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Abstract. Preprocessing by data reduction is a simple but powerful
technique used for practically solving different network problems. A num-
ber of empirical studies shows that a set of reduction rules for solving
Dominating Set problems introduced by Alber, Fellows & Niedermeier
leads efficiently to optimal solutions for many realistic networks. Despite
of the encouraging experiments, the only class of graphs with proven per-
formance guarantee of reductions rules was the class of planar graphs.
However it was conjectured in that similar reduction rules can be proved
to be efficient for more general graph classes like graphs of bounded
genus. In this paper we (i) prove that the same rules, applied to any
graph G of genus g, reduce the k-dominating set problem to a kernel of
size O(k+g), i.e. linear kernel. This resolves a basic open question on the
potential of kernel reduction for graph domination. (ii) Using such a ker-
nel we improve the best so far algorithm for k-dominating set on graphs

of genus ≤ g from 2O(g
√

k+g2)nO(1) to 2O(
√

gk+g) + nO(1). (iii) Applying
tools from the topological graph theory, we improve drastically the best
so far combinatorial bound to the branchwidth of a graph in terms of its
minimum dominating set and its genus. Our new bound provides further
exponential speed-up of our algorithm for the k-dominating set and we
prove that the same speed-up applies for a wide category of parame-
terized graph problems such as k-vertex cover, k-edge dominating set,
k-vertex feedback set, k-clique transversal number and several variants
of the k-dominating set problem. A consequence of our results is that
the non-parameterized versions of all these problems can be solved in
subexponential time when their inputs have sublinear genus.
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1 Introduction

The theory of fixed-parameter algorithms and parameterized complexity has
been thoroughly developed over the past few years [9]. Dominating Set is one
of the basic problems in parameterized complexity belonging to the complexity
class W[2] and it is not surprising that it was investigated intensively. In the
last three years, there was a breakthrough in understanding the parameterized
complexity of Dominating Set on planar graph and different generalizations.
The first fixed-parameter algorithm for k-dominating set in planar graphs [9]
has running time O(11kn); subsequently, the first subexponential parameterized

algorithm with running time O(46
√

34kn) have been obtained by Alber et al. [1].
The development in the area of subexponential parameterized algorithms has
proceeded in several directions:
Direction (i): Reduction to linear kernel. Let L be a parameterized problem,
i.e. L consists of pairs (I, k) where k is the parameter of the problem. Reduction
to linear problem kernel is the replacement of problem inputs (I, k) by a reduced
problem with inputs (I ′, k′) (linear kernel) with constants c1, c2 such that k′ ≤
c1k, |I ′| ≤ c2k′ and (I, k) ∈ L ⇔ (I ′, k′) ∈ L. The existence of linear kernel
for Dominating Set is highly unlikely because existing of such a kernel would
imply the collapsing of the W -hierarchy. For planar graphs Alber, Fellows &
Niedermeier [2] proved that Dominating Set has a linear kernel. This kernel is
obtained by repetitively applying on the input graph G a set of reduction rules.
We call this reduction AFN-reduction. It was also conjectured in [2] that the
AFN-reduction provide linear kernels not only for class of planar graphs but for
more general classes, like graphs of bounded genus. This was one of the biggest
remaining challenges in the field.
Direction (ii): The generality of graph classes to which these algorithms ap-
ply. Ellis, Fan & Fellows [10] claimed that Dominating Set is fixed parame-
ter tractable for graphs of bounded genus. Demaine et al. [5] recently proved
this result by obtaining a subexponential parameterized algorithm that requires
2O(g

√
k+g2)nO(1) steps on graphs of genus g. Subexponential parameterized al-

gorithms are also known for graphs excluding a fixed graph as a minor [5], map
graphs [4] and graphs of bounded local treewidth [6].
Direction (iii): Optimization of the constants in the exponents of the running
time. The running time of Alber et al. algorithm [1] was improved to an algorithm

of O(227
√

kn)-time by Kanj & Perković in [13], and finally to the O(215.13
√

kk +
n3 + k4)-time algorithm of [11].
Direction (iv): Extensions to other parameters. In [1, 7, 14] it was observed
that dominating set number is related to several graph parameters in a way
that implies the existence of subexponential parameterized algorithms for all of
them. This observation has been generalized in [5] to the general family of the
bidimensional parameters. Examples of such parameters are: vertex cover, r-
domination, edge-dominating set, weighted vertex dominating set, feedback set,
maximal marching, clique transversal number, perfect code, and total dominat-
ing set.



Our contribution. Our results span all the research directions that we just
mentioned. We enumerate them in the same order:
(i) We answer affirmatively the conjecture of [2]. More precisely, we prove that
the application of the AFN-reduction on any graph G reduce it to a graph G′ of
size O(k + g) where k and g are the dominating set number and the Euler genus
of G respectively (see Section 3).
(ii) The kernel existence implies combinatorial bounds that are able to improve

the best so far 2O(g
√

k+g2)nO(1)-time algorithm given in [5] to one of 2O(
√

kg+g) +
nO(1)-time (see Section 4).
(iii) All our algorithms have small hidden constants in the “O”-notation of their
exponential part. We stress that this is not a straightforward consequence of the
kernel existence and for this we need to prove better combinatorial bounds using
elements of the Graph Minor Theory (see Section 5).
(iv) Using the above combinatorial bounds we can design 2O(

√
kg+g)nO(1)-time

algorithms for the majority of the parameters examined in direction (iii) (see
Section 6).

The main graph theoretic tool of this paper is the representativity of a graph
embedded in a surface Σ that is the minimum number of vertices met by an
edge-avoiding non-contractible cycle of Σ. Very roughly, we implement the fol-
lowing “trick” several times: For graphs of representativity more than 6 we prove
that they are enough “locally planar” and that certain arguments about planar
graphs can be extended to graphs that are embedded that way on a surface.
If representativity is at most 6, we can “cut” the surface, “split” the graph,
decrease its genus, and apply certain inductive arguments.

We note that the contribution of the genus in the time complexity of our algo-
rithms has some more general consequences. The first, is that the k-dominating
set problem can be solved by a subexponential parameterized algorithm when
restricted to graphs of genus o(log n). The second is that the algorithm remains
subexponential on k even when g = o(k). Therefore, for graphs with genus o(n)
the dominating set problem admits a subexponential exact algorithm. The same
holds for a number of other problems discussed in Section 6.

2 Preliminaries

We denote by G a finite, undirected and simple graph with |V (G)| = n vertices
and |E(G)| = m edges. For any non-empty subset W ⊆ V (G), the subgraph
of G induced by W is denoted by G[W ]. The neighbourhood of a vertex v is
N(v) = {u ∈ V (G) : {u, v} ∈ E(G)} and for a vertex set S ⊆ V (G) we put
N [S] =

⋃

v∈S N [v] and N(S) = N [S] \ S.
A set D ⊆ V (G) is a dominating set in a graph G if every vertex in V (G)\D

is adjacent to a vertex in D. Graph G is D-dominated if D is a dominating set
in G. We denote by γ(G) the minimum size of dominating set in G.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G
by contracting the edge e; that is, to get G/e we identify the vertices x and y
and remove all loops and duplicate edges. A graph H obtained by a sequence of



edge-contractions is said to be a contraction of G. H is a minor of G if H is the
subgraph of a contraction of G.
Graphs on surfaces. A surface Σ is a compact 2-manifold without boundary.
We will always consider connected surfaces. We denote by S0 the sphere (x, y, z |
x2 + y2 + z2 = 1). A line in Σ is subset homeomorphic to [0, 1]. An O-arc is a
subset of Σ homeomorphic to a circle. Let G be a graph 2-cell embedded in Σ.
To simplify notations we do not distinguish between a vertex of G and the point
of Σ used in the drawing to represent the vertex or between an edge and the line
representing it. We also consider G as the union of the points corresponding to its
vertices and edges. That way, a subgraph H of G can be seen as a graph H where
H ⊆ G. We call by region of G any connected component of Σ − E(G) − V (G).
(Every region is an open set.) We use the notation V (G) and E(G), for the set
of the vertices and edges of G. For ∆ ⊆ Σ,∆ is the closure of ∆. The boundary
of ∆ is bor(∆) = ∆ ∩Σ −∆.

A subset of Σ meeting the drawing only in vertices of G is called G-normal. If
an O-arc is G-normal then we call it noose. The length of a noose is the number
of its vertices. For a D-dominated Σ-embedded graph G we define a D-noose on
G as a noose meeting exactly two vertices x, y of D, two neighbors of x and two
neighbors of y. A D-noose N is consecutive is any two vertices of G that are met
consecutively in N are adjacent.

Representativity [16] is the measure how dense a graph is embedded on a
surface. The representativity (or face-width) rep(G) of a graph G embedded in
surface Σ '= S0 is the smallest length of a non-contractible noose in Σ. In other
words, rep(G) is the smallest number k such that Σ contains a non-contractible
(non null-homotopic in Σ) closed curve that intersects G in k points.

It is more convenient to work with Euler genus. The Euler genus eg(Σ) of
a surface Σ is equal to the non-orientable genus g̃(Σ) (or the crosscap number)
if Σ is a non-orientable surface. If Σ is an orientable surface, eg(Σ) is 2g(Σ),
where g(Σ) is the orientable genus of Σ. Given a graph G its Euler genus eg(G)
is the minimum eg(Σ) where Σ is a surface where G can be embedded.

Let N be a noose in a Σ-embedded graph G. We need to define cutting
along the noose N . The formal definition can be found in [15], here we prefer
to give a more intuitive one. We suppose that G is embedded in Σ such that
for any v ∈ N ∩ V (G), there exists an open disk ∆ containing v and such
that for every edge e adjacent to v,e ∩ ∆ is connected. We also assume that
∆−N has two connected components ∆1 and ∆2. Thus we can define partition
of N(v) = N1(v) ∪ N2(v), where N1(v) = {u ∈ N(v) : {u, v} ∩ ∆1 '= ∅} and
N2(v) = {u ∈ N(v) : {u, v} ∩ ∆2 '= ∅}. Now for each v ∈ N ∩ V (G) we do the
following: (a) remove v and its incident edges (b) introduce two new vertices
v1, v2 and (c) connect vi with the vertices in Ni, i = 1, 2. The resulting graph is
obtained from Σ-embedded graph G by cutting along N .

The following lemma is very useful in proofs by induction on the genus. The
first part of the lemma follows from Proposition 4.2.1 (corresponding to surface
separating cycle) and the second part follows from Lemma 4.2.4 (corresponding
to non-separating cycle) in [15].



Lemma 1. Let G be a Σ-embedded graph and let G′ be a graph obtained from
G by cutting along a non-contractible noose N on G. Then one of the following
holds
• G′ is the disjoint union of graphs G1 and G2 that can be embedded in surfaces
Σ1 and Σ2 such that eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2.
• G′ can be embedded in a surface with Euler genus strictly smaller than eg(Σ).

Branch-width. A branch decomposition of a graph (or a hyper-graph) G is a
pair (T, τ), where T is a tree with vertices of degree 1 or 3 and τ is a bijection
from the set of leaves of T to E(G). For a subset of edges X ⊆ E(G) let δG(X)
be the set of all vertices incident to edges in X and E(G) \ X . For each edge
e of T , let T1(e) and T2(e) be the sets of leaves in two components of T \ e.
The order of an edge e in T is |

⋃

v∈T1(e)
δG(τ(v))|. In other words, the order of

e is the number of vertices v ∈ V (G) such that there are leaves t1, t2 in T in
different components of T (V (T ), E(T ) \ e) with τ(t1) and τ(t2) both containing
v as an endpoint. The width of (T, τ) is the maximum order over all edges of
T , and the branch-width of G, bw(G), is the minimum width over all branch
decompositions of G.

The following relation was obtained in [11].

Theorem 1 ([11]). For any planar D-dominated graph G, bw(G) ≤ 3
√

4.5
√

|D|.

The following lemma that is based on Theorem 1 and the results of Djidjev
& Venkatesan on planarizing sets in [8].

Lemma 2. For any Σ-embedded graph G on n vertices, bw(G) ≤ (
√

4.5 +
2
√

2 · eg(Σ))
√

n.

3 Kernelization

Alber et al. [2] introduce reduction rules for the dominating set problem. Let
us call these rules AFN-reduction. AFN-reduction can be applied to any graph
G and the domination number of the reduced graph is equal to the domination
number of G. As it was proved in [2], when G is planar, the reduced graph
has at most 335γ(G) vertices, i.e. is a linear kernel. Also it was conjectured in
[2] that AFN-reduction produces a kernel for graphs embedded in a surface of
bounded genus. In this section we give an affirmative answer to this conjecture
by proving that for any Σ-embedded graph G the size of the reduced graph is
O(γ(G) + eg(Σ)).

In fact, the rules of AFN-reduction are not important for our proofs. The
only facts we need are the properties of the reduced graph proved in [2] and due
to space restriction we move the description of the rules to Appendix. We also
call a graph reduced if none of these rules can be applied to it.

The rules are based on a partition of the open neighbourhood of vertices or
pair of vertices into three categories of sets.



For every vertex v ∈ V (G) we partition N(v) into:
• Nexit = {u ∈ N(v) | N(u) − N [v] '= ∅}
• Nguard = {u ∈ N(v) − Nexit | N(u) ∩ Nexit(v) '= ∅}
• Nprison = N(v) − (Nexit(v) ∪ Nguard(v))
For every pair v, w we partition N(v, w) = N(v) ∪ N(w) into:
• Nexit(v, w) = {u ∈ N(v, w) | N(u) − N [v, w] '= ∅}
• Nguard(v, w) = {u ∈ N(v, w) − Nexit(v, w) | N(u) ∩ Nexit(v, w) '= ∅}
• Nprison(v, w) = N(v, w) − (Nexit(v, w) ∪ Nguard(v, w)).

Lemma 3. Let G be an n-vertex Σ-embedded graph. Then AFN-reduction can
be performed in O(n2 · eg(Σ)) steps.

The main result of [2] it is the following:

Theorem 2. For any reduced planar graph G, |V (G)| ≤ 335 · γ(G).

The next proof is a generalization of Theorem 2 for graphs embedded in
arbitrary surfaces of representativity at least 6. Such graphs are “locally planar”
in whatever the AFN-reduction is concerned. In particular, the machinery of the
reduction and the proof of its correctness in [2] are applied on planar discs with
boundary of length ≤ 6. This gives an opportunity to reproduce the arguments
from [2] for Σ-embedded graphs of representativity at least 6.

Theorem 3. Let G be a reduced Σ-embedded graph where rep(G) > 6. Then
|V (G)| ≤ 335 · γ(G) + 333 · eg(Σ).

Let G be a Σ-embedded graph. For a noose N in Σ we define the graph
GN as follows. First we take the graph G′ obtained from G after cutting along
N . Then for every v ∈ N ∩ V (G) if vi, i = 1, 2, is not adjacent to a vertex u
which is pendant in G, we add to G′ a pendant vertex ui adjacent to vi. Thus in
GN each new vertex obtained from splitting of vertices N ∩ V (G) is adjacent to
exactly one pendant vertices. Clearly, GN has the same genus as G′. Since every
dominating set D in G can be turned into dominating set of GN by adding all
new vertices to D, we have that γ(GN ) ≤ γ(G) + 2|N ∩ V (G)|.

According to [2], a graph G is reducible iff it satisfies the following properties:
(i) For every v ∈ V (G), the set Nprison(v) is empty with only one exception:
Nprison(v) can contain one “gadget” pendant vertex.
(ii) For all v, w ∈ V (G) there exist a single vertex v ∈ Nguard(v, w)∪Nprison(v, w)
where Nprison(v, w) ⊆ N [v] (i.e. v dominates all vertices in Nprison(v, w)).

By construction, every vertex vi, i = 1, 2, v ∈ N ∩ V (G), is not a prison
vertex (it is adjacent to pendant vertex) and every vertex vertex has no more
than one pendant neighbor. So we conclude that if G is reducible then GN is
also reducible.

Theorem 4. For any reduced Σ-embedded graph G, |V (G)| ≤ 335(γ(G) + 24 ·
eg(Σ)).

Proof. If Σ = S0, the result follows from Theorem 2. Suppose then that eg(G) >
0. We prove a stronger inequality: |V (G)| ≤ 335(γ(G) + 24eg(Σ) − 12) by in-
duction on eg(Σ). For eg(Σ) = 1 and rep(G) > 6 the result follows from



Theorem 3. For eg(Σ) = 1 and rep(G) ≤ 6, Lemma 1 implies that the graph
G′ obtained from G by cutting along N is planar, and hence the graph GN is
also planar. By Theorem 2 |V (GN )| ≤ 335 · γ(GN ) and thus (the length of N is
at most 6), |V (G)| ≤ |V (GN )| ≤ 335 · γ(GN ) ≤ 335 · (γ(G) + 12).

Assume now that |V (G)| ≤ 335(γ(G)+24 ·eg(Σ)− 12) for any Σ-embedded
graph where 1 ≤ eg(Σ) < g and let G be a Σ-embedded graph where eg(Σ) =
g ≥ 2. Again by Theorem 3, it is enough to examine the case where rep(G) ≤ 6.
Let N be a non-contractible noose of minimum length in Σ. Then the length of
N is at most 6.

By Lemma 1, either GN is the disjoint union of graphs G1 and G2 that can
be embedded in surfaces Σ1 and Σ2 such that eg(Σ) = eg(Σ1) + eg(Σ2) and
eg(Σi) > 0, i = 1, 2 (this is the case when N is surface separating curve), or
GN can be embedded in a surface with Euler genus strictly smaller than eg(Σ)
(this holds when N is not surface separating).

Let us consider first the case when GN is the disjoint union of graphs G1 and
G2 that can be embedded in surfaces Σ1 and Σ2. As we discussed above, GN is
a reduced graph and thus G1 and G2 are also reduced graphs. The conditions
eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2, imply that 1 ≤ eg(Σi) ≤
eg(Σ) − 1 < g. Therefore we can apply the induction hypothesis on Gi and get
that |V (Gi)| ≤ 335(γ(Gi)+24 ·eg(Σi)−12), i = 1, 2. Thus |V (G)| ≤ |V (GN )| =
|V (G1)|+|V (G2) ≤ 335(γ(G1)+24·eg(Σ1)−12)+335(γ(G2)+24·eg(Σ2)−12) =
335(γ(G1)+γ(G2)+24 ·eg(Σ1)+24 ·eg(Σ2)−24) = 335(γ(G′)+24 · (eg(Σ′

1)+
eg(Σ′

2))−24) ≤ 335(γ(G)+12+24 ·eg(Σ)−24) = 335(γ(G)+24 ·eg(Σ)−12).
For the second case, when GN can be embedded in a surface Σ′ with Euler
genus strictly smaller than eg(Σ), we have that 1 ≤ eg(Σ′) ≤ eg(Σ) − 1 < g
and therefore we can apply the induction hypothesis on GN . Thus |V (G)| ≤
|V (GN )| ≤ 335(γ(GN)+24·eg(Σ′)−12) ≤ 335(γ(G)+12+24·(eg(Σ)−1)−12) ≤
335(γ(G) + 24 · eg(Σ) − 24) < 335(γ(G) + 24 · eg(Σ) − 12) ,-

Lemma 3 and Theorem 4 imply the main result of this section.

Theorem 5. Let G be a graph that can be embedded in Σ. AFN-reduction con-
structs in O(n3 · eg(Σ)) steps a graph G′ of size ≤ 335(γ(G) + 24 · eg(Σ)) such
that γ(G) = γ(G′).

4 Direct consequences of the kernel construction

As far as we have kernel reduction we can improve the algorithms given in [5,
11, 12] for the dominating set problem. The key observation is that after the
AFN-reduction, the size of the remaining kernel depends only on the genus and
the minimum dominating set of the initial graph and, because of Lemma 2, the
same will hold for its branchwidth as well.

Theorem 6. For a given graph G and constants k, g, there is an 2O(
√

kg+g)

poly(k, g) + O(n3) algorithm that either computes a dominating set in G of size
≤ k, or concludes that at least one of the following holds: (a) γ(G) > k, (b) G
can not be embedded in a surface of Euler genus g.



Theorem 6 improves asymptotically the algorithm for dominating set in [5] that

requires 2O(g
√

k+g2)nO(1) steps. However, we should admit that the hidden con-
stants in the big-O notation are quite big. Even using the smallest factor ap-
proximation algorithm of [3], for k = 1 and eg(Σ) = 1 the algorithm requires
more than 2200 steps, which makes this result interesting only from theoretical
point of view. In the next section we explain how the combinatorial bound to the
branchwidth of G′ in step 3 can be improved. Such an improvement immediately
accelerates steps 2 and 3 that dominate the exponential part of the running time
of the algorithm.

5 Better combinatorial bounds – faster algorithms

We call a D-dominated graph G uniquely dominated if there is no path of length
< 3 connecting two vertices of D. Notice that this implies that each vertex
x ∈ V (G) \ D has exactly one neighbor in D (i.e. is uniquely dominated). The
proof of the following normalization lemma is omitted because of lack of space.

Lemma 4. For every D-dominated Σ-embedded graph G without multiple edges,
there exists a Σ-embedded graph H such that (a) G is a minor of H, (b) H is
uniquely D-dominated, (c) If x, y ∈ D have distance 3 in H then there exist
at least two internally disjoint (x, y)-paths in H, and (d) Any D-noose of Σ is
consecutive.

Let G be a connected D-dominated Σ-embedded graph satisfying properties
(b) – (d) of Lemma 4. We call such graphs nicely D-dominated Σ-embedded
graphs.

Let G be a nicely D-dominated Σ-embedded graph. We say that a cycle of
length 6 is a D-cycle if it contains exactly two vertices from D. If rep(G) > 6,
every D-cycle C is contractible and thus one of the components of Σ \ C is
homeomorphic to {(x, y) : x2 + y2 ≤ 1}. We denote such a disk by disk(C).
Clearly, G ∩ disk(C) is a planar graph.

A D-cycle C of a nicely D-dominated Σ-embedded graph G is maximal if
there is no D-cycle of G where disk(C) ⊂ disk(C′). We denote as C(G) the set
of all the maximal cycles of G.

For a nicely D-dominated Σ-embedded graph G and the set C(G) of all
maximal D-cycles of G, we define hypergraph H(G) = (V (G), E(G) ∪ {V (C) |
C ∈ C(G)}), i.e. H(G) is obtained from G by adding hyperedges corresponding
to maximal D-cycles of G. Clearly, bw(G) ≤ bw(H(G)).

If representativity of G is more than 6, for every D-maximal cycle C (which
is of length 6), the hypergraph H(C) = H(G)∩disk(C) is a hypergraph that can
be obtained from a planar graph H(C) by adding one hyperedge of cardinality
6. Since the planar graph H is D′-dominated for some D′ ⊆ D, we have that by
Theorem 1, bw(H(C)) ≤ 3

√
4.5

√

|D| + 6.
We also define a hypergraph S(G) as the hypergraph obtained by removing

from H(G) all edges of graphs G∩disk(C), C ∈ C(G). Using properties (c) and



(d) one can prove that the hyperedges of S(G) are exactly the maximal D-cycles
of G (all edges of G will be removed).

We need the following technical Lemma from [11]

Lemma 5. If G1 and G2 are hypergraphs where V (G1) ∩ V (G1) = f and {f} =
E(G1) ∩ E(G2), then bw(G1 ∪ G2) ≤ max{bw(G1),bw(G1), |f |}.

For every C ∈ C(G) hypergraphs H(C) and S(G) have only hyperedge C in
common and Theorem 1 and Lemma 5 imply the following result.

Lemma 6. Let G be a nicely D-dominated Σ-embedded graph of representativity
> 6. Then bw(G) ≤ bw(H(G)) ≤ max{3

√
4.5

√

|D| + 6,bw(S(G))}.

Thus to obtain the upper bound for branch-width of nicely dominated graphs
we need to estimate the branch-width of S(G).

Lemma 7. Let G be a nicely D-dominated Σ-embedded graph of representativity
> 6. Then bw(S(G)) ≤ 3(

√
4.5 + 2

√

2 · eg(Σ))
√

|D|.

Proof (Sketch). Let us show first that for any two distinct maximal cycles
C1, C2 ∈ C(G) (i): For each u ∈ V (C1) ∩ V (C2), u ∈ NG[v] for some v ∈ D.

In other words, for any two distinct maximal cycles C1, C2 ∈ C(G) the set
C1∩C2 is either empty, or a vertex of D, or a set of vertices adjacent to one vertex
of D. In fact, if (V (C1) ∩ V (C2)) ∩D = ∅ then every vertex u ∈ V (C1) ∩ V (C2)
is not uniquely dominated. If |V ((C1) ∩ V (C2)) ∩ D| = 2 then cycles are not
maximal. If (V (C1) ∩ V (C2)) ∩ D = v, we again have that every vertex u ∈
(V (C1)∩V (C2)) \NG[v] is not uniquely dominated. In all three cases we obtain
a contradiction either to the definition of maximal cycle, or to the property (b)
of nicely D-dominated graphs.

To estimate the value of bw(S(G)) we need the following notion. Let D′

be the set of vertices of D that are also vertices of some maximal cycles, i.e.
D′ = D ∩

⋃

C∈C(G) V (C). For a nicely D-dominated Σ-embedded graph G and
the set of its maximal D-cycles C we define concise graph, con(G), as the graph
with vertex set D′ and where two vertices x, y ∈ D′ are adjacent in con(G)
if and only if the distance x and y in G is 3. There is a natural bijection π
correspondence between hyperedges of S(G) and con(G). Every cycle C ∈ C(G)
(which is edge in S(G)) π maps to an edge of con(G) with endpoints D∩V (C).
By property (c) of nicely dominated graphs, π is surjection. Because cycles in C
are maximal, π is injection.

By making use of (i) one can prove that con(G) is also Σ-embedded graph.
Then by Lemma 2, bw(con(G)) ≤ (

√
4.5+2

√

2 · eg(Σ))
√

|D| (ii) which implies
the lemma if bw(S(C)) ≤ 3 · bw(con(G)) (iii).

Let us prove (iii) first for the case when the maximum vertex degree in
con(G) is at most 3. Let A, B be a partition of C(G). We claim that |δS(C)(A)| ≤
3|δcon(G)(π(A))| (iv). Let v ∈ D. By (i), every u ∈ NG(v) is contained in at
most two hyperedges of S(G) and both these edges contain v. Also for every
vertex u ∈ NG(v), u ∈ δS(G)(A) if and only if u ∈ V (C1) ∩ V (C2) for some
C1 ∈ A and C2 ∈ B. The degree of v in con(G) is ≤ 3. Thus v is contained in



at most three maximal cycles and therefore at most two neighbors of v in G can
be in δS(G)(A). Hence For each v ∈ δcon(G)(π(A)), |NG[v] ∩ δS(G)(A)| ≤ 3 (v).
Now (iv) follows from (i) and (v). Finally, (iv) implies (iii) when the maximum
vertex degree of con(G) is at most 3.

To prove (iii) in general case we need the following deep result following
from Theorem (4.3) of [17] and (6.6) of [18]: for any Σ-embedded graph G of
branch-width ≥ 2, the branch-width of G is equal to the branch-width of its
dual.

A Σ-embedded graph G is multiply triangulated if all its regions are of length
2 or 3. A graph is (2, 3)-regular if all its vertices have degree 2 or 3. Notice that
the dual of a multiply triangulated graph is (2, 3)-regular and vice versa. The
proof of the following claim is similar to the proof for planar graphs (Lemma
3.3 in [11]) and we omit it here. Every 2-connected Σ-embedded graph G has a
weak triangulation H such that bw(H) = bw(G).

We claim now that every 2-connectedΣ-embedded graph G is the contraction
of a (2,3)-regular Σ-embedded graph H such that bw(H) = bw(G). In fact, let
Gd be the dual graph of G. By Robertson & Seymour theorem, bw(Gd) =
bw(G). There is a weak triangulation Hd of Gd such that bw(Hd) = bw(Gd).
The dual of Hd, we denote it by H , contains G as a contraction (each edge
removal in a Σ-embedded graph corresponds to an edge contraction in its dual
and vice versa). Applying Robertson & Seymour the second time, we obtain that
bw(H) = bw(Hd). Hence, bw(H) = bw(G). Since Hd is multiply triangulated,
we have that H is (2, 3)-regular.

Suppose that now that con(G) is 2-connected. For con(G) we construct
(2,3)-regular Σ-embedded graph H such that con(G) is the contraction of H
and bw(H) = bw(con(G)). Then one can construct a hypergraph ext(H) such
that bw(S(G)) ≤ bw(ext(H)) and H is the concise graph of ext(H). Such a
construction is similar to the case of planar graphs (see [11]) and we omit it
here. Since (iii) is already proved for concise graphs of degree ≤ 3, we have that
bw(S(G)) ≤ bw(ext(H)) ≤ 3 · bw(H) = 3 · bw(con(G)) and (iii) follows.

So we proved that (iii) holds when con(G) is 2-connected. To finish the proof
we use induction on the number of 2-connected components of con(G). ,-

Theorem 7. For any Σ-embedded graph G,
bw(G) ≤ 3(

√
4.5 + 2

√

2 · eg(Σ))
√

γ(G) + 6 · eg(G).

Proof. We use induction on the Euler genus of Σ. For Σ = S0 the result follows
from Theorem 1. Suppose that the theorem is correct for all graphs that can be
embedded in surfaces of Euler genus < g for some g > 0. Let G be a D-dominated
Σ-embedded graph where eg(Σ) = g. If representativity of G is more than 6,
By Lemma 4, there is a nicely D-dominated graph H such that G is a minor
of H . Thus bw(G) ≤ bw(H) and by Lemmata 6 and 7, bw(G) ≤ bw(H) ≤
3(
√

4.5 + 2
√

2 · eg(Σ))
√

|D|.
If representativity of G is ≤ 6, let G′ be the graph obtained from G by

cutting along a non-contractible noose N of length ≤ 6. Let G1, . . . , Gq be the
connected components of G′. Clearly, each of the components Gi has a domi-
nating set of size at most |D|+ 6. By Lemma 5, bw(G) ≤ max1≤i≤q bw(Gi)+6



and by Lemma 1, every component Gi of G′ can be embedded in a surface
Σi of Euler genus ≤ g − 1. Thus bw(G) ≤ max1≤i≤q bw(Gi) + 6 ≤ 3(

√
4.5 +

2
√

2 · (g − 1))
√

|D| + 6 + 6 · (g − 1) + 6 ≤ 3(
√

4.5 + 2
√

2 · g)
√

|D| + 6 · g. ,-

A simplification of the formula in Theorem 7 gives that any graph with domi-
nating set ≤ k and Euler genus ≤ g has branchwidth at most (7+9

√
g)
√

k + 6g.
Applying Theorem 7 to the reduced graph G′ in the second step of the algo-
rithm of Theorem 6 we have that bw(G′) ≤ (7 + 9

√
g)
√

k + 6g. Therefore, it is
enough to apply Amir’s algorithm for ω = 3

2 (7 + 9
√

g)
√

k + 6g and get a tree
decomposition of width ≤ (3 + 2

3 )3
2 (7 + 9

√
g)
√

k + 6g = 5.5 · (7 + 9
√

g)
√

k + 6g.
This improves significantly the constants of the exponential part in the time of
the algorithm in Theorem 6. As we will see in the next section, Theorem 7 has
consequences to the design of subexponential parameterized algorithms for more
parameters.

6 Generalizations

The combinatorial and algorithmic results of the previous two sections can be
generalized to a general family of parameters. Due to lack of space we just men-
tion the results and leave the proofs for the full version. We describe a general
class of parameterized problems C including minimum vertex cover, the mini-
mum edge dominating set, the minimum clique transversal set, the minimum
vertex feedback set, the minimum maximal matching, variations of domina-
tion like minimum independent dominating set, the total minimum dominat-
ing set, the minimum perfect dominating set, the minimum perfect code, the
minimum weighted dominating set, and the minimum total perfect dominat-
ing set, and prove that for any graph G every problem in P can be solved in

2O(
√

k·eg(G)+eg(G))nO(1) steps. This implies that for eg(G) = o(log n) all these
problems can be solved in subexponential parameterized time (i.e. in 2o(k)nO(1)-
time) and for eg(Σ) = o(n) all these problems can be computed in subexponen-
tial time (i.e. in 2o(n)-time).
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