
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 69 (2004) 166–195

Approximation algorithms for classes of graphs excluding
single-crossing graphs as minors$

Erik D. Demaine,a MohammadTaghi Hajiaghayi,a Naomi Nishimura,b,1

Prabhakar Ragde,b,�,1 and Dimitrios M. Thilikosc,2

aLaboratory for Computer Science, Massachusetts Institute of Technology, 200 Technology Square, Cambridge,

MA 02139, USA
bSchool of Computer Science, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L 3G1
cDepartament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Campus Nord—Mòdul C5,

Desp. 211b, c/Jordi Girona Salgado, 1-3. E-08034, Barcelona, Spain

Received 20 January 2003; revised 28 November 2003

Abstract

Many problems that are intractable for general graphs allow polynomial-time solutions for structured
classes of graphs, such as planar graphs and graphs of bounded treewidth. In this paper, we demonstrate
structural properties of larger classes of graphs and show how to exploit the properties to obtain
algorithms. The classes considered are those formed by excluding as a minor a graph that can be embedded
in the plane with at most one crossing. We show that graphs in these classes can be decomposed into planar
graphs and graphs of small treewidth; we use the decomposition to show that all such graphs have locally
bounded treewidth (all subgraphs of a certain form are graphs of bounded treewidth). Finally, we make use
of the structural properties to derive polynomial-time algorithms for approximating treewidth within a
factor of 1.5 and branchwidth within a factor of 2.25 as well as polynomial-time approximation schemes for
both minimization and maximization problems and fixed-parameter algorithms for problems such as vertex
cover, edge-dominating set, feedback vertex set, and others.
r 2004 Elsevier Inc. All rights reserved.

ARTICLE IN PRESS

$Parts of this paper appeared in the Proceedings of the Fifth International Workshop on Approximation Algorithms

for Combinatorial Optimization (APPROX 2002) and in the Proceedings of the Euroconference on Combinatorics,

Graph Theory, and Applications (COMB 2001).
�Corresponding author.

E-mail addresses: edemaine@theory.lcs.mit.edu (E.D. Demaine), hajiagha@theory.lcs.mit.edu (M.T. Hajiaghayi),

nishi@uwaterloo.ca (N. Nishimura), plragde@uwaterloo.ca (P. Ragde), sedthilk@lsi.upc.es (D.M. Thilikos).
1Research was supported by the Natural Sciences and Engineering Research Council of Canada and Communication

and Information Technology Ontario.
2Work was supported by the IST Programme of the EU under Contract IST-1999-14186 (ALCOM-FT), the Spanish

CICYT project TIC2000-1970-CE, and the Ministry of Education and Culture of Spain (Resolución 31/7/00 – BOE 16/

8/00).

0022-0000/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcss.2003.12.001

1. Introduction

The development of algorithms for NP-complete problems on restricted classes of graphs has
resulted in structural characterizations of algorithmic utility. For example, algorithms for graphs
of bounded treewidth rely on techniques using separator properties resulting from tree
decompositions. In this paper we focus on graph classes obtained by excluding a single-crossing
graph as a minor. We present a polynomial-time algorithm that determines a clique-sum

decomposition of such a graph, a representation of the graph as a collection of planar graphs and
graphs of small treewidth (defined formally in Section 3). Our result generalizes previous
decomposition results for graphs excluding special single-crossing graphs such as K3;3 [Asa85] and

K5 [KM92]. A second structural property is that of locally bounded treewidth which allows a layer
decomposition, enabling us to represent a graph as a collection of subgraphs, each of bounded
treewidth (formal definitions follow in Section 4). In order to take advantage of the bound on
treewidth of the subgraphs, we give a tree decomposition algorithm for this special case, adding to
the toolkit of tree decomposition algorithms for small bounds on treewidth [AP86,MT92,San96]
and r-outerplanar graphs [ABF+02] that reduce the prohibitively high constant factors found in
algorithms for more general graphs [Lag96,BK96,Bod96].
Included among the results in this paper are several applications of our structural

characterizations and algorithms. Using clique-sum decompositions, we obtain the first
constant-factor approximation algorithm for treewidth of nonplanar graphs. Furthermore, we
use properties of layer decompositions to form polynomial-time approximation schemes for a
range of maximization and minimization problems, as well as fixed-parameter algorithms for
dominating set and related problems.
We present decomposition results followed by algorithms for NP-complete problems. Sections

2–4 present general results from which applications are derived in Sections 5–7. First, in Section 2,
we introduce the terminology used throughout the paper. Next, in Section 3, we introduce the
concept of clique sums and demonstrate how graphs excluding single-crossing graphs as minors
can be characterized using a clique-sum decomposition. The fact that such graphs have bounded
local treewidth is established in Section 4, which also gives an algorithm for computing the tree
decomposition of a local neighborhood in a graph. The rest of the paper contains results that
follow from these properties: an approximation algorithm for treewidth (Section 5), polynomial-
time approximation schemes for optimization problems (Section 6), and fixed-parameter
algorithms for dominating set and its variants (Section 7). Finally, in Section 8, we summarize
our results and present directions for further research.

2. Background

2.1. Graph terminology

We assume that the reader is familiar with general concepts of graph theory such as graphs,
trees, and planar graphs. The reader is referred to standard references for appropriate background
[BM76]. Here we review a few terms used in this paper; others will be defined in the context of
their use.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 167

Throughout this paper, all graphs are finite, simple, and undirected, unless indicated otherwise.
A graph G is represented by G ¼ ðV ;EÞ; where V (or VðGÞ) is the set of vertices and E (or EðGÞ)
is the set of edges; we use n to denote jV j when G is clear from context. An edge e in a graph G
between u and v is denoted by fu; vg or, equivalently, fv; ug: Here, vertices u and v are called the
endpoints of e:
In our algorithms we will consider pieces of graphs as well as ways of joining pieces to form

larger graphs. A graph G0 ¼ ðV 0;E0Þ is a subgraph of G if V 0DV and E0DE; and is an induced
subgraph of G; denoted by G½V 0
; if in addition E0 contains all edges of E that have both endpoints
in V 0: The (disjoint) union of two disjoint graphs G1 and G2; G1,G2; is a graph G formed by
merging vertex and edge sets, so that VðGÞ ¼ VðG1Þ,VðG2Þ and EðGÞ ¼ EðG1Þ,EðG2Þ:
We define the r-neighborhood of a set SDVðGÞ; denoted by Nr

GðSÞ; to be the set of vertices at

distance at most r from at least one vertex of SDVðGÞ; if S ¼ fvg we simply use the notation
Nr

GðvÞ: The diameter of G; denoted by diamðGÞ; is the maximum over all distances between pairs

of vertices of G: An n-clique ðKnÞ is an n-vertex graph in which every pair of vertices is connected
by an edge. The vertices of the graph Kn;m can be partitioned into sets V1 and V2 such that

jV1j ¼ n; jV2j ¼ m; and the edge set consists of all edges fu; vg such that uAV1 and vAV2: A
graph G ¼ ðV ;EÞ is k-connected if for any SDVðGÞ such that jSjpk; G½V � S
 is connected.
A graph is planar if it can be drawn in the plane so that its edges intersect only at their

endpoints; such a drawing is called an embedding. An embedding partitions the plane into
connected regions called faces; the unbounded region is called the outer face. A graph with all
vertices on the outer face is called outerplanar; a k-outerplanar graph has the property that k
successive deletions of the vertices on the outer face results in the empty graph.
We consider classes of graphs that are associated with single-crossing graphs, as defined by

Robertson and Seymour [RS93]. To define this notion, we first need the concept of a minor. A
graph G is a minor of a graph H if H can be obtained from a subgraph of G by contracting zero or
more edges. To contract an edge e ¼ fu; vg is to replace both u and v by a single vertex w and to
form an edge between w and any neighbor of u or v other than u or v: A single-crossing graph can
now be defined as a graph that is a minor of one that can be drawn in the plane with at most one
pair of edges crossing. Note that a single-crossing graph may itself not be drawable in this fashion.
Fig. 1 shows to the left three examples of single-crossing graphs; the third one cannot be drawn in
the plane with only one crossing, but is obtainable by edge contraction from the graph to the
right, which can be so drawn.
We consider classes of graphs that do not contain a particular single-crossing graph as a minor.

A graph class C is a minor-closed class if any minor of any graph in C is also a member of C: A

ARTICLE IN PRESS

Fig. 1. Examples of single-crossing graphs.

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195168

graph G is H-minor-free if H is not a minor of G; we will call such a graph a single-crossing-minor-

free graph when H is a single-crossing graph. The following lemma is a consequence of closure
under minors; in contrast, the class of graphs that can be drawn in the plane with at most one pair
of edges crossing is not closed under minors, as Fig. 1 shows.

Lemma 1. If single-crossing-minor-free graph G excludes a single-crossing graph H as a minor, any

minor G0 of G is also a single-crossing-minor-free graph which excludes H as a minor.

The following example demonstrates that single-crossing-minor-free graphs can be considerably
more complicated than single-crossing graphs. Form a graph on n ¼ 6k vertices by taking k copies
of K3;3 and adding k � 1 edges to connect them into a path-like structure. This graph has YðnÞ
crossings, but is K5-minor-free. In fact, any graph can be shown to be a single-crossing-minor-free
graph, where the excluded single-crossing graph is a sufficiently large grid. However, our
algorithms are really only of interest when the excluded graph is small.

2.2. Treewidth and locally bounded treewidth

Treewidth plays an important role in this paper, as a property of inputs as well as the objective
of an algorithm. The notion was first defined by Robertson and Seymour [RS84] and served as
one of the cornerstones of their lengthy proof of Wagner’s conjecture, now known as the
Graph Minors Theorem [RS85]. Treewidth has several applications in algorithmic graph
theory: a wide range of otherwise-intractable combinatorial problems are polynomially
solvable, often linearly solvable, when restricted to graphs of bounded treewidth [ACP87,
Bod93,Bod97,Bod98].
The treewidth of a graph is the minimum k such that the graph can be ‘‘decomposed’’ into a tree

structure of bags of at most k þ 1 vertices such that each vertex of the graph appears in a
connected subtree of bags, and endpoints of any edge appear together in at least one bag.

Definition 1. [RS86]. A tree decomposition of a graph G ¼ ðV ;EÞ; denoted by TDðGÞ; is
a pair ðw;TÞ in which T ¼ ðI ;FÞ is a tree and w ¼ fwijiAIg is a family of subsets of VðGÞ such
that:

1.
S

iAI wi ¼ V ;
2. for each edge e ¼ fu; vgAE there exists an iAI such that both u and v belong to wi; and
3. for all vAV ; the set of nodes fiAI jvAwig forms a connected subtree of T :

We distinguish between vertices of the original graph G and nodes of T in TDðGÞ; and use the
term bag to refer to a set wi: The maximum size of a bag in TDðGÞ minus one is called the width of
the tree decomposition. The treewidth of a graph G ðtwðGÞÞ is the minimum width over all
possible tree decompositions of G:
A graph of bounded treewidth is a graph of treewidth at most k; for k a constant independent of

the size of the graph. A related notion is that of a k-tree [Ros74], a graph G such that either G is a
k-clique or G has a vertex u of degree k such that u is adjacent to a k-clique, and the graph
obtained by deleting u and all its incident edges is a k-tree. It has been shown that for any k; the

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 169

class of graphs of treewidth at most k is equivalent to the class of partial k-trees, that is,
subgraphs of k-trees [vL90]. The idea of treewidth can be generalized to that of locally
bounded treewidth [Epp00], in which each local subgraph has treewidth bounded by a function
of r:

Definition 2. The local treewidth of a graph G is the function ltwG :N-N that associates with

every rAN the maximum treewidth of an r-neighborhood in G: We set ltwGðrÞ ¼
maxvAVðGÞ ftwðG½Nr

GðvÞ
Þg; and we say that a graph class C has bounded local treewidth (or

locally bounded treewidth) when there is a function f :N-N such that for all GAC and

rAN; ltwGðrÞpf ðrÞ:

Furthermore, Eppstein [Epp00] showed that a minor-closed graph class C has bounded local
treewidth if and only if every graph in C is H-minor-free for some apex graph H; where in any
apex graph there exists a vertex whose deletion produces a planar graph. The following lemma
proves useful in our results:

Lemma 2. For any graph G and subgraph G0 of G; ltwG0 ðkÞpltwGðkÞ; for any kX0:

Proof. It is enough to observe that for any vAG0 and kX0; Nk
G0 ðvÞDNk

GðvÞ: Thus the removal of

vertices of Nk
GðvÞ\Nk

G0 ðvÞ from bags of a tree decomposition of Nk
GðvÞ results in a tree

decomposition of Nk
G0 ðvÞ with width at most that of G: &

3. Clique-sum decompositions

3.1. Clique sums

The structural properties proved in this paper rely on the operation of graph summation, the
formation of a graph by identifying cliques in two smaller graphs, removing zero or more edges
from the cliques, and then ‘‘gluing’’ the vertex sets of the cliques. More formally, we consider
graphs G1 and G2 with disjoint vertex-sets. For each iA1; 2 and for Gi½Wi
 a clique of size kZ0; we
define G0

i to be a graph formed from Gi by removing zero or more edges from Gi½Wi
: For any
bijection h : W1-W2 we define a k-sum G of G1 and G2; denoted by G ¼ G1"kG2 (or, more
simply, by G ¼ G1"G2), to be the graph obtained by identifying w with hðwÞ for all wAW1 to
form the union of G0

1 and G0
2 and replacing the resultant double edges with single edges. The

images of the vertices of W1 and W2 in G1"kG2 form the join set. In the rest of this section, when
we refer to a vertex v of G in G1 or G2; we mean the corresponding vertex of v in G1 or G2 (or
both).
The result of the operation will depend on which (if any) edges are removed from the cliques as

well as which bijection is selected, so the operation" can have a set of possible results, and hence
is not well-defined. A series of k-sums (not necessarily unique) that generate a graph G is called a
decomposition of G into clique-sum operations.
Fig. 2 demonstrates an example of a 5-sum operation.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195170

3.2. Relating clique sums to treewidth and local treewidth

The following lemma shows how the treewidth changes when we apply a clique-sum operation,
which will play an important role in our approximation algorithms in Section 5.

Lemma 3 (Bodlaender et al. [BvLTT97]). For any two graphs G and H; twðG"HÞp
maxftwðGÞ; twðHÞg:

Proof. We begin by observing that we can form a tree decomposition TDðGÞ of G of width twðGÞ
and a tree decomposition TDðHÞ of H of width twðHÞ: For W the set of vertices of G and H
identified during the" operation, W is a clique in G and in H: As vertices in a clique must appear
together in a bag in any decomposition of the graph [BM93], there exist a node a in TDðGÞ such
that WDwa and a node b in TDðHÞ such that WDwb:Hence, we can form a tree decomposition of

width maxftwðGÞ; twðHÞg of G"H by adding an edge between a in TDðGÞ and b in TDðHÞ: &

To extend the result to graphs of bounded local treewidth in Lemma 6 (Section 4), in Lemma 4 we
establish treewidth properties for neighborhoods of graphs.

Lemma 4. For any graph G; any clique R of G; any vAR; and any kX0; twðG½Nk
GðRÞ
Þp

twðG½Nkþ1
G ðvÞ
Þ:

Proof. We note that all vertices in R � v are at distance 1 from v: Therefore Nk
G1
ðRÞDNkþ1

G1
ðvÞ;

and the result follows from Lemma 2. &

ARTICLE IN PRESS

Fig. 2. Example of a 5-sum of two graphs.

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 171

3.3. Decomposition algorithm

The main theorem of this section is a constructive version of the following non-algorithmic
result of Robertson and Seymour, itself used in our algorithm.

Theorem 1 (Robertson and Seymour [RS93]). For any single-crossing graph H; there is an integer
cHX4 (depending only on H) such that every H-minor-free graph can be obtained by 0-, 1-, 2- or 3-
sums of planar graphs and graphs of treewidth at most cH :

In the remainder of the paper we will assume that cH is the smallest integer for which Theorem 1
holds. Although previous algorithms have been developed for decomposing specific single-
crossing-minor-free graphs into series of clique sums (Asano [Asa85] gave an OðnÞ-time

construction for K3;3-minor-free graphs and Kézdy and McGuinness [KM92] gave an Oðn2Þ-time

construction for K5-minor-free graphs), ours is the first general algorithm. For more examples of
graph classes that can be characterized by clique-sum decompositions, see the work of Diestel
[Die89,Die91]. Theorem 2 below describes a constructive algorithm to obtain a clique-sum
decomposition of a single-crossing-minor-free graph G that satisfies the additional property that
the smaller graphs are minors of G: The additional property is crucial for designing
approximation algorithms in Section 5.
To form a clique-sum decomposition of graphs that are minors of the original graph, we

consider graphs formed by first removing a set of vertices from the graph and then reinserting the
removed vertices in each resulting connected component. More formally, we define a subset SDV
to be a k-cut if the induced subgraph G½V � S
 is disconnected and jSj ¼ k; and to be a strong

k-cut if in addition G½V � S
 either has more than two connected components or each component
has more than one vertex. For S a strong cut that separates G into components G1;y;Gh; we
form the augmented components induced by S; denoted Gi,KðSÞ for 1piph; as the graphs
obtained from graphs G½VðGiÞ,S
 by adding an edge between each pair of nonadjacent vertices
in S: Each augmented component will contain as a subgraph a clique on the vertices in S: The
influence of strong cuts on augmented components is fundamental in the proof of our theorem. By
introducing a less strict definition of strong cuts, we obtain a stronger version of an earlier lemma
[KM92].

Lemma 5. Let S be a strong 3-cut of a 3-connected graph G ¼ ðV ;EÞ; and let G1;G2;y;Gh denote
the h components of G½V � S
: Then each augmented component of G induced by S; Gi,KðSÞ; is a

minor of G:

Proof. We first consider the case in which hX3: By symmetry, it will suffice to show that
G1,KðSÞ is a minor of G by forming the graph by a series of contractions in G: Starting
with G; we first contract all edges of G2 through Gh to obtain super-vertices y2 through yh

(we use the term super-vertices to denote vertices that are the result of the contraction of
all the edges in specific connected subgraphs of G). Because G is 3-connected, each
super-vertex is adjacent to all vertices x1; x2; and x3 in S: We now contract the edge fx2; y2g to
form a super-vertex x0

2 and contract edges between y3 through yh and x3 to form a

super-vertex x0
3: Again since each yi was adjacent to each xj; we can conclude that x1; x0

2;

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195172

and x0
3 form a clique and hence the resulting graph is the augmented component G1,KðSÞ;

as needed.
If instead h ¼ 2; then by the definition of a strong cut G1 and G2 each contain at least two

vertices. As in the previous case, it will suffice to show that G1,KðSÞ is a minor of G; as the
argument for G2,KðSÞ is symmetric. Again, we demonstrate a series of contractions that results
in G1 as well as a clique on the vertices x1; x2; and x3 of S: We consider separately the cases in
which G2 is a tree and G2 contains a cycle.
If G2 is a tree, then because G is 3-connected, there is a vertex y1 in G2 that neighbors x1; and

similarly a vertex y3ay1 in G2 that neighbors x3: We contract edges in G2 until there remain two
super-vertices y0

1 and y03; connected to x1 and x3 respectively. Since G2 is connected but acyclic,

there will be a single edge between y0
1 and y03: Moreover, since G is 3-connected, there is an edge

between x2 and either y0
1 or y03; say y0

1: Finally, again because G is 3-connected, y0
3 must be adjacent

to a vertex of S other than x3; that is, either x2 or x1: In either case we can form a clique on the
vertices in S; by contracting edges fx1; y

0
1g and fx3; y03g if y03 is adjacent to x2 or by contracting the

edges fx2; y01g and fx3; y
0
3g if y0

3 is adjacent to x1:
Finally suppose that G2 has a cycle C: We claim that there are three vertex-disjoint paths

connecting three vertices of C to three vertices of S in G2: By contracting these paths and then
contracting edges of C to form a triangle, we have a clique on the vertices of S as desired. To
prove the claim, we augment the graph G by adding a vertex v1 connected to every vertex in S; and
by adding a vertex v2 connected to every vertex in C: Because jSj ¼ 3 and jCjX3; the augmented
graph is still 3-connected. Therefore there exist at least three vertex-disjoint paths from v1 to v2:
Each internal vertex on each of these paths must be in G2; and each path must contain an edge
from v1 to a vertex of S and an edge from a vertex of C to v2: We obtain the desired paths by
removing v1 and v2 from each path. &

Theorem 2. For any graph G excluding a single-crossing graph H as a minor, we can construct in

Oðn4Þ time a series of clique-sum operations G ¼ G1"G2"?"Gm where each Gi; 1pipm; is a
minor of G and is either a planar graph or a graph of treewidth at most cH : Here each " is a 0-,
1-, 2- or 3-sum.

Proof. The algorithm proceeds by recursively determining connectivity of subgraphs of the
original graph, where different decompositions are used depending on the type of cut.
When considering graph G; we first determine whether it is 1-, 2-, or 3-connected. If
G is disconnected, each of its connected components is considered separately, and all are joined
by 0-sums to form G: If G has a 1-cut, 2-cut, or strong 3-cut S; we recursively apply the algorithm
on the augmented components induced by S; applying, respectively, 1-, 2-, or 3-sums. Finally, if G

is 3-connected but has no strong 3-cut, then we claim that it is either planar or has treewidth at
most cH :
We first prove the correctness of the outline above, and later fill in the algorithmic details and

analyze the running time. To show that the recursive application of the algorithm will yield a
correct solution, we need to show that each subgraph created is a minor of G (and hence is H-
minor-free by Lemma 1). A connected component of a disconnected graph or an augmented
component resulting from a 1-cut is a subgraph of G; and hence a minor. For an augmented
component formed by a 2-cut, the 2-connectivity of G guarantees that any component must

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 173

connect to both vertices in the cut, and hence edges can be contracted to yield the edge added in
the augmentation. Lemma 5 handles the case in which there is a strong 3-cut.
Finally, we need to prove that if graph G is 3-connected but has no strong 3-cut, then either the

treewidth of G is at most cH or G is planar. Suppose instead that neither of these properties hold.
Since G is H-minor-free and 3-connected, by Theorem 1, G can be obtained by 3-sums of a
sequence of graphs C; where each graph in C is either planar or of treewidth at most cHX4: As G

has no strong 3-cut, for any join set S in the clique-sum decomposition G � S may contain at most
one component with more than one vertex, and hence at most one graph in C can have more than
four vertices. If every graph in C has at most four vertices and hence treewidth at most 3 (and
hence less than cH), then by Lemma 3, G would have treewidth less than cH ; contradicting our
assumption. We can thus conclude that C contains subgraphs of K4 and one planar graph of at
least five vertices and of treewidth greater than cH :
To complete the proof of correctness, we will show that our assumption about C yields a

contradiction, that is, that G has a strong 3-cut. Since G is not planar but every graph in C is
planar, during the clique-sum operations forming G; there exists a graph JAC and a 3-sum
G00 ¼ G0"J with join set S such that G0 is planar but G00 is not planar. It is not possible to form
planar embeddings of both J and G0 such that S forms the outer face, since if this were possible,
the two embeddings could be joined to form a planar embedding of G00 (e.g. J would be embedded
inside the triangle and G0 outside). We can thus conclude that there are at least three components
in G00 � S; which implies that S is a strong 3-cut in G00 and hence in G; a contradiction.
To analyze the running time of the algorithm, we first recall that any graph G excluding an

r-clique as a minor cannot have more than ð0:319þ oð1ÞÞðr
ffiffiffiffiffiffiffiffiffiffi
log r

p
ÞjVðGÞj edges [Tho01]. This

implies that for any single-crossing-minor-free graph G; jEðGÞj ¼ OðjVðGÞjÞ:
To run the algorithm, we apply algorithms to obtain all connected components and 1-cuts in

linear time [Tar72], all 2-cuts [HT73,MR92], and all Oðn2Þ 3-cuts in Oðn2Þ time [KR91]. Checking
whether a particular 3-cut is strong can be accomplished in OðnÞ time using depth-first search. All
other operations, including checking if a graph is planar or has treewidth at most cH ; can be
performed in linear time [Wil84,Bod96].
To set up recurrence relations, we make the assumption that for each cut we split a graph into

two 0-, 1-, or 2-connected components or into at most three 3-connected components at a
particular iteration. The running time of one iteration, excluding recursive calls, is OðnÞ: For TðnÞ
the running time on an input of size n; for a 0-sum involving a component of size n1 we obtain the
equation:

TðnÞ ¼ Tðn1Þ þ Tðn � n1Þ þ OðnÞ; n1X2:

The recursive calls for a 1-cut yield the following equation

TðnÞ ¼ Tðn1Þ þ Tðn � n1 þ 1Þ þ OðnÞ; n1X2;

where n1 and n � n1 þ 1 are the sizes of the two augmented components. Similarly, for recursive
calls for a 2-cut, we have

TðnÞ ¼ Tðn1Þ þ Tðn � n1 þ 2Þ þ OðnÞ; n1X3:

For recursive calls for a strong 3-cut with exactly two components, we have

TðnÞ ¼ Tðn1Þ þ Tðn � n1 þ 3Þ þ Oðn3Þ; n1X4:

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195174

Finally, if we have recursive calls for a strong 3-cut with at least three components, we have

TðnÞ ¼ Tðn1Þ þ Tðn2Þ þ Tðn � n1 � n2 þ 6Þ þ Oðn3Þ; 4pn1; n2; n � n1 � n2 þ 6pn � 2;

where n1; n2; and n � n1 � n2 þ 6 are the sizes of the augmented components (the last being the
third and all subsequent components taken together). The additive terms (+1, +2, +3, +6) are
due to the duplication of the vertices of the cut in the augmented components. Solving this

recurrence gives a worst-case running time of Oðn4Þ: &

Even for excluded graphs H where cH is huge, the value of cH does not contribute to the
asymptotic complexity of the algorithm presented above. However, it does contribute heavily to
the constant hidden in the order notation. In some contexts, it may make sense to replace
Bodlaender’s linear-time algorithm for determining treewidth exactly with an approximation.

Amir [Ami01] gives an algorithm running in time Oð24:38cH n2cHÞ which either returns a tree-
decomposition of width at most 4cH or answers that the treewidth is more than cH : This can be
used to prove a version of Theorem 2 with cH replaced by 4cH but whose dependence on cH is
more reasonable. Similar substitutions will be possible in our approximation algorithms,
discussed in Section 6.

4. Locally bounded treewidth of single-crossing-minor-free graphs

In this section we establish the locally bounded treewidth of single-crossing-minor-free graphs,
which provides the structure on which the approximation schemes of Section 6 are built. First we
demonstrate how clique sums and local treewidth are correlated. Next, we discuss layer
decompositions and present a tree decomposition algorithm for a subgraph induced by a sequence
of consecutive layers.

4.1. Bounded local treewidth

Lemma 6. If G1 and G2 are graphs such that ltwG1ðrÞpf ðrÞ and ltwG2ðrÞpf ðrÞ for a function

f ðrÞX0 for all rAN; and G ¼ G1"kG2; then ltwGðrÞpf ðrÞ:

Proof. To show ltwGðrÞpf ðrÞ; we prove that for any vAVðGÞ and for all rX0; twðG½Nr
GðvÞ
Þ

pf ðrÞ: We use W to denote the join set of G1"kG2 and without loss of generality, we assume v is
from G1: As the claim holds trivially for r ¼ 0; in the remainder of the proof we assume r40:
Moreover, since if Nr

GðvÞ contains only vertices originally from G1; the result follows from the fact

that ltwG1ðrÞpf ðrÞ; we assume that Nr
GðvÞ contains vertices from G2 that are not in W : We

consider two cases, depending on whether vAW :
If vAW ; then Nr

GðvÞDNr
G1
ðvÞ,Nr

G2
ðvÞ: In addition, since rX1 and vertices of W form a clique

in Gi for i ¼ 1; 2; WDNr
Gi
ðvÞ: Using these two facts, we conclude that G½Nr

GðvÞ
 is a subgraph of

G1½Nr
G1
ðvÞ
"G2½Nr

G2
ðvÞ
 over the join set W : Thus, by Lemmas 2 and 3, we know

twðG½Nr
GðvÞ
ÞpmaxftwðG1½Nr

G1
ðvÞ
Þ; twðG2½Nr

G2
ðvÞ
Þgpf ðrÞ:

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 175

We now consider the case in which veW : Each vertex in Nr
GðvÞ is either in G1; and hence is in

Nr
G1
ðvÞ; or is in G2; and hence is in Nr

GðvÞ � W : To further describe the latter set, we consider the

distance between v and any vertex u in the set. Since W is the set of vertices shared by G1 and
G2 in G; at least one vertex of W is on the shortest path from v to u in G and hence is at distance of

at most r � 1 from v; hence W-Nr�1
G1

ðvÞa|:We let p be the minimum distance between v and any

vertex in the set W-Nr�1
G1

ðvÞ and observe that since v in not in W ; we can conclude that

1pppr � 1: We further observe that since each vertex u in Nr
GðvÞ � W is at distance at most r

from v; it must be within distance r � p of some vertex of W ; or uAN
r�p
G2

ðWÞ: Thus

Nr
GðvÞDNr

G1
ðvÞ,N

r�p
G2

ðWÞ:
To complete the proof, we use the characterization of Nr

GðvÞ as a subset of Nr
G1
ðvÞ,N

r�p
G2

ðWÞ to
obtain an upper bound on its treewidth. First we show that G1½Nr

G1
ðvÞ
"G2½Nr�p

G2
ðWÞ
 can be

formed using the join set W ; as W is a subset of each of the constituent graphs (each vertex of W
is at distance at most r from v in G1 since at least one vertex of W is at distance ppr � 1 from v

and vertices of W form a clique in G1). Since Nr
GðvÞDNr

G1
ðvÞ,N

r�p
G2

ðWÞ; as shown in the previous

paragraph, G½Nr
GðvÞ
 is a subgraph of G1½Nr

G1
ðvÞ
"G2½Nr�p

G2
ðWÞ
; and hence we can apply Lemma

3 to obtain the following result:

twðG½Nr
GðvÞ
ÞpmaxftwðG1½Nr

G1
ðvÞ
Þ; twðG2½Nr�p

G2
ðWÞ
Þg: ð1Þ

By Lemma 2, since pX1 clearly G2½Nr�p
G2

ðWÞ
 is a subgraph of G2½Nr�1
G2

ðWÞ
; and hence

twðG2½Nr�p
G2

ðWÞ
ÞptwðG2½Nr�1
G2

ðWÞ
Þ: ð2Þ
Combining (1), (2), and the fact that twðG1½Nr

G1
ðvÞ
Þpf ðrÞ (our assumption about G1), we obtain

twðG½Nr
GðvÞ
Þpmaxf f ðrÞ; twðG2½Nr�1

G2
ðWÞ
Þg: ð3Þ

Since W is a clique in G2; by Lemma 4,

twðG2½Nr�1
G2

ðWÞ
ÞptwðG2½Nr
G2
ðvÞ
Þpf ðrÞ: ð4Þ

Finally, as a consequence of (3) and (4), we conclude that twðG½Nr
GðvÞ
Þpf ðrÞ; as needed to

complete the proof of the lemma. &

Theorem 3 demonstrates our main result on the local treewidth of single-crossing-minor-free
graphs.

Theorem 3. For any single-crossing-minor-free graph G excluding a single-crossing graph H as a

minor and for all rX0; ltwGðrÞp3r þ cH :

Proof. By Theorem 1, we can assume G ¼ G1"G2"?"Gm where each Gi; 1pipm; is either a
planar graph or a graph of treewidth at most cH ; we prove the theorem by induction on m: In the

base case, if G1 is a planar graph then ltwGðrÞ ¼ ltwG1ðrÞ ¼ 3r � 1p3r þ cH ; cHX0; as the
treewidth of a r-outerplanar graph is at most 3r � 1 [ABF+02]. If instead G1 has treewidth at most

cH ; then ltwGðrÞ ¼ ltwG1ðrÞ ¼ cHp3r þ cH ; rX0: To prove the general case, we assume the

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195176

induction hypothesis is true for m ¼ h; and we prove the hypothesis for m ¼ h þ 1 by setting

G0 ¼ G1"G2"?"Gh and G00 ¼ Ghþ1: By the induction hypothesis, ltwG0 ðrÞp3r þ cH and

ltwG00 ðrÞp3r þ cH ; by applying Lemma 6, we conclude that ltwG ¼ ltwG0"G00 ðrÞp3r þ cH ; as
needed. &

Using the fact that K5 and K3;3 are single-crossing graphs (Fig. 1), we observe that K5-minor-

free graphs and K3;3-minor-free graphs are single-crossing-minor-free graphs. Although general-

ized by Theorem 2 for single-crossing-minor-free graphs, for more precise results we rely on
Wagner’s characterizations [Wag37]. He proved that a graph is K3;3-minor-free if and only if it can

be obtained from planar graphs and K5 by 0-, 1-, and 2-sums and that a graph is K5-minor-free if
and only if it can be obtained from planar graphs and V8 (the graph obtained from a cycle of
length 8 by joining each pair of diagonally opposite vertices by an edge, shown in Fig. 3) by 0-, 1-,
2-, and 3-sums. Since both K5 and V8 have treewidth four, the value of constant cH in the proof of
Theorem 3 is four, and we have:

Corollary 1. If G is a K5-minor-free or K3;3-minor-free graph then ltwGðrÞp3r þ 4:

4.2. Local treewidth and layer decompositions

To take advantage of the bound on local treewidth, we define a layer decomposition, prove a
bound on the treewidth of a subgraph induced on consecutive layers, and then provide an
algorithm that forms a tree decomposition of such a subgraph. The concept of the kth outer face
in planar graphs can be replaced by the concept of the kth layer (or level) in graphs of locally
bounded treewidth. The kth layer ðLkÞ of a graph G consists of all vertices at distance k from an
arbitrary fixed vertex v̂ of VðGÞ: We denote consecutive layers from i to j by L½i; j
 ¼

S
ipkpj Lk;

and call such a representation a layer decomposition.

Theorem 4. For any graph G excluding a single-crossing graph H as a minor, the treewidth of
G½L½i; j

 is bounded above by 3ð j � i þ 1Þ þ cH :

ARTICLE IN PRESS

Fig. 3. The graph V8:

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 177

Proof. By contracting the connected subgraph G½L½0; i � 1

 to a vertex v0 and applying Lemma 1,
we obtain another H-minor-free graph G0: As all vertices at distance d; ipdpj; from v̂ in G are at
distance d 0; 1pd 0pj � i þ 1; from v0 in G0 and all vertices at distance more than j from v̂ in G are
at distance more than j � i þ 1 from v0 in G0; we have G½L½i; j

 ¼ G0½L½1; j � i þ 1

: Thus
twðG½L½i; j

Þ ¼ twðG0½L½1; j � i þ 1

Þ: Since all vertices of L½1; j � i þ 1
 in G0 are in the j � i þ 1-

neighborhood of v0; twðG0½L½1; j � i þ 1

ÞptwðG0½Nj�iþ1
G0 ðv0Þ
Þ: By the definition of local

treewidth, twðG0½Nj�iþ1
G0 ðv0Þ
ÞpltwG0 ð j � i þ 1Þ: Finally by Theorem 3, we have ltwG0 ð j � i þ

1Þp3ð j � i þ 1Þ þ cH : Using these facts, twðG½L½i; j

Þp3ð j � i þ 1Þ þ cH ; as desired. &

Theorem 4 gives an upper bound on the treewidth of consecutive layers from i to j; but does not
provide a constructive algorithm to obtain a tree decomposition of this width.
Although we can construct a tree decomposition of width 3ð j � iÞ þ cH in linear time using

Bodlaender’s algorithm [Bod96], again the hidden constant factor will depend on this entire width.
Below we show how to reduce the constant to depend only on cH ; permitting substitution of
approximation algorithms as was done at the end of Section 3.
Before stating the main theorem on construction of a tree decomposition of consecutive layers,

we present a simple lemma.

Lemma 7. For G ¼ G1"G2"?"Gm; if there exists a vertex vAVðGÞ such that each vertex of G
is at distance at most r from v; then in each Gi; 1pipm; there exists a vertex vi such that each
vertex of Gi is at distance at most r from vi:

Proof. We use induction on m; the number of Gi’s. If m ¼ 1; the basis of induction is clearly true.
We assume the induction hypothesis is true for mph; and we prove the hypothesis for m ¼ h þ 1:
We suppose G ¼ G0"G00; with join set W ; where G0 ¼ G1"G2"?"Gh and G00 ¼ Ghþ1: In
order to apply the induction hypothesis to G0 and G00; we will need to find vertices v0 and v00 in G0

and G00 such that each vertex of G0 is at distance at most r from v0 and each vertex of G00 is at
distance at most r from v00:
In order to apply the induction hypothesis to G0 and G00; it will suffice to show that there is a

path of length at most r from v to each vertex u in G0 such that each vertex of the path is in G0; that
is v ¼ v0 as defined in the previous paragraph (an analogous argument can be used to show the
existence of a path in G00 to any vertex in G00). Suppose instead that every path of length at most r

from v to u passed through at least one vertex w in VðG00Þ � VðG0Þ; and consider one such path P:
Clearly v and u are not both in W ; since otherwise there would exist an edge fv; ug in the clique
with vertex set W : Without loss of generality we assume uAVðG0Þ � VðG00Þ; and observe that
since the path from v to w and the path from w to u must pass through W ; we can define a and b to
be the first and last vertices in W on the path in order from v to u (see Fig. 4), where possibly v ¼ a

or a ¼ b (or both). We can then form a new path P0 consisting of the subpath from v to a; the edge
fa; bg if aab (which must exist since the vertices of W form a clique in G0), and the subpath from
b to u: The path P0 has length at most the length of P and is entirely in G0; contradicting our
assumption and completing the proof. &

We are ready to present our algorithm for construction of a tree decomposition for a constant
number of consecutive layers.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195178

Theorem 5. For any single-crossing-minor-free graph G; we construct a tree decomposition for

G½L½i; j

 of treewidth 3ð j � i þ 1Þ þ cH in Oðð j � i þ 1Þ3 n þ n4Þ time; for a K3;3-minor-free or K5-

minor-free graph G; the running time can be reduced to Oðð j � i þ 1Þ3 nÞ or Oðð j � i þ 1Þ3 n þ
n2Þ; respectively.

Proof. As in the proof of Theorem 4, we contract the connected subgraph G½L½0; i � 1

to a vertex v0 and obtain another single-crossing-minor-free graph G0 such that G½L½i; j

 ¼
G0½L½1; j � i þ 1

: By Lemma 1, the graph G00 ¼ G0½L½0; j � i þ 1

 is a single-crossing-minor-
free graph excluding the same H and by the definition of layers each vertex in G00 is at
distance at most j � i þ 1 from v0: By Theorem 2, we can determine a set of clique-sum

operations of graph G00 in Oðn4Þ time (improved to OðnÞ for G K3;3-minor-free using the result of

Asano [Asa85] and Oðn2Þ for G K5-minor-free using the result of Kézdy and McGuinness
[KM92]).
After determining a set of clique-sum operations of G00 ¼ G1"G2"?"Gm; we construct a

tree decomposition for each Gi; 1pipm: If Gi is a graph of treewidth at most cH ; we can easily
construct a tree decomposition of constant width in linear time [Bod96] (for the special cases, K5

or V8; a constant time construction is possible). We now consider the case in which Gi is a planar
graph. By Lemma 7, in each Gi; there exists a vertex vi such that each vertex in Gi is at distance at
most j � i þ 1 from vi: It is known that if a planar graph has a rooted spanning tree T in which the
longest path has length d; then a tree decomposition of the graph with width at most 3d can be
found in time OðdnÞ [Bak94,Epp99]. Since each vertex in Gi is at distance at most j � i þ 1 from vi;
by breadth-first search we can construct a spanning tree rooted at vi with the longest path of
length at most j � i þ 1: Hence we can construct a tree decomposition for Gi of treewidth 3ð j �
i þ 1Þ in time Oðð j � i þ 1Þ jVðGiÞjÞ:
Having tree decompositions of Gi’s, 1pipm; in the rest of the algorithm, we glue together the

tree decompositions of Gi’s using the construction given in the proof of Lemma 3. To this end, we
introduce an array Nodes indexed by all subsets of VðG00Þ of size at most three. In this array, for
each subset whose elements form a clique, we specify a node of the tree decomposition which
contains this subset. We note that for each clique C in Gi; there exists a node z of TDðG00Þ such
that all vertices of C appear in the bag of z [BM93]. This array is initialized as part of a

ARTICLE IN PRESS

Fig. 4. The replacement of the part of path P between a and b by edge fa; bg:

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 179

preprocessing stage of the algorithm. Now, for the " operation between G1"?"Gh and Ghþ1

over the join set W ; using array Nodes; we find a node a in the tree decomposition of G1"?"Gh

whose bag contains W : Since we have the tree decomposition of Ghþ1; and W is a clique of size at
most three that must appear in some bag in any tree decomposition, we can find the node a0 of the
tree decomposition whose bag contains W by brute force search over all subsets of bags of size at
most three. Simultaneously, we update array Nodes by subsets of VðG00Þ which form a clique and
appear in bags of the tree decomposition of Ghþ1: Then we add an edge between a and a0: As the
number of nodes in a tree decomposition of Ghþ1 is OðjVðGhþ1ÞjÞ and each bag has size at most

3ð j � i þ 1Þ (and thus there are at most Oðð j � i þ 1Þ3Þ choices for a subset of size at most three),

this operation takes Oðð j � i þ 1Þ3 jVðGhþ1ÞjÞ time for Ghþ1:
The claimed running time follows from the time required to determine a set of clique-sum

operations, the time required to construct tree decompositions, the time needed to glue tree

decompositions together and the fact that
Pm

i¼1 jVðGiÞj ¼ OðjVðG00ÞjÞ: Here we note that the only

difference between the running times for the general algorithm and those for K3;3-minor-free or

K5-minor-free graphs is the time required to determine a set of clique-sum operations (OðnÞ time

for the former graphs and Oðn2Þ time for the latter graphs). The rest of the algorithm requires
linear time for all single-crossing-minor-free graphs.
Finally, we prove that the width of the constructed tree decomposition of G00 is 3ð j � i þ 1Þ þ

cH : We use induction on m; the number of Gi’s, where G00 ¼ G1"G2"?"Gm: For m ¼ 1; G1 is
either a planar graph of treewidth at most 3ð j � i þ 1Þ or a graph of treewidth at most cH : In both
cases the basis of the induction is true. We assume the induction hypothesis is true for m ¼ h; and

we prove the hypothesis for m ¼ h þ 1: For G̃ ¼ G1"G2"?"Gh; G00 ¼ G̃"Ghþ1: By the

induction hypothesis, G̃ and Ghþ1 each have treewidth at most 3ð j � i þ 1Þ þ cH : We can then
apply Lemma 3 to conclude that the treewidth of G00 is also at most 3ð j � i þ 1Þ þ cH ; as needed
to complete the proof. &

5. Approximating treewidth

A large amount of effort has been put into determining treewidth, which is NP-complete even if
we restrict the input graph to graphs of bounded degree [BT97], cocomparability graphs
[ACP87,HM94], bipartite graphs [Klo96], or the complements of bipartite graphs [ACP87].
However, treewidth can be computed exactly in polynomial time for chordal graphs, permutation
graphs [BKK95], circular-arc graphs [SSR94], circle graphs [Klo96], distance-hereditary graphs
[BDK00], and for graphs of a fixed treewidth [Bod96].
From the approximation viewpoint, Bodlaender et al. [BGHK95] gave an Oðlog nÞ-

approximation algorithm for treewidth on general graphs. A famous open problem is whether
treewidth can be approximated within a constant factor. Constant-factor approximations are
possible on AT-free graphs [BT01,BKMT01] and on planar graphs. The approximation for
planar graphs is a consequence of the polynomial-time algorithm given by Seymour and
Thomas [ST94] for computing the parameter branchwidth, whose value approximates treewidth
within a factor of 1.5. Using the notions of branchwidth and clique-sum decomposition, we

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195180

demonstrate a polynomial-time algorithm that approximates within a constant factor the
treewidth of any single-crossing-minor-free graph.
Analogous to the relationship between treewidth and tree decompositions, the notion of

branchwidth is related to a decomposition based on the edges. A branch decomposition of a graph
G is a pair ðT ; tÞ; where T is a tree with vertices of degree 1 or 3 and t is a bijection from the set of
leaves of T to EðGÞ: The order of an edge e in T is the number of vertices vAVðGÞ such that there
are leaves t1; t2 in T in different components of TðVðTÞ;EðTÞ � eÞ with tðt1Þ and tðt2Þ both
containing v as an endpoint. The width of ðT ; tÞ is the maximum order over all edges of T ; and the
branchwidth of G; bwðGÞ; is the minimum width over all branch decompositions of G (if
jEðGÞjp1; we define the branchwidth to be 0; if jEðGÞj ¼ 0; then G has no branch decomposition;
if jEðGÞj ¼ 1; then G has a branch decomposition consisting of a tree with one vertex and the
width of this branch decomposition is considered to be 0). Fig. 5 provides examples of branch
decompositions.
We make use of an approximation algorithm for computing treewidth of planar graphs as one

of two ‘‘base cases’’ in our algorithm for single-crossing-minor-free graphs. While it remains an
open question whether there exists a polynomial-time constant-factor approximation algorithm
for computing the treewidth of general graphs, the branchwidth of a planar graph can be
computed in polynomial time.

Theorem 6 (Seymour and Thomas [ST94, Sections 7 and 9]). One can construct an algorithm that,
given a planar graph G;

1. computes in Oðn2 log nÞ time the branchwidth of G; and

2. computes in Oðn4Þ time a branch decomposition of G with optimal width.

Theorem 7. One can construct an algorithm that, given a planar graph G;

1. computes in Oðn2 log nÞ time a value k with twðGÞpkp3
2

twðGÞ; and

2. computes in Oðn4Þ time a tree decomposition D of width k of G; where twðGÞpkp3
2

twðGÞ þ 1:

Proof. The proof is straightforward using OðjEðGÞj2Þ algorithms of Robertson and Seymour
[RS91] which convert a branch decomposition of width at most b to a tree decomposition of width

ARTICLE IN PRESS

Fig. 5. A graph and two of its branch decompositions. The first has width 4 and the second has width 3.

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 181

at most 3
2

b � 1; and convert a tree decomposition of width at most k to a branch decomposition of

width at most k þ 1: &

The main theorem of this section relies on Theorem 7 as well as clique-sum decompositions.

Theorem 8. For any single-crossing graph H; we can construct an algorithm that, given an H-minor-

free graph as input, outputs in Oðn4Þ time a tree decomposition of G of width k where

twðGÞpkp3
2

twðGÞ þ 1:

Proof. The algorithm consists of the following four steps:
Step 1: Let G be a graph excluding a single-crossing graph H: By Theorem 2, we can obtain a

clique-sum decomposition G ¼ G1"G2"?"Gm where each Gi; 1pipm; is a minor of G and is
either a planar graph or a graph of treewidth at most cH : According to the same theorem, this step

can be executed in Oðn4Þ time. Let B be the set of the indices of the bounded treewidth
components and P be the set of planar components: B ¼ fi j 1pipm; twðGiÞpcHg; P ¼
f1;y;mg � B:

Step 2: By Theorem 7, we can construct, for any iAP; a tree decomposition TDðGiÞ of Gi with
width ki and such that

twðGiÞpkip3
2

twðGiÞ þ 1 for all iAP: ð5Þ

The construction of each of these tree decompositions takes OðjVðGiÞj4Þ time. Because
mpn and

P
1pipm jVðGiÞj ¼ OðnÞ; (it is simple to prove this by induction looking at the sizes

of the components in the recurrences used in the proof of Theorem 2) the total time for this

step is Oðn4Þ:
Step 3: Using Bodlaender’s algorithm [Bod96], for any iAB; we can obtain a tree decomposition

of Gi with minimum width ki in linear time, where the hidden constant depends only on cH :
Combining (5) with the fact that twðGiÞ ¼ ki for each iAB; we obtain

twðGiÞpkip3
2

twðGiÞ þ 1 for all iAf1;y;mg: ð6Þ
Step 4: Now that we have tree decompositions TDðGiÞ of each Gi; we glue them together using

the construction given in the proof of Lemma 3, as detailed in Theorem 5. In this way, we obtain a
tree decomposition of G that has size k ¼ maxfki j 1pipmg: Combining this equality with (6), we
have

maxftwðGiÞ j i ¼ 1;y;mgpkp3
2
maxftwðGiÞ j i ¼ 1;y;mg þ 1: ð7Þ

To see that this step can be executed in Oðn4Þ time, we observe that as described in Theorem 5, for
each of the OðjVðGÞjÞ nodes in the tree decomposition, we execute a brute force search in the

array Nodes; indexed by all OðjVðGÞj3Þ subsets of VðGÞ of size at most three.
Finally, we prove that the algorithm is a 1.5-approximation. By Lemma 3, we have

twðGÞpmaxftwðGiÞ j i ¼ 1;y;mg: By Theorem 2, each Gi is a minor of G and therefore
twðGiÞptwðGÞ (since the class of graphs of treewidth at most k is minor-closed). Thus,

twðGÞ ¼ maxftwðGiÞ j i ¼ 1;y;mg and from (7) we conclude that twðGÞpkp3
2 twðGÞ þ 1 and the

theorem follows. &

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195182

Using the same approach as Theorem 8, one can prove a potentially stronger theorem:

Theorem 9. If we can compute the treewidth of any planar graph in polynomial time, then we can
compute the treewidth of any single-crossing-minor-free graph in polynomial time.

Proof. We use the polynomial-time algorithm for computing treewidth of planar graphs in Step 2
of the algorithm described in the proof of Theorem 8. &

6. Polynomial-time approximation schemes

6.1. General schemes for approximation on special classes of graphs

A polynomial-time approximation scheme for a problem is a family fAeg of algorithms,
where Ae is a ð1þ eÞ approximation for the problem that runs in time polynomial in the
length of its input (for fixed e). Inherent in the design of many polynomial-time approximation
schemes for NP-complete graph problems is the restriction of inputs to graph classes
that guarantee additional structural properties. Early work in the area demonstrated the
possibility of using planarity to obtain approximation schemes [LT80], later generalized to
graphs without a fixed minor [AST90]. These approaches are impractical; a performance ratio of

two for the independent set problem is achievable only for planar graphs of at least 22
400

vertices
[CNS82].
Practical approximation schemes for planar graphs were developed by Baker [Bak94], who

formed a decomposition of G into overlapping k-outerplanar subgraphs. For any planar
embedding, vertices can be put into layers by iteratively removing vertices on the outer face of the
graph: vertices removed at the ith iteration are assigned to layer i: Since a k-outerplanar graph is
decomposed into at most k layers, a k-outerplanar subgraph can be formed by removing vertices
with layer number congruent to i mod k: Baker’s technique immediately implies ð1þ 1=kÞ-factor
approximation algorithms for many problems that can be solved exactly on k-outerplanar graphs
(e.g. maximum independent set, minimum dominating set, and minimum vertex cover), as it
suffices to solve the problem exactly on each of the k subgraphs (one for each value of i) and
return the best of the k results. Consider an optimal answer in the full graph. Since the sets of
removed vertices partition the graph, one of these sets removes at most 1=k of the vertices in the
answer, and the exact solution on the corresponding subgraph will be a ð1þ 1=kÞ-approximation
to the optimal answer for the full graph.
Chen [Che98] later generalized Baker’s approach to form approximation algorithms of ratio

1þ 1=log n for problems on K3;3-minor-free graphs and K5-minor-free graphs; due to the types of

layers formed, these results were exclusively for maximization problems. Eppstein [Epp00] showed
that Baker’s technique can be extended by replacing bounded outerplanarity with bounded local
treewidth. As with k-outerplanar graphs, a wide range of NP-complete problems can be solved in
linear time on graphs of bounded local treewidth. The decomposition by deleting every kth face is
replaced by deleting every kth level of a breadth-first tree of G; keeping in mind the fact that the
treewidth of the resulting graphs is a function of k:

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 183

6.2. Approximation schemes for single-crossing-minor-free graphs

In this section we use the bound on local treewidth established in Theorem 3 to obtain
polynomial-time approximation schemes. Among NP-optimization problems, we mainly focus on
those problems which are also hereditary, namely, problems which determine a property that if
valid for an input graph is also valid for any induced subgraph of the input. For a property p; the
maximum induced subgraph problem MISPðpÞ is finding a maximum induced subgraph with the
property; in the weighted version ðWMISPðpÞÞ; the input graph has weights on its vertices and the
goal is to find a maximum weight induced subgraph with the property. For example, we might
search for an induced subgraph of maximum size that is chordal, acyclic, without cycles of a
specified length, without edges, of maximum degree rX1; bipartite or a clique [Yan78]. For exact
definitions of various NP-hard problems in this paper, the reader is referred to Garey and
Johnson’s seminal book [GJ79].
Yannakakis has shown that for many natural hereditary properties p; MISPðpÞ is NP-

complete even when restricted to planar graphs [Yan78]. Using the results of Section 4, we obtain
approximation algorithms for both maximization and minimization problems such as the
maximum independent set problem, the minimum vertex cover problem, and the minimum
dominating set problem on single-crossing-minor-free graphs.

Theorem 10. For G a non-negative vertex-weighted single-crossing-minor-free graph excluding
H; kX1 an integer, and Timepðw; nÞ the nondecreasing worst-case running time of WMISPðpÞ over

an n-vertex partial w-tree whose tree decomposition is given, the maximization problem WMISPðpÞ
for a hereditary property p over G admits a polynomial-time approximation scheme of ratio 1þ 1=k

with worst-case running time in Oðk jV j4 þ k Timepð3ðk � 1Þ þ cH ; jV jÞÞ: The running time

improves to Oðk jV j þ k Timepð3ðk � 1Þ þ 4; jV jÞÞ for G K3;3-minor-free and Oðk jV j2 þ k
Timepð3ðk � 1Þ þ 4; jV jÞÞ for G K5-minor-free.

Proof. Our algorithm proceeds by creating k subgraphs of G; solving the problem on
each of the subgraphs, and returning the best solution for any of the subgraphs as the
solution for all of G: We make use of the locally bounded treewidth of G in order to specify
layers from which the subgraphs are derived and to prove that each subgraph has bounded
treewidth.

Given an assignment of vertices to layers numbered 1; 2;y created by breadth-first search
(layer i is all vertices at depth i), we use Li; j to denote the consecutive layers numbered ð j �
1Þk þ i through jk þ i � 2 for 1pipk and jX0 where for convenience a layer is defined to be
empty when its number is not between zero and the total number of layers. Furthermore, we let
Li ¼

S
jX0 Li; j and Gi ¼ G½Li
: As neither Li; j nor Li; jþ1 contains the layer numbered jk þ i � 1

and all edges appear between consecutive layers, there are no edges between Li; j and Li; jþ1:
Moreover, as no vertices in layer i � 1 appear in Lh for h ¼ i mod k; each vertex appears in
exactly k � 1 of the Li’s or Gi’s, a fact we will use later in the proof.
We next use the bound on the treewidth of each Gi to obtain Opti; the maximum weighted

solution of WMISPðpÞ on each Gi; 1pipk: In particular, we construct a tree decomposition of
width 3ðk � 1Þ þ cH for each Gi by adding edges between tree decompositions for each G½Li; j
;

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195184

which in turn can be formed in Oðn4Þ time using Theorem 5 (OðnÞ for K3;3-minor-free graphs or

Oðn2Þ time for K5-minor-free graphs). The fact that the graphs G½Li; j
 are disjoint means that the

process of adding edges to form a single tree is straight-forward. As in Lemma 3, by the definition
of Timepðw; nÞ as a nondecreasing function, since jVðGiÞjpjVðGÞj; Opti can be determined in
Timepð3ðk � 1Þ þ cH ; jVðGÞjÞ: The running time is Timepð3ðk � 1Þ þ 4; jVðGÞjÞ for G K3;3-minor-

free or K5-minor-free.
Finally, we take Optm; the solution with maximum weight among the Opti’s, as our solution for

graph G; and prove the ratio bound by showing that
weightðOptÞ

weightðOptmÞp
k

k�1
; or k weightðOptmÞX

ðk � 1Þ weightðOptÞ; where Opt is the maximum weighted solution on graph G: By
observing that OptmXOpti for each value of i; we show that k weightðOptmÞXPk

i¼1 weightðOptiÞ: Since p is hereditary, weightðOptiÞXweightðOpt-LiÞ; and hence
Pk

i¼1

weightðOptiÞX
Pk

i¼1 weightðOpt-LiÞ: Finally, we recall that each vertex appears in exactly k � 1

of the Li’s, from which we can conclude
Pk

i¼1 weightðOpt-LiÞ ¼ ðk � 1Þ weightðOptÞ; as

needed to conclude the proof that k weightðOptmÞXðk � 1Þ weightðOptÞ:
The claimed running time follows immediately from the time to construct the tree

decomposition, the time to solve WMISPðpÞ for each Gi; and the number of Gi’s. &

Corollary 2. For G a non-negative vertex-weighted single-crossing-minor-free graph excluding H;
the maximum independent set problem admits a polynomial-time approximation scheme of ratio

1þ 1=k with running time Oðk 23k n þ k n4Þ: The running time improves to Oðk 23k nÞ for

G K3;3-minor-free and Oðk 23k n þ k n2Þ for G K5-minor-free.

Proof. Using dynamic programming on a tree decomposition, this problem can be solved in
Oð2w nÞ time, over each n-vertex partial w-tree whose tree decomposition is given [AN02]. Thus
the result follows from Theorem 10 for Timepðw; nÞ ¼ Oð2w nÞ: &

Below we give examples that show how our result can be applied to NP-minimization
problems, e.g., the minimum vertex cover problem and the minimum dominating set
problem. The main difference between these two results and the previous one is that whereas
the previous construction avoided overlap between the various sets Li; j of consecutive

layers, in the minimization setting we need to enforce overlap in order to achieve the
approximation guarantee. The ideas of the proofs of Theorems 11 and 12 follow ideas
of Grohe [Gro01] for general graphs of locally bounded treewidth, which are in fact Baker’s
ideas for planar graphs. Grohe [Gro01] remarks that he ‘‘never specified the exponents and
coefficients of the polynomials bounding the running times of our algorithms; they seem to be
enormous.’’ The exponents are modest in our results; while we have not quantified our constants
(coefficients) either, we suspect they will be more reasonable due to the more restricted
setting, and can be made even more so by use of approximation algorithms for treewidth, as
described earlier.

Theorem 11. For G a single-crossing-minor-free graph and any integer kX1; the minimum weighted
vertex cover problem admits a polynomial-time approximation scheme of ratio 1þ 1=k with worst-

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 185

case running time Oðk 23k n þ k n4Þ: The running time improves to Oðk 23k nÞ for G K3;3-

minor-free and Oðk 23k n þ k n2Þ for G K5-minor-free.

Proof. As in the proof of Theorem 10, we first decompose graph G into induced subgraphs, each
of bounded treewidth, on which we will solve the problem. In a slight variation from the definition
used in that proof, for 1pipk and jX0; we define Li; j ¼ L½ð j � 1Þk þ i; jk þ i
 and Gi; j ¼ G½Li; j
:
The following observations, which will be used later in the proof, are all consequences of the
definition: vertices in the layer numbered jk þ i appear in both G½Li; j
 and G½Li; jþ1
; for fixed i;
each vertex appears in at most two Li; j’s; for fixed i; each edge of G appears in at least one Gi; j;
and each vertex appears in k þ 1 (successive) sets Li; j:
As in Theorem 10, we wish to obtain tree decompositions of the subgraphs. By Theorem 5, we

construct a tree decomposition of G½Li; j
 of width 3ðk þ 1Þ þ cH in OðjVðG½Li; j
Þj4Þ time. A tree

decomposition of width 3ðk þ 1Þ þ 4 is constructed in OðjVðG½Li; j
ÞjÞ time for a K3;3-minor-free

graph and in OðjVðG½Li j
Þj2Þ time for K5-minor-free graph. Since each vertex of G appears in at

most two G½Li; j
’s for a fixed i (as observed above), constructing tree decompositions of all

G½Li; j
’s takes OðjVðGÞj4Þ (or OðjVðGÞjÞ or OðjVðGÞj2Þ) time.

We make use of the layers to obtain a set of possible solutions for G: We first solve the
minimum vertex cover problem for each Gi; j to obtain a solution Opti; j; and then define Opti as

Opti ¼
S

jX0 Opti; j: To see that Opti is a vertex cover for all of G; we recall that for a fixed i each

edge of G appears in at least one Gi; j; and thus will be covered by at least one of the partial

solutions Opti; j:
We show that Optm; the solution with minimum weight among the Opti’s, yields

an approximation ratio of 1þ 1=k; that is, weightðOptmÞ
weightðOptÞ p

kþ1
k

(or k weightðOptmÞp
ðk þ 1Þ weightðOptÞ) for Opt the minimum weighted solution on graph G: By the definition of
Optm as the solution of minimum weight and the definition of Opti as the union over Opti; j’s, we

can show the following:

k weightðOptmÞp
Xk

i¼1

weightðOptiÞp
Xk

i¼1

X

jX0

weightðOpti; jÞ:

We next observe that since Opt-Li; j is a vertex cover for Gi; j and Opti; j is a minimum vertex

cover for Gi; j we can conclude that weightðOpti; jÞpweightðOpt-Li; jÞ; or
Xk

i¼1

X

jX0

weightðOpti; jÞp
Xk

i¼1

X

jX0

weightðOpt-Li; jÞ:

Finally, since by our earlier observation each vertex of Opt appears in k þ 1 Li; j’s,

Xk

i¼1

X

jX0

weightðOpt-Li; jÞ ¼ ðk þ 1Þ weightðOptÞ;

completing the proof of correctness.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195186

To see that the claimed running time holds, it suffices to show that for a fixed i; the time to

compute Opti is Oð23k jVðGÞjÞ; the total following from the time to construct tree decompositions
and the number of Opti’s. The minimum vertex cover problem can be solved in Oð2w nÞ time over
each n-vertex partial w-tree whose tree decomposition is given [AFN01]. Thus, computing Opti; j

takes Oð23k jVðG½Li; j
ÞjÞ time on graph Gi; j; and hence for fixed i; as each vertex appears in at

most two Li; j’s, Opti can be determined in Oð23k jVðGÞjÞ time, as claimed. &

To find an approximation algorithm for the dominating set (DS) problem, we first introduce a
generalized version of the dominating set problem (Definition 3) and show how we can solve this
problem in linear time for graphs of constant treewidth (Lemma 8). Then we use the algorithm for
solving this problem to obtain a polynomial-time approximation scheme for the dominating set
problem (Theorem 12).

Definition 3. The generalized dominating set (GDS) problem is defined as follows. Given a vertex-
weighted graph G and a set IDVðGÞ; determine a subset W of VðGÞ of minimum weight with the
property that for every uAI � W there is a wAW such that fu;wgAEðGÞ:

The generalized dominating set problem reduces to the standard dominating set problem for
I ¼ VðGÞ: In both problems, we say that a vertex v is dominated by a vertex w if there is an edge
between v and w and w is in W :

Lemma 8. The GDS problem for given graph G and set I can be solved in time Oð4w jVðGÞjÞ when
a tree decomposition of width w for G is given.

Proof. We solve the GDS problem by a reduction to the DS problem, and make use of a
solution to the DS problem in time Oð4w jVðGÞjÞ; given a tree decomposition of width w of a
non-negative vertex-weighted graph G [AN02]. Given an input G to the GDS problem, we form
G0 as input to the DS problem by first setting G0 ¼ G and then for each vertex vAVðGÞ � I ;
adding another vertex v0 with weight zero connected to v; forming the vertex set V 00; as illustrated
in Fig. 6. It is then straightforward to verify that if W is a solution to the GDS problem,
then W 0 formed by adding all vertices of V 00 to W is a solution to the DS problem of the same
weight.
To apply the solution to the dominating set problem, we must provide a tree de-

composition of G0: We form TDðG0Þ from TDðGÞ by adding, for each v0AV 00 connected to a
vertex vAVðGÞ; a node whose bag contains v0 and v and an edge from the new node to a node of
TDðGÞ whose bag contains v: As treewidth of G0 is the same as that of G; and jVðG0Þjp2jVðGÞj;
the GDS problem can thus be solved in Oð4w jVðGÞjÞ time using the algorithm for the DS
problem. &

Theorem 12. For G a single-crossing-minor-free graph and any integer kX1; the minimum weighted
dominating set problem admits a polynomial-time approximation scheme of ratio 1þ 2=k with worst-

case running time Oðk 43k n þ k n4Þ: The running time improves to Oðk 43k nÞ for G K3;3-

minor-free and Oðk 43k n þ k n2Þ for G K5-minor-free.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 187

Proof. The methodology is similar to that of Theorem 11, but with subtle and important
differences. Here the set of layers Li; j contains layers ð j � 1Þk þ i � 1 through jk þ i for

1pipk and jX0: The properties we require are: for fixed i; Li; j and Li; jþ1 intersect only

in two consecutive layers; for fixed i; each vertex appears in at most two Li; j’s; and

each vertex appears in at most k þ 2 (successive) sets Li; j: Using the argument developed in

Theorem 11, as a consequence of the properties above and Theorem 5, we construct tree

decompositions of all G½Li; j
’s in Oðn4Þ time (OðnÞ and Oðn2Þ time for K3;3-minor-free and K5-

minor-free graphs G).
To construct solutions Opti to the problem on G; we make use of generalized dominating set.

To this end, the interior Ii; j of Li; j is defined as layers ð j � 1Þk þ i through jk þ i � 1: For 1pipk

and jX0; by Lemma 8 we can obtain in Oð43k jVðG½Li; j
ÞjÞ time the set Opti; jDLi; j of minimum

weight that dominates Ii; j � Opti; j:We then define Opti ¼
S

jX0 Opti; j and use the property above

that for fixed i; each vertex of G appears in at most two Li; j’s to compute each Opti in Oð43k nÞ
time. In addition, since for fixed i; each vertex appears one time in an interior set Ii; j; we can

conclude that Opti is a dominating set for G:
Finally, we define Optm to be the solution of minimum weight among the Opti’s and

show that
weightðOptmÞ
weightðOptÞ p

kþ2
k

¼ 1þ 2=k; or k weightðOptmÞpðk þ 2Þ weightðOptÞ; for Opt the

minimum weight dominating set over G: By the definitions of Optm and Opti; we can show the
following:

k weightðOptmÞp
Xk

i¼1

weightðOptiÞp
Xk

i¼1

X

jX0

weightðOpti; jÞ:

We now show that Opt-Li; j dominates Ii; j � Opti; j: since Opt is a dominating set over G;
there exists an edge fu; vg; vAOpt; for each uAIi; j � ðOpt-Li; jÞ; where vALi; j as by

construction u has no neighbors outside of Li; j: Since Opti; j has minimum weight,

weightðOpti; jÞpweightðOpt-Li; jÞ; or
Pk

i¼1

P
jX0 weightðOpti; jÞp

Pk
i¼1

P
jX0 weightðOpt-Li; jÞ:

By noting the property that every vertex appears in exactly k þ 2 sets Li; j;

ARTICLE IN PRESS

Fig. 6. Set V 00 and graphs G and G0 defined in the proof of Lemma 8.

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195188

we obtain the following:

k weightðOptmÞp
Xk

i¼1

X

jX0

weightðOpt-Li; jÞ ¼ ðk þ 2Þ weightðOptÞ:

The running time follows immediately from the time needed to construct the tree
decompositions, the number of Opti’s and the time to compute each of them. &

Theorem 13. For single-crossing-minor-free graphs, there are polynomial-time approximation
algorithms whose solutions converge toward optimal as n increases for maximum independent set,
minimum vertex cover, and minimum dominating set.

Proof. The running time of algorithms introduced in Corollary 2 and Theorems 11 and 12 is

Oðckn þ n4Þ where k is a parameter and c is a constant. Now, by taking k ¼ Jlog nn; we obtain
polynomial-time approximation algorithms of ratio 1þ 1=ðlog nÞ (or 1þ 2=ðlog nÞ for dominating
set). As both 1=ðlog nÞ and 2=ðlog nÞ decrease as n increases, the solutions converge toward
optimal as n increases. &

6.3. Further applications

Our techniques are applicable to other problems solved by Eppstein using the adaptation of
Baker’s approach [Epp99]. For example, there exists an algorithm that determines whether a fixed

pattern H is a subgraph of a single-crossing-minor-free graph G in Oð2OðjVðHÞj logjVðHÞjÞ jVðGÞjÞ
time. The algorithm makes use of locally bounded treewidth; since H is of constant size, if it is a
subgraph of G; it is a subgraph of a subgraph of G consisting of a constant number of consecutive
layers. The problem reduces to OðnÞ subgraph isomorphism problems, each solvable in linear time
for H fixed and G of bounded treewidth. It is possible to obtain linear-time algorithms on single-
crossing-minor-free graphs for problems Eppstein solved by exploiting locally bounded treewidth:
these include problems such as determining the diameter of a bounded-diameter graph and
determining girth of a bounded-girth graph.
The approaches of Theorems 10–12 can be used to adapt Eppstein’s algorithms for other

problems such as minimum edge dominating set, maximum triangle matching, maximum
H-matching, and maximum tile salvage to obtain polynomial-time approximation schemes for
single-crossing-minor-free graphs [Epp00]. Moreover, for several hereditary maximization

problems, the function Timepðw; nÞ introduced in Theorem 10 is OðcpðkÞ qðnÞÞ; where c is a
constant and p and q are polynomials of low degree [Bod88,TP93,TP97], hence yielding ratio
1þ 1=k polynomial-time approximation schemes for each such problem.

7. Fixed-parameter algorithms

By making use of known connections between locally bounded treewidth and fixed-parameter

tractability, we derive algorithms for variants of dominating set on single-crossing-minor-free

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 189

graphs. Downey and Fellows [DF99] introduced the notion of fixed-parameter tractability as a
way to categorize the complexity of NP-hard problems based on one or more parameters of a
problem. A problem is fixed-parameter tractable if the combinatorial explosion inherent in the
problem can be attributed to the parameter(s), so that although the running time may be
exponential in the parameter(s), it is polynomial in the problem size. One example is the problem
of finding a vertex cover of size k; as k is the parameter and there is an algorithm running in time

Oðkn þ 1:2852kÞ [CKJ01].
In this section, we extend to single-crossing-minor-free graphs a solution to k-dominating set on

planar graphs, that is, the problem of finding a set S of at most k vertices such that each vertex in
VðGÞ � S has at least one neighbor in S: As a consequence of Lemma 1 and Theorem 3, any
problem that is easily solved on minor-closed classes or graphs of locally bounded treewidth can
be easily solved on single-crossing-minor-free graphs. In particular, Frick and Grohe
demonstrated that for any property definable in first-order logic and for any minor-closed graph
class of locally bounded treewidth, there exists a linear-time algorithm that determines whether a
graph in the class has the property [FG01]. As k-dominating set is first-order expressible, the work
of Frick and Grohe implies that k-dominating set can be decided in linear time on single-crossing-
minor-free graphs.
Unfortunately, the constant hidden in the linear-time algorithm is prohibitively large, due in

part to the constants involved in Bodlaender’s linear-time tree decomposition algorithm [Bod96].
Alber et al. made use of Baker’s approach to solve k-dominating set on planar graphs in time

Oð46
ffiffiffiffiffiffi
34k

p
 nÞ [ABF+02]; it makes use of a smaller constant, and hence is practical for small values

of k: Using the fact that the exponential term is sublinear in the parameter, this result has been the
basis for exponential speedup of fixed-parameter algorithms for many NP-complete problems on
planar graphs [CKL01,KLL01,AFN01]. We extend their result to single-crossing-minor-free
graphs in Theorem 14 below.

Theorem 14. The problem of k-dominating set for fixed k can be solved in Oð49k n þ n4Þ time for a

single-crossing-minor-free graph G ðOð49k nÞ time for G K3;3-minor-free and Oð49k n þ n2Þ time

for G K5-minor-free).

Proof. We show that if G has a k-dominating set, then we can obtain a bound on its treewidth,
which in turn can be used to apply an algorithm for finding a dominating set in such graphs. To
see that having a k-dominating set implies bounded treewidth, we consider the layers of the
vertices of G in the ordering generated by breadth-first search. Since a particular vertex in the
dominating set can dominate vertices in any of three layers (its own, the previous, or the next
layer), the k elements of the dominating set can dominate vertices on at most 3k layers. As each
vertex of G is dominated, the total number of layers in G is at most 3k:
Since G is a single-crossing-minor-free graph, we can use Theorem 5 to form a tree decomposition

of G½L½0; 3k

 ¼ G of width at most 3ð3k þ 1Þ þ cH ¼ 9k þ 3þ cH in Oðn4Þ time. A tree
decomposition of width at most 3ð3k þ 1Þ þ 4 ¼ 9k þ 7 can be formed in OðnÞ time for G K3;3-

minor-free and Oðn2Þ time for G K5-minor-free. It has been shown that a minimum dominating set
can be found in Oð4w nÞ time given a tree decomposition of width w [AN02]; combined with the
time to compute the tree decomposition, we obtain the claimed running times. &

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195190

Similar techniques were used to solve related problems on planar graphs. Alber et al. [AFF+01]

demonstrate an algorithm for dominating set on planar graphs running in time Oð8knÞ; Ellis et al.
[EFF02] gave an algorithm on graphs of bounded genus g running in time Oðð24g2 þ 24g þ
1Þk

n2Þ: Recently, Demaine et al. [DHT02] extended planar graph results [ABF+02] to problems
on single-crossing-minor-free graphs, proving the following general theorem (the reader is referred
to their paper for problem definitions):

Theorem 15. Given the clique-sum decomposition of a single-crossing-minor-free graph G; there are

algorithms that in Oð2Oð
ffiffi
k

p
Þ nÞ time decide whether graph G has a subset of vertices of size k which

is a dominating set, dominating set with property P; vertex cover, edge-dominating set, maximal

matching, maximum independent set, clique-transversal set, kernel, feedback vertex set, or satisfies a
series of vertex removal properties.

Applying Theorem 2, we obtain:

Corollary 3. There are algorithms that in Oð2Oð
ffiffi
k

p
Þ n þ n4Þ time decide whether any single-crossing-

minor-free graph G has a subset of size k with one of the properties mentioned in Theorem 15:

Though this result improves Theorem 14, the technique here is simpler and forms a basis for the
newer results.

8. Conclusions and future work

In this paper, we introduced the class of single-crossing-minor-free graphs, which contains K3;3-

minor-free graphs and K5-minor-free graphs, generalizations of planar graphs, and demonstrated
structural properties which gave rise to new algorithms. We showed that single-crossing-minor-
free graphs have linear local treewidth and demonstrated how to obtain a tree decomposition of a
fixed number of layers. Algorithms obtained using these properties include both approximation
algorithms (e.g. a 1.5-approximation algorithm for treewidth and many polynomial-time
approximation schemes) and fixed-parameter algorithms (e.g. a k-dominating set algorithm).
Extensions to the structural results could include finding clique-sum characterizations of graphs

such as graphs excluding a double-crossing graph (or a graph with a bounded number of
crossings) as a minor. For each such class, polynomial-time constructions of the decompositions
could be used for further algorithmic development.
Notice that the algorithm of Theorem 2 in Section 3.3 can serve as a general heuristic for the

computation or approximation of treewidth in a graph when the resulting 3-connected
components without strong 3-cuts are graphs whose treewidth can be computed or approximated
efficiently. Additional approximation algorithms might include those which determine graph
properties other than treewidth. As a consequence of Theorem 6, treewidth is a 1.5-approximation
on branchwidth, which immediately implies the existence of a 2.25-approximation for
branchwidth of single-crossing-minor-free graphs. It might be possible to use a clique-sum
decomposition to obtain a better approximation or an exact algorithm for branchwidth. We

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 191

believe that by using an approach similar to that described by Kezdy and McGuinness [KM92], it
is possible to obtain a polylogarithmic parallel algorithm that constructs a series of clique-sum
operations as in Theorem 2; details remain to be worked out.
We suspect that Baker’s approach can be applied to obtain practical polynomial-time

approximation schemes for other problems, such as variations on dominating sets [ABF+02] that
have been solved on k-outerplanar graphs or graphs of bounded treewidth
[BP92,DST96,ABF+02]. By considering other NP-complete problems that have good algorithms
for planar graphs and graphs of bounded treewidth, we may be able to extend the range of
problems to which using clique-sum decomposition techniques may be applied; some results in
this direction have already been found [DHT02].

References

[ABF+02] J. Alber, H.L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed parameter algorithms for

dominating set and related problems on planar graphs, Algorithmica 33 (2002) 461–493.

[AFF+01] J. Alber, H. Fan, M.R. Fellows, H. Fernau, R. Niedermeier, F.A. Rosamond, U. Stege, Refined search tree

technique for dominating set on planar graphs, in: Proceedings of 26th International Symposium on

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 2136, Springer,

Berlin, 2001, pp. 111–122.

[AFN01] J. Alber, H. Fernau, R. Niedermeier, Parameterized complexity: exponential speed-up for planar

graph problems, in: Proceedings of the 28th Annual International Colloquium on Automata,

Languages, and Programming, Lecture Notes in Computer Science, Vol. 2076, Springer, Berlin, 2001,

pp. 261–272.

[AN02] J. Alber, R. Niedermeier, Improved tree decomposition-based algorithms for domination-like problems, in:

Proceedings of LATIN 2002, Fifth Latin American Symposium on Theoretical Informatics, Lecture Notes

in Computer Science, Vol. 2286, Springer, Berlin, 2002, pp. 613–628.

[AST90] N. Alon, P. Seymour, R. Thomas, A separator theorem for graphs with excluded minor and its

applications, in: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990,

pp. 293–299.

[Ami01] E. Amir, Efficient approximation for triangulation of minimum treewidth, in: Proceedings of the 17th

Annual Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, Los Altos, CA, 2001,

pp. 7–15.

[ACP87] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM

J. Algebraic Discrete Methods 8 (2) (1987) 277–284.

[AP86] S. Arnborg, A. Proskurowski, Characterization and recognition of partial 3-trees, SIAM J. Algebraic

Discrete Methods 7 (2) (1986) 305–314.

[Asa85] T. Asano, An approach to the subgraph homeomorphism problem, Theoret. Comput. Sci. 38 (2–3) (1985)

249–267.

[Bak94] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput.

Mach. 41 (1) (1994) 153–180.

[Bod88] H.L. Bodlaender, Dynamic programming algorithms on graphs with bounded treewidth, in: Proceedings of

the 15th International Colloquium on Automata, Languages, and Programming, Lecture Notes in

Computer Science, Vol. 317, 1988, pp. 105–118.

[Bod93] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernet. 11 (1993) 1–23.

[Bod96] H.L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM

J. Comput. 25 (6) (1996) 1305–1317.

[Bod97] H.L. Bodlaender, Treewidth: algorithmic techniques and results, in: Proceedings of the 22nd International

Symposium on Mathematical Foundations of Computer Science, 1997, pp. 29–36.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195192

[Bod98] H.L. Bodlaender, A partial k-arboretum of graphs of bounded treewidth, Theoret. Comput. Sci. 209 (1998)

1–45.

[BGHK95] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, frontsize,

and shortest elimination tree, J. Algorithms 18 (2) (1995) 238–255.

[BKK95] H.L. Bodlaender, T. Kloks, D. Kratsch, Treewidth and pathwidth of permutation graphs, SIAM

J. Discrete Math. 8 (4) (1995) 606–616.

[BK96] H.L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of

graphs, J. Algorithms 21 (2) (1996) 358–402.

[BM93] H.L. Bodlaender, R.H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Discrete Math. 6 (2)

(1993) 181–188.

[BT97] H.L. Bodlaender, D.M. Thilikos, Treewidth for graphs with small chordality, Discrete Appl. Math. 79

(1–3) (1997) 45–61.

[BvLTT97] H.L. Bodlaender, J. van Leeuwen, R. Tan, D. Thilikos, On interval routing schemes and treewidth, Inform.

and Comput. 139 (1) (1997) 92–109.

[BM76] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New

York, 1976.

[BKMT01] V. Bouchitté, D. Kratsch, H. Müller, I. Todinca, On treewidth approximations, in: Proceedings of the First

Cologne–Twente Workshop on Graphs and Combinatorial Optimization, Electronic Notes in Discrete

Mathematics, Vol. 8, 2001.

[BT01] V. Bouchitté, I. Todinca, Treewidth and minimum fill-in: grouping the minimal separators, SIAM J.

Comput. 31 (1) (2001) 212–232.

[BDK00] H.J. Broersma, E. Dahlhaus, T. Kloks, A linear time algorithm for minimum fill-in and treewidth for

distance hereditary graphs, Discrete Appl. Math. 99 (1–3) (2000) 367–400.

[BP92] T.N. Bui, A. Peck, Partitioning planar graphs, SIAM J. Comput. 21 (2) (1992) 203–215.

[CKL01] M.-S. Chang, T. Kloks, C.-M. Lee, Maximum clique transversals, in: Proceedings of the 27th International

Workshop on Graph-Theoretic Concepts in Computer Science, 2001, pp. 300–310.

[CKJ01] J. Chen, I.A. Kanj, W. Jia, Vertex cover: further observations and further improvements, J. Algorithms 41

(2) (2001) 280–301.

[Che98] Z.-Z. Chen, Efficient approximation schemes for maximization problems on K3;3-free or K5-free graphs,

J. Algorithms 26 (1) (1998) 166–187.

[CNS82] N. Chiba, T. Nishizeki, N. Saito, An approximation algorithm for the maximum independent set problem

on planar graphs, SIAM J. Comput. 11 (4) (1982) 663–675.

[DHT02] E.D. Demaine, M. Hajiaghayi, D.M. Thilikos, Exponential speedup of fixed parameter algorithms on K3;3-

minor-free or K5-minor-free graphs, in: Proceedings of the 13th Annual Symposium on Algorithms and

Computation, 2002, pp. 262–273.

[DST96] J. Dı́az, M.J. Serna, J. Torán, Parallel approximation schemes for problems on planar graphs, Acta

Inform. 33 (4) (1996) 387–408.

[Die89] R. Diestel, Simplicial decompositions of graphs: a survey of applications, Discrete Math. 75 (1–3) (1989)

121–144.

[Die91] R. Diestel, Decomposing infinite graphs, Discrete Math. 95 (1991) 69–89.

[DF99] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer, New York, 1999.

[EFF02] J. Ellis, H. Fan, M.R. Fellows, The dominating set problem is fixed parameter tractable for graphs of

bounded genus, in: Proceedings of the Eighth Scandinavian Workshop on Algorithm Theory, Lecture

Notes in Computer Science, Vol. 2368, Springer, Berlin, 2002, pp. 180–189.

[Epp99] D. Eppstein, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms Appl. 3

(3) (1999) 1–27.

[Epp00] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica 27 (3–4) (2000)

275–291.

[FG01] M. Frick, M. Grohe, Deciding first-order properties of locally tree-decomposable structures, J. ACM 48 (6)

(2001) 1184–1206.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 193

[GJ79] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, W.

H. Freeman and Co., San Francisco, CA, 1979.

[Gro01] M. Grohe, Local tree-width, excluded minors, and approximation algorithms, Combinatorica, 2001, to

appear.

[HM94] M. Habib, R.H. Möhring, Treewidth of cocomparability graphs and a new order-theoretic parameter,

Order 11 (1994) 47–60.

[HT73] J.E. Hopcroft, R.E. Tarjan, Dividing a graph into triconnected components, SIAM J. Comput. 2 (1973)

135–158.

[KR91] A. Kanevsky, V. Ramachandran, Improved algorithms for graph four-connectivity, J. Comput. System

Sci. 42 (3) (1991) 288–306.

[KM92] A. Kézdy, P. McGuinness, Sequential and parallel algorithms to find a K5 minor, in: Proceedings of the

Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 345–356.

[Klo96] T. Kloks, Treewidth of circle graphs, Internat. J. Found. Comput. Sci. 7 (2) (1996) 111–120.

[KLL01] T. Kloks, C.M. Lee, J. Liu, Feedback vertex sets and disjoint cycles in planar (di)graphs, Optimization

Online, 2001.

[Lag96] J. Lagergren, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms 20 (1) (1996)

20–44.

[LT80] R.J. Lipton, R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput. 9 (3) (1980)

615–627.

[MT92] J. Matoušek, R. Thomas, On the complexity of finding iso- and other morphisms for partial k-trees,

Discrete Math. 108 (1–3) (1992) 343–364.

[MR92] G.L. Miller, V. Ramachandran, A new graph triconnectivity algorithm and its parallelization,

Combinatorica 12 (1) (1992) 53–76.

[RS84] N. Robertson, P.D. Seymour, Graph minors. III, Planar tree-width, J. Combin. Theory Ser. B 36 (1984)

49–64.

[RS85] N. Robertson, P.D. Seymour, Graph minors—a survey, in: I. Anderson (Ed.), Surveys in Combinatorics,

Cambridge University Press, Cambridge, 1985, pp. 153–171.

[RS86] N. Robertson, P.D. Seymour, Graph minors. II, Algorithmic aspects of tree-width, J. Algorithms 7 (3)

(1986) 309–322.

[RS91] N. Robertson, P.D. Seymour, Graph minors. X, Obstructions to tree-decomposition, J. Combin. Theory

Ser. B 52 (1991) 153–190.

[RS93] N. Robertson, P. Seymour, Excluding a graph with one crossing, in: Proceedings of the

AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, Graph Structure Theory,

1993, pp. 669–675.

[Ros74] D.J. Rose, On simple characterizations of k-trees, Discrete Math. 7 (1974) 317–322.

[San96] D.P. Sanders, On linear recognition of tree-width at most four, SIAM J. Discrete Math. 9 (1) (1996)

101–117.

[ST94] P.D. Seymour, R. Thomas, Call routing and the ratcatcher, Combinatorica 14 (2) (1994) 217–241.

[SSR94] R. Sundaram, K.S. Singh, P.C. Rangan, Treewidth of circular-arc graphs, SIAM J. Discrete Math. 7 (4)

(1994) 647–655.

[Tar72] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972)

146–160.

[TP93] J.A. Telle, A. Proskurowski, Practical algorithms on partial k-trees with an application to domination-like

problems, in: Proceedings of Third Workshop on Algorithms and Data Structures, Lecture Notes in

Computer Science, Vol. 709, 1993, pp. 610–621.

[TP97] J.A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees, SIAM

J. Discrete Math. 10 (4) (1997) 529–550.

[Tho01] A. Thomason, The extremal function for complete minors, J. Combin. Theory, Ser. B 81 (2) (2001)

318–338.

[vL90] J. van Leeuwen, Graph algorithms, in: Handbook of Theoretical Computer Science, Vol. A, Elsevier,

Amsterdam, 1990, pp. 525–631 (Chapter 10).

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195194

[Wag37] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937) 570–590.

[Wil84] S.G. Williamson, Depth-first search and Kuratowski subgraphs, J. Assoc. Comput. Mach. 31 (4) (1984)

681–693.

[Yan78] M. Yannakakis, Node- and edge-deletion NP-complete problems, in: Proceedings of the Tenth Annual

ACM Symposium on Theory of Computing, 1978, pp. 253–264.

ARTICLE IN PRESS

E.D. Demaine et al. / Journal of Computer and System Sciences 69 (2004) 166–195 195

	Approximation algorithms for classes of graphs excluding single-crossing graphs as minors
	Introduction
	Background
	Graph terminology
	Treewidth and locally bounded treewidth

	Clique-sum decompositions
	Clique sums
	Relating clique sums to treewidth and local treewidth
	Decomposition algorithm

	Locally bounded treewidth of single-crossing-minor-free graphs
	Bounded local treewidth
	Local treewidth and layer decompositions

	Approximating treewidth
	Polynomial-time approximation schemes
	General schemes for approximation on special classes of graphs
	Approximation schemes for single-crossing-minor-free graphs
	Further applications

	Fixed-parameter algorithms
	Conclusions and future work
	References

