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Abstract

The problem of counting all H -colorings of a graph G with n vertices is considered. While the
problem is, in general, #P-complete, we give linear time algorithms that solve the main variants
of this problem when the input graph G is a k-tree or, in the case where G is directed, when
the underlying graph of G is a k-tree. Our algorithms remain polynomial even in the case where
k = O(log n) or in the case where the size of H is O(n). Our results are easy to implement and
imply the existence of polynomial time algorithms for a series of problems on partial k-trees
such as core checking and chromatic polynomial computation. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this paper we consider a series of counting problems associated with various
versions of homomorphisms from a graph G to a <xed graph H . Given a graph
H=(G(H); E(V )), with loops but without multiple edges, for any graph G=(V (G);
E(G)) an homomorphism of G to H is a map 	 :V (G)→V (H) with the property that
{v; w}∈E(G)⇒{	(v); 	(w)}∈E(H). We will call such a homomorphism a H-coloring
of G (for an example, see Fig. 1). For H <xed, the H -coloring problem asks if there is
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Fig. 1. An example of an H -coloring of G is the mapping 	(a)=	(d)=	(f)=1 and 	(b)=	(c)=	(e)=2.

an H -coloring of G. If H is bipartite or it has a loop, then the H -coloring problem
can be trivially solved in polynomial time, but in the case that H is not-bipartite and
loopless the problem is known to be NP-complete [24]. See also [22] for the complexity
of the same problem for bounded degree graphs.

An application of the H -coloring problem is illustrated by the following example
taken from [20]. Suppose that we have a graph whose vertices represent jobs to be
processed and whose edges represent communication demands between two jobs. Let
also H be a computer network where its vertices represent the processors and its
edges correspond to communication links between them. We would like to assign
the jobs to the processors so that all the communication demands between jobs are
satis<ed. This question can be modeled by the problem of asking whether there exists
a homomorphism from G to H , the H-coloring problem.

An earlier version of the H -coloring problem is the exact H-coloring problem: given
a graph G, decide if there is an H -coloring 	 of G such that 	(V (G))=V (H) and
	(E(G))=E(H). This problem is known to be NP-complete, even for the case where
H is a triangle [30]. We also consider the intermediate problem of asking whether
there is an H -coloring 	 of G such that 	(V (G))=V (H) and we call it vertex exact
H-coloring.

Given a graph G, let H(G;H) denote the set of all H -colorings of G, and let
E(G;H) denote the set of all exact H -colorings of G. Also, we denote as V(G;H)
the set of all vertex H -colorings of G. For a <xed graph H , denote by #H -coloring the
problem of, given G as input, computing |H(G;H)|. Also, denote by #EH -coloring the
problem of, given as input G, computing |E(G;H)| and by #VEH -coloring the problem
of, given as input G, computing |V(G;H)|. Dyer and Greehill [18] have proved that
unless every connected component of H is an isolated vertex without a loop, a complete
graph with all loops present or a complete unlooped bipartite graph, the #H -coloring
problem is #P-complete, even when G has bounded degree. It is easy to verify that the
same result hold for the #EH -coloring (#VEH -coloring) as the knowledge of E(G;H ′)
(V(G;H ′)) for any (induced) subgraph H ′ of H implies the knowledge of H(G;H).
For further negative results on the approximability of the #H -coloring see [12] and
[17]. For positive and negative complexity results concerning special cases of the
#H -coloring problem, depending on restrictions on both H and G, see [19,16].
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The notion of treewidth appears to play a central role in many areas of graph
theory. Roughly, a graph has small treewidth if it can be constructed by assembling
small graphs together in a tree structure, namely a tree decomposition with small
width (see Section 2 for the formal de<nitions). It was <rst de<ned by Robertson and
Seymour in [36] and served as one of the cornerstones of their lengthy proof of the
Wagner conjecture, known now as the Graph Minors Theorem (for a survey see [37]).
Treewidth appears to have interesting applications in algorithmic graph theory. In par-
ticular, a wide range of, otherwise intractable, combinatorial problems are polynomially,
even linearly, solvable when restricted to graphs with bounded treewidth. Alternatively,
graphs with bounded treewidth are called partial k-trees. Several general results have
been developed for proving, constructively, the existence of such algorithms. Among
them, we mention the work of Courcelle in [13] where the existence of polynomial
algorithms is guaranted by the expressability of the corresponding problem by Monadic
second order formulas (see also [14]). Similar results have been developed in [15] for
solving counting problems for partial k-trees. As a consequence of these results, it is
possible to contruct a polynomial time algorithm solving the #H -coloring problem for
partial k-trees, when k and the size of H are <xed constants. Unfortunately, the general
results of Courcelle, do not provide implementable algorithms because of the big hid-
den constants in their complexity. Alternatively, the attention of many researchers was
directed to the fast development and easy to implement “tailor made” algorithms for
problems of speci<c interest. The standard methodology to get such solutions consists
of a two step procedure: First to <nd a tree decomposition of the input graph, with
treewidth bounded by a constant, although possibly not optimal, and second to use
some kind of dynamic programming taking advantage of the bounded treewidth de-
composition of the graph, to get a solution (for a survey, see [8,3]). In particular, such
a dynamic programing technique, solving—among others—the H -coloring problem for
partial k-trees, has been developed in [39]. For the <rst canonical step, Bodlaender
in [7] presented, for any k, a linear time algorithm that, given a graph G, checks
whether G is a partial k-tree and, if so, outputs a minimum width tree decomposi-
tion. As this algorithm appears extremely hard to be implemented (see also [9]), the
<rst canonical step can be carried out by one of the previously developed algorithms
that, given a graph with treewidth 6k, are able to output a tree decomposition of
G with width bounded by ck where c is a constant independent of k [34,28,31]. In
particular, the deterministic algorithm by Reed [34] runs in O(n log n) time and out-
puts a tree decomposition with width 64k. Moreover, its implementation is easier
than the algorithm in [7]. Consequently, we will assume that any graph with bounded
treewidth in this paper is always accompanied with a tree decomposition of bounded
width.

In this paper we present a polynomial time algorithm for the counting problems
#H -coloring, #EH -coloring, and #VEH -coloring, for the case that the input graph G
has small treewidth. Although our methodology follows the two cannonical steps, we
shall remark that we present an easy to be implemented algorithm for the second
step, assuming the aforementioned results on the existence of fast and implementable
algorithms for obtaining a bounded treewidth decomposition for a partial k-tree G.
Moreover, our algorithms remain polynomial even when there are no restrictions on



294 J. D01az et al. / Theoretical Computer Science 281 (2002) 291–309

the size of H . Finally, we stress out that our results are the <rst positive results on
counting H -colorings for the case where H is generic and only G is restricted.

All through the paper, we will consider as parameters the width of the given tree
decomposition of G and the number of vertices and edges of H and we will denote
them by k, h, and e, respectively. Moreover, we will consider the size of G as a
variable and we will denote it as n. Finally, we will make explicit any dependence of
variables and parameters. Therefore, in any notation O(f(k; h; e; n)) the hidden constant
behind the “O”-notation will be independent of both variables and parameters.

In Section 2 we review the basic de<nitions and some preliminary results on
treewidth. In Section 3 we present the algorithm solving the #H -coloring problem.
In Section 4 we present two variants of the algorithm of Section 3, for solving the
#VEH -coloring and the #EH -coloring problem, respectively. In the <nal section, we
present some extensions and consequences of our previous results for a series of prob-
lems on graphs with bounded treewidth.

2. De�nitions and basic results

Robertson and Seymour [35,38] introduced the notion of treewidth.

De�nition 2.1. A tree decomposition of a graph G is a pair (X;U ) where U is a tree
whose vertices we will call nodes and X =({Xi | i∈V (U )}) is a collection of subsets
of V (G) such that
(1)

⋃
i∈V (U ) Xi=V (G),

(2) for each edge {v; w}∈E(G), there is an i∈V (U ) such that v; w∈Xi, and
(3) for each v∈V (G) the set of nodes {i | v∈Xi} forms a subtree of U .
The width of a tree decomposition ({Xi | i∈V (U )}; U ) equals maxi∈V (U ){|Xi|−1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G.

Computing treewidth is an NP-complete problem [4]. In Fig. 2, we present an optimal
treewidth decomposition of the graph G in Fig. 1.

The following extensions of tree decomposition were introduced by Bodlaender and
Kloks [7,9,27] (see also [3,7]).

De�nition 2.2. A rooted tree decomposition is a triple D=(X;U; r) in which U is a
tree rooted at r and (X;U ) is a tree decomposition.

De�nition 2.3. Let D=(X;U; r) be a rooted tree decomposition of a graph G where
X ={Xi | i∈V (U )}. D is called a nice tree decomposition if the following are satis<ed:
(1) Every node of U has at most two children,
(2) if a node i has two children j; h then Xi=Xj=Xh,
(3) if a node i has one child, then either |Xi|= |Xj| + 1 and Xj ⊂Xi or |Xi|= |Xj| − 1

and Xi ⊂Xj.

The following lemma is taken from [9] and [27].
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Fig. 2. A tree decomposition of G in Fig. 1.

Lemma 2.1. For any constant k¿1, given a tree decomposition of a graph G of width
6k and O(n) nodes, where n is the number of vertices in G, there exists an O(n)
algorithm that constructs a nice tree decomposition of G with width 6k and with at
most O(n) nodes.

In Fig. 3 we present a nice tree decomposition for the graph G in Fig. 1. It has
been constructed from the tree decomposition presented in Fig. 2.

We observe that a nice tree decomposition D=({Xp|p∈V (U )}; U; r) contains nodes
of the following four possible types. A node p∈V (U ) is called:
Start, if p is a leaf,
Join, if p has two children qi, i=1; 2,
Forget, if p has only one child q and |Xp|= |Xq| − 1,
Introduce, if p has only one child q and |Xp|= |Xq| + 1.
Notice that for every start node we may assume that |Xp|=1: the eSect of start

nodes with |Xp|¿2 can be obtained by using a start node with a set containing one
vertex, and then |Xp| − 1 introduce nodes, which add all the other vertices. For the
purposes of this paper we will assume that the root r is a forget node with Xr=∅.

Taking into account Lemma 2.1, we will assume that any partial k-tree is given
along with a nice tree decomposition of it.

Let D=(X;U; r) be a nice tree decomposition of a graph G. For each node p of D,
let Up be the subtree of U , rooted at node p. We set Vp=

⋃
v∈V (Up) Xv and, for any

p∈V (U ), we de<ne Gp=G[Vp]. Notice that Gr=G.

3. An algorithm for counting the number of H -colorings

Let H be a <xed graph. Given an input graph G together with a nice tree decom-
position D=(X;U; r) of it, we wish to compute |H(G;H)|, in other words, to solve
the #H -coloring problem for G.
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Fig. 3. A nice tree decomposition of G.

The strategy will be a dynamic programming approach. To optimize the space used
in the counting part, we will preprocess the tree. The preprocessing will produce an
ordering of the nodes in the nice tree decomposition.

De�nition 3.1. Let T be a rooted binary tree T and b the number of vertices with
degree two in T . An ordering u1; : : : ; us of V (T ) is stingy if the following conditions
hold.
(1) u1 is a leaf and un is the root.
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(2) For any node ui, its parent appears at a position j¿i.
(3) For any j the number of nodes in the set {u1; : : : ; uj} whose parent appears at a

position k¿j is at most log b.

Given a nice tree decomposition D=(X;U; r) it is straightforward to compute a
stingy ordering of the vertices of U .

Lemma 3.1. Given a rooted binary tree T a proper ordering of the l nodes in V (T )
can be computed using O(n log n) space in O(n) steps.

The algorithm will do a traversal of D following a stingy sequence, computing and
tabulating for each p∈V (U ) the appropriate information. Before describing it, we need
some additional de<nitions.

Given a nice tree decomposition D=(X;U; r) of a graph G, for each p∈V (U ), let
Fp={’ :Xp→V (H)}. Notice that if D has width k, then for any p∈V (U ), |Fp|6hk+1.
Moreover, for the root we have Fr={∅}.

The table associated to a node p∈V (U ) will have an entry for each ’∈Fp, holding
the value Ip(’)= |{	∈H(Gp;H) | 	|Xp =’}| (in general, if 	 is a function, we denote
	|S ={(v; a)∈	 | v∈S}). As we always have 	|∅=∅, we get |H(G;H)|= Ir(∅).

The algorithm count-H, given in Fig. 4, takes as input G, D and a stingy sequence
S=(p1; : : : ; ps) of V (U ) and outputs the value Ir(∅).

Theorem 3.1. Given a graph G with n= |V (G)|, a nice tree decomposition D=(X;U; r)
of G with width k, and a stingy ordering of the nodes in D, then, the algorithm in
Fig. 4 computes the number of H -colorings of G in O(nhk+1 min{k; h}) steps using
O(hk+1 log n) additional space, where h= |V (H)|.

Proof. Let us <rst prove the correctness of the proposed algorithm. The algorithm starts
by computing the table for the <rst leaf, a start node, in the stingy sequence. Notice that
by condition 2 in De<nition 3:1, whenever we process a node p∈V (U ) its descendants
have been already processed and the associated information stored. So, we have only
to show that, for each type of node, our algorithm computes the corresponding values
using the correct information stored in the tables of its descendants.

When Xp is a start node the computation is correct as Gp is formed by an unique
vertex.

If p is an introduce node, with {v}=Xp − Xq, the graph Gp is obtained from Gq

adding the new vertex v and the edges in the set Sq={(u; v) | u∈Sq}, therefore only
those extensions that preserve the H -coloring condition survive and therefore counted.

If p is a forget node, Xp=Xq − {v}, then Gp=Gq, and therefore, for each ’∈Fp,
we only have to accumulate the number of colorings counted for any extension of ’
that is a valid coloring of Xq.

When the computation arrives to a join node p, both of its children q1, q2 must
have been already tabulated. Notice that the graph Gp is obtained as the union of
the graphs Gq1 and Gq2 . Recall that Gq1 and Gq2 have no edges in common out of
those in Xp=Xq1 =Xq2 . In such a case any H -coloring of Gp is the combination of an
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Algorithm count-H(G;H;D; S)
D=(X;U; r) is a nice tree decomposition of G with width k
S=(p1; : : : ; ps) is a stingy ordering of V (U )

1. Set i=1.
2. Set p=pi.
3. If p is a start node with Xp={v} then for all a∈V (H) set Ip((v; a))=1.
4. If p is an introduce node then

• let q be its unique child and let v be the unique vertex in Xp − Xq
• set Sq={u∈Xq | {u; v}∈E(Gp)}
• for all ’∈Fq and a∈V (H),

if ∀u∈Sq{’(u); a}∈E(H)
then set Ip(’∪{(v; a)})= Iq(’)
else set Ip(’∪{(v; a)})=0

• erase the information on node q.
5. If p is a forget node then

• let q be its unique child and v the unique vertex in Xq − Xp
• for all ’∈Fp, set Ip(’)=

∑
a∈V (H) Iq(’∪{(v; a)})

• erase the information on node q.
6. If p is a join node with children q1 and q2 then

• for all ’∈Fp, set Ip(’)= Iq1 (’) · Iq2 (’)
• erase the information on nodes q1 and q2.

7. If i¡s, set i= i + 1 and goto step 2.
8. Return Ir(∅).

Fig. 4. An algorithm for counting H -colorings.

H -coloring of Gq1 with an H -coloring of Gq2 with the same images on the vertices
of Xp.

When the algorithm arrives to the last node, the root, the only value in its table will
be the number of H -colorings of Gr=G.

Let us analyze now the algorithm’s complexity. For any p∈V (U ) the number of
elements in Fp is at most hk+1. Moreover, |V (U )|=O(n). Therefore, the internal op-
erations computing one entry for the cases of a start, forget, or join node, cost time
O(h). In the case, of an introduce node, we can implement the computation either
in O(h) or O(k) steps depending on whether we represent the set Sq by the set
of vertices of G or the set of their images in H . Therefore, the time complexity
follows.

To compute an upper bound on the required space, we have to take into account
that the number of join nodes in a nice tree decomposition is at most n. Therefore,
condition 3 in De<nition 3:1 guarantees that the number of tables maintained at each
step is at most O(log n). As the size of a table is at most hk+1, the space complexity
follows.
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Notice that if h is constant, we can allow k=O(log n) and still have polynomial time.
Moreover, for constant treewidth k, we can allow h=O(n) and still have a polynomial
time algorithm. As an example of this we have the following result, which is based
on the fact that the outerplanar graphs have treewidth 62.

Corollary 3.1. There exists an algorithm that outputs the number of all the homo-
morphisms between any pair of outerplanar graphs in O(n4) steps and between any
pair of forests in O(n3) steps.

Taking in mind the algorithm of Bodlaender in [7] we have the following.

Corollary 3.2. For any constant k there exists a function f and an algorithm that,
given a graph G of treewidth bounded by k, computes |H(G;H)| in O((hk+1 min{k; h}
+f(k))n) steps.

Notice that, for constant k and h, our algorithm works in linear time.

4. Counting the number of (vertex) exact H -colorings

Let H be a <xed graph. Given a graph G together with a nice tree decomposi-
tion D=(X;U; r) of G with width k and a stingy sequence of U , we wish to count
|V(G;H)| and |E(G;H)|, i.e. to solve the #VEH -coloring and the #EH -coloring prob-
lems.

The strategy will be similar as in the previous algorithm, a dynamic programming
guided by a stingy sequence. The main modi<cation will be the information stored in
the tables.

4.1. The #VEH -coloring

The table associated to a node p∈V (U ) will have an entry for each pair (’; R),
where ’∈Fp and R⊆V (H), holding the value

Ip(’; R) = |{	 ∈ V(Gp;H) | 	|Xp = ’ and 	(V (Gp)) = R}|:
Therefore, |V(G;H)|= Ir(∅; V (H)).

The algorithm count-exact-V-H, given in Fig. 5, takes as input G, D and a stingy
sequence S=(p1; : : : ; ps) of V (U ) and outputs the value Ir(∅; V (H)).

Theorem 4.1. Given a graph G with n= |V (G)|, a nice tree decomposition D=(X;U; r)
of G with width k, and a stingy ordering of the nodes in D, then, the algorithm
in Fig. 5 computes the number of vertex exact H-colorings of G in O(nhk+12h

max{k; 22h}) time using O(hk+12h log n) additional space, where h= |V (H)|.

Proof. As in the proof of Theorem 3.1, we have to prove the correctness for each
type of node. The arguments are similar, we only have to take into account not only
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Algorithm count-exact-V-H (G;H;D; S)
D=(X;U; r) is a nice tree decomposition of G with width k
S=(p1; : : : ; ps) is a stingy ordering of V (U )

1. Set i=1.
2. Set p=pi.
3. If p is a start node, with Xp={v} then

• for all R⊆V (H) and a∈V (H),
if R={a}
then set Ip((v; a); R)=1,
else Ip((v; a); R)=0.

4. If p is a introduce node then
• let q be its unique child and let v the unique vertex in Xp − Xq
• set Sq={u∈Xq | {u; v}∈E(Gp)}
• for all ’∈Fq and R⊆V (H) and a∈V (H),

if a∈R and ∀u∈Sq[(’(u); a)∈E(H)]
then set Ip(’∪{(v; a)}; R)=(Iq(’; R) + Iq(’; R \ {a})),
else set Ip(’∪{(v; a)}; R) = 0

• erase the information on node q.
5. If p is a forget node then

• let q be its unique child and v be the unique vertex in Xq − Xp
• for all ’∈Fq and R⊆V (H), set Ip(’; R)=

∑
a∈V (H) Iq(’∪{(v; a)}; R)

• erase the information on node q.
6. If p is a join node with children q1 and q2 then

• for all ’∈Fp and R⊆V (H),
– set Ip(’; R)=0

– for all R1 and R2 with R1∪R2 =R set Ip(’; R)= Ip(’; R)+
Iq1 (’; R1) · Iq2 (’; R2)

• erase the information on nodes q1 and q2.
7. If i¡s, set i= i + 1 and goto step 2.
8. return Ir(∅; V (H)).

Fig. 5. An algorithm for counting vertex exact H -colorings.

the diSerence between Gp and the subgraphs associated to its descendants, but also the
ways in which a given subset of vertices of H can be covered.

The easiest cases are the start and forget nodes. A start node has no descendants,
and its unique associated vertex can only cover one vertex of H . In a forget node
there is no additional information and, therefore, the set of covered vertex of H will
remain.

If p is an introduce node, with {v}=Xp − Xq, the graph Gp is obtained from Gq

by adding v and the corresponding edges. The only surviving mapping are those that
preserve the H -coloring condition. Furthermore, when we determine the image of v
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three possible cases arise: the color do not appear in the set R of covered colors, it is
new and was not present in the set covered by node q, or it is old and appears in the
set covered by node q. In the <rst case the total value is zero, otherwise we have to
add all the colorings covering R from the two diSerent possibilities.

When the computation arrives to a join node p, both of its children q1, q2 must
have been already tabulated. The restriction to keep the coloring condition is the same;
from the cover part we have to consider all the ways to split a set R⊆V (H) into two
partial covers one arising from each child. Note that, in the splitting, we can have
R1∩R2 �=∅.

Let us analyze the complexity. For any p∈V (U ), the number of elements in Fp
is at most hk+1, and the number of possible subsets of |V (H)| is 2h. Moreover,
|V (U )|=O(n). The most costly cases are the introduce node, which needs O(k) steps
for each entry and a join node which needs O(22h) steps for each entry. Therefore, the
time complexity follows. The additional space bound follows from the table size and
the fact that the stingy sequence restricts the necessary space resources on each step
to O(log n) tables.

Corollary 4.1. For any constant k there exists a function f and an algorithm that,
given a graph G of treewidth bounded by k, computes |V(G;H)| in O((hk+12h

max{k; 22h} + f(k))n) time, where h= |V (H)|.

4.2. The #EH -coloring

The table associated to a node p∈V (U ) will have an entry for each pair (’; J ),
where ’∈Fp and J is a subgraph of H , holding the value

Ip(’; J ) = |{	 ∈ E(Gp;H) | 	|Xp = ’ and 	(V (Gp)) = V (J ) and

	(E(Gp)) = E(J )}|:
Therefore, |E(G;H)|= Ir(∅; H).

The algorithm count-exact-H, given in Fig. 6, takes as input G, D and a stingy
sequence S=(p1; : : : ; ps) of V (U ) and outputs the value Ir(∅; H). We will use S(H)
to denote the set of subgraphs of H .

Theorem 4.2. Given a graph G with n= |V (G)|, a nice tree decomposition D=(X;U; r)
of G with width k, and a stingy ordering of the nodes in D. Then the algorithm in
Fig. 6 computes the number of H -colorings of G in O(nhk+12h+e max{k; 22(h+e)}) time
using O(hk+12h+e log n) additional space, where h= |V (H)| and e= |E(H)|.

Proof. The arguments are similar to those in the proof of Theorem 4.1. We have to
further take into account the ways in which a given subgraph of H can be covered.

The easiest cases are the start and forget nodes. For the <rst, only one vertex of H
can be covered, and the last will not cover any additional vertex or edge.

If p is an introduce node, with {v}=Xp − Xq, as before only those mapping ex-
tensions that preserve the H -coloring condition must survive. Furthermore, when we
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Algorithm count-exact-H(G;H;D; S)
D=(X;U; r) is a nice tree decomposition of G with width k
S=(p1; : : : ; ps) is a stingy ordering of V (U )

1. Set i=1.
2. Set p=pi.
3. If p is a start node, with Xp={v} then

• for all J ∈S(H) and a∈V (H),
if V (J )={a}
then set Ip((v; a); J )=1
else Ip((v; a); J )=0.

4. If p is an introduce node then
• let q be its unique child and let v be the unique vertex in Xp − Xq,
• let Sq := {u∈Xq | {u; v}∈E(Gp)}
• for all ’∈Fq and J ∈S(H) and a∈V (H),

if {{a; ’(u)} | u∈Sq}⊆E(J )
then
– if ∀{a; ’(v)}∈E(J )∃u∈Xq: ’(u)=a

then set Ip(’; J )= Iq(’|Xq ; J − {’(v)})
else set Ip(’; J )=0

– for all A⊆{{a; ’(u)} | u∈Sq} with ∀{a; b}∈E(J ) − A ∃u∈Xq: ’(u)=b,

set Ip(’; J ) := Ip(’; J ) + Iq(’|Xq ; (V (J ); E(J ) − A))
else Ip(’; J ) := 0

• erase the information on node q.
5. If p is a forget node then

• let q be its unique child and let v be the unique node in Xq − Xp
• for all ’∈Fp and J ∈S(H), set Ip(’; J )=

∑
a∈V (J ) Iq(’∪{(v; a)}; J )

• erase the information on node q.
6. If p is a join node with children q1 and q2 then

• for all ’∈Fp and J ∈S(H),
– set Ip(’; J ) := 0
– for all J1; J2∈S(H) with J1∪J2 =J and ’(Xp)⊆V (J1)∩V (J2),

set Ip(’; J )= Ip(’; J ) + Iq1 (’; J1) · Iq2 (’; J2)
• erase the information on nodes q1 and q2.

7. If i¡s, set i= i + 1 and goto step 2.
8. Return Ir(∅; H).

Fig. 6. An algorithm for counting exact H -colorings.

determine the image of v, it may happen that either the colors of one of the images
of the introduced edges are not present in the subgraph or that the colors of all the
images are present. In the <rst case, the number of colorings is zero. We have two
types of decomposition: from subgraphs without the image of v or from subgraphs with
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the image of the same vertex set and less edges. In both cases we must insure that the
edges not present are covered by the actual mapping.

When the computation arrives to a join node p, we have to consider all the ways
to split a subgraph of H into two subgraphs, each covered by a child. Note that in
the splitting we can have two subgraphs with non-empty intersection, but both must
contain the common image of Xp.

Let us analyze the complexity. For any p∈V (U ); the number of elements in Fp
is at most hk+1, and the number of possible subgraphs of H , that is 2h+e. More-
over, |V (U )|=O(n). Again, the most costly cases are the introduce node, which needs
O(k + 2e) steps and the join node which needs 22(h+e) time. The time complexity
follows. The additional space bound follows from the table size and the fact that the
stingy sequence restricts the necessary space resources on each step to O(log n) tables.

Corollary 4.2. For any constant k there exists an integer m and an algorithm that,
given a graph G of treewidth bounded by k, computes |E(G;H)| in O((hk+12h+e

max{k; 22(h+e)} + f(k))n) time, where h= |V (H)| and e= |E(H)|.

Finally, we point out that in both algorithms of this section and for constant h, we
can allow k=O(log n) and still have polynomial time (provided that we have a tree
decomposition of G with width O(log n)).

5. Extensions to other results

In this section, we present some consequences of the polynomial time algorithms
given in the previous sections. For each problem, either we give a new polynomial-
time result or we improve previously known results. Recall that if we are given a graph
G, directed or undirected, all of our algorithms should be used in conjunction with one
of the algorithms mentioned in the introduction, that in polynomial time, compute the
treewidth decomposition of bounded width.

5.1. The directed case

Given two directed graphs H̃ and G̃, an H̃ -coloring of G̃ is any function 	 :V (G̃)→
V (H̃) with the property that (v; w)∈E(G̃)⇒ (	(v); 	(w))∈E(H̃). If H̃ is a <xed di-
rected graph, the H̃ -coloring problem asks, given a directed graph G̃ as input, whether
there is a H̃ -coloring of G̃. We de<ne the #H̃ -coloring problem as the problem of,
given a directed graph G̃, counting all the H̃ -colorings of G̃. The #EH̃ -coloring prob-
lem and the #VEH̃ -coloring problem are de<ned analogously.

It can be directly veri<ed that all the algorithms and the proofs of this paper work
also in the case where G and H are directed. In particular, the corresponding algo-
rithms and proofs can be derived from the existing ones if we consider a nice tree
decomposition of the underlying graph of G̃ and replace any undirected edge {x; y}
of G or H by a directed edge (x; y). The times of the corresponding algorithms are
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the same as those in Theorems 3.1, 4.2, and 4.1. In short, we state the following
result.

Theorem 5.1. The #H̃ -coloring problem, the #EH̃ -coloring problem, and the #VEH̃ -
coloring problem are all ?xed parameter tractable, with the parameters being the
treewidth of the underlying graph of the input and the number of vertices
of H̃ .

5.2. Counting list H -colorings

We call any function L :V (G)→ 2V (H) mapping any vertex of G to a subset of
V (H) (H;G)-list. For any vertex v∈V (G) we call the set L(v)⊆V (H) list of v. The
list H -coloring problem asks whether, given a graph G and a (H;G)-list L, there is
an H -coloring - of G so that for every u∈V (G) we have -(u)∈L(u). The complexity
of the list H -coloring has been analyzed in [20,21]. The counting version of the list
H -coloring is called list #H -coloring. The list exact H -coloring and the list vertex
exact H -coloring are de<ned in the obvious way and we call their counting versions
list exact #H -coloring and list vertex exact #H -coloring.

It is easy to adapt the algorithm count-H and obtain an algorithm for the list
#H -coloring problem for graphs of bounded treewidth. The main changes are that
H(Gp;H) is now replaced by LH(Gp;H) that contains all the list H -colorings of Gp
and that . is now a function from the set Fp={. :Xp→V (H) and ∀x∈Xp.(x)∈L(x)}.
The only change that should be applied in algorithm count-H is on step 3 where the
requirement a∈V (H) should be restricted to a∈L(v). Applying similar changes to
the de<nitions of V(Gp;H) and E(Gp;H) and algorithm count-exact-V-H and count-
exact-H, we can solve the list vertex exact #H -coloring and the list exact #H -coloring,
respectively, for graphs of bounded treewidth. Summarizing, we have that Theorems
3.1, 4.1, and 4.2 can be rewritten in their “list” versions with the same complexity
bounds.

5.3. Enumeration

Notice that for each of the algorithms described so far, if we retain the information
of all the tables, it is possible to use it in order to enumerate all the homomorphisms.
The storing of all the tables implies a burden of O(n= log n) to the space reported in
Theorems 3.1, 4.1, and 4.2. In particular, setting up a suitable bookkeeping of the
enumerated homomorphisms, a top–down traversal of the table information can pop-up
each of them in O(n) steps.

5.4. Coloring problems

Notice that a graph G is H -colorable if |H(G;H)|¿1. This implies the following
corollary of Theorems 3.1, 4.1, and 4.2 for the corresponding decision version of the
problems examined.
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Corollary 5.1. For any graph H with h vertices and e edges, we can solve, for an
n-vertex partial k-tree as input graph,
• the H -coloring problem in O(nhk+1 min{k; h}) steps,
• the vertex exact H -coloring problem in O(nhk+12h max{k; 2h}) steps, and
• the exact H -coloring problem in O(nhk+12h+e max{k; 2h+e}) steps.

Corollary 5.1 improves the time of the best known algorithm for the H -coloring
of partial k-trees. This algorithm runs in O(nh2(k+1)) steps and is due to Telle and
Proskurowski in [39].

We denote as Kc the complete graph with c vertices. As the problem of counting
the number of c-colorings of a graph G is equivalent to the #Kc-coloring problem we
can conclude the following.

Corollary 5.2. An algorithm can be constructed to compute the number of c-colorings
of a partial k-tree of n vertices in O(nck+1 min{k; c}) steps.

We denote as 0G(c) the function mapping c to the number of colorings of G that
use exactly c colors, i.e. 0G(c)= |V(G;Kc)|.

Lemma 5.1. For any graph G, 0G(c)= |H(G;Kc)| −
∑

16r6c−1

( c
r

)
0G(r).

Proof. Notice that for any r; 16r6c, the number of functions .∈H(G;Kc) where

|.(V (G))|6r is equal to
( c
r

)
0G(r). The sum of these numbers for r=1; : : : ; c gives

|H(G;Kc)|. Therefore, |H(G;Kc)|=
∑

16r6c

( c
r

)
0(r) and the lemma follows.

The formula of Lemma 5.1 and Corollary 5.2 give a way to compute 0G(c).

Corollary 5.3. An algorithm can be constructed that, given partial k-tree G with n
vertices and for any c; 16c6n, computes 0G(c) in O(nck+2 min{k; c}) steps.

Corollary 5.3 can be rewritten as follows.

Corollary 5.4. An algorithm can be constructed that computes the chromatic polyno-
mial of a partial k-tree with n vertices in O(knk+3) steps.

Up to now, the best algorithm for computing the chromatic polymonial for partial k-
trees can be derived from the algorithm of Andrzejak [2]. This algorithm can compute
in O(n2+7 log2 c) steps the Tutte polynomial of a partial k-tree of n vertices, where c is
twice the number of partitions of a set with 3(k+1) elements. Several researchers have
considered the problem of counting the number of proper c-colorings in a graph G. The
problem is #P-hard for c¿3 and maximum degree 1¿3 [26]. In the same paper, it is
proved that there exists a fully polynomial time Randomized Approximation Scheme
(FPRAS) for the number of colorings in the case when c¿21+ 1. Recently, Bubley
et al. in [11] proved that the problem is #P-hard for <xed 1, but there is a FPRAS
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for c=5 and 1=3. Edwards [19] proved that if c¿3 and the minimum degree 2¿3n,
n= |V (G)|, the counting problem is #P-complete if 3¡(c − 2)=(c − 1), but it is in P
for 3¿(c − 2)=(c − 1).

5.5. Problems on cores

Given a graph G, a core of G is a subgraph C of G such that G is homomorphic
to C, but G fails to be homomorphic to any proper subgraph of C. This notion of
core is due to Hell and NeUsetUril [25]. A graph G is a core if G is a core for itself or,
equivalently, if |E(G;G)|= |H(G;G)|. For example, any graph C2k+1 is a core (C2k+1

is the connected 2-regular graph with 2k+1 vertices). It is known that, in general, the
problem of deciding whether G is a core is NP-complete [25] and in the same paper
it is presented a polynomial time algorithm, to decide if G is a core, for the particular
case when G has independence number 3(G)62. Finally, we mention that “almost all
graphs” are cores [32,33].

We <rst prove the following.

Corollary 5.5. An algorithm can be constructed that decides, in O(k2nk+3) steps,
whether a partial k-tree with n vertices is a core.

Proof. Notice that it is enough to check whether there exists a subgraph H of G
where |E(H)|= |E(G)| − 1 and such that |H(G;H)|¿1. According to Theorem 3.1,
this requires O(|E(G)|knk+2)=O(k2nk+3) steps (take in mind that if G is a partial
k-tree then E(G)=O(k|V (G)|)).

We mention that the property of being a core is an EMS-property (i.e. involves
counting or summing evaluations over sets de<nable on monadic second order logic)
and therefore, the results in [15,5,1] imply the existence of a polynomial time algorithm
for deciding it. So far, no explicit algorithm has been reported for this problem.

We consider the isomorphism problem on cores. Notice that graphs G and H are
isomorphic iS |E(G;H)| · |E(H;G)|¿1. This check can be done in polynomial time
when both G and H are cores and partial k-trees.

Corollary 5.6. An algorithm can be constructed that checks, in O(knk+2) steps,
whether two cores G and H of treewidth 6k are isomorphic, where n= max{|V (G)|,
|V (H)|}.

In general, checking whether two partial k-trees are isomorphic can be done in
O(nk+4:5) steps [6]. Corollaries 5.5 and 5.6 improve this time for the case where some
of the input graphs is a core.

Using the idea of Corollary 5.6, we can count automorphisms of cores with bounded
treewidth.

Corollary 5.7. An algorithm can be constructed that outputs, in O(knk+2) steps, the
number of automorphisms of a core G of n vertices and treewidth 6k.
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A graph G is called rigid when the identity is the only homomorphism in H(G;G)
[25,32]. We conclude to the following.

Corollary 5.8. An algorithm can be constructed that checks, in O(knk+2) steps,
whether a n-vertex partial k-tree is rigid or not.

5.6. Problems on counting independent sets

Notice that, in the case where H is the graph in Fig. 1, |H(G;H)| is the number
of independent sets of G. Therefore, we have the following.

Corollary 5.9. An algorithm can be constructed that outputs the number of indepen-
dent sets of an n-vertex partial k-tree in O(n2k+1) steps.

Notice that the linear algorithm of Corollary 5.9 remains polynomial even if the
treewidth of G is bounded by O(log n), provided that we have a tree decomposition
of G with width O(log n).

Suppose that H is a star with a loop attached on its unique internal vertex (a star is a
tree of diameter 2). Then, asking whether |V(G;H)|¿1 is equivalent to asking whether
G has an independent set of size ¿k. Finally, Theorem 4.1 yields the following.

Corollary 5.10. An algorithm can be constructed that for any partial k-tree of n
vertices and any r, outputs the number of the independent sets of G with at least r
vertices in O(n(r + 1)k+12r+1 max{k; 22(r+1)}) steps.

6. Remarks and open problems

Observe that, by specializing the structure of H , we can generate an arbitrary number
of counting problems that have implication in statistical physics and are, in general,
#P-complete [29,40]. As an example, we mention the problem of counting the q-particle
Widom–Rowlinson con<gurations in bounded treewidth graphs [18].

The advantage of the three main algorithms of this paper is the “low” contribution of
k in their time bounds. However, it is tempting to check whether reasonable (while still
not better) bounds can emerge by directly applying the generic methodology of [15]
to our problems. We base our assumption on the fact that, in [15], constants depend
on the alternation depth of quanti<ers in the corresponding logical expression. We
<nd it an interesting question whether reasonable complexity bounds can be obtained
for problems expressible by Monadic Second order logic formulas of few quanti<er
alternations.

An other direction of research is to consider that H is weighted. A weighting of
H can be interpreted as a product measure on the set of H -colorings [10]. It will be
of interest to know if it is possible to have a polynomial time algorithm for sampling
H -colorings of graphs of bounded treewidth according to the probability distribution
induced by the product measure.
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