3RRTITION
problem is yes.

Letc =57m+ 1 andd = c- B+ 9m. T is constructed as follows: First we dét =
{Ui1,....Uimh Vi ={vi1,...,Vica}, 1 <1 <3m,andW = {w1, ..., waq_12m}. Then
we definel; = ({x}UU; UV;, {{X, Ui 1JJU{{ui j, Ui j41} | 1 < ] < m=1JU{{vi j, Uim} |
l1<j<c-ap,1<i<3mNowsetT = WU i3, V(T). {{X, wi} |1 <i <
2d — 12m} U (U; - -am E(Ti))) (see also Figure 3).

w

c=57m+1

B Om w \ // Wad-12m

V

7
3m-2 ‘3/'1-] VJ’m

Fig. 3. The reduction of Theorem 2.3.
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We will now prove that the 3#RTITION instance has a solution iff has a path distance
decomposition( Xy, X, ..., X;) with width at most.

Let {A1, Ay, ..., An} be a solution of the B\RTITION problem. We construct a
path distance decomposition as follows. We first define{1, 2,...,3m} — {x} U
Uj<i<am Ui such thatf (i) = xiff & € Ayand (i) = uj_1iff & € Aj,2<j <m.
We setS = {w1, wa, ..., Wa_am} U {F@),..., F(Bm)}. Let (X3 = S, Xa, ..., X;) be
the path distance decomposition®fwith root setS.

Now we prove that forali, 1L <i <r,|X;j| < d. By the construction, we have that
the cardinality of the root s& = X; is no more thai. We also observe that, contains
d—9mvertices fromW, and at most@14-2-3mvertices fronUr = {x}U{J;_; .3, Ui. S0
|X5| < d. Itis now easy to see that, for any- 2, X; must contain at most-3m vertices
from Uy andca, + ca, + ca, vertices fromVi, U Vi, U Vi, whereA; = {a;,, &, &} iS
some sety; of the solution of the 3&RTITION problem. Thuga, +ca,+ca, = cBand,
foranyi > 2, Xj must contain at most = cB + 9m vertices. Thereforg,Xy, ..., X;)
has distance width at modt

Suppose now thatXy, ..., X;) is a path distance decompositionTothat has width
at mostd. We prove that there exists a partition Af= {ay, ..., asn} into m disjoint
setsAq, ..., Ap such thatZaeAl a= B,1<i < m. We distinguish two cases:

Casel: x € X;. In this case we easily observe thdtC X; U X, and thus we have
[ X1 NW| + | XoN W] = |W| =2d — 12m. Using this and the fact th&X,|, | X2| < d,
we have that@ > [ X1] + | X2] = [ X1 — W] + [ X1 N W] + [Xo = W] + [ XoNW| =
[ Xi—W|+|Xo—W|+2d—12m > | X; —W|+2d—12m = | X;—W| < 12m,i =1, 2.

Let{R; | j = 1} be a collection of subsets ¢1, 2, ..., 3m} such thai e R; iff
[X; NVi| > cg —12m.

We firstclaimthatforali, 1 <i < 3m, there exists at mostorje> 1 suchthat € R;
Suppose that for somigthere arg andj’ suchthaf # j’,i € R,andi € R;..Insucha
case we have thgK; NV;| > cg —12mand|X; NV;| > cg —12m. As X; N X; = ¥, we
conclude thatV;| > 2ca —24m = ca > 2ca —24m = 2dm > ca > c=57m+1,
a contradiction.

We now claim that for ali, 1 < i < 3m, there exists § > 1, such that ¢ R;.
Choosej’ such thati m € X;.. Notice that, foralb € V;, eitherv € Xy orv € Xj41. As
X1NV; € Xy —W, we have thaX;NV;| < 12mandthugX;1NV;| > cg —12m =

i € Rj’+1.
We claim that ifj = 1,2, thenR; = #. Indeed, suppose, on the contrary, that
for somej = 1,2 there exists am,1 < i < 3m, such thati € R;. In this case

we have thatX; N Vi| > ca — 12m. However, agX; — W| < 12m, j = 1,2, and
XiNVi € Xj—W,j =1,21<i < 3m, we conclude that 18 > |X; — W| >
[X; NVi| > ca —12m > ¢ — 12m = 57m+ 1 — 12m = 45m + 1, a contradiction.
Notice also that, ag € X3, we have thav (T) € X; U --- U Xny2 and thus, for all
j>m+3, R =40.

We now setA; = {g | i € Ri;2},1 < j <m.Clearly,Aq, ..., Ay is a partition
of A.

We claim that for allj, 1 < j < m, |Aj| < 3. Suppose, on the contrary that
forsomej,1 < j <m, |Aj| > 4. ThenZaheAJ [Xj42 N Vi| > ZaeAJ(ca —12m) >
ZaeAj (c((B+1)/4)—12m) > 4(cB/4+c/4—12m) > cB+c—48m > cB+9Im+1 >
d, a contradiction.
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From the claims above, we conclude that the gats . ., A, form a partition ofA
into sets consisting of at most three elements.

What now remains to be proven is that for §ll1 < j < m, ZaeAj a = B.
Clearly, as) ;_;.sm& = mB, it is sufficient to prove that for alf, 1 < j < m,
Y aca @ < B.Forthis, we first notice thatd ", .o & < 5 ca (1Xj12NVi| +12m) <
|Xj42| +36m < d + 36m = cB + 9m + 36m < cB + 45m. Finally, we have that
>_aen & =< B+45m/cwhichimpliesy_, o & < B+ [45m/c| = B ([45m/c| =0
because = 57m+ 1 > 45m).

Case2: x ¢ Xi1. Inthis case we can easily see thatN W # ¢ because otherwise,
if X € X; for somei, thenW C X4, but|W| > d. So,x € X,, andW C X; U X3 =

| X1 NW|+ | X3NW| = 2d — 12m. Using the fact thaitX |, | X3| < d and using a similar
argument as in Case 1, we have thgt— W| < 12m,i =1, 3.

We define{R; | j > 1} as in Case 1 and following similar argumentation, we
deduce that any < {1,...,3m} belongs to exactly oné\;. Also very similarly to
Case 1 we have thatif= 1 or 3, thenR; = ¢. Moreover, we claim thaRn» = .
Suppose, on the contrary, thaE Ry.2. This means thatX,2 N Vi| > ca — 12m
and thus there exists some vertexe Xm.» that belongs invi. Notice now that as
dr (X1, w) = m+ 1 > 3 we have that for alh, 1 < h < m, uj;, € Xp11 and thus
X € X, a contradiction (ifx € X;,i > 2, thenW C X4, a contradiction). Finally,
asx € Xy, and for allw € V(T), dr (X, w) < m+ 1, we easily conclude that, for all
j=m+4,X,=0=R =90.

Wesethh ={a | i e R}, Aj=1{g | i €e Rp}2<j<m-1,and
An = {a | i € Ryys}. Following the same steps as in Case 1, one can prove that
A1, ..., An is a partition ofA into sets consisting of at most three elements such that
forallj,1<j=<m} ,,a=B. a

Recently, the tree distance width problem was also shown to be NP-complete by
Caprara et al. [5]. Another proof for the same theorem was suggested by an anonymous
referee.

THEOREM2.4. The following problem is NP-completgiven a graph G and an integer
k, does G have tree distance width at mo®t k

3. Graph Isomorphism for Graphs of Bounded Distance Width. In this section it
is shown that the 8aPH ISOMORPHISMproblem is fixed parameter tractable for graphs
of bounded rooted path distance width or bounded rooted tree distance width.

We present an algorithm with running tin@(n?) that tests isomorphism for two
graphs with rooted path distance width at most some conktamd an algorithm with
running timeO(n®) that tests isomorphism for graphs with rooted tree distance width at
most some constait

DEFINITION.  LetD® = (X£, ..., Xg)andD" = (X!, ..., X!) be two path distance
decompositions of grapl@andH , respectively. We calD® andD" isomorphidf there
exists an isomorphisnfi : V(G) — V(H) from G to H such thatforall, 1 <i < tg,
Yv e XC, f(v) e X.
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Algorithm RPDW-ISQG, H)

Input graphsG andH of rooted path distance width at madst
Output “Yes,” if G is isomorphic toH, “No,” otherwise.

1. LetD® = (XZ,..., XZ) bearooted path distance decompo-
sition of G with root setxlG = {vg} and rooted path distance
width at mosk.

. foreachvy € V(H) do

N

3. letDH = (X{',..., X{!) be arooted path distance
decomposition ofs with root setX!! = {vy};

4. if SUB-RPDWD®S, DH) = true

5. thenreturn “Yes”,

6. od

7. return “No”;

8. end

Procedure SUB-RPDWDEC, D/)

Input decomposition®® = (X§, ..., X&), D" = (X{',.... X{).
Output “true,” if D€ is isomorphic toD", “false,” otherwise.

. if tg # ty then return false

elselett « tg;

.fori:=1totdo

if [X®| = |X!| then return false;

. let R, be the set of isomorphisms fro®[ X&) to H[X"];

. if R = @ then return false;

. fori:=t — 1ldowntoldo

letR <« ¢;

for eachisomorphismf from G[X®] to H[X"]
if there exists a bijectiog € R, ;1 such thatf Ugis an
isomorphism fronG[X® U X& ;] to G[X™ U X1 ,]

11. thenR <~ R U{f};

12. od

13. if Ry £ 0

14. thenreturn true

15. else returnfalse;

16. end.

SCOPNOUAWNE

THEOREM3.1. The algorithmRPDW-ISQG, H), above checks whether two input
graphs G and H of rooted path distance width at most k are isomorphie algorithm
runs in O(k!%k?n?) timg, where n= |V (G)|.

ProOOF For input graphss and H, the algorithm works as follows. There are two
phases. In the first phase (step 1 of RPDW-HGOH)), a rooted path distance decom-
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position of minimum width is computed f@. By Corollary 2.2 this phase cosBykn?)
time (as|E(G)| = OKK|V (G)])).

In the second phase of the algorithm, we compute for egck V(H) the unique
rooted path distance decompositidf' = (X{',..., X{!) of H where X{' = {vy}
(step 3 of RPDW-ISQG, H)). The main part of the algorithm is step 4 where procedure
SUB-RPDW D€, D) computes whether decompositioB§ andD" are isomorphic.

If D¢ and D" are isomorphic, then we may conclude t&aand H are isomorphic.
On the other hand, if there is no rooted path distance decompositith which is
isomorphic toD®, thenG andH cannot be isomorphic: if is an isomorphism fron®
to H, then the rooted path decompositiontbfvith X{* = {f (vg)} must be isomorphic
to the rooted path decomposition®fwith Xle = {vg}. So the given algorithm correctly
computes whetheB andH are isomorphic.

What now remains is to show that, given two path distance decomposifiéns
and D", SUB-RPDWD®, D") indeed checks whether they are isomorphic. During
steps 1-4 SUB-RPD\D®, D") checks iftg = ty and whether, foir = 1,...,tg,
IXC| = |XM|. If not, then clearlyD® and D™ cannot be isomorphic. In the sequel
(steps 5-12), for eadh1 < i <t = tg, SUB-RPDWD®, D") computes the seR;,
which contains all isomorphisms fro@[X®] to H[X"] that are extendible, i.eR,
contains all isomorphismg from G[ X€] to H[XH] for which there is an isomorphism
gfromG[XCU---UXE]to H[XH U-..UX{'], such that, for alk € X, f(x) = g(x)
andforallj,i < j <t,forallx e X8,g(x) e XJ-H. Now, it is clear thaR; is not empty
ifft D© and D" are isomorphic. The sé®; is computed in a bottom-up way, by first
computingR;, and then, foreach 1 <i <t—1, computingR from R ;1. The setR; is
easily computed by checking, for each bijectibnX® — X!, if it is an isomorphism.

If so, SUB-RPDWD®, D) puts f in R, (step 5). This takes constant time, since there
are at mosk! such bijections.

For eachi, 1 < i < t, SUB-RPDWD®, D") computesR as follows: for each
bijection, f : X® — XH checks if there is g € R ;1 such thatf Ug: X® U X%, —

i+1
X U X is an isomorphism fron[ X U XS ;] to H[X U X1 ,]. If so, then+putf
in R (step 11). This can again be done in constant time. As there are no ed)gEs in
(X{') adjacent with vertices iXZ  (X[,)foro =2,...,t —1i, itis now easy to see
thatR; is the set of all the extendible isomorphisms frogfi to X!

The running time of RPWD-IS@3, H) is O(k!?k?n?): computing the rooted path
distance decomposition dfi for each possible root set také€¥(kn) time. Further-
more, checking if two decompositions are isomorphic can be dokt’k?n) time:
computing R, for somei takes a constant time dd(k!?k?), and there are at most

O(n) nodes. O

Notice that it is not necessary that the input path decompositions of SUB-RPDW are
rooted. Using this fact we can modify algorithm RPDW-I&) H) in order to check
isomorphism of graphs with small path distance width.

COROLLARY 3.2. There exist an algorithm that checks whether two graphs G and H
of path distance width at most k are isomorphic itk@k?n*1) time(n = |V (G))).
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Algorithm RTDW-ISO(G, H)

Input graphsG andH of rooted tree distance width at mdst
Output “Yes,” if G is isomorphic toH, “No,” otherwise.

1. Use GET-TDD to compute a minimum width rooted tree

distance decompositioD© of G with width at mosk and

root set consisting of an arbitrary vertex € V(G);
. for eachvy € H do

Use GET-TDD to compute a rooted tree distance decom-
positionD" of H with root set{vy};

if the width of D" is at mostk

if ISO-CHECK D®, D)
then return “Yes”;

wN

od
return “No”;
end.

© N O M

Fig. 4. Algorithm RTDW-ISO.

PrROOF We first compute an optimal path distance decomposién(this requires
O(n¥) time), and then we check, using SUB-RPDRE, D), if there exists some root
setX!' € V(H) (|X!'| < k) for which the corresponding path distance decomposition
DM is isomorphic toD® (this requiresO (k!?k?n*+1) time). O

We now present an algorithm that computes whether two input graphs which have
rooted tree distance width at mdstor some fixedk are isomorphic. The running time
of the algorithm isO(n®). The algorithm can be found in Figures 4-6.

ProcedurelSO-CHECKD®, D)

Input decomposition®® = ({XC |i € 18}, T® = (16, F®), rg),
DM = (X i e M}, TH = (1H, F™), ).

Output “true,” if D® is isomorphic toD", “false,” otherwise.

=

if T¢ andT" are not isomorphic

2. then return false;

3. letm be the depth of ©

4. for | := mdownto0do

5. for eachpair(p,q), pec V(T®) andq e V(TH)
6. such thatlre (p,rg) = dru(g,ry) =1 do
7. ComputeR™? usingGET-1B(p, g, 1);

8. if R™ =0

9. thenreturn false
0. elsereturntrue;
1. end.

Fig. 5. Procedure ISO-CHECK.
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SubprocedureGET-IB(p, q, )

Input nodesp in T¢ andq in TH such thatre(rg, p) = drr(ry, q) = 1.
Output R™.

1. RMY =g
2. if |XF| # [X{!| then return;
3. Count the number of children @fin TC;
4. Count the number of children gfin TH;
5. if the numbers of children op and g are differentthen
return;
6. for eachbijection f : X5 — X{! thatis an isomorphisrio
7.  SetchildrenP:= {p: pis a child ofp};
8. SetchildrenQ:= {§ : § is a child ofqg};
9. for each p e childrenPdo
10. for each( e childrenQdo

11. for eachg e R%{ do

12. if G[XS U X(g] and H[X}' U X{'] are isomorphic
under the functionf U g

13. then childrenP := childrenP — {p};

14. childrenQ:= childrenQ— {q};

15. gotostep 20;

16. od

17. od

18. gotostep 22;

19. od

20. RPI:=RMUf;

21. od

22. end

Fig. 6. Sub-procedure GET-IB.

DEFINITION. LetD® = ({X® |i € 16}, T® = (16, F®),rg) andD" = ({X |i e

IHy, TH = (", F"), ry) be two rooted tree distance decompositions of the graphs
G andH, respectively. We calD® and D" isomorphicif there exists an isomorphism

f :V(G) — V(H) from G to H and an isomorphisg : 16 — 1" fromTC to TH

such thag(r©) = rH and for each, i € 1€, and eactx € X®, f(x) € X&) -
THEOREM3.3. AlgorithmRTDW-ISO(G, H) checks whether two input graphs G and
H of rooted tree distance width at most k are isomorpHibe algorithm runs in
O(k!?k?n3) time, where n= |V (G)|.

PROOF The basic structure of the algorithm is the same as for graphs of bounded rooted
path distance width: there are again two phases. In the first phase (step 1 of RTDW-
ISO(G, H)), a rooted tree distance decomposition of minimum width is computed for
G. This is done in the following way. For each vertexce V, GET-TDD is used to
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compute the unique minimal rooted tree distance decompositi@waith root set{v}.
Then the decompositioD® of smallest width, sax is selected. LeD® = ({X€ |
i €16}, T® = (16, F®), r®) denote this decomposition. By Corollary 2.2, this phase
needsO (kn) time.

In the second phase of the algorithm (steps 2—11), RTDW-&G® ) computes, for
eachw e V(H), the unique minimal rooted tree distance decomposiiidh of H
with root set{w}. Let DH = ({(XH |i e I"}, TH = (1", FH), r™) denote such a
decomposition. If the width oD" equalsk, then procedure ISO-CHEQKR®, DH)
is used to test whether decompositidd§ and D" are isomorphic. In the same way
as for the rooted path distance decompositions, we may conclud&thatl H are
isomorphic if D¢ and D" are isomorphic. On the other hand, if there is no minimal
rooted tree distance decomposition léfwhich is isomorphic toD€, thenG and H
cannot be isomorphic. So the given algorithm correctly computes whéthedH are
isomorphic, assuming that procedure ISO-CHECK is correct.

What now remains is to see that procedure 1ISO-CHEGK D") indeed tests
whether two rooted tree distance decompositions are isomorphic.

SupposeD® = ({X® | i € 16}, T® = (16, F®),r® andD" = ({X | i €
IHy, TH = (1", F™), rH) are minimal rooted tree distance decompositions of graphs
G and H, respectively. Note thab® and DY cannot be isomorphic iT¢ and TH
are not isomorphic. Therefore, ISO-CHEQBC, D") first tests whetheT © and T"
are isomorphic (step 1). This test uses the rooted tree isomorphism checking algorithm
from [8] and require® (n) time. Now suppos& © andT " are isomorphic. The depth ofa
node in arooted tree is the length of a path from this node to the root (so the root has depth
zero). Letm denote the maximum depth of a noddifi (and hence i 7). The nodes of
depth are callechodes on levellNow, for each level, 0 < | < m, and each pair of nodes
p, g, with p € 1€ andq € 11, both on level, we compute the seR,p’q of isomorphisms
f: X5 — X from G[XF] to H[X}'] which areextendible The definition of an
extendible isomorphism for tree distance decompositions is a generalisation of the one
used in the proof of Theorem 3.1 and is the following:

DEFINITION. LetG, = G[V(DC, p)] and Hy = H[V (D", q)]. We say an isomor-
phism f from G[XS] to H[Xj'] is extendibleif there exists an isomorphisig’ :
V(T2) — V(1) from TS to T! and an isomorphism’ : V(G,) — V (Hg) from Gy,
to Hy such that, for each € V(T) and each € Xg, f'(v) € X;(a), and furthermore,
for eachv € X3, f(v) = f'(v) (see Figure 7).

From the definition above it is clear thE{,e’rH is not empty iff D¢ and D" are
isomorphic. The seIRBG'rH is computed in a bottom-up way, by first computiRg® for
all nodesp € 1© andg € I'" on levelm, and then, for each 0 < | < m, computing
R" for all nodesp € 1€ andq € 1" on levell, by using the values oR"{ for all
childrenp of p andq of g.

The setRh? (p andq are nodes of levehin T€ andT M, respectively) are computed
during the first execution of loop 4—7 of ISO-CHECBC, D"): if |Xr?| = |X('; |, then
R = ¢ (step 2 of GET-IBp, q. |)). Otherwise, for each bijectio : X$ — X!,
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(©)

Fig. 7.An example of extendibility of isomorphism from[XiG] toH [XJ.H]. (a) GraphG, H, (b) decomposition
D¢, DM, and (c) the functiond, f’, andg'.

GET-IB(p, q, ) checksiifitis anisomorphism (step 6), and, if so, puis R (step 21).
This takes constant time for eaghandg.

For each, 0 < | < m, and eachp € 1€ andq < I" on levell of T® andTH
respectively, GET-1Bp, g,1) proceeds computin@?f”q as follows. First, it checks if
|X,§3| = |X,;* | and the number of children qgf equals the number of children gf If not,
thenR™Y = ¢. Otherwise, for each bijectiofi : X5 — X from G[XS] to H[X']
that is an isomorphism, GET-I®, q, |) tries to make a matching between the children
of p and the children ofy, i.e., it tries to match each chil of p to a child§ of q,
in such a way that there existsgac R’] for which f Ug: X5 U Xg‘ — X5 UXH
is an isomorphism fronG[ XS U X‘g] to H[XH U Xg] (steps 9-20). As there are no
vertices inX7 (X{') adjacent with vertices belonging to soi§ (X!!) whereo (o)
is an ancestor op (q) in T€ (TH) that is not a child o (q), it is easy to see that there
exists such a matching iff is extendible (see Figure 8).

Toward computing a matching as described above, GEPB;IB, |) tries to match
the children ofp one by one to a child af as follows: Take a chilg of p which has
not yet been matched (step 9). For each unmatched Ghildg, try to matchp to §
(steps 10-18). As soon agjas found that can be matched fip then matchp to §, and
go on with the next child op. If there is no§ which can be matched t, then there
cannot be a matching between the childrepaind ofg, and hencd is not extendible.
On the other side, it is clear that ff is extendible, such a matching exists. Now, if it is
possible to match each child gfto a child ofq, then GET-IBp, g, 1) addsf to R™
(step 21). (We can actually use this “greedy matching algorithm,” and need not use the
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Fig. 8. An example of a matching between childrerxtff and XJ.H.

standard “maximum flow” matching algorithm, because of transitivity of isomorphism.)

We can easily observe that during fltle execution of the loop defined by steps 4-7
of ISO-CHECK(DC®, D"), the number of the execution times of the loop defined by
steps 11-17 of GET-IRp, g, |) is quadratic in the number of edgesTi¥ (or T") that
have one endpoint in levéland one in level + 1. As the number of edges iRC is
O(n) we can easily conclude that the overall complexity of ISO-CHEBK, D") is
O(k!%k2n2).

The running time of the second phase of algorithm RTWD<{SCH ) is O (k!?k?n?):
computing the minimal rooted tree distance decompositiotddior a root set{w}
takesO(n?) time. Moreover, as ISO-CHEQIOC, D) needs0 (k!2k2n?) time and the
number of different root sets fdf is n, the running time oD (k!?k?n®) now follows.

Notice that it is not necessary that the inputs of ISO-CHEDBK, D) are rooted.
Using this fact we can modify algorithm RTDW-ISG, H) in order to check the iso-
morphism of graphs with small tree distance width.

COROLLARY 3.4. There exist an algorithm that checks whether two graphs G and H
of path distance width at most k are isomorphic itk@k?nk*2) time (n = |V (G)|).

PROOF We first compute an optimal path distance decomposién(this requires
O(n¥) time), and then we check, using ISO-CHE@¢, D), if there exists some root
setXr'j'4 CV(H) (|er:.| < k) for which the corresponding tree distance decomposition
D" is isomorphic taD®. This requiresO(n¥) calls of ISO-CHECKD®, D") and thus
O(k!2k2nk*2) time. O

4. Relationships Among Classes of Bounded Width. In this section, first we give
the definitions of some known graph parameters in order to investigate their relations
with (rooted) path distance width and (rooted) tree distance width.

e A strong tree decompositioof a graphG = (V,E)isapair({X; |i € I},T =
(I, F)), where{X; | i € |}is a collection of subsets & andT is a tree, such that
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—Uiar Xi =V and, foralli # j, Xi N X; =4,

—for each edgdv, w} € E, there ard, j € | with v € X; andw € X;, such that
eitheri = jor{i,j} e F.

The width of a strong tree decompositigfX; | i € 1}, T = (I, F)) equals

max, (| Xi|). Thestrong treewidthof a graphG is the minimum width over all pos-

sible strong tree decompositions®f The corresponding graph parameter is denoted

by STW. See [17].

e A connected strong tree decompositafra graphG = (V, E) is a strong tree decom-
position({X; |i € I}, T = (I, F)) of G such that, for eache I, G[ X;] is connected.
Theconnected strong treewidtf G is the minimum width over all connected strong
tree decompositions @. The corresponding graph parameter is denote@$iy V.

o A path decompositioaf a graphG is a tree decompositiotiX; |i € |}, T = (I, F))
in which T is a path (i.e., two nodes i have degree 1, and all others have degree
2). The pathwidth of a grap@ is the minimum width over all path decompositions
of G. The corresponding graph parameter is denote® 1.

In the same way, we can define the notionsststbng pathwidth and connected
strong pathwidthWe denote the corresponding graph paramete&/y andCSPW,
respectively.

e Thecutwidthof a layout f of a graphG is defined as

15@3’((@)\'{{”’ v} e E(G): f(u) <i < f()}.

The cutwidth of a graplG is the minimum cutwidth over all layouts d&. The
corresponding graph parameter is denoted y.

e Foragiven grapls, asubdivisions the operation which adds a new verteto G and
replaces an edge= {v, w} € E(G) by two edgedv, u} and{u, w} (i.e., it splits an
edge ofG into two edges). Aefinemenbf a graphG is a graphG’ which is obtained
from G by a number of subsequent subdivisions.

e Thetopological bandwidttof a graphG is the minimum bandwidth over all refine-
ments ofG. The corresponding graph parameter is denote@ ByV.

e By D we denote the graph parameter which maps each graph to the maximum degree
of any vertex in the graph.

Let f and f’ be two graph parameters. We say thiatlefrays f, denoted byf < f’,
if there is a functiong : N — N, such that, for each grap@ and each integek, if
f(G) < k, then f’(G) < g(k) (we also say thaf is defrayed byf’). For instance,
if we take f = BW and f’ = CW, thenf < f’: for each graphG, CW(G) <
BW(G)(BW(G) — 1)/2. Hence if we takg(k) = k(k — 1)/2, then, for each grapB
and each integek, if BW(G) < k, thenCW(G) < g(k).

If a graph parametef is not defrayed by a parametéf, we denote this byf £ f’.
If f < f'butf’ £ f,then we say that’ strictly defrays f denoted byf < f’. If
f < fandf’ < f,thenwe sayf ~ f'.If f £ f’andf’ £ f, then we say that
and f’ arenot related and we denote this by || f’ (note that saying that || f' is not
equivalent to saying that ~ f’ does not hold). It is easy to see that<, and~ are
transitive relations.
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Fig. 9. Relations between graph parameters.

The notion of defraying is interesting in the following sense. Suppose we have a graph
problemP (for example, the isomorphism problem), and we have two graph parameters
f and f’, such thatf < f’. If problem P is fixed parameter tractable for parameter
f’, then we can conclude immediately tHais fixed parameter tractable fdr. On the
other hand, if we can show that probld®ris fixed parameter tractable for parameter
then this might help to get more insight into whetlieis fixed parameter tractable for
parameterf’.

We now give a number of relations for the graph parameters that are defined in Sec-
tion 2 and this section. See also Figure 9. Parameters th&navento bring GRAPH
IsoMORPHISMINto FPT are in the shaded rectangle. By [1] and [153A6H |SOMOR-

PHISM belongs toP if any of these parameters is bounded by a constant.

THEOREM4.1. The following relations holgdsee also Figur®):

1) TW| D, ) CW < TW, (B)CW <D,
4)CW ~ TBW, (5) BW < CW, (6) SPW ~ BW),
(7)RTDW £ BW, (8) RPDW < PDW,  (9)PDW < BW,

(10)CSPW < RPDW,  (11)CSTW|TDW, (12)RTDW|CSTW.
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Fig. 10.A counterexample fo€W £ BW.

PrROOFE (1) In order to see thal W £ D it is sufficient to observe that trees have
treewidth 1 and arbitrary large maximum degree. Poz 7 W, we may notice that
grids have maximum degree 4 and arbitrary large treewidth (see [16]).

(2) cw < TW follows immediately from the fact that, for any gragh 7 W(G) <
CW(G) (see [1]). Also, it is known that, for any complete binary ti®ewith depth
k>2, CW(B) = [(k—1)/2] + 1 (see [6]). Henc& W £ CW.

(3) It is easy to see thatW(G) > D(G)/2 for any graphG. Thus,CW =< D.
Moreover, as we mention in the proof of (2), the complete binary tBpesith depth
k > 3 have cutwidth equal to(k — 1)/2] + 1. As A(Bx) = 3 we have thaD £ CW.

(4) It is known that7 BW(G) < CW(G) for any graphG (see [6]), and that there
exists a functiorf such that, for any grap@, CW(G) < f (7 BW(G)) (see[7]). Hence,
we haveCW < TBW and7 BW < CW.

(5) In [1] it is shown that, for any grapt®, BW(G)(BW(G) + 1)/2 > CW(G).
Therefore BV < CW.

Consider the clask of graphs shown in Figure 10. It is clear that these graphs have
bounded cutwidth but arbitrary large bandwidth (use the well-known forh\uléG)| —
1)/diam(G) < BW(G), where dianiG) is the diameter ofs, see [7]). Thug W £ BW.

(6) Let G be a graph which has a strong path decompositén Xo, ..., Xt) with
width at mostk. We will prove that the bandwidth d& is bounded byg(k) = 2k — 1.
Consider a linear layouitsuch that ifu € Xj, v € X, andi < j,thenf(u) < f(v). Let
{u, v} be an edge i3, and leti and j be the subscripts such thate X; andv € X;.
Since|Xy| < kforeachh,1 <h <tand|i —j| < 1,/l(u) —I(v)| < 2k — 1. HenceG
has bandwidthc 2k — 1. Thus, we have tha&8PW < BW.

Let G be a graph with bandwidtk k. We will prove thatSPW(G) < k. There
exists a linear layouf such that, for alfu, v} € E(G), | f(u) — f(v)| < k. For each
i,1<i<[n/k],letXi ={ulueV(@G),({i—-Dk+1< fu) <ik} (n=|V(G))).
Clearly, (X1, X2, ..., Xm/k) is @ strong path decomposition with strong pathwikith
Thus we have thaB\V < SPW.

(7) It is easy to see thaR7 DWW £ BW by considering the class of complete
binary trees. (It is well known that the bandwidth ok-alepth complete binary tree is
[(2—1)/k], see [18].)

(8) We straightforwardly obtaiR PDW < PDW from the definitions.

Consider the clask of graphs described in Figure 11. It is clear that any graph in
L has bounded path distance width and arbitrary large rooted path distance width. Thus
PDW £ RPDW.
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Fig. 11.A counterexample foPDW £ RPDWW.

(9) As any path distance decomposition is also a strong path decomposition of the
same width, we have th@&DW < SPW (and hencéDW =< BW).

We prove thatSPW £ PDW. We call the graph in Figure 12(a)dmuble ribbon
with sizek (in Figure 12(ak = 3). We call the rightmost vertex and the leftmost vertex
in a double ribborendpoints The middle vertex in a double ribbon is called tenter
Let Hy be a graph consisting &f+ 1 double ribbons of sizk (see Figure 12(c)). The
strong pathwidth oHy is at most 3 for eack (see Figure 12(b,c)). We show that, for
eachk, the path distance width dflk is at leastk + 1. Suppose, on the contrary, that
there exists a path distance decompositiotdpfwith root setS and width at mosk.
Since the size 08is at mosk, there exists at least one double ribl®mwhich does not
have vertices irS. Leta andb be the endpoints oR, and letc be the center oR. We
setd, = du, (S, @), dy = dy, (S, b), andd; = dy, (S, ). Without loss of generality, we
assume thal, < dyp. Then we havel. = d, + 2% + 2k = d, + 21 and this means that
there exist at least + 2 vertices with distancd, + 2<** which is a contradiction (see
Figure 12(a)). Hence, we ha@#PWW £ PDW (and thusBW £ PDW).

(10) LetG be a graph wittCSPW(G) < k. We show thaRPDW(G) < k2. Let
(X1, X2, ..., Xm) be a connected strong path decompositio®asf width at mostk.
We will construct a rooted path distance decompositio6 aff width at mosk?.

Letr be an arbitrary vertex fronXy, let {r} be the root set. Furthermore, let =
maxex, de(r, v), § = Minyex, da(r, v), rt(i) = maxj | X; contains a vertex with
de(r,v) =i}, and I{i) = min{j | X; contains a vertex with dg(r,v) = i}. For
example, in Figure 18, =3,$ =1, rt(3) = 4, and I{3) = 2.

Notice that (i) as5[ Xj]is connected, we have thatforalll <i <m,L;—§ < k-1,
(iforalli,1<i<m-—1,9,;—§ >1,and (ii)foralli,1<i <m-—1, forall j,
1<j<m-i,S+j <84

We will now show thatvd, 1 < d < max,.ev ) da(r, v), rti(d) — It(d) < k, orin
other words, the number of se¥s which have a vertex with distanckfrom the root is
at mostk. Suppose, on the contrary, thatlt + k < rt(d) for somed. Since there exists
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Fig. 12.A counterexample foSPW £ PDW.

a vertex with distancd in X, and because of (i), we have that
(1) d<Llpg < Sty +k—1

Also, using (ii), (i), the assumption above, and the fact that there exists a ver¥gxqin
with distanced from the root, we have that

(2) Sty + K < Stay+k < Sty < d.

From (1) and (2) we have thdt< S;q)+k—1 < Si@a)+k < d, whichis a contradiction.
Hence, for any integeat the number of sets of the strong path decomposition that have
a vertex with distance from the root is at mosk. Therefore, the number of vertices
having distancel from the root is at most? and thus, we can construct a rooted path
distance decomposition & with width at mostk?.

It is easy to see (using the class of cycles as a counterexampleR PRIV %
CSPW.

RERER = : I
: * U : 2 5 4
Xl XZ X,‘ X4 X‘Q
(a) (b)

Fig. 13.(a) A connected strong path decomposition and (b) an example of labeled decomposition.
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ko overtices

/J A book of k pages
> ]

yase

.. \
}

/

- "\/[)1 - —)\/bg T —‘\/bg h “‘\/bk—kl

Fig. 14.A counterexample fofESTW £ TDW.

k 41 books of k pages

(11) We call the grapl@y in Figure 14 abook of k pagesLet G, k > 1, be the
graph constructed usirlg+ 1 books ofk pages as in Figure 14. Clearly, this graph has
connected strong treewidth equal to 2. Now, toward prodi§@ W £ 7 DW, we show
that, for anyk > 1, the tree distance width @, is greater than or equal fo+ 1.
Suppose, on the contrary that there exists a tree distance decompos{Epmwith root
setSand width at mosk. Since the size o8 is at mosk, there exists at least one copy,
say H, of a book ofk pages inG, such thatH does not have vertices & Letb; be
the base (see Figure 14) Bff, and letdy, be the distance betwe&andb; in G,. It is
not hard to see thatl has exactlyk 4 1 vertices which are of distanclg + 1 from S,
a contradiction. Finally, using again the class of cycles as a counterexample, we have
TDW £ CSTW.

(12) It is easy to see th&®7DW £ CSTW (the class of cycles is again a coun-
terexample). Using again the class of graphs in Figure 14 as a counterexample, we have
CSTW £ RTDW. O

An immediate consequence of the above relations and Theorem 3.1 is that graph
isomorphism is fixed parameter tractable (can be solvei(in?) time) when the input
graphs have bounded connected strong pathwidth.

5. Open Problems. An interesting open problemis to find in the hierarchy depicted in
Figure 9, the boundary between the parameters that give fixed parameter tractability for
GRAPH ISOMORPHISM and the parameters that (probably) do not, i.e., for whirhr!
|soMORPHISMis W(t]-hard for some (as defined by [10] and [11]): until now, we only
know that GRAPH ISOMORPHISMiS fixed parameter tractable for paramet®&g D)V,
RPDW, andCSPW, but for all other parameters in the figure, the problem is still open.
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