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Abstract. The notions of hypertree width and generalized hypertree width were introduced by Gottlob,
Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further gen-
eralized by Grohe and Marx, who introduced the fractional hypertree width of a hypergraph. All these width
parameters on hypergraphs are useful for extending the tractability of many problems in database theory and
artificial intelligence. In this paper, we study the approximability of (generalized, fractional) hypertree width of
sparse hypergraphs where the criterion of sparsity reflects the sparsity of their incidence graphs. Our first step
is to prove that the (generalized, fractional) hypertree width of a hypergraphH is constant factor sandwiched
by the treewidth of its incidence graph when the incidence graph belongs to some apex-minor-free graph class
(the family of apex-minor-free graph classes includes planar graphs and graphs of bounded genus). This de-
termines the combinatorial borderline above in which the notion of (generalized, fractional) hypertree width
becomes essentially more general than treewidth, justifying that way its functionality as a hypergraph acy-
clicity measure. While for more general sparse families of hypergraphs treewidth of incidence graphs and all
hypertree width parameters may differ arbitrarily, there are sparse families where a constant factor approx-
imation algorithm is possible. In particular, we give a constant factor approximation polynomial time algo-
rithm for (generalized, fractional) hypertree width on hypergraphs whose incidence graphs belong to some
H -minor-free graph class.
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1. Introduction. Many important theoretical and “real-world” problems can be
expressed as constrained satisfaction problems (CSPs). Among examples, one can men-
tion numerous problems from different domains like Boolean satisfiability, temporal rea-
soning, graph coloring, belief maintenance, machine vision, and scheduling. Another
example is the conjunctive-query containment problem, which is a fundamental problem
in database query evaluation. In fact, as was shown by Kolaitis and Vardi [21], CSPs,
conjunctive-query containment, and finding homomorphism for relational structures are
essentially the same problem. The problem is known to be NP-hard in general [3] and
polynomial time solvable for a restricted class of acyclic queries [29]. Recently, in the
database and constraint satisfaction communities various extensions of query (or hyper-
graph) acyclicity were studied. The main motivation for the quest for a suitable measure
of acyclicity of a hypergraph (query, or relational structure) is the extension of polyno-
mial time solvable cases (like acyclic hypergraphs) to more general instances. In this
direction, Chekuri and Rajaraman in [4] introduced the notion of query width. Gottlob,
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Leone, and Scarcello [15], [16], [18] defined hypertree width and generalized hypertree
width. Furthermore, Grohe and Marx [20] introduced the most general parameter
known so far, fractional hypertree width, and proved that CSPs, restricted to instances
of bounded fractional hypertree width, are polynomial time solvable.

Unfortunately, all known variants of hypertree width are NP-complete [14], [19],
[22]. Moreover, generalized hypertree width isNP-complete even when checking whether
its value is at most 3 (see [19]). In the case of hypertree width, the problem isW ½2�-hard
when parameterized by k [14]. Both the hypertree width and generalized hypertree
width are hard to approximate. For example, the reduction of Gottlob et al. in [14]
can be used to show that the generalized hypertree width of an n-vertex hypergraph
cannot be approximated within a factor c log n for some constant c > 0 unless P ¼ NP.

All these parameters for hypergraphs can be seen as generalizations of the treewidth
of a graph. The treewidth is a fundamental graph parameter from the graph minors
theory by Robertson and Seymour [26], and it has numerous algorithmic applications
(for a survey, see [2]). It is an old open question whether the treewidth can be approxi-
mated within a constant factor, and the best known approximation algorithm for tree-
width is the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log OPT

p
-approximation of Feige, Hajiaghayi, and Lee [10]. However, as

was shown by Feige, Hajiaghayi, and Lee [10], the treewidth of an H -minor-free graph is
constant factor approximable.

Our results. Our first result is combinatorial. We show that for a wide family of
hypergraphs (those where the incidence graph excludes an apex graph as a minor—that
is, a graph that can become planar after removing a vertex) the fractional and generalized
hypertree width of a hypergraph is bounded by a linear function of treewidth of its inci-
dence graph. Apex-minor-free graph classes include planar and bounded genus graphs.

For hypergraphs whose incidence graphs are apex graphs, the two parameters may
differ arbitrarily, and this result determines the boundary where fractional hypertree
width starts being essentially different from the treewidth of the incidence graph. This
indicates that hypertree width parameters are more useful as the adequate version of
acyclicity for nonsparse instances.

Our proof is based on theorems from bidimensionality theory and a min-max (in
terms of fractional hyperbrambles) characterization of fractional hypertree width.
The proof essentially identifies the obstruction analogue of fractional hypertree width
for incidence graphs.

Our second result applies further for sparse classes where the difference between
(generalized, fractional) hypertree width of a hypergraph and the treewidth of its
incidence graph can be arbitrarily large. In particular, we give a constant factor approx-
imation algorithm for the generalized and the fractional hypertree width of hypergraphs
with H -minor-free incidence graphs, extending the approximation results of Feige,
Hajiaghayi, and Lee [10] from treewidth to (generalized, fractional) hypertree width.
The algorithm uses a series of theorems based on the main decomposition theorem
of the Robertson–Seymour graph minor project. As a combinatorial corollary of our
results, it follows that generalized hypertree width and fractional hypertree width differ
within a constant multiplicative factor if the incidence graph of the hypergraph does not
contain a fixed graph as a minor.

2. Definitions and preliminaries.

2.1. Basic definitions. We consider finite undirected graphs without loops or
multiple edges. The vertex set of a graph G is denoted by V ðGÞ and its edge set by
EðGÞ (or simply by V and E, respectively, if it does not create confusion).
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Let G be a graph. For a vertex v, we denote by NGðvÞ its (open) neighborhood, i.e.,
the set of vertices which are adjacent to v. The closed neighborhood of v (i.e., the set
NGðvÞ ∪ fvg) is denoted by NG½v�. For U ⊆ V ðGÞ, we define

NG ½U � ¼
[
v∈U

NG ½v�

(we may omit index if the graph under consideration is clear from the context). If U ⊆
V ðGÞ (or u ∈ V ðGÞ), then G − U (or G − u) is the graph obtained from G by the
removal of vertices of U (vertex u, respectively).

A surface Σ is a compact 2-manifold (we always consider connected surfaces).
Whenever we refer to a Σ-embedded graph G we consider a 2-cell embedding of G in
Σ. To simplify notation, we do not distinguish between a vertex of G and the point
of Σ used in the drawing to represent the vertex or between an edge and the line repre-
senting it. We also consider a graph G embedded in Σ as the union of the points corre-
sponding to its vertices and edges. That way, a subgraph H of G can be seen as a graph
H , where H ⊆ G. Recall that Δ ⊆ Σ is an open (respectively, closed) disc if it is home-
omorphic to fðx; yÞ∶x2 þ y2 < 1g (respectively, fðx; yÞ∶x2 þ y2 ≤ 1g). The Euler genus
of a nonorientable surface Σ is equal to the nonorientable genus ~gðΣÞ (or the crosscap
number). The Euler genus of an orientable surface Σ is 2gðΣÞ, where gðΣÞ is the orien-
table genus of Σ. We refer to the book of Mohar and Thomassen [24] for more details on
graph embeddings.

Given an edge e ¼ fx; yg of a graph G, the graph G ∕ e is obtained from G by con-
tracting e; that is, to get G ∕ e we identify the vertices x and y and remove all loops and
replace all multiple edges by simple edges. A graph H obtained by a sequence of edge-
contractions is said to be a contraction of G. If H is a contraction of G, then for a vertex
v ∈ V ðHÞ, the set of vertices of G which are contracted to v is called the model of v. A
graph H is a minor of G if H is a subgraph of a contraction of G. Let G be a graph
embedded in some surface Σ, and let H be a contraction ofG. We say that H is a surface
contraction of G if for each vertex v ∈ V ðHÞ, the model of v is embedded in some open
disk in Σ. It can be easily noted that if H is a surface contraction of a graph G embedded
in Σ, then it can be assumed that H is embedded in a surface Σ 0 homeomorphic to Σ. For
simplicity, we always assume in such cases that Σ  0 and Σ are the same surface. We say
that H is a surface minor of a graph G if H is the surface contraction of some subgraph
of G. Observe that H is a graph embedded in Σ.

We say that a graph G is H -minor-free when it does not contain H as a minor. We
also say that a graph class G is H -minor-free (or excludes H as a minor) when all its
members are H -minor-free.

An apex graph is a graph obtained from a planar graph G by adding a vertex and
making it adjacent to some of the vertices of G. A graph class G is apex-minor-free if G
excludes a fixed apex graph H as a minor.

The ðk× kÞ-grid is the Cartesian product of two paths of length k− 1.
If X ⊆ 2A for some set A, then by

S
X we denote the union of all elements of X .

Recall that a hypergraph H is a pair H ¼ ðV ðHÞ; EðHÞÞ, where V ðHÞ is a finite
nonempty set of vertices and EðHÞ is a set of nonempty subsets of V ðHÞ called hyper-
edges,

S
EðHÞ ¼ V ðHÞ. We consider here only hypergraphs without isolated vertices

(i.e., every vertex is in some hyperedge).
For vertex v ∈ V ðHÞ, we denote by EHðvÞ the set of its incident hyperedges.
The incidence graph of the hypergraph H is the bipartite graph I ðHÞ with vertex

set V ðHÞ ∪ EðHÞ such that v ∈ V ðHÞ and e ∈ EðHÞ are adjacent in I ðHÞ if and only if
v ∈ e (see Figure 2.1).
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2.2. Treewidth of graphs and hypergraphs. A tree decomposition of a hyper-
graphH is a pair ðT;χÞ, where T is a tree and χ∶V ðTÞ → 2V ðHÞ is a function associating
a set of vertices χðtÞ ⊆ V ðHÞ (called a bag) to each node t of the decomposition tree T
such that

(i) V ðHÞ ¼ S
t∈V ðTÞ χðtÞ;

(ii) for each e ∈ EðHÞ, there is a node t ∈ V ðTÞ such that e ⊆ χðtÞ; and
(iii) for each v ∈ V ðGÞ, the set ft ∈ V ðTÞ∶v ∈ χðtÞg forms a subtree of T .

The width of a tree decomposition equals maxfjχðtÞj− 1∶t ∈ V ðTÞg. The treewidth of a
hypergraph H is the minimum width over all tree decompositions of H. We use the no-
tation twðHÞ for the treewidth of a hypergraphH. If, in the above definitions, we restrict
the tree T to be a path, then we define the notions of path decomposition and pathwidth.

It is easy to verify that for any hypergraph H, twðHÞ þ 1 ≥ twðI ðHÞÞ. However,
these parameters may differ considerably on hypergraphs. For example, for the n-vertex
hypergraph H with one hyperedge which contains all vertices, twðHÞ ¼ n− 1 and
twðI ðHÞÞ ¼ 1.

Since twðHÞ ≥ jej− 1 for every e ∈ EðHÞ, we have that the presence of a large hy-
peredge results in a large treewidth of the hypergraph. The paradigm shift in the transi-
tion from treewidth to hypertree width consists in counting the covering hyperedges
rather than counting the number of vertices in a bag. This parameter seems to be more
appropriate, especially with respect to constraint satisfaction problems. We start with
the introduction of the even more general parameter of fractional hypertree width.

2.3. Hypertree width, its generalizations, and related notions. In general,
given a finite set A, we use the term labeling of A for any function γ∶A → ½0; 1�. We also
use the notation GðAÞ for the collection of all labelings of a set A.

The size of a labeling of A is defined as

jγj ¼
X
x∈A

γðxÞ:

If the values of a labeling γ are restricted to be 0 or 1, then we say that γ is a binary
labeling of A. Clearly, the size of a binary labeling is equal to the number of the elements
ofA that are labeled by 1. Given a hyperedge labeling γ of a hypergraphH, we define the
set of vertices of H that are blocked by γ as

FIG. 2.1. A hypergraph H and its incidence graph I ðHÞ.
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BðγÞ ¼
�
v ∈ V ðHÞ ∣

X
e∈EHðvÞ

γðeÞ ≥ 1

�
;

i.e., the set of vertices that are incident to hyperedges whose total labeling sums up to
1 or more.

A fractional hypertree decomposition [20] ofH is a triple ðT;χ; λÞ, where ðT;χÞ is a
tree decomposition of H and λ∶V ðTÞ → GðEðHÞÞ is a function, assigning a hyperedge
labeling to each node of T , such that for every t ∈ V ðTÞ, χðtÞ ⊆ BðλðtÞÞ; i.e., all vertices
of the bag χðtÞ are blocked by the labeling λðtÞ. The width of a fractional hypertree
decomposition ðT;χ; λÞ is maxfjλðtÞj∶t ∈ V ðTÞg, and the fractional hypertree width
fhwðHÞ of H is the minimum of the widths of all fractional hypertree decompositions
of H.

If λ assigns a binary hyperedge labeling to each node of T , then ðT;χ; λÞ is a general-
ized hypertree decomposition [17]. Correspondingly, the generalized hypertree width
ghwðHÞ of H is the minimum of the widths of all generalized hypertree decompositions
of H. There are several width parameters defined on hypergraphs, including hypertree
width, which, up to a multiplicative constant factor, are the same as the generalized
hypertree width [1].

Clearly, fhwðHÞ ≤ ghwðHÞ, but, as was shown in [20], there are families of hyper-
graphs of bounded fractional hypertree width but unbounded generalized hypertree
width. Notice that computing the fractional hypertree width is an NP-complete problem
even for sparse graphs. To see this, take a connected graph G that is not a tree and
construct a new graph H by replacing every edge of G by jV ðGÞj þ 1 paths of length
2. It is easy to check that twðGÞ þ 1 ¼ fhwðHÞ (see also [22]).

The proof of the next lemma follows from the results of [4] about query width. For
completeness, we provide a direct proof here.

LEMMA 2.1. For any hypergraph H, fhwðHÞ ≤ ghwðHÞ ≤ twðI ðHÞÞ þ 1.
Proof. Let ðT;χÞ be a tree decomposition of I ðHÞ of width ≤k. It is enough to de-

scribe a generalized hypertree decomposition ðT;χ 0; λÞ for H that has width at most
kþ 1. For every t ∈ V ðTÞ, let χ 0ðtÞ ¼ ðχðtÞ− EðHÞÞ ∪ ðSðχðtÞ ∩ EðHÞÞÞ. We include
in λðtÞ all hyperedges χðtÞ ∩ EðHÞ, and for every v ∈ χðtÞ ∩ V ðHÞ, a hyperedge e such
that v ∈ e is chosen arbitrarily and included in λðtÞ. Clearly,

V ðHÞ ¼
[

t∈V ðTÞ
χ 0ðtÞ

for each e ∈ EðHÞ there is a node t ∈ V ðTÞ such that e ⊆ χ 0ðtÞ, and for every t ∈ V ðTÞ,
χ 0ðtÞ ⊆ S

λðtÞ. We have to prove that for each v ∈ V ðHÞ, the set ft ∈ V ðTÞ∶v ∈ χ 0ðtÞg
forms a subtree of T . Suppose that there are s; t ∈ V ðTÞ at a distance of at least two,
v ∈ χ 0ðsÞ ∩ χ 0ðtÞ, and v ∈= χ 0ðxÞ for all inner vertices x of s, t-path in T . Since ðT;χÞ is a
tree decomposition of I ðHÞ, v ∈ χ 0ðtÞ− χðtÞ or v ∈ χ 0ðsÞ− χðsÞ. Assume that
v ∈ χ 0ðtÞ− χðtÞ. It means that there is e ∈ χðtÞ such that v ∈ e. Note that e ∈= χðxÞ
for inner vertices x of s, t-path and e ∈= χðsÞ (otherwise v ∈ χ 0ðxÞ by the definition).
If v ∈ χðsÞ, then there is no bag in ðT;χÞ that contains both endpoints of the edge
fv; eg ∈ EðI ðHÞÞ. So v ∈ χ 0ðsÞ− χðsÞ, and there is e 0 ∈ χðsÞ such that v ∈ e 0. As before,
e 0 ∈= χðxÞ for inner vertices and e 0 ∈= χðtÞ (hence e ≠ e 0). But since v is adjacent to e and
e 0 in I ðHÞ, bags χðxÞ should contain v, and we receive a contradiction. ▯

Let us remark here that the fractional hypertree width of a hypergraph can be
arbitrarily smaller than the treewidth of its incidence graph. Adding a hyperedge to
a hypergraph never decreases the treewidth of its incidence graph but can decrease
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dramatically the fractional and generalized hypertree widths. For example, suppose that
a hypergraph H 0 is obtained from the hypergraph H by adding a hyperedge which in-
cludes all vertices. Then fhwðH 0Þ ¼ 1 and twðI ðH 0ÞÞ þ 1 ≥ twðI ðHÞÞ þ 1 ≥ fhwðHÞ.

Let H be a hypergraph. Two sets X;Y ⊆ V ðHÞ touch if X ∩ Y ≠ ∅ or there exists
e ∈ EðHÞ such that e ∩ X ≠ ∅ and e ∩ Y ≠ ∅. A hyperbramble of H is a set B of pair-
wise touching connected subsets of V ðHÞ. We say that a labeling γ of EðHÞ covers a
vertex set S ⊆ V ðHÞ if some of its vertices are blocked by γ. The fractional order of a
hyperbramble is the minimum k for which there is a labeling γ of size at most k covering
all elements in B. The fractional hyperbramble number fbnðHÞ of H is the maximum of
the fractional orders of all hyperbrambles of H.

Many graph and hypergraph width parameters can be expressed in terms of graph
searching [12]. We need the following game-theoretical interpretation of fractional hy-
pertree width. The robber and army game was introduced by Grohe and Marx in [20].
The game is played on a hypergraph H by two players: a robber and a general who
commands the army. A position of the game is a pair ðγ; vÞ, where γ is a labeling of
EðHÞ and v ∈ V ðHÞ. The choice of γ is a distribution of the army on the hyperedges
of H, chosen by the general, while v is the position of the robber. During the game, a
vertex of the hypergraph is blocked only if the total amount of army on the hyper-
edges that contain this vertex adds up to the strength of at least one battalion. To
start the game, the robber picks a position v0, and the initial position is ðO; v0Þ, where
O denote the constant zero mapping. In each round, the players move from the cur-
rent position ðγ; vÞ to a new position ðγ  0; v 0Þ as follows: The general selects γ  0, and
then the robber selects v 0 such that there is a path from v to v 0 in the hypergraph
H that avoids the vertices in BðγÞ ∩ Bðγ  0Þ. Under these circumstances, the positions
ðγ; vÞ and ðγ  0; v 0Þ are called compatible. A game sequence is a sequence of compatible
positions, and its cost is the maximum size of a distribution γ in it. If, at some mo-
ment, the position of the game is ðγ; vÞ where v ∈ BðγÞ, then the general wins. If this
never happens, then the robber wins. A winning strategy of cost at most k for the
general is a program that provides a response on each possible position such that
any game sequence generated by this program is finite and has cost at most k.
The army width awðHÞ of H is the least k for which there exists a winning strategy
of cost at most k.

Using the fact that awðHÞ ≤ fhwðHÞ (see [20, Theorem 11]), we can prove the
following lemma.

LEMMA 2.2. For any hypergraph H, fbnðHÞ ≤ awðHÞ ≤ fhwðHÞ.
Proof. Let B be a hyperbramble of H of fractional order at least k. Our aim is to

provide an escape strategy for the robber against any possible winning strategy of cost at
most <k. In particular, the robber will always be on a vertex of some set S ∈ B such that
S is not covered by γ and at any position ðγ; vÞ of the game there will be a new unblocked
vertex for the robber to move. Indeed, if the response of the general at position ðγ; vÞ is
γ  0, we have that jγj < k, and therefore γ cannot cover all elements of B. If S  0 ∈ B is such a
set, the new position of the robber will be any vertex v 0 of S  0. Clearly, the robber can
move from v to v 0, as S and S  0 touch and all of their vertices are unblocked. This implies
that fbnðHÞ ≤ awðHÞ, and the result follows from the fact that awðHÞ ≤ fhwðHÞ,
which was proved in [20, Theorem 11]. ▯

The variant of the robber and army game where the labelings are restricted to be
binary labelings is called the marshals and robbers game and was introduced by Gottlob,
Leone, and Scarcello [18]. The corresponding parameter is called the marshal width and
is denoted by mw. Clearly, for any hypergraph H, awðHÞ ≤ mwðGÞ.
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2.4. i-brambles. For a hypergraph H, the graph I ðHÞ has vertices of two types:
the vertices corresponding to the vertices of H and the vertices corresponding to the
hyperedges. To capture this distinction, we introduce some additional notions here.

An i-labeled graph G is a triple ðG;N;M Þ such that
(i) N;M ⊆ V ðGÞ;
(ii) N ∪ M ¼ V ðGÞ;
(iii) M − N and N −M are independent sets of G;
(iv) for every v ∈ V ðGÞ, the closed neighborhood NG ½v� is intersecting both N

and M .
Let us remark that if G has no isolated vertices, then (iv) follows from (i)–(iii). Another
remark is that we do not require in this definition thatN ∩ M ¼ ∅. The incidence graph
I ðHÞ of a hypergraph H can be seen as an i-labeled graph ðI ðHÞ; N;M Þ, where
N ¼ V ðHÞ and M ¼ EðHÞ (see Figure 2.2).

By the definition of the i-labeled graph, for every edge fx; yg of an i-labeled graph
ðG;N;MÞ, fx; yg ∩ N ≠ ∅ and fx; yg ∩ M ≠ ∅. The result of the contraction of an edge
e ¼ fx; yg of an i-labeled graph ðG;N;MÞ to a vertex ve is the i-labeled graph
ðG  0; N  0;M  0Þ where

(i) G  0 ¼ G ∕ e;
(ii) N  0 ¼ ðN − fx; ygÞ ∪ fveg;
(iii) M  0 ¼ ðM − fx; ygÞ ∪ fveg.

Indeed, ðG  0; N  0;M  0Þ is an i-labeled graph becauseN  0 ∪ M  0 ¼ V ðG  0Þ; because ve is in both
setsN  0 andM  0, we have thatM  0 − N  0 andN  0 −M  0 are independent sets inG  0 and for each
v ∈ V ðG  0Þ, NG  0 ½v� is intersecting both N  0 and M  0 (see Figure 2.2 for an example). An
i-labeled graph ðG  0; N  0;M  0Þ is a contraction of an i-labeled graph ðG;N;MÞ if
ðG  0; N  0;M  0Þ can be obtained after applying a (possibly empty) sequence of contractions
to ðG;N;M Þ. The following lemma is a direct consequence of the definition.

LEMMA 2.3. Let ðG;N;MÞ be an i-labeled graph, and let G  0 be a contraction of G.
Then there areN  0;M  0 ⊆ V ðG  0Þ such that the i-labeled graph ðG  0; N  0;M  0Þ is a contraction
of ðG;N;M Þ.

Let ðG;N;M Þ be an i-labeled graph. We say that a set S ⊆ N is i-connected if
any pair x; y ∈ S is connected by a path in G½S ∪ ðM − NÞ�. We say that two subsets
S;R ⊆ N i-touch if one of the following holds:

(i) S ∩ R ≠ ∅;
(ii) there is an edge fx; yg with x ∈ S and y ∈ R; or
(iii) there is a vertex z ∈ M − N such that NGðzÞ intersects both S and R.

FIG. 2.2. The i-labeled graph I ðHÞ and a contraction ðG;N;MÞ of it.
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Given an i-labeled graph ðG;N;M Þ we define an i-bramble of ðG;N;M Þ as any collec-
tion B of i-touching, i-connected sets of vertices in N (see Figure 2.3). We say that a
labeling γ of M blocks a vertex x ∈ N if

X
y∈NG ½x�∩M

γðyÞ ≥ 1:

We say that γ fractionally covers a vertex set S ⊆ N if at least one vertex of S is blocked
by γ. The order of an i-bramble is the minimum k for which there is a labeling γ ofM of
size at most k that fractionally covers all sets of B. For example, in Figure 2.3, if γ labels
by 1 ∕ 2 the three indicated vertices ofM and labels by 0 all the others, then γ fractionally
covers all sets of B. It is not hard to verify that the order of the bramble in Figure 2.3
is 3 ∕ 2.

The fractional i-bramble number fibnðG;N;M Þ of an i-labeled graph ðG;N;MÞ is
the maximum order of all i-brambles of it.

The statement below follows immediately from the definitions of hyperbrambles
and i-brambles.

LEMMA 2.4. For any hypergraph H, fibnðI ðHÞ; V ðHÞ; EðHÞÞ ¼ fbnðHÞ.
It can be seen that the fractional i-bramble number is a contraction-closed

parameter.
LEMMA 2.5. If an i-labeled graph ðG  0; N  0;M  0Þ is the contraction of an i-labeled graph

ðG;N;MÞ, then fibnðG  0; N  0;M  0Þ ≤ fibnðG;N;M Þ.
Proof. For each vertex x ∈ V ðG  0Þ, let Ux ⊆ V ðGÞ be the model of x. Let B 0 be an

i-bramble in ðG  0; N  0;M  0Þ. For each set B  0 in B 0, we define the set of vertices

B ¼ N ∩
�[

x∈B  0
Ux

�
:

Let B be a collection of all such sets. Then B is an i-bramble inG. Now let γ be a labeling
of M of size at most fibnðG;N;M Þ which fractionally covers all sets of B. We define a
labeling γ  0 of M  0 as follows: For each x ∈ M  0,

FIG. 2.3. A bramble B ¼ fX1 ∩ N;X2 ∩ N;X3 ∩ N;X4 ∩ Ng in the i-labeled graph ðG;N;MÞ.
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γ  0ðxÞ ¼
X

v∈M∩Ux

γðvÞ:

Thus jγ  0j ¼ jγj. It remains to notice that all sets of B 0 are fractionally covered by γ  0. ▯
Obviously, i-bramble number is not a subgraph-closed parameter (not even for

induced subgraphs), but we can note the following useful claim.
LEMMA 2.6. Let ðG;N;MÞ be an i-labeled graph and X ⊆ V ðGÞ such thatG − X has

no isolated vertices, and for every v ∈ X ∩ M , NG ½v� ⊆ X . Then ðG − X;N − X;
M − XÞ is an i-labeled graph and fibnðG − X;N −X;M − XÞ ≤ fibnðG;N;M Þ.

Proof. Let G  0 ¼ G −X , N  0 ¼ N − X , and M  0 ¼ M − X . Since G  0 has no isolated
vertices, ðG  0; N  0;M  0Þ is an i-labeled graph. Let B be an i-bramble of ðG  0; N  0;M  0Þ.
Obviously, B is an i-bramble of ðG;N;MÞ, and there is a labeling γ of M of size
k ≤ fibnðG;N;M Þ which fractionally covers all sets of B. Because NG ½v� ⊆ X for every
vertex v ∈ X ∩ M , we have that the restriction γ  0 of γ to M is the labeling of M  0 which
covers all sets of B, and jγ  0j ≤ k. ▯

3.When hypertree width is sandwiched by treewidth. Vertex removal of an
incidence graph corresponding to an edge removal of the corresponding hypergraph can
significantly increase each of the hypertree width parameters. This is the main reason
why in this section we have to develop tools based on edge-contractions.

3.1. Influence and valency of i-brambles. Let ðG;N;MÞ be an i-labeled graph
and B be an i-bramble of it. By slightly abusing the notation, we use ∪ B to denote the
subset of N which is the union of all vertices contained in elements of B. We define the
influence of B as

iflðBÞ ¼ max
v∈∪B

jfx ∈∪ B ∣ distGðv; xÞ ≤ 2gj:

We also define the valency of B as the quantity

valðBÞ ¼ max
v∈∪B

jfS ∈ B ∣ v ∈ Sgj:

See Figure 3.1 for an example.

FIG. 3.1. The values of jfx ∈∪ B ∣ distGðv; xÞ ≤ 2gj for each member for N in the bramble B. It follows
that iflðBÞ ¼ 6. The black vertex in N is the unique vertex belonging in two sets of B, and therefore valðBÞ ¼ 2.
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LEMMA 3.1. If B is an i-bramble of an i-labeled graph ðG;N;MÞ, then the order of B
is at least jBj

iflðBÞ·valðBÞ.
Proof. Let γ be a labeling of M that fractionally covers all sets of B. We first prove

the following claim.
Claim. Labeling γ blocks at most iflðBÞ · jγj vertices in ∪ B.
Proof. Let R be a subset of ∪ B such that every vertex in R is blocked by γ. We

defineGR as the graph whose vertex set isR and where two vertices x; y ∈ R are adjacent
if their distance in G is 1 or 2. By the definition of influence, we obtain that the max-
imum degree of GR is at most iflðBÞ− 1, and therefore GR has an independent set I of
size at least jRj ∕ iflðBÞ. As I ⊆ R, all vertices of I are blocked by γ. This implies that for
every x ∈ I , X

y∈NG ½x�∩M
γðxÞ ≥ 1:

By definition, for each pair x; x 0 ∈ I , x ≠ x 0, NG½x� ∩ NG ½x 0� ¼ ∅. Therefore,

jγj ¼
X
x∈M

γðxÞ ≥
X

x∈NG ½R�∩M
γðxÞ ≥

X
x∈NG ½I �∩M

γðxÞ ≥
X
x∈I

X
y∈N ½x�∩M

γðyÞ ≥ jI j ≥ jRj
iflðBÞ ;

and the claim follows. ▯
The above claim, along with the definition of valency, implies that γ fractionally

covers no more than iflðBÞ · jγj · valðBÞ sets of B. We conclude that jBj ≤ iflðBÞ ·
jγj · valðBÞ, and the lemma follows. ▯

3.2. Triangulated grids. A partially triangulated ðk× kÞ-grid is a graph G that is
obtained from a ðk× kÞ-grid (we refer to it as its underlying grid) after adding some
edges without destroying the planarity of the resulting graph. Each vertex of G is
denoted by a pair ði; jÞ corresponding to its coordinates in the underlying grid. The
nonmarginal vertices of the partially triangulated grid G, denoted by UðGÞ, are the
vertices that have degree 4 in the underlying grid. We refer to the remaining vertices
V ðGÞ− UðGÞ as marginal.

LEMMA 3.2. Let ðG;N;MÞ be an i-labeled graph, where G is a partially triangulated
ðk× kÞ-grid for k ≥ 4. Then fibnðG;N;M Þ ≥ k ∕ 50− c for some constant c ≥ 0.

Proof. We use the notation Ci;j for the set vertices of N ∩ UðGÞ that belong to the
ith row or the jth column of the underlying grid ofG.We claim thatB ¼ fCi;j ∣ 2 ≤ i; j ≤
k− 1g is an i-bramble of G of order ≥k ∕ 50− c for some constant c ≥ 0. Since k ≥ 4, we
have that each set Ci;j is nonempty and i-connected. Notice also that the intersection of
the ith row and the j 0th column of the underlying grid of G is either a vertex in N and
Ci;j ∩ Ci 0;j 0 ≠ ∅, or a vertex in M − N , but then all of its neighbors in G belong to N .
Therefore, all Ci;j’s and Ci 0;j  0 ’s should i-touch, and B is an i-bramble. Each vertex
v ¼ ði; jÞ in∪ B is contained in exactly 2k− 5 sets of B (that is, k− 2 setsCi 0;j  0 that agree
on the first coordinate plus k− 2 sets Ci 0;j  0 that agree on the second, minus one set Ci;j

that agrees on both), and therefore valðBÞ ¼ 2k− 5. For each nonmarginal vertex x inG,
there are at most 25 nonmarginal vertices within a distance ≤2 in G (in the worst case,
consider a triangulated ð5× 5Þ-grid subgraph of G that is centered at x), and thus
iflðBÞ ≤ 25 (see Figure 3.2). As jBj ¼ ðk− 2Þ2, Lemma 3.1 implies that there is a constant
c such that the order of B is at least k ∕ 50− c, and the lemma follows. ▯

We require the following result.
PROPOSITION 3.3 (see [25, Theorem 6.2]). Let k be a positive integer. Then every pla-

nar graph excluding ðk× kÞ-grid as a minor has treewidth at most 6k− 5.

1340 F. V. FOMIN, P. A. GOLOVACH, AND D. M. THILIKOS

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



THEOREM 3.4. If H is a hypergraph with a planar incidence graph I ðH Þ, then
fhwðHÞ− 1 ≤ ghwðHÞ− 1 ≤ twðI ðHÞÞ ≤ 300 · fhwðHÞ þ c for some constant c ≥ 0.

Proof. The left-hand inequality follows directly from Lemma 2.1. Now suppose that
H is a hypergraph where fhwðHÞ ≤ k. By Lemmas 2.2 and 2.4, fibnðI ðHÞ; V ðHÞ;
EðHÞÞ ¼ fbnðHÞ ≤ fhwðHÞ ≤ k. By Lemmas 2.5 and 3.2, ðI ðHÞ; V ðHÞ; EðHÞÞ cannot
be i-contracted to an i-labeled graph ðG;N;M Þ, where G is a partially triangulated
ðl× lÞ-grid, where l ¼ 50 · kþOð1Þ. By Lemma 2.3, IðHÞ cannot be contracted to a
partially triangulated ðl× lÞ-grid, and thus I ðHÞ excludes an ðl× lÞ-grid as a minor.
From Proposition 3.3, twðI ðHÞÞ ≤ 6 · l− 5 ≤ 300 · kþ c, and the result follows. ▯

3.3. Brambles in gridoids. We call a graph G a ðk; gÞ-gridoid if it is possible to
obtain a partially triangulated ðk× kÞ-grid after removing at most g edges from it (we
call these edges additional).

LEMMA 3.5. Let ðG;N;M Þ be an i-labeled graph, where G is a ðk; gÞ-gridoid. Then
fibnðG;N;MÞ ≥ k ∕ 50− c · ðgþ 1Þ for some constant c ≥ 0.

Proof. The proof follows in the same way as the proof of Lemma 3.2. The only dif-
ference is that now we exclude from B all the Ci;j’s where either i or j is the coordinate of
some endpoint of an additional edge. Notice that again valðBÞ ≤ 2k− 5. Moreover, it
also holds that iflðBÞ ≤ 25 as none of the endpoints belongs to elements of the bramble.
Finally, jBj ≥ ðk− 2− 2 · gÞ2, and the result follows from Lemma 3.1. ▯

We need the following extension of Proposition 3.3 for graphs of bounded genus.
PROPOSITION 3.6 (see [7, Theorem 4.12]). Let k be a positive integer.Then every graph

of Euler genus g and excluding ðk× kÞ-grid as a minor has treewidth at most 6k · ðgþ 1Þ.
The proof of the next theorem is very similar to the one of Theorem 3.4 (use

Lemma 3.5 instead of Lemma 3.2, and Proposition 3.6 instead of Proposition 3.3).
THEOREM 3.7. If H is a hypergraph with an incidence graph I ðH Þ of Euler genus at

most g, then fhwðHÞ− 1 ≤ ghwðHÞ− 1 ≤ twðI ðHÞÞ ≤ 300 · g · fhwðHÞ þ c · g for
some constant c ≥ 0.

3.4. Brambles in augmented grids. An augmented ðr × rÞ-grid of span s is an
r × r grid with some extra edges such that each vertex of the resulting graph is adjacent
to at most s nonmarginal vertices of the grid.

FIG. 3.2. An i-labeled triangulated ð9× 9Þ-grid. The vertices meeting the two bold lines correspond to one
of the 49 elements of the i-bramble B of the proof of Lemma 3.2. The vertex in the center meets 13 such ele-
ments, and there are 25 vertices of N in its closed 2-neighborhood.
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LEMMA 3.8. If ðG;N;MÞ is an i-labeled graph where G is an augmented ðk× kÞ-grid
with span s, then fibnðG;N;M Þ ≥ k

2·s2 − c for some constant c ≥ 0.
Proof. We consider the i-bramble B ¼ fCi;j ∣ 2 ≤ i; j ≤ k− 1g of the proof of

Lemma 3.2, and we directly observe that valðBÞ ≤ 2k− 5 and jBj ≥ ðk− 2Þ2. By the
definition of the augmented ðk× kÞ-grid with span s, we obtain that iflðBÞ ≤ s2,
and the result follows by applying Lemma 3.1. ▯

As was shown by Demaine et al. [6], every apex-minor-free graph with treewidth at
least k can be contracted to a ðfðkÞ× f ðkÞÞ-augmented grid of span Oð1Þ (the hidden
constants in the “O”-notation depend only on the excluded apex graph). Because f ðkÞ ¼
ΩðkÞ (due to the results of Demaine and Hajiaghayi in [8]), we have the following
proposition.

PROPOSITION 3.9. Let G be an H -apex-minor-free graph of treewidth at least cH · k.
ThenG contains as a contraction an augmented ðk× kÞ-grid of span sH , where constants
cH , sH depend only on the size of apex graph H that is excluded.

The proof of the next theorem is similar to the one of Theorem 3.4 (use Lemma 3.8
instead of Lemma 3.2, and Proposition 3.9 instead of Proposition 3.3).

THEOREM 3.10. If H is a hypergraph with an incidence graph I ðHÞ that is H -apex-
minor-free, then fhwðHÞ− 1 ≤ ghwðHÞ− 1 ≤ twðI ðHÞÞ ≤ cH · fhwðHÞ for some con-
stant cH that depends only on H .

4. Hypergraphs with H-minor-free incidence graphs. The results of
Theorem 3.10 cannot be extended to hypergraphs whose incidence graph excludes
an arbitrary fixed graph H as a minor. For example, for every integer k, it is possible
to construct a hypergraph H with the planar incidence graph such that twðI ðHÞÞ ≥ k.
By adding to H a universal hyperedge containing all vertices of H, we obtain a hyper-
graphH  0 of generalized hypertree width one. Its incidence graph I ðH 0Þ does not contain
the complete graph K6 as a minor; however, its treewidth is at least k. Despite this fact,
in this section we prove that if a hypergraph has an H -minor-free incidence graph, then
its generalized hypertree width and fractional hypertree width can be approximated by
the treewidth of a graph that can be constructed from its incidence graph in polynomial
time. By making use of this result, we show that in this case the generalized hypertree
width and fractional hypertree width may differ up to a constant multiplicative factor
from each other. Another consequence of the combinatorial result is that there is a con-
stant factor polynomial time approximation algorithm for both parameters on this class
of hypergraphs. Our proof is based on the excluded minor theorem by Robertson and
Seymour [27].

4.1. Graph minor theorem. Before describing the excluded minor theorem, we
need some definitions.

DEFINITION 4.1 (CLIQUE-SUMS). Let G1 ¼ ðV 1; E1Þ and G2 ¼ ðV 2; E2Þ be two disjoint
graphs and k ≥ 0 be an integer. For i ¼ 1; 2, let Wi ⊆ Vi form a clique of size h and let
G  0

i be the graph obtained from Gi by removing a set of edges (possibly empty) from
the clique Gi½Wi�. Let F∶W 1 → W 2 be a bijection between W 1 and W 2. We define
the h-clique-sum of G1 and G2, denoted by G1

L
h;F G2, or simply G1

L
G2 if there

is no confusion, as the graph obtained by taking the union of G1
 0 and G2

 0 by identifying
w ∈ W 1 with FðwÞ ∈ W 2, and by removing all the multiple edges. The image of the ver-
tices of W 1 and W 2 in G1

L
G2 is called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, since it is possible that
they had edges which were removed by clique-sum operation. Such edges are called vir-
tual edges of G. We remark that

L
is not well defined; different choices of G  0

i and the
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bijection F could give different clique-sums. A sequence of h-clique-sums, not necessarily
unique, which result in a graph G, is called a clique-sum decomposition of G.

DEFINITION 4.2 (h-nearly embeddable graphs). Let Σ be a surface and h > 0 be an
integer. A graph G is h-nearly embeddable in Σ if there is a set of vertices X ⊆ V ðGÞ
(called apexes) of size at most h such that graph G − X is the union of subgraphs
G0; : : : ; Gh with the following properties:

(i) There is a set of cycles C 1; : : : ; Ch in Σ such that the cycles Ci are the borders of
open pairwise disjoint discs Δi in Σ.

(ii) G0 has an embedding in Σ in such a way that G0 ∩
S

i¼1; : : : ;h Δi ¼ ∅.
(iii) Graphs G1; : : : ; Gh (called vortices) are pairwise disjoint, and for 1 ≤

i ≤ h, V ðG0Þ ∩ V ðGiÞ ⊂ Ci.
(iv) For 1 ≤ i ≤ h, let Ui ≔ fui

1; : : : ; u
i
mi
g be the vertices of V ðG0Þ ∩ V ðGiÞ ⊂ Ci

appearing in an order obtained by clockwise traversing of Ci; we call vertices of
Ui bases of Gi. Then Gi has a path decomposition ðPi;χiÞ of width at most h
such that Pi is the path on mi vertices 1; : : : ;mi and for 1 ≤ j ≤ mi, we
have ui

j ∈ χiðjÞ.
The following proposition is known as the excluded minor theorem [27] and is the

cornerstone of Robertson and Seymour’s graph minors theory.
THEOREM 4.3 (see [27]). For every nonplanar graph H , there exists an integer h,

depending only on the size of H , such that every graph excluding H as a minor can
be obtained by h-clique-sums from graphs that can be h-nearly embedded in a surface
Σ in which H cannot be embedded. Moreover, while applying each of the clique-sums,
at most three vertices from each summand other than apexes and vertices in vortices
are identified.

Let us remark that by the result of Demaine, Hajiaghayi, and Kawarabayashi [9]
such a clique-sum decomposition can be obtained in time OðncÞ for some constant c
which depends only on H (see also [5]).

4.2. Approximation. Let H be a hypergraph such that its incidence graph
G ¼ I ðHÞ excludes a fixed graph H as a minor. Every graph excluding a planar graph
H as a minor has a constant treewidth [25]. Thus if H is planar, by the results of
Theorem 3.10, the generalized hypertree width does not exceed some constant. In what
follows, we always assume that H is not planar.

By Theorem 4.3, there is an h-clique-sum decomposition of G ¼ G1

L
G2

L
· · ·

L
Gm such that, for every i ∈ f1; 2; : : : ;mg, the summand Gi can be h-nearly em-

bedded in a surface Σ in which H cannot be embedded. We assume that this clique-sum
decomposition isminimal in the sense that for every virtual edge fx; yg ∈ EðGiÞ there is
an x, y-path inG with all inner vertices inV ðGÞ− V ðGiÞ (otherwise it is always possible
to remove such edges and modify clique-sum operations correspondingly). Let Ai be the
set of apexes of Gi. We define Ei ¼ Ai ∩ EðHÞ and G  0

i ¼ Gi − ðNG ½Ei� ∪ AiÞ. For every
virtual edge fx; yg of G  0

i we perform the following operation: If there is no x, y-path in
G − ðN ½Ei� ∪ AiÞ with all inner vertices in G − V ðG  0

iÞ, then fx; yg is removed from G  0
i.

We denote the resulting graph by Fi.
In what remains, we show that the maximal value of twðFiÞ, where the maximum is

taken over all i ∈ f1; 2; : : : ;mg, is a constant factor approximation of generalized and
fractional hypertree widths of H. The upper bound is given by the following lemma. Its
proof uses the fact that ghwðHÞ ≤ 3 · mwðHÞ þ 1 (see [1]) and is based on the descrip-
tion of a winning strategy for k ¼ maxftwðFiÞ∶i ∈ f1; 2; : : : ;mgg þ 2hþ 1 marshals
on H.

LEMMA 4.4. ghwðHÞ ≤ 3 · maxftwðFiÞ∶i ∈ f1; 2; : : : ;mgg þ 6hþ 4.
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Proof. Let w ¼ maxftwðFiÞ∶i ∈ f1; 2; : : : ;mgg and k ¼ wþ 2hþ 1. By the result
of Adler, Gottlob, and Grohe [1], we have that ghwðHÞ ≤ 3 · mwðHÞ þ 1, and it is en-
ough to describe a winning strategy for k marshals on H.

The clique-sum decomposition G ¼ G1

L
G2

L
· · ·

L
Gm can be considered as a

tree decomposition ðT;χÞ of G for some tree T with nodes f1; 2; : : : ;mg such that
χðiÞ ¼ V ðGiÞ; i.e., the vertex sets of the summands are the bags of this decomposition.
The idea behind the winning strategy for marshals is to “chase” the robber in the hy-
pergraph along mþ 1 decompositions for its incidence graph: One is induced by the
clique-sum decomposition, and others are tree decompositions of Fi. We say that mar-
shals block a set X ⊆ V ðGÞ if all hyperedges X ∩ EðHÞ are occupied by them, and for
every v ∈ X ∩ V ðHÞ, there is a hyperedge e ∈ EðHÞ, occupied by a marshal, such
that v ∈ e.

Let us note that the definition of Fi yields the following: If x; y ∈ V ðFiÞ and there is
an x, y-path in G − ðN ½Ei� ∪ AiÞ with all inner vertices not in Fi, then fx; yg is an edge
of Fi. (Indeed, if fx; yg is an edge of G, then it is also an edge of Fi. If fx; yg ∈= EðGÞ but
such a path exists, then fx; yg is a virtual edge in Gi and by the definition of Fi, such an
edge is also an edge of Fi.)

For i ∈ f1; 2; : : : ;mg, let ðT ðiÞ;χiÞ be a tree decomposition of Fi of width at mostw.
We assume that trees T and T ð1Þ; T ð2Þ; : : : ; T ðmÞ are rooted trees with roots r and
r1; r2; : : : ; rm, respectively.

For a node i ∈ V ðTÞ and its parent j (in T), we define S ¼ V ðGiÞ ∩ V ðGjÞ. (If
i ¼ r, then we set S ¼ ∅.) By the definition of the clique-sum, jS j ≤ h. Assume that
at most h marshals are already placed on the hypergraph in such a way that they block
S . Assume also that the robber occupies some vertex of χðT ðiÞÞ. We put at most h mar-
shals on hyperedges to block the set of apexesAi. Then the setNG ½Ei� ∪ Ai is blocked by
these marshals.

Now marshals start to “chase” the robber in the subhypergraph induced by the ver-
tex setV ðFiÞ ∩ V ðHÞ along T ðiÞ. We put at mostwþ 1marshals to block the set χiðriÞ.
Now assume that some set χiðxÞ for x ∈ V ðT ðiÞÞ is blocked; i.e., for any hyperedge
e ∈ χiðxÞ ∩ EðHÞ, e is occupied by a marshal, and for every v ∈ χiðxÞ ∩ V ðHÞ, there
is a hyperedge e ∈ EðHÞ, occupied by a marshal, such that v ∈ e. In the last case we
say that this marshal is assigned to v. We remove marshals that do not occupy the hy-
peredges χiðxÞ∩χiðyÞ∩EðHÞ that are not assigned to the vertices of χiðxÞ ∩ χiðyÞ∩
V ðHÞ. Observe that at most jχiðxÞ∩χiðyÞj marshals are used now, and χiðxÞ∩χiðyÞ re-
mains blocked. Then we place marshals on the hyperedges ðχiðyÞ \ χiðxÞÞ ∩ EðHÞ, and
for any v ∈ ðχiðyÞ \ χiðxÞÞ ∩ V ðHÞ, we choose a hyperedge e such that v ∈ e and place a
marshal on e. This maneuver is done by making use of at most wþ 1− jχiðxÞ ∩ χiðyÞj
marshals. We set x ¼ y and repeat this operation until there is a child y of x such that the
robber can be in χiðT ðiÞ

y Þ. Thus by repeating at most jV ðT ðiÞÞj times this operation,
marshals “push” the robber out of V ðFiÞ ∩ V ðHÞ.

Let j be a child of i in T such that the robber now can occupy only the vertices of
χðTjÞ, whereTj is the subtree ofT rooted at j. Let S  0 ¼ V ðGiÞ ∩ V ðGjÞ. Since jS  0j ≤ h,
we have that h marshals can block this set and, after that, all other marshals can be
removed from H.

We apply the described strategy of marshals starting from i ¼ r until the robber is
captured in some leaf-node ofT . For every node ofT we have used at most hmarshals to
occupy apexes, at most h marshals to block the vertices of the clique-sum, and at most
wþ 1marshals to push the robber out of Fi. Thus in total at most 2hþwþ 1marshals
have a winning strategy on H. ▯
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We also need a result roughly stating that if a graph G with a big grid as a surface
minor is embedded on a surface Σ of small genus, then there is a disc in Σ containing a big
part of the grid of G. This result is implicit in the work of Robertson and Seymour,
and there are simpler alternative proofs by Mohar [23] and Thomassen [28] (see also
[7, Lemma 3.3]). We use the following variant of this result from Geelen, Richter,
and Salazar [13].

PROPOSITION 4.5 (see [13]). Let g, l, and r be positive integers such that r ≥ gðlþ 1Þ,
and let G be an ðr; rÞ-grid. If G is embedded in a surface Σ of Euler genus at most g2 − 1,
then some ðl; lÞ-subgrid of G is embedded in a closed disc Δ in Σ such that the boundary
cycle of the ðl; lÞ-grid is the boundary of the disc.

Now we are ready to prove the following lower bound.
LEMMA 4.6. fbnðHÞ ≥ εH · maxftwðFiÞ∶i ∈ f1; 2; : : : ;mgg for some constant εH

depending only on H .
Proof. Let i ∈ f1; 2; : : : ;mg. We assume that G − ðN ½Ei� ∪ AiÞ is a connected

graph which has at least one edge. (Otherwise, one can consider the components of this
graph separately and remove isolated vertices.) The main idea of the proof is to contract
it to a planar graph with approximately the same treewidth as Fi and then apply the
same techniques that were used in the previous section for the planar case.

Structure ofG − ðN ½Ei� ∪ AiÞ. Let us note that an h-clique-sum decompositionG ¼
G1

L
G2

L
· · ·

L
Gm induces an h-clique-sum decomposition of G  0 ¼ G − ðN ½Ei� ∪

AiÞ with the summand Gi replaced by Fi. Let G  0
1; G

 0
2; : : : ; G

 0
l be the connected compo-

nents ofG  0 − V ðFiÞ. Every such componentG  0
j is attached via clique-sum to Fi by some

cliqueQj of Fi. Note that cliquesQj contain all virtual edges of Fi. We assume that each
clique Qj does not separate vertices of Fi. Otherwise, it is possible to decompose Fi into
the clique-sum of graphs F

ð1Þ
i

L
F

ð2Þ
i with the join Qj and prove the bound for sum-

mands, and since twðFiÞ ¼ maxfF ð1Þ
i ; F

ð2Þ
i g, that will prove the lemma. To simplify

the structure of the graph, for every component G  0
j, we contract all its edges and denote

by Sj the star whose central vertex is the result of the contraction and whose leaves are
the vertices of Qj.

Contracting vortices. The h-nearly embedding of the graph Gi induces the h-nearly
embedding of Fi ¼ X0 ∪ X1 ∪ · · ·∪ Xh without apexes. Here we assume that X0 is em-
bedded in a surface Σ of genus depending on H and X1; X2; : : : ; Xh are the vortices. For
every vortexXj, the verticesV ðX0Þ ∩ V ðXjÞ are on the boundaryCj of some face ofX0.
If for a star Sk some of its leaves Qk are in Xj or Cj, we do the following operation: If
Qk ∩ ðV ðXjÞ− V ðCjÞÞ ≠ ∅, then all edges of Sk are contracted, and if Qk ∩ ðV ðXjÞ−
V ðCjÞÞ ¼ ∅ but jQk ∩ V ðCjÞj ≥ 2, then we contract all edges of Sk that are incident to
the vertices ofQk ∩ V ðCjÞ. These contractions result in the contraction of some edges of
Fi. In particular, all virtual edges ofXj andCj are contracted. Additionally, we contract
all remaining edges of Xj and Cj. We perform these contractions for all vortices
of Fi and denote the result by F  0

i. It follows immediately from the definition of the
h-clique-sum and the fact that at most three vertices that do not belong in vortices
or apexes are identified, that F  0

i coincides with the graph obtained from Fi by contract-
ing all vortices Xj and all boundaries of faces Cj. It can be easily seen that F  0

i is em-
bedded in Σ. It is known (see, e.g., [7], [8]) that there is a positive constant aH which
depends only on H such that twðF  0

iÞ ≥ aH · twðFiÞ.
Contracting the part that lies outside of some planar disc. Since F  0

i is embedded in Σ,
we have that the graph F  0

i contains some ðk× kÞ-grid as a surface minor, where k ≥ bH ·
twðF  0

iÞ for some constant bH [7]. Combining this result with Proposition 4.5, we obtain
the following claim.
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Claim. There is a disc Δ ⊆ Σ such that
(i) the subgraph R of F  0

i induced by vertices of F  0
i ∩ Δ is a connected graph;

(ii) the subgraph R  0 of F  0
i induced by NF  0

i
½V ðRÞ� is completely in some disc Δ  0;

(iii) vertices of V ðR  0Þ−V ðRÞ induce a cycle C which is the border of Δ 0; and
(iv) twðRÞ ≥ cH · twðF  0

iÞ for some constant cH .
The claim above permits us to treat the part of F  0

i which is outside Δ exactly in the
same way we have treated vortices. For stars Sk intersecting V ðF  0

iÞ− V ðR 0Þ or C , we do
the following: If Qk ∩ ðV ðF  0

iÞ− V ðR 0ÞÞ ≠ ∅, then all edges of Sk are contracted, and if
Qk ∩ ðV ðF  0

iÞ− V ðR 0ÞÞ ¼ ∅ but jQk ∩ V ðCÞj ≥ 2, then all edges of Sk incident to the
vertices of Qk ∩ V ðCÞ are contracted. These contractions result in the contraction of
some edges of F  0

i with endpoints on C or outside Δ 0. In particular, all such virtual edges
are contracted. Additionally, we contract all remaining edges of F  0

i − V ðRÞ and C . Thus
this part of the graph is contracted to a single vertex. Denote the obtained graph by X .
This graph is planar, and since R is a subgraph of X , we have that twðXÞ ≥ twðRÞ.

Embedding the stars. Some edges of X are virtual, and all such edges are in cliques
Qj. Given the fact that while taking clique-sums, at most three vertices that do not
belong in vortices or apexes are identified, we obtain that jQjj ≤ 3. For every clique
Q ¼ V ðXÞ ∩ Qj, we do the following: IfQ ¼ fx; yg, then the edge of the star Sj incident
to x is contracted. IfQ ¼ fx; y; zg, then if two vertices ofQ, say, x and y, are joined by an
edge in G, then the edge of Sj incident to z is contracted, and if there are no such edges
and the triangle induced by fx; y; zg is the boundary of some face of X , then we add a
new vertex on this face, join it with x, y, and z (it can be seen as Sj embedded in this face,
and since our graph is i-labeled, it is assumed that this new vertex has the same labels as
the central vertex of Sj), and then remove virtual edges. Note that if the triangle is not a
boundary of some face, thenQ is a separator of our graph, but we assumed that there are
no such separators. Denote by Y the obtained graph. A similar construction was used in
the proof of the main theorem in [8, Theorem 1.2], and by the same arguments as were
used by Demaine and Hajiaghayi we immediately conclude that there is a positive con-
stant dH such that twðXÞ ≤ dH · twðY Þ.

Now all contractions are finished. Note that the graphY is a planar graph which is a
contraction of G  0 ¼ G − ðN ½Ei� ∪ AiÞ. Also there is some positive constant eH which
depends only on H such that twðY Þ ≥ eH · twðFiÞ. Recall that we consider the i-labeled
graph ðG;V ðHÞ; EðHÞÞ. By Lemma 2.4, fbnðHÞ ¼ fibnðG;V ðHÞ; EðHÞÞ. Because the
sets V ðHÞ and EðHÞ are independent, by Lemma 2.6, we have that fibnðG;V ðHÞ;
EðHÞÞ ≥ fibnðG  0; N;MÞ, where N ¼ V ðHÞ− ðN ½Ei� ∪ AiÞ and M ¼ EðHÞ− ðN ½Ei� ∪
AiÞ. By Lemma 2.5, fibnðG  0; N;M Þ ≥ fibnðY;N  0;M  0Þ, where N  0 andM  0 are sets which
were obtained as the result of contractions of N and M . Finally, as in Theorem 3.4, one
can show that fibnðY;N  0;M  0Þ ≥ fH · twðY Þ for some constant fH . By putting all these
bounds together, we prove that there is a positive constant εH which depends only on H
such that fbnðHÞ ≥ εH · twðFiÞ. ▯

Combining Lemmas 2.1, 2.2, 4.4, and 4.6, we obtain the following theorem.
THEOREM 4.7. ð1 ∕ cH Þ · w ≤ fhwðHÞ ≤ ghwðHÞ≤ cH · w, where w ¼ maxftwðFiÞ∶

i ∈ f1; 2; : : : ;mgg and cH is a constant depending only on H .
Remark. Notice that, by Theorem 4.7, the generalized hypertree width and the

fractional hypertree width of a hypergraph with H -minor-free incidence graph may dif-
fer within a multiplicative constant factor. We stress that, as observed in [20], this is not
the case for general hypergraphs.

Demaine, Hajiaghayi, and Kawarabayashi [9] (see also [5], [10], [27]) described an
algorithm which constructs a clique-sum decomposition of an H -minor-free graph G on
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n vertices with the running time nOð1Þ (the hidden constant in the running time depends
only on H). As long as we construct summands Gi, the construction of graphs Fi can be
done in polynomial time. Moreover, since the algorithm of Demaine et al. provides
h-nearly embeddings of these graphs, it is possible to use it to construct a polynomial
constant factor approximation algorithm for the computation of twðFiÞ. This provides
us with the main algorithmic result of this section.

THEOREM 4.8. For any fixed graph H , there is a polynomial time cH -approximation
algorithm computing the generalized hypertree width and the fractional hypertree width
for hypergraphs with H -minor-free incidence graphs, where the constant cH depends
only on H .

5. Conclusion. Let us remark that while the winning strategy for marshals used in
the proof of Lemma 4.4 is not monotone (a strategy ismonotone if the territory available
for the robber decreases only in the game), it can be turned into monotone by choosing
marshals’ positions in a slightly more careful way. By making use of the results from [18],
the monotone strategy can be used to construct a generalized hypertree decomposition
(or fractional hypertree decomposition). Thus our results can be used not only to ap-
proximate but also to construct the corresponding decompositions as well.

A long-standing open question in graph algorithms is whether the treewidth of a
planar graph is computable in polynomial time. It would be very interesting to see
whether an NP-hardness proof can be obtained for at least one of the hypertree width
parameters of planar hypergraphs. Moreover, a polynomial time algorithm for any of
these hypertree width parameters on planar hypergraphs would be a significant break-
through. While we do not know whether there exists a polynomial time algorithm for
any of these problems, it would be challenging to ask if some of the variants of the pro-
blem are fixed parameter tractable on planar hypergraphs. On the other hand, the tree-
width of a planar graph admits a constant factor approximation. Our results extend this
algorithmic result to all the hypertree width parameters on planar hypergraphs.

Finally, the sparsity of hypergraphs studied in this paper is expressed in terms of
their incidence graphs. It is an interesting question whether there are other sparsity mea-
sures where further algorithmic or complexity results can be obtained for hypertree
width parameters.
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