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THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS∗
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Abstract. Bidimensionality provides a tool for developing subexponential fixed-parameter algo-
rithms for combinatorial optimization problems on graph families that exclude a minor. This paper
extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding
family). Specifically we show that, for any problem whose solution value does not increase under
contractions and whose solution value is large on a grid graph augmented by a bounded number
of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the
square root of the problem’s solution value on that graph. Such bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating
set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorith-
mic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize
and simplify many existing algorithms for such problems in graph classes excluding a minor. On
the combinatorial side, our result is a step toward a theory of graph contractions analogous to the
seminal theory of graph minors by Robertson and Seymour.
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1. Introduction. The recent theory of fixed-parameter algorithms and param-
eterized complexity [DF99] has attracted much attention in its less than 10 years
of existence. In general the goal is to understand when NP-hard problems have al-
gorithms that are exponential only in a parameter k of the problem instead of the
problem size n. Fixed-parameter algorithms whose running time is polynomial for
fixed parameter values—or more precisely f(k) · nO(1) for some (superpolynomial)
function f(k)—make these problems efficiently solvable whenever the parameter k is
reasonably small.

In the last five years, several researchers have obtained exponential speedups in
fixed-parameter algorithms for various problems on several classes of graphs. While
most previous fixed-parameter algorithms have a running time of 2O(k)nO(1) or worse,
the exponential speedups result in subexponential algorithms with typical running

times of 2O(
√
k)nO(1). For example, the first fixed-parameter algorithm for finding a

dominating set of size k in planar graphs [AFF+01] had running time O(8kn); sub-
sequently, a sequence of subexponential algorithms and improvements have been ob-

tained, starting with running time O(46
√

34kn) [ABF+02], then O(227
√
kn) [KP02],

and finally O(215.13
√
kk + n3 + k4) [FT03]. Other subexponential algorithms for
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other domination and covering problems on planar graphs have also been obtained
[ABF+02, AFN04, CKL01, KLL02, GKLY05].

All subexponential fixed-parameter algorithms developed so far are based on
showing a “treewidth-parameter bound”: Any graph whose optimal solution has value
k has treewidth at most some function f(k). In many cases, f(k) is sublinear in k,
often O(

√
k). Combined with algorithms that are singly exponential in treewidth

and polynomial in problem size, such a bound immediately leads to subexponential
fixed-parameter algorithms.

A series of papers [DFHT05, DFHT04b, DFHT04a] introduce the notion of bidi-
mensionality as a general approach for obtaining treewidth-parameter bounds and
therefore subexponential algorithms. This theory captures essentially all subexpo-
nential algorithms obtained so far. Roughly speaking, a parameterized problem is
bidimensional if the parameter is large in a “grid-like graph” (linear in the number of
vertices) and either closed under contractions (contraction-bidimensional) or closed
under minors (minor-bidimensional). Examples of bidimensional problems include
vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge
dominating set, r-dominating set,1 connected dominating set, planar set cover, and
diameter. Diameter is a simple computational problem, but its bidimensionality has
important consequences as it forms the basis of locally bounded treewidth for minor-
closed graph families [DH04a].

Treewidth-parameter bounds have been established for all minor-bidimensional
problems in H-minor-free graphs for any fixed graph H [DFHT04b, DFHT04a]. In
this case, the notion of “grid-like graph” is precisely the regular (r × r)-square grid.
However, contraction-bidimensional problems (such as dominating set) have proved
substantially harder. In particular, the largest class of graphs for which a treewidth-
parameter bound can be obtained is apex-minor-free graphs instead of general H-
minor-free graphs [DFHT04a]. (“Apex-minor-free” means “H-minor-free” where H is
a graph in which the removal of one vertex leaves a planar graph.) Such a treewidth-
parameter bound has been obtained for all contraction-bidimensional problems in
apex-minor-free graphs [DFHT04a]. In this case, the notion of a “grid-like graph” is
an r× r grid augmented with additional edges such that each vertex is incident to
O(1) edges to nonboundary vertices of the grid. (Here O(1) depends on H.) Unfor-

tunately, this treewidth-parameter bound is large: f(k) = (
√
k)O(

√
k). For a subex-

ponential algorithm, we essentially need f(k) = o(k). For apex-minor-free graphs,
such a bound is known only for the special cases of dominating set and vertex cover
[DH04b, DFHT04b].

The biggest graph classes for which we know a sublinear (indeed, O(
√
k)) treewidth-

parameter bound for many contraction-bidimensional problems are single-crossing-
minor-free graphs and bounded-genus graphs. (“Single-crossing-minor-free” means
“H-minor-free” where H is a minor of a graph that can be drawn in the plane with
one crossing.) For single-crossing-minor-free graphs [DHT05, DHN+04] (in particu-
lar, planar graphs [DFHT05]), all contraction-bidimensional problems have a bound
of f(k) = O(

√
k). In this case, the notion of “grid-like graph” is an r × r grid par-

tially triangulated by additional edges that preserve planarity. For bounded-genus
graphs [DFHT04b], a bound of f(k) = O(

√
k) has been shown, for the same notion of

“grid-like graphs” but only for contraction-bidimensional problems with an additional

1A set S of vertices is an r-dominating set of graph G if any vertex of G has distance at most r
from some vertex in S.
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property called α-splittability : Upon splitting a vertex, the parameter should increase
by at most α = O(1) (or decrease).

In this paper we extend the theory of bidimensionality for bounded-genus graphs
by establishing a sublinear (f(k) = O(

√
k)) treewidth-parameter bound for general

contraction-bidimensional problems in bounded-genus graphs. Our notion of “grid-
like graph” is somewhat broader: a partially triangulated r × r grid (as above) with
up to g additional edges (“handles”), where g is the genus of the original graph. This
form of contraction-bidimensionality is more general than α-splittability,2 and thus
we generalize the results for α-splittable contraction-bidimensional problems from
[DFHT04b]. It is easy to construct a parameter that is contraction-bidimensional but
not α-splittable, although these parameters are not “natural.” So far all “natural”
contraction-bidimensional parameters we have encountered are α-splittable, though
we expect other interesting problems to arise that violate α-splittability.

Our results show that a partially triangulated grid with g additional edges is the
prototype graph of genus g, as observed by Lovász [Lov03]. At a high level, this
property means that, to solve an (algorithmic or combinatorial) problem on a general
graph of genus g, the “hardest” instance on which we should focus is the prototype
graph. This property generalizes the well-known result in graph theory that the grid
is the prototype planar graph. This also extends our theory of constructing such
prototypes for bidimensional problems.

Further algorithmic applications of our results follow from the graph-minor theory
of Robertson and Seymour (e.g., [RS85]) and its extensions [DFHT04b, DH04b]. In
particular, [RS03, DFHT04b] show how to reduce many problems on general H-minor-
free graphs to subproblems on bounded-genus graphs. Essentially, the difference be-
tween bounded-genus graphs and H-minor-free graphs are “apices” and “vortices,”
which are usually not an algorithmic barrier. Applying our new theory for bounded-
genus graphs, we generalize the algorithmic extensions of [DFHT04b, DH04b]. Indeed,
we simplify the approaches of both [DFHT04b] and [DH04b], where it was necessary
to “split” bounded-genus graphs into essentially planar graphs because of a lack of
general understanding of bounded-genus graphs. Specifically, we remove the necessity
of Lemmas 7.4–7.8 in [DH04b].

Last but not least are the combinatorial aspects of our results. In a series of 20
papers (so far), Robertson and Seymour (e.g., [RS85]) developed the seminal theory
of graphs excluding a minor, which has had many algorithmic and combinatorial ap-
plications. Our understanding of contraction-bidimensional parameters can be viewed
as a step toward generalizing the theory of graph minors to a theory of graph con-
tractions. Specifically, we show that any graph of genus g can be contracted to its
core of a partially triangulated grid with at most g additional edges; this result gen-
eralizes an analogous result from [RS03] when permitting arbitrary minor operations
(contractions and edge deletions). Avoiding edge deletions in this sense is particularly
important for algorithmic applications because many parameters are not closed under
edge deletions, while many parameters are closed under contraction.

This paper is part of a series of papers on bidimensionality [DHT05, DHN+04,
DFHT05, DH04a, DFHT04b, DH04b, DFHT04a, DH05b, DH05a]. The theory of bidi-
mensionality has become a comprehensive body of algorithmic and combinatorial re-
sults, with consequences including tight parameter-treewidth bounds, direct separator

2This statement is the contrapositive of the following property: If the parameter is k for the
partially triangulated grid with g additional edges, then by α-splitting the additional edges, the
parameter is at most k + αg on the partially triangulated grid.



360 E. D. DEMAINE, M. HAJIAGHAYI, AND D. M. THILIKOS

theorems, linearity of local treewidth, subexponential fixed-parameter algorithms, and
polynomial-time approximation schemes for a broad class of problems on graphs that
exclude a fixed minor. See [DH04c] for a survey of this work and the role of this
paper. In particular, the results of this paper are used in the subsequent papers
[DH05b, DH05a].

2. Preliminaries. All the graphs in this paper are undirected without loops or
multiple edges. Given a graph G, we denote by V (G) the set of its vertices and by
E(G) the set of its edges. For any vertex v ∈ V (G) we denote by Ev the set of edges
incident to v. Moreover, we use the notation NG(v) (or simply N(v)) for the set of
neighbors of v in G (i.e., vertices adjacent to v).

Given an edge e = {x, y} of a graph G, the graph obtained from G by contracting
the edge e is the graph we get if we identify the vertices x and y and remove all loops
and duplicate edges. A graph H obtained by a sequence of edge-contractions is said to
be a contraction of G. A graph class C is a contraction-closed class if any contraction
of any graph in C is also a member of C. A contraction-closed graph class C is H-
contraction-free if H �∈ C. Given any graph class H, we say that a contraction-closed
graph class C is H-contraction-free if C is H-contraction-free for any H ∈ H.

2.1. Treewidth and branchwidth. The notion of treewidth was introduced
by Robertson and Seymour [RS86] and plays an important role in their fundamental
work on graph minors. To define this notion, first we consider the representation
of a graph as a tree, which is the basis of our algorithms in this paper. A tree
decomposition of a graph G, denoted by TD(G), is a pair (χ, T ) in which T is a tree and
χ = {χi | i ∈ V (T )} is a family of subsets of V (G) such that (1)

⋃
i∈V (T ) χi = V (G);

(2) for each edge e = {u, v} ∈ E(G) there exists an i ∈ V (G) such that both u and
v belong to χi; and (3) for all v ∈ V (G), the set of nodes {i ∈ V (T ) | v ∈ χi} forms
a connected subtree of T . To distinguish between vertices of the original graph G
and vertices of T in TD(G), we call vertices of T nodes and their corresponding χi’s
bags. The maximum size of a bag in TD(G) minus one is called the width of the tree
decomposition. The treewidth of a graph G (tw(G)) is the minimum width over all
possible tree decompositions of G.

A branch decomposition of a graph (or a hypergraph) G is a pair (T, τ), where T
is a tree with vertices of degree 1 or 3 and τ is a bijection from the set of leaves of T
to E(G). The order of an edge e in T is the number of vertices v ∈ V (G) such that
there are leaves t1, t2 in T in different components of T (V (T ), E(T ) − e) with τ(t1)
and τ(t2) both containing v as an endpoint.

The width of (T, τ) is the maximum order over all edges of T , and the branchwidth
of G, bw(G), is the minimum width over all branch decompositions of G. (In the case
where |E(G)| ≤ 1, we define the branchwidth to be 0; if |E(G)| = 0, then G has no
branch decomposition; if |E(G)| = 1, then G has a branch decomposition consisting of
a tree with one vertex—the width of this branch decomposition is considered to be 0.)

It is easy to see that, if H is a minor of G, then bw(H) ≤ bw(G). The following
result is due to Robertson and Seymour [RS91, Theorem 5.1].

Lemma 2.1 (see [RS91]). For any connected graph G where |E(G)| ≥ 3, bw(G) ≤
tw(G) + 1 ≤ 3

2bw(G).

The main combinatorial result of this paper is Theorem 4.8 (see the end of section
4.2), which determines, for any k and g, a family of graphs Hk,g such that any Hk,g-
contraction-free graph G with genus g will have branchwidth O(gk). To describe such
a family, we will need some definitions on graph embeddings.
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2.2. Graph embeddings. Most of the notions defined in this subsection can
be found in [MT01].

A surface Σ is a compact 2-manifold without boundary. We will always consider
connected surfaces. We denote by S0 the sphere {(x, y, z) | x2 + y2 + z2 = 1}. A line
in Σ is a subset homeomorphic to [0, 1]. An O-arc is a subset of Σ homeomorphic to
a circle. A subset of Σ is an open disk if it is homeomorphic to {(x, y) | x2 + y2 < 1},
and it is a closed disk if it is homeomorphic to {(x, y) | x2 + y2 ≤ 1}.

A 2-cell embedding of a graph G in a surface Σ is a drawing of the vertices as
points in Σ and the edges as lines in Σ such that every face (connected component
of Σ − E(G) − V (G)) is an open disk. To simplify notations we do not distinguish
between a vertex of G and the point of Σ used in the drawing to represent the vertex
or between an edge and the line representing it. We also consider G as the union of
the points corresponding to its vertices and edges. That way, a subgraph H of G can
be seen as a graph H where H ⊆ G. We use the notation V (G), E(G), and F (G)
for the set of the vertices, edges, and faces of the embedded graph G. For Δ ⊆ Σ, Δ
is the closure of Δ. The boundary of Δ is bd(Δ) = Δ ∩ Σ − Δ, and the interior is
int(Δ) = Δ − bd(Δ).

A subset of Σ meeting the drawing only in vertices of G is called G-normal. If
an O-arc is G-normal, then we call it a noose. The length of a noose is the number
of vertices it meets.

Representativity [RS88] is the measure of the “density” of the embedding of a
graph in a surface. The representativity (or facewidth) rep(G) of a graph G embedded
in surface Σ �= S0 is the smallest length of a noncontractible noose in Σ. In other
words, rep(G) is the smallest number k such that Σ contains a noncontractible (non–
null-homotopic in Σ) closed curve that intersects G in k points.

It is more convenient to work with Euler genus. The Euler genus eg(Σ) of a
surface Σ is equal to the nonorientable genus g̃(Σ) (or the crosscap number) if Σ is
a nonorientable surface. If Σ is an orientable surface, eg(Σ) is 2g(Σ), where g(Σ) is
the orientable genus of Σ. Given a graph G, its Euler genus eg(G) is the minimum
eg(Σ) where Σ is a surface in which G can be embedded.

2.3. Splitting graphs and surfaces. In this section we describe precisely how
to cut along a noncontractible noose in order to decrease the genus of the graph until
we obtain a planar graph.

Let G be a graph and let v ∈ V (G). Also suppose we have a partition Pv =
(N1, N2) of the set of the neighbors of v. Define the splitting of G with respect to
v and Pv to be the graph obtained from G by (i) removing v and its incident edges;
(ii) introducing two new vertices v1, v2; and (iii) connecting vi with the vertices in
Ni, i = 1, 2. If H is the result of the consecutive application of the above operation
on some graph G, then we say that H is a splitting of G. If additionally in such a
splitting process we do not split vertices that are results of previous splittings, then
we say that H is a fair splitting of G.

The following lemma defines how to find a fair splitting for a given noncontractible
noose. It will serve as a link between Lemmas 4.4 and 4.7 in the proof of the main
result of this paper. Its proof is straightforward, following lines similar to those of
[DFHT04b].

Lemma 2.2. Let G be a connected graph 2-cell embedded in a nonplanar surface
Σ, and let N be a noncontractible noose of Σ. Then there is a fair splitting G′

of G affecting the set S = (v1, . . . , vρ) of the vertices of G met by N , such that
(i) G′ has at most two connected components; (ii) each connected component of G′
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can be 2-cell embedded in a surface with Euler genus strictly smaller than the Euler
genus of Σ; and (iii) there are two faces f1 and f2, each in the 2-cell embedding of a
connected component of G′ (and the connected components are different for the two
faces if G′ is disconnected), such that the boundary of fi, for i ∈ {1, 2}, contains
Si = (vi1, . . . , v

i
ρ), where v1

j and v2
j are the vertices created after the splitting of the

vertex vj, for j = 1, . . . , ρ.

3. Incomplete embeddings and their properties. In this section we give a
series of definitions and results that support the proof of the main theorem of the next
section. In particular, we will need special embeddings of graphs that are incomplete;
i.e., only some of the edges and vertices of the graph are embedded in a surface.
Moreover, we will extend the definition of a contraction so that it will also consider
contractions of faces for the part of the graph that is embedded.

Let Σ be a surface (orientable or not). Given a graph G, a vertex set V ⊆ V (G),
and an edge set E ⊆ E(G) such that ∪v∈V Ev ⊆ E, we denote by G− the graph
obtained by G by removing all vertices in V and all edges in E, i.e., the graph
G− = (V (G) − V,E(G) − E).3 We also say that G is (V,E)-embeddable in Σ if G−

has a 2-cell embedding in Σ. We call the graph G− the ground of G and we call the
edges and vertices of G− landed. On the other hand, we call the vertices in V and E
flying. Notice that the flying edges are partitioned into three categories: those that
have both endpoints in V (G) − V (we call them bridges), those with one endpoint
in V (G) − V and one endpoint in V (we call them pillars), and those with both
endpoints in V (we call them clouds). From now on, whenever we refer to a graph
(V,E)-embeddable in Σ we will accompany it with the corresponding 2-cell embedding
of G− in Σ.

The set of atoms of G with respect to some (V,E)-embedding of G in Σ is the set
A(G) = V (G) ∪E(G) ∪ F (G), where F (G) is the set of faces of the 2-cell embedding
of G− in Σ. Notice that a flying atom can only be a vertex or an edge. In this paper,
we will consider the faces as open sets whose boundaries are cyclic sequences of edges
and vertices.

3.1. Contraction mappings. A strengthening of a graph being a contraction
of another graph is for there to be a “contraction mapping” which preserves some
aspects of the embedding in a surface during the contractions. See Figure 3.1 for
an example. Given two graphs G and H that are (V (G), E(G))- and (V (H), E(H))-
embeddable in Σ and Σ′, respectively, we say that φ : A(G) → A(H) is a contraction
mapping from G to H with respect to their corresponding embeddings if the following
conditions are satisfied:

1. For any v ∈ V (G), φ(v) ∈ V (H).
2. For any e ∈ E(G), φ(e) ∈ E(H) ∪ V (H).
3. For any f ∈ F (G), φ(f) ∈ F (H) ∪ E(H) ∪ V (H).
4. For any v ∈ V (H), G[φ−1(v)] is a connected subgraph of G.
5. {φ−1(v) | v ∈ V (H)} is a partition of V (G).
6. If φ({x, y}) = v ∈ V (H), then φ(x) = φ(y) = v.
7. If φ({x, y}) = e ∈ E(H), then {φ(x), φ(y)} ∈ E(H).
8. If f ∈ F (G) and φ(f) = v ∈ V (G) and f = (x0, . . . , xr−1), then φ({xi, xi+1}) =

φ(xi) = v for any i = 0, . . . , r − 1 (where indices are taken modulo r).

3In this paper, the vertices and edges of a graph G are referred to as V (G) and E(G), respectively,
while V and E are subsets.
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Fig. 3.1. An example of a contraction of a graph (V,E)-embeddable in S0, where V = {g, h}
and E = {{g, a}, {g, b}, {g, c}, {h, g}, {h, d}, {h, f}, {h, e}}. The contraction is shown in a three-step
sequence: contracting the edges of the face {d, e, f}, then the edge {a, g}, and then edge {z, h}.
A contraction mapping from G to H is defined as follows: φ(a) = φ(g) = φ(h) = φ({a, g}) =
φ({g, h}) = x, φ(b) = b, φ(c) = c, φ(d) = φ(f) = φ(e) = φ({f, d}) = φ({d, e}) = φ({e, f}) =
φ({d, e, f}) = y, φ({a, b}) = φ({g, b}) = {x, b}, φ({a, c}) = φ({g, c}) = {x, c}, φ({b, c}) = {b, c},
φ({b, d}) = {b, y}, φ(c, e) = {c, y}, φ({a, b, c}) = {x, b, c}, φ({b, d, e, c}) = {b, c, y}, φ({h, d}) =
φ({h, e}) = φ({h, f}) = {x, y}, φ({a, b, d, f, e, c}) = {x, b, y, c}.

9. If f ∈ F (G) and if φ(f) = e (an edge of H), then there are two edges of f
contained in φ−1(e).

10. If f ∈ F (G) and if φ(f) = g (a face of H), then each edge of g is landed and
is the image of some edge in f .

Notice that, from conditions 1, 2, and 3, the preimages of the faces of H are faces
of G.

The following lemma is easy.
Lemma 3.1. If there exists some contraction mapping from a graph G to a graph

H with respect to some embedding of G and H, then H is a contraction of G.
Proof. Observe that H can be obtained from G if we contract all the edges of⋃

v∈V (H) G[φ−1(v)].

3.2. Properties of contraction mappings. It is important that the two no-
tions (contraction and existence of a contraction mapping) are identical in the case
where G and H have no flying atoms, i.e., V (G) = V (H) = E(G) = E(H) = ∅. We
choose to work with contraction mappings instead of simple contractions because
they include stronger information that is sufficient to build the induction argument
of Lemma 4.7.

Lemma 3.2. If G and H are graphs and H is a contraction of G, then for any
(∅, ∅)-embedding of G and H on the same surface Σ there exists a contraction mapping
from G to H with respect to their corresponding embeddings.

Proof. We partition the contracted edges of H into connected subsets such that
no edges belonging to different subsets are connected by a path of contracted edges.
We map all edges of each such subset to the vertex of H that remains after their
contraction. We also observe that an edge that does not belong to such a subset
survives after the contraction and we map it to its copy in H. Notice that no edges
incident to the same vertex belong to different subsets. Using this fact, we map each
vertex of G to a vertex of H as follows: If v is incident to some contracted edge, then
we map it to the same vertex to which this contracted edge is mapped. If not, then
this vertex survives after the contraction procedure and therefore it is mapped to its
copy in H. It remains now to map any face f of G to atoms of H. Notice that, if some
face of G is incident to noncontractible edges, then these edges should be at least two.
Using this fact, we distinguish three cases: In the first, all the edges in bd(f) belong
to the same subset of the partition. Then we map f to the vertex occurring by the
construction of the edges in this subset. In the second case, there are exactly two
noncontractible edges of G in bd(f). Then these two edges should be mapped to the
same edge e of H, and we map f to e. In the third case, we have that bd(f) contains
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Fig. 3.2. A (7 × 7)-grid, a partially triangulated (7 × 7)-grid, and a (7, 9)-gridoid (the flying
edges and vertices are the distinguished ones).

more than 2 noncontractible edges of G. We observe that the noncontractible edges
in bd(f) define a face g in H and we map f to g. It is now easy to verify that the
mapping we just defined satisfies conditions 1–10.

The following lemma is a useful generalization of Lemma 3.2.

Lemma 3.3. Let G be a graph (V,E)-embeddable on some surface Σ and let H
be the graph occurring from G after contracting edges in E(G−). Then G[V ] = H[V ],
H is also (V,E)-embeddable in Σ, and there exists a contraction mapping φ from G
to H with respect to their corresponding embeddings.

Proof. Let H− be the result of the application of the same contractions on G−

embeddable on the surface Σ. From Lemma 3.2, there exists a mapping φ′ from G−

to H−. Add in H− all the flying vertices and all the clouds of G. This implies that
G[V ] = H[V ]. Then, for any flying vertex v, add in H− all pillar edges connecting
it to the vertices in {φ−1(u) | u ∈ V (G−) and u ∈ NG(v)}. Finally, for any bridge
{v, u} of G where φ′(v) �= φ′(u), we add in H− the bridge {φ′(v), φ′(u)}. Notice that
after the aforementioned edge additions transform H− to H, it is embeddable in Σ.

We now construct the required map φ as follows: For any a ∈ A(G−), φ(a) =
φ′(a); for any v ∈ V, φ(v) = v. Finally, for any {x, y} ∈ E, we define φ({x, y}) as
follows. If φ(x) �= φ(y), we set φ({x, y}) = {φ(x), φ(y)}, and if φ(x) = φ(y), we set
φ({x, y}) = φ(x).

3.3. Gridoids. A partially triangulated (r × r)-grid is any graph that contains
an (r × r)-grid as a subgraph and is a subgraph of some triangulation of the same
(r × r)-grid.

We call a graph G an (r, k)-gridoid if it is (V,E)-embeddable in S0 for some
pair V,E, where |E| ≤ k, E(G[V ]) = ∅ (i.e., G does not have clouds), and G− is a
partially triangulated (r′ × r′)-grid embedded in S0 for some r′ ≥ r. For an example
of a (7, 9)-gridoid and its construction, see Figure 3.2.

4. Main result. In this section we will prove that, if a graph G has branchwidth
more than 4k(eg(G)+1), then G contains as a contraction some (k−12eg(G), eg(G))-
gridoid, where k ≥ 12eg(G).

4.1. Transformations of gridoids.

Lemma 4.1. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0 and let v ∈
V (G−). Then there exists some contraction mapping φ from G to some (r−4, k+1)-
gridoid ({v}, E ∪ {{v, y}})-embeddable in S0 such that φ(v) = v.

Proof. Let G∗ be the grid from which G is constructed. Let (x, y) denote the
coordinates of the vertex v in G∗. We define the required map φ by distinguishing
two cases.
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Fig. 4.1. An example of the first case in the proof of Lemma 4.1.

Case 1. (x, y) is a vertex of degree 4 in G∗, i.e., x, y �∈ {1, r}. Refer to Figure 4.1
for an example. Let f1, . . . , fρ be the faces of G− containing v, cyclically ordered
in the way they appear in the embedding of G− in Σ, and set f = ∪i=1,... ,ρf i. We
first consider a modified embedding of G where now v is a flying vertex (we add it
in V ) and the remaining ground graph has the same embedding as before with the
difference that now f − bd(f) is a face replacing the faces f1, . . . , fr that disappear.
We construct a graph J that is ({v}, E∪{{v, y}})-embeddable in Σ by contracting all
the edges in bd(f) to a single vertex y. This makes the face f − bd(f) “disappear”
toward creating y and the pillars adjacent to v shrink to a single edge connecting
v with y. We construct a mapping φ′ : A(G) → A(J) as follows. Notice that any
atom a of G that is not contained in f is also an atom of J . If a is such an atom,
then set φ′(a) = a. If a ∈ bd(f), then φ′(a) = y. If a ∈ f − bd(f) − {v}, then set
φ′(a) = {y, v} and, finally, set φ′(v) = v. It is easy to verify that φ′ is a contraction
mapping G to J such that φ′(v) = v.

We now further contract in J− all the edges in {{(x − 1, i), (x, i)}, {(x, i), (x +
1, i)} | i = 1, . . . , y − 2, y + 2, . . . , r} and in {{(i, y − 1), (i, y)}, {(i, y), (i, y + 1)} | i =
1, . . . , x− 2, x + 2, . . . , r}, and we call H the resulting graph (these contractions are
well defined because these edges are not contracted during the previous transformation
of G to J). Observe that H is an (r− 2, k + 1)-gridoid and that applying Lemma 3.3
we construct a contraction mapping φ′′ from J to H with respect to their ({v}, E ∪
{{v, y}})-embeddings in S0, where φ′′(v) = v. It remains to observe that φ = φ′ ◦ φ′′

is the required map and φ(v) = v.

Case 2. We now examine the case where v = (x, y) is a vertex of G∗ with degree
2 or 3. Refer to Figure 4.2 for an example. Let q be the union of all the squares
of G∗ that have common edges with the unique face of G∗ that is not a square (we
call the cycle defined by the boundary of this face the exterior cycle). We construct
a minor of G− by contracting all the edges in bd(q̄). bd(q̄) contains two connected
components that are disjoint cycles, and one of them is the exterior cycle of G∗. These
components are shrunk to two distinct adjacent vertices v and u, and we can assume
that v is the one of degree 1. We further contract some edge incident to u that is
different from {v, u}. The remaining graph is a partially triangulated (r − 4, r − 4)-
grid with some additional pending edge adjacent to its exterior cycle. Let G′ be the
graph occurring from G after applying to G the same sequence of contractions as
in G−. From Lemma 3.3 we have that G′ is also (∅, E)-embeddable in Σ and there
exists a contraction mapping φ′ from G to G′ with respect to their corresponding
embeddings. Moreover, as v is an endpoint of the edges contracted toward forming
the vertex v of G′, we have φ′(v) = v. Now we update the embedding of G′ so that
v becomes a flying vertex (we move it in V ) and the remaining ground graph has the
same embedding as before with the difference that now {v, u} is not drawn anymore
in the surface (it becomes a pillar). We will use the notation H in order to denote G′

({v}, E ∪ {{v, u}})-embeddable in Σ in the updated way. We also define a mapping
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Fig. 4.2. An example of the second case in the proof of Lemma 4.1.

φ′′ from G′ to H with respect to their corresponding embeddings so that φ′′(a) = a
for any a ∈ A(G′) that is not the face of G′ containing the edge {v, u}. For this face
f we set φ′′(f) = f ′, where f ′ is the face created in H− after the removal of {v, u}
from the interior of f in G′−.

Observe that H is an (r − 4, k + 1)-gridoid and that φ = φ′ ◦ φ′′ is a con-
traction mapping from G to H with respect to the (∅, E)-embedding of G and the
({v}, E∪{{v, y}})-embedding of H in S0 where φ(v) = v. This completes the proof as
φ(v) = v.

Lemma 4.2. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0, and let e be some
of its flying edges. Then there exists some (r − 4, k)-gridoid H (∅, E′)-embeddable in
S0 for some E′ and a contraction mapping φ of G to H such that φ(e) ∈ V (H).

Proof. Let e = {v, u}. Refer to Figure 4.3 for an example. According to
Lemma 4.1, there exists some contraction mapping φ from G to some (r − 4, k + 1)-
gridoid G′ ({v}, E ∪ {{v, y}})-embeddable in S0 such that φ(v) = v. We construct a
new graph H (∅, E−{v, u}∪{v, y})-embeddable in S0 by simply contracting the edge
{v, u} to the vertex v. We define a contraction mapping φ′ from G′ to H as follows:
If a ∈ A(G′)− {v, u, {v, u}}, then φ′(a) = a; otherwise φ′(a) = v. Finally, we observe
that φ ◦ φ′ is a contraction mapping φ from G to H such that φ(e) ∈ V (H).

e

u

v

φ(e)u

v

Fig. 4.3. An example of the proof of Lemma 4.2.

Lemma 4.3. Let G be an (r, k)-gridoid (∅, E)-embeddable in S0, and let a be some
of its atoms. Then there exists some (r − 4, k)-gridoid (∅, E)-embeddable in S0 and a
contraction mapping φ from G to H with respect to their corresponding embeddings
such that φ(a) ∈ V (H).

Proof. We will denote as G∗ the (r× r)-grid that should be triangulated in order
to construct G−.

The lemma follows directly from Lemma 4.2 in the case where a is a flying edge
of G. If this is not the case, then a is an atom of G− that is either a vertex or an
edge or a face. If a is a face, then either it is a square or triangular face included in
some square C = ((x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1)) of G∗ or it is a face with
all vertices in the exterior face of G∗.

We will first examine all the aforementioned cases except for the last one. We
take the (r − 1, k)-gridoid H− that is constructed if we contract in G− all the edges



THE BIDIMENSIONAL THEORY OF BOUNDED-GENUS GRAPHS 367

in {{(x, i), (x + 1, i)} | i = 1, . . . , r} and in {{(i, y), (i, y + 1)} | i = 1, . . . , r}.
We will now examine the case where a is a face with all vertices in the exterior

face of G∗. Then we take the (r− 2, k)-gridoid H− that is constructed if we contract
in G− all the edges included in the exterior face of G∗ to a single vertex q and then
contract some edge incident to q.

Because in both cases H− is a contraction of H, we can use Lemma 3.3 to con-
struct a contraction (∅, E)-mapping φ from G to H with respect to their (∅, E)-
embeddings in Σ. Notice also that φ(a) ∈ V (H−) because, in both cases, all the
edges of the cycle (x, y), (x, y + 1), (x+ 1, y), (x+ 1, y + 1) are contracted (and there-
fore mapped) to a single vertex of H−.

4.2. Excluding gridoids as contractions.
Lemma 4.4. Let G be a graph (∅, ∅)-embeddable on some surface Σ. Let H be

an (r, k)-gridoid (∅, E)-embeddable on the sphere, and assume that φ is a contraction
mapping from G to H with respect to their corresponding embeddings.

Let {vi1, . . . , viρ}, i = 1, 2, be subsets of the vertices of two faces fi, i = 1, 2, of the
embedding of G where f1∩f2 = ∅ (we assume that the orderings of the indices in each
subset respect the cyclic orderings of the vertices in fi, i = 1, 2). Let G′ be the graph
obtained if we identify in G the vertex v1

i with the vertex v2
i . Then, the following hold:

(a) G′ has some 2-cell embedding on a surface of bigger Euler genus.
(b) There exists some (r− 12, k+1)-gridoid H, (∅, E ∪{{e}})-embeddable on the

sphere such that there exists some contraction mapping from G′ to H with
respect to their corresponding embeddings.

Proof. (a) Let Σ be the surface where G is embedded. We define a surface Σ−

from Σ by removing the two “patches” defined by the (internal) points of the faces
f1 and f2. Notice that G is still embeddable on Σ− and that Σ− is a surface with a
boundary whose connected components are the boundaries B1, B2 of the faces f1 and
f2. We now construct a new surface from Σ− by identifying the boundaries B1 and
B2 in a way that v1

i is identified with v2
i . Notice that the embedding that follows is

a 2-cell embedding and that the new surface has bigger Euler genus.
(b) From conditions 1, 2, and 3 in subsection 3.1, φ(f1) is either a vertex, an

edge, or a face of H. We apply Lemma 4.3 to construct a contraction mapping σ1

from H to some (r − 4, k)-gridoid H1, where σ1(φ(f1)) ∈ V (H1). Notice again that
σ1(φ(f2)) is either a vertex, an edge, or a face of H1. We again use Lemma 4.3 to
construct a contraction mapping σ2 from H1 to some (r − 8, k)-gridoid H2, where
σ2(σ1(φ(fi))) = vi ∈ V (H2), i = 1, 2. We now apply Lemma 4.1 for v1 and construct
some contraction mapping σ3 from H2 to some (r − 12, k + 1)-gridoid H3, ({v1}, E ∪
{{v1, y}})-embeddable in S0 such that σ3(v1) = v1. Summing up, we have that
φ′ = φ ◦ σ1 ◦ σ2 ◦ σ3 is a map from G to H3 with respect to the (∅, ∅)-embedding
of G on Σ and the ({v1}, E ∪ {{v1, y}})-embedding of H3 in S0. Moreover, we have
that φ′(f1) = v1 and φ′(f2) = v2 ∈ V (H3) (to facilitate the notation we assume that
σ3(v2) = v2).

Notice now that if v is the result of the identification in H3 of the vertex v1 with
the vertex v2, we take a new graph H (∅, E ∪ {{v, y}})-embeddable in S0. Let A′ be
all the atoms of G that are not included in the faces f1 and f2. Notice that these
atoms are not harmed while constructing G′ from G, and we set μ(a) = φ′(a) for each
a ∈ A′. Finally, for each atom a ∈ A(G′)−A, we set μ(a) = v. It now is easy to check
that μ is a contraction mapping from G′ to H with respect to their corresponding
embeddings. Because H is an (r − 12, k + 1)-gridoid, we are done.

The following is one of the main results in [DFHT04b].
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=
f1

f2

f1 f2

v1 v2

Fig. 4.4. An example of the transformations in the proof of Lemma 4.7.

Theorem 4.5. Let G be a graph 2-cell embedded in a nonplanar surface Σ of
representativity at least θ. Then one can contract edges in G to obtain a partially
triangulated (θ/4 × θ/4)-grid.

We also need the following easy lemma.

Lemma 4.6 (see [DFHT04b]). Let G be a graph and let H be the graph occurring
from G after splitting some vertex v ∈ V (G). Then bw(G) ≤ bw(H) + 1.

We are now ready to prove the central result of this section.

Lemma 4.7. Let G be a graph (∅, ∅)-embeddable on a surface Σ of Euler genus
g and assume that bw(G) ≥ 4(r − 12g)(g + 1). Then there exists some (r − 12g, g)-
gridoid H, (∅, E)-embeddable in S0 such that there exists some contraction mapping
from G to H with respect to their corresponding embeddings.

Proof. First, if the graph G is disconnected, we discard all but one connected
component C such that bw(C) = bw(G).

We use induction on g. Clearly, if g = 0, G is a planar graph and after ap-
plying Lemma 3.1, the result follows from the planar exclusion theorem of [RST94].
(The induction base relies heavily on the fact that for conventional embeddings the
contraction relation is identical to our mapping.)

Suppose now that g ≥ 1 and the theorem holds for any graph embeddable in a
surface with Euler genus less than g. Refer to Figure 4.4. If the representativity of
G is at least 4(r − 12g), then by Theorem 4.5 we can contract edges in G to obtain
a partially triangulated ((r − 12g) × (r − 12g))-grid (with no additional edges) and
we are done. Otherwise, the representativity of G is less than 4(r − 12g). In this
case, the smallest noncontractible noose has vertex set S of size less than 4(r − 12g).
Let G′ be a splitting of G with respect to S as in Lemma 2.2. Recall that G′ is now
(∅, ∅)-embeddable on a surface of Euler genus g′ ≤ g − 1.

By Lemma 4.6, the branchwidth of G′ is at least the branchwidth of G minus
|S|. Because |S| ≤ 4(r − 12g), we have that bw(G′) ≥ 4(r − 12g)(g + 1) − 4(r −
12g) = 4(r − 12g)g ≥ 4(r − 12g)(g′ + 1). By the induction hypothesis there exists
some (r − 12g′, g′)-gridoid H ′, (∅, E)-embeddable in S0 such that there exists some
contraction mapping from G′ to H with respect to their corresponding embeddings.
From Lemma 4.4, there exists some (r − 12g′ − 12, g′ + 1)-gridoid H, (∅, E ∪ {{e}})-
embeddable on the sphere such that there exists some contraction mapping from G to
H with respect to their corresponding embeddings. Because r − 12g′ − 12 ≥ r − 12g
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and g′ + 1 ≤ g, we are done.
Now we have the conclusion of this section.
Theorem 4.8. If a graph G excludes all (k − 12eg(G), eg(G))-gridoids as con-

tractions for some k ≥ 12eg(G), then G has branchwidth at most 4k(eg(G) + 1).
By Lemma 2.1 we can obtain a treewidth-parameter bound as desired.

5. Algorithmic consequences. Define the parameter corresponding to an op-
timization problem to be the function mapping graphs to the solution value of the
optimization problem. In particular, deciding a parameter corresponds to computing
whether the solution value is at most a specified value k. A parameter is contraction-
bidimensional if (1) its value does not increase when taking contractions and (2) its
value on an (r,O(1))-gridoid is Ω(r2).4

Theorem 5.1. Consider a contraction-bidimensional parameter P such that,
given a tree decomposition of width at most w for a graph G, the parameter can be
decided in h(w) · nO(1) time. Then we can decide parameter P on a bounded-genus

graph G in h(O(
√
k)) · nO(1) + 2O(

√
k)n3+ε time.

Proof. The algorithm proceeds as follows. First we approximately compute the
treewidth and a corresponding tree decomposition of the graph G. Specifically, given
a number ω, Amir’s algorithm [Ami01] either reports that the treewidth of G is
at least ω or produces a tree decomposition of width at most (3 + 2

3 )ω in time

O(23.698ωn3ω3 log4 n). We use this algorithm to check whether tw(G) = O(
√
k) for a

sufficiently large constant in the O notation (similar algorithmic results on treewidth
that also work for our purposes can be found in [Lag96, Ree92, RS95]). If not, The-
orem 4.8 tells us that the graph G has an (O(

√
k), O(1))-gridoid as a contraction.

Property 2 of contraction bidimensionality tells us then that the parameter value is
Ω(k). By choosing the constant in the O notation (in tw(G) = O(

√
k)) large enough,

we can make the constant in the Ω notation greater than 1. Then we conclude that the
parameter value is strictly greater than k (assuming k is at least some constant), so we
can answer the decision problem negatively. On the other hand, if tw(G) = O(

√
k),

we apply the h(tw(G))·nO(1) algorithm to the tree decomposition produced by Amir’s

algorithm. The overall running time is h(O(
√
k)) · nO(1) + 2O(

√
k)n3+ε.

Corollary 5.2. Vertex cover, minimum maximal matching, dominating set,
edge dominating set, r-dominating set (for fixed r), and clique-transversal set can

be solved on bounded-genus graphs in 2O(
√
k)n3+ε time, where k is the size of the

optimal solution. Feedback vertex set and connected dominating set can be solved on

bounded-genus graphs in 2O(
√
k log k)n3+ε time.
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