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Abstract 

The classes A, and S, are defined as the classes of those graphs, where the minimum degree greedy algorithm always 
approximates the maximum independent set (MIS) problem within a factor of r, respectively, where this algorithm has a 
sequence of choices that yield an output that is at most a factor r from optimal, r > 1 a rational number. It is shown that 
deciding whether a given graph belongs to A, is coNP-complete for any fixed r 2 1, and deciding whether a given graph 
belongs to SI is DP-hard, and belongs to A2P. Also, the MIS problem remains NP-complete when restricted to S,. @ 1997 
Elsevier Science B.V. 
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1. Introduction 

A well known and well studied heuristic for the 
problem of computing a maximum independent set 
in a graph is the Minimum Degree Greedy algorithm 
(MDG). In this algorithm, one repeatedly selects a 
vertex of minimum degree from the graph, puts this 
vertex in the independent set, and removes the vertex 
and its neighbors from the graph, until an empty graph 
is left. 
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An interesting problem is when this MDG algo- 
rithm outputs a maximum independent set, or when 
its output differs a constant factor from a maximum 
independent set. 

For several classes of graphs it is known that, if 
we require the input to belong to such a class, then 
MDG has a good approximation ratio; examples are 
the graphs of bounded degree or bounded average de- 
gree [7]. Also, MDG is known to output always a 
maximum independent set, when the input is a well- 
covered graph (a graph is well-covered if all its max- 
imal independent sets are of the same cardinality - 
see [ lo]). Moreover, it is easy to verify that MDG 
outputs a maximum independent set when the input is 
a tree, split graph, complement of a k-tree, or a com- 
plete k-partite graph, for any k. 

To consider the problem to determine when the 
MDG algorithm gives certain approximations of the 
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maximum independent set, we introduce for each ra- 
tional number r the graph class A,, consisting of those 
graphs where MDG always outputs an independent 
size such that the maximum independent set is at most 
I times as large. In other words, A, is the class of 
graphs for which MDG is an approximation algorithm 
with performance ratio r. 

Note that the MDG algorithm has a certain degree 
of non-determinism: when there are more vertices of 
minimum degree, the algorithm chooses one of them 
to remove. We define the graph class S, (r rational 
number) as the set of graphs for which there exist 
some sequence of choices of minimum degree vertices 
for the MDG algorithm, such that the output is of 
size at least a constant fraction l/r of the maximum 
independent set. 

We prove that the hierarchies defined by classes A, 
and S, are proper i.e. for any rl < r2, d,, c A,,. A 
consequence of this is (the non-surprising result) that 
for any function f(n) = o(n) MDG is not an f(n)- 
approximation algorithm for the maximum indepen- 
dent set problem (n is the number of vertices in the 
input graph). 

In this paper, we consider the complexity of the 
recognition problem for the classes A, and S,. for ratio- 
nal r. We prove that for any r, the recognition problem 
of A,. is coNP-complete. Also, for any r, the recog- 
nition problem of S, belongs to A2P. We also prove 
that maximum independent set remains NP-complete 
when restricted to graphs belonging to Sr and that the 
recognition of St is a DP hard problem. 

Our results indicate that the problem of recognizing 
the instances of the maximum independent set prob- 
lem where the greedy algorithm has a nice approxima- 
tion behavior is a hard combinatorial problem. Clearly, 
the same results hold also for the maximum degree 
greedy algorithm for the clique problem (just take the 
complement of the graphs involved). 

2. Definitions and preliminaries 

Throughout this paper all the graphs are considered 
to be without loops or multiple edges. Given a graph 
G we denote as V(G) and E(G) its vertex and edge 
set respectively. Given a set S & V(G), we define 
the neighborhood of S, denoted N(S), to be the set 
of vertices not in S that are adjacent to vertices in S. 

Given a vertex u E V(G), we call the set N( {u}) the 
neighborhood of u in G and we denote it as N(u). 
Given some set S c V(G) we denote as G[ S] the 
subgraph of G induced by S. A set I c V(G) is an 
independent set if E( G[ I] ) = 8. An independent set 
I is a maximal independent set when there is no inde- 
pendent set I with I’ c I, I’ # 1. We call an inde- 
pendent set I maximum, when there is no independent 
set I’ with 11’1 > 111. The Maximum Independent Set 
(MIS) problem, is the problem of finding a maximum 
independent set of a given graph. Finally, we denote 
the size of some maximum independent set in G as 
a(G) . The decision version of the MIS problem asks, 
for given G, k, whether a(G) 2 k. 

One of the most simple and efficient algorithms to 
output a maximal independent set of a given graph is 
the one called minimum-degree greedy (MDG) algo- 
rithm. 

Algorithm MDG 
Input: A graph G 
Output: A maximal independent set I of G. 
1. begin 
2. I+0 
3. Let u E V(G) be a vertex of minimum degree in G 
4. I + lU{u} 
5. G + G[V(G) - {u} - N(u)1 
6. ifV(G) f 0 then goto3 
7. end 

It is easy to see that line 3 of MDG introduces 
a certain degree of non-determinism, as there may 
be more than one minimum degree vertices to be 
chosen. To any graph G we associate the collec- 
tion Zo of all possible maximum independent sets 
that MDG may output with input graph G, i.e., we 
look at all possible sequences of choices of vertices 
of minimum degree. We proceed with some defini- 
tions: 

Definition 1. Let r 2 1 be some rational number. 

max-GR(G) = max{]l] I I E XC}, 

min-GR(G) = min{]l] I I E ZG}, 

S, = {G I cu(G)/r < max-GWG)}, 

A, = {G ] cu(G)/r < min-GR(G)}. 

In other words, A, is the class of graphs for which 
MDG is an approximation algorithm for MIS with per- 
formance ratio r. Also, S, is the class of graphs for 
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which there exist some sequence of minimum degree 
choices for the MDG algorithm such that the output 
has size at least a constant factor r of the MIS solu- 
tion 

One can easily verify that A1 contains all trees, cy- 
cles, split graphs, complete k-partite graphs and com- 
plements of k-trees. We also mention that A1 con- 
tains the class of well-covered graphs (the recogni- 
tion problem of well-covered graphs has been proved 
to be a coNP-complete problem (see [ 4,5] ) ) . Also, 
according to the results in [ 71, if r b (A + 2)/3, 
then A, contains all the graphs with degree bounded 
by A. 

Proposition 2. For all rational numbers rl , r2 with 
1 6 rl < r2, A,, is a proper subset of Art, and Sr, 
is a proper subset of S,, . 

Proof. We look to the first part of the claim; the 
second part can be proved with the same construc- 
tion. Note that it is sufficient to show that for any 
rational number r > 1, there exists a graph G with 
cr(G)/min-GR(G) = r. 

Write r = l/m with 1 2 m > 2. We construct 
G in the following way: Take a vertex ua and a set 
I = {Ul,. . . , UI} of 1 vertices adjacent to 00. Let 

{II,... , Zm-l } be an arbitrary partition of I con- 
sisting of m - 1 non-empty sets. Take additionally 
m - 1 cliques KI , . . . , Km- 1, each consisting of 1 + 1 
vertices. The construction is completed by connect- 
ing each vertex in li with all vertices in Ki, for any 
i = l,... , m - 1. We can easily verify that I is a 
maximum independent set in G. Also, MDG will al- 
ways start choosing vertex U~J and, because of this first 
choice, will finally output a maximum independent 
set consisting of UC, and one vertex from each of the 
m-lcliquesKl,..., K,,,- 1 (an example for the case 
r = 5/4 is shown in Fig. 1). 

Thus, (Y(G) = 1, but MDG outputs an independent 
setofsizem:GEd,andG$d,,,Vr’<r. 0 

The fact that for any r 3 1 there are infinitely many 
graphs not in A, shows that MDG is not an con- 
stant factor approximation algorithm. In fact, we can 
prove that MDG is not an approximation algorithm 
for any approximation factor of the form f(n) where 
limn+a, n/f(n) = 0 (n is the number of vertices of 
the input graph). For this, it is sufficient to see that if 

s..._ 

Kl K3 

Fig. 1. An example of a graph in A514 and/or S=,,,. 

we apply the above construction for 1 = lo and m = 2 
where lo > 2f( 210 + 1) , we obtain a graph GI, where 
cu( GI,,) = 10 and min-GR(G1,) = 2. As IV(Gt,) 1 = 
210 + 1, we have that 

4%) 
min-GR( Gr, ) 

= g > f(IVG,)I), 

a contradiction to the existence of any f(n)- 
approximation algorithm. 

We mention that it has already been observed by 
Johnson in [ 81 that MDG cannot be an approximation 
algorithm for MIS with ratio O( n’j2). Also, MIS is not 
approximable within a factor of n1/3-E unless coRP = 
NP (see [ 11). 

3. The complexity of recognizing & 

In this section we will prove that the recognition 
of those graphs where the MDG algorithm approxi- 
mates the maximum independent set with approxima- 
tion ratio any fixed rational number r > 1 is a coNP- 
complete problem. 

Theorem 3. For any fixed rational number r > 1, 
the problem to determine whether a given graph G E 
A, is coNF’-complete. 

Proof. First, in order to show that the problem belongs 
to CONF’, it is sufficient to observe that G $ dr if and 
only if there exist a set I C V, and a sequence of 
vertices (ui,...,ui),suchthat 
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l Z is an independent set, 
l (Ul,. . . , Vi) is an independent set which can be cho- 

sen by the MDG algorithm, 
0 IZl/r > i. 

To prove hardness for coNP, we present a reduction 
from the problem, to determine whether for a given 
graph G and integer k, a(G) < k, to the problem to 
determine whether for a given graph G’, G’ E A,. 

Let G = (YE) be a given graph, and k be a given 
positive integer. Write r = l/m, 1, m integers (I 2 m). 
Construct G’ as follows: 

Take a clique A with 1 . IV(G) 1 vertices. Take a 
graph B consisting of 1 disjoint copies of G. Take a 
graph C consisting of km - 2 isolated vertices. Let G’ 
be the graph such that 

V(G’) =V(A) U V(B) U V(C) and 

E(G’) =E(A) UE(B) UE(C) U 

{{w} I u E V(A) U V(C), u E V(B)}, 

i.e., we make every vertex in B adjacent to all vertices 
in A and in C. 

Since G’ 4 A, iff min-GR( G’) < (m/Z) (u( G') , it 
is sufficient to prove that a(G) 2 k iff min-GR( G’) < 
(m/l) a( G') . Notice that with G’ as input, MDG al- 
ways outputs a maximal independent set VC U {p}, 
where p is a vertex in VA and thus min-GR(G’) = 
km - 1. Also, it is easy to see that (Y( G’) = 
max{Za( G) , km - 1): 

Suppose that Q(G) 2 k. Then min-GR(G’) = 
km - 1 < ma(G) = (m/l)cu(G’). 

Suppose that (Y(G) < k. We distinguish two cases: 
Case 1: (km-1)/l < a(G). Wenowhave&(G’) = 

Za( G) and thus min-GR(G) = km - 1 2 ma(G) = 

(mlO4G’). 
Cuse2: (km-1)/Z > cu(G). Wenowhavea(G’) = 

mk - 1 and thus min-GR(G’) = km - 1 = cu(G’) 2 
(m/Z)n(G’). 0 

It is easy to see that, using the same reduction with 
the one of Theorem 3, one can prove that the recog- 
nition problem for S, is also a coNP-hard problem. 
In the next section we will prove a stronger result for 
r= 1. 

It is a natural question to ask about the complex- 
ity of recognizing A, (or S,) when r is considered to 
be an irrational number. One can actually prove that 

l Real vertex 

0 Dummy vertex 

@ Additional vertex 

x Y 

Fig. 2. Graph G’. 

there are irrational numbers r, such that the recog- 
nition problem for d,., or S, is undecidable. (Take 
any undecidable function f : M + (0, l}, e.g., f(n) 
tells whether the nth Turing machine in some recur- 
sive numbering halts on an empty input. Let r = 
1 + Cp, 2-l . f(i). If testing membership in A, or 
S, is decidable, then one can compute the digits of r 
using graphs, as constructed in the proof of Proposi- 
tion 2.) 

4. Complexity results on S, 

First, we show it does not help to know that a graph 
belongs to St (and hence, to any class S, for r > 1) 
when we want to solve the maximum independent set 
problem. 

Theorem 4. The maximum independent set problem, 
restricted to S1 is NP-complete. 

Proof. We will give a reduction from the maximum 
independent set problem for arbitrary graphs. For a 
given (non-empty) graph G, we will construct a new 
graph G’ E Si such that a( G’) = (u(G) + (E(G) I. G’ 
is obtained from G by first replacing every edge in G 
by a path of length three (i.e., the edge is subdivided 
by putting two new vertices on it), and then taking two 
new adjacent vertices x, y and making these adjacent 
to all the original vertices in G. (See Fig. 2 for an 
example.) 

The original vertices from G are called the real ver- 
tices in G’, the vertices introduced by the subdivisions 
are called the dummy vertices, and x and y are called 
the additional vertices. 

We will now show that cu(G’) = a(G) + IE( G) I. 
Let I’ be a maximum independent set of G’. Let I = 
V(G) n I’ be the set of real vertices in I’. Change I’ 
in the following way: while there are vertices u, w E Z 
that are adjacent in G, remove w from I’ and instead 
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l A vertex of I 

Fig. 3. A sequence of steps for the MDG algorithm. 

add the dummy vertex neighboring w on the path rep- 
resenting the edge {u, w} to I’; update Z accordingly. 
As a result, we obtain a maximum independent set 
I’ such that Z = V(G) f~ I’ is an independent set of 
G. Note that I’ contains at most 1 E(G) 1 dummy ver- 
tices. If x E I’ or y E I’, then 11’1 < IE( G) 1 + 1 < 

a(G) + lE(G)Iv as no real vertex can belong to I’. 
Otherwise, also 11’1 < a(G) + IE( G) I. So we have 

a(G’) < a(G) + IWJI. 
Let now Z be a maximum independent set of G. 

We take an independent set I’ of G’ in the following 
way: take all vertices in I, and for every edge {u, U} 
in E(G), we take on of the two dummy vertices cor- 
responding to the edge: we can always take such a 
dummy vertex because either u $.! I’ or w $! I’. So 
a(G’) 3 11’1 = 111 + [E(G)1 = a(G) + IE(G)I. 

Also, we claim that G’ E SI. Let I be an indepen- 
dent set in G. We start by choosing IE( G) I dummy 
vertices, not adjacent to vertices in I, as in the con- 
struction above: note that we can always do this, as 
all other vertices will have degree at least two (real 
vertices are adjacent to x and y, and x and y are adja- 
cent to each other and at least one vertex in I; none of 
these is yet removed). At this moment, all vertices in 
Z have degree two: they are only adjacent to x and y; 
all other vertices have degree at least two. Then, we 
can choose all vertices in I, and we end up with an 
independent set of size IE(G)I +a(G) = a(G’) (see 
also Fig. 3). 

Thus, the transformation, mapping (G, k) to 
(G’, k + [E(G) I) gives the required reduction, and 
the theorem follows. Cl 

: . : 
i I 
: . j 

_____: k +IE(G)I +IV(G’JI +l 
veItices 

subgraph B subgraph C 

Rg. 4. Graph G”. 

k vertices 

subgraph E subgraph A 

As we have already mentioned, the recognition 
problem of S, is a coNP-hard problem. In what fol- 
lows, we will prove a stronger result for the recogni- 
tion problem of SI . 

The complexity class DP is defined as the class of 
problems that can be expressed as a conjunction of two 
subproblems such that the one is in NP and the other 
in coNP (see [9] ). An example of a DP-complete 
problem is EXACT INDEPENDENCE NLJMBER, which 
asks, when given a graph G and a positive integer k, 
whether the size of the maximum independent set in 
G is exactly k (see [3]). 

Theorem 5. The problem of determining whether a 
given graph G belongs to S, is DP-hard. 

Proof. We present a reduction from the EXACT IN- 

DEPENDENCE NUMBER. Given a graph G and a pos- 
itive integer k, we will construct a graph G” such that 
G” E S1 iff a(G) = k. 

The construction of G” is as follows: First, let G’ E 
S1 be obtained from G, as in the proof of Theorem 
4. Take a graph A, isomorphic to G’. Take a graph 
B consisting of k + IE( G) I isolated vertices. Take a 
clique C with k + IE( G) I + IV( G’) I + 1 vertices; 
distinguish an arbitrary vertex p from V(C). Take a 
graph D, isomorphic to G. Take a graph E consisting 
of k isolated vertices. G” is the graph with 

V(G”) = V(A) u V(B) U V(C) U V(D) u V(E), 

and 

E’=E(A) uE(C) UE(D) U 

{{w} I u E V(A), u E V(B)} U 

{{u,u} I u E V(B), u E V(C) - {P}} u 

{{u,u} I u E V(C) - {P). 0 E V(D)) u 

{{KU} I u E V(D), u E V(E)} 
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(see Fig. 4). (In other words, take the union of A, 
B, C, D, and E, and we add edges between vertices 
in A and vertices in B, between vertices in B and all 
vertices except p in C, between all vertices except p 
in C and vertices in D, and between vertices in D and 
vertices E.) It is easy to see that G” can be constructed 
in polynomial time. 

Now we show that G” E St iff a(G) = k. 
Observe that the MDG algorithm will start picking 

vertices in A and E, thus removing B and D. As A E 
S1, cr(A) = a(G) + IE(G)I vertices in A will be 
chosen, and one vertex in C, and all k vertices from 
E. Thus, the MDG algorithm will output a set of size 
a(G) + /E(G)1 + k + 1. 

Notice now that any maximum independent set of 
G” contains either a(A) vertices from A or all ver- 
tices from B, one vertex from C, and a(D) ver- 
tices from D or all vertices from E. Thus, CU(G”) = 
2~max{a(G),k}+~E(G)~+ l.It isnowclearthat 
G” E St iff cu(G) = k. 0 

We do not know whether the recognition problem 
for S,. is complete for DP for r > 1. Instead, we prove 
membership in the larger class AzP. ( AzP is the class 
of the problems that can be decided by a determinis- 
tic polynomial time oracle machine that uses an NP 
oracle). (See e.g. [ 3,9) .> 

Lemma 6. Let r 2 1 be a rational number. The 
recognition problem for S, belongs to A2P. 

Proof. It is sufficient to see that for a given graph G, 
G 4 S, iff for some k, 1 6 k 6 n: (i) a(G) 2 k 
and (ii) there is not any output of the MDG algorithm 
with at least k/r vertices. Finally, note that both (i) 
and (ii) can be answered by NP oracles. 0 

Finally, we mention that Halldorsson [ 63 has shown 
that for each r > 1, there is a constant E > 0 such that 
it is hard to distinguish between inputs where G E S, 
and inputs where G E Sr+E. 

5. Open problems 

We were unable to extend Theorem 5 to classes S, 
for rational r > 1. Thus, it remains open to prove hard- 
ness for classes above NP for the recognition problems 
S, with r > 1. Also, it is open whether the recognition 
problem of S, is complete for DP or for some larger 
complexity class like A2P, for all rational r > 1. 
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