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Mòdul C5, c/Jordi Girona Salgado, 1-3
E-08034 Barcelona, Spain
E-mail: sedthilk@lsi.upc.es

Received July 26, 2000

We extend the well-studied concept of a graph power to that of a k-leaf power G
of a tree T : G is formed by creating a node for each leaf in the tree and an edge
between a pair of nodes if and only if the associated leaves are connected by a path
of length at most k. By discovering hidden combinatorial structure of cliques and
neighborhoods, we have developed polynomial-time algorithms that, for k = 3 and
k = 4, identify whether or not a given graph G is a k-leaf power of a tree T , and if
so, produce a tree T for which G is a k-leaf power. We believe that our structural
results will form the basis of a solution for more general k. The general problem of
inferring hidden tree structure on the basis of leaf relationships shows up in several
areas of application.  2002 Elsevier Science
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1. INTRODUCTION

The results in this paper are derived from two abundant areas of
research: graph powers and leaf-labeled trees. Both areas contain results
of a purely theoretical nature as well as applications to such diverse areas
as distributed computing [8], computational biology, and mathematical
psychology [1].

Trees are versatile in their ability to represent relations between data
items stored in their nodes. In many instances, data items are stored in a
subset of the nodes (typically leaves); the structure of internal nodes is dic-
tated by measures of distance or similarity among leaves. For example, a
Steiner tree is a tree of minimal length containing every point in a set of
inputs; a more general formulation is known as an X-tree [1]. A fundamen-
tal problem in computational biology is the reconstruction of the phylogeny,
or evolutionary history, of a set of species or genes, typically represented
as a phylogenetic tree (the reader is referred to papers that review research
in the area of evolutionary history [4, 5, 7]). In a phylogenetic tree, each
leaf is labeled by a distinct known species; a tree is then formed by positing
possible ancestors that might have led to this set of species.

By viewing the correlations between leaves as distances between nodes
in a graph, we can frame the problem of forming a phylogenetic tree as
the problem of forming a tree from a graph. One such correlation between
graphs and trees, or more generally between graphs and graphs, arises in
the notion of graph powers. A graph G is the kth power of a graph H if
nodes x and y are adjacent in G if and only if the length of the shortest
path from x to y in H is at most k. Although in general it is NP-complete
to recognize a graph power [9], it is possible to determine if a graph is the
power of a tree in time O�n3�, where n is the number of vertices in the
input graph [2].

In this paper we introduce the notion of a k-leaf power of an unlabeled
tree T , where a graph G is the k-leaf power of a tree T if there exists a
vertex in V �G� for each leaf in T and an edge in E�G� between vertices u
and v if and only if there is a path of length at most k between the leaves
associated with u and v in T . The problem of recognizing k-leaf powers
is inspired by the problem of forming a phylogenetic tree based on dis-
tance thresholds: given a graph G in which there is an edge for each pair
of species at distance at most k, the tree T of which G is a k-leaf power is a
phylogenetic tree in which the associated leaves are guaranteed to be at dis-
tance at most k. In practice, phylogenetic problems involve edge-weighted
trees and errors in distance estimators; our algorithms should be seen as
a first step toward handling this more general situation. A related concept
is that of the threshold graph formed on a set of n nodes and a weighting
function on edges by including only edges less than a set threshold; there
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exist algorithms to extract a tree from the graph by first finding connected
components [1].

We derive polynomial-time algorithms for recognizing k-leaf powers for
k = 3 and k = 4. Our algorithms are based on the hidden structure of
k-leaf powers, of independent combinatorial interest; as leaf labels do not
play a part in our algorithms, our work is applicable to arbitrary trees.
The complex characterizations of k-leaf powers are based on the structural
properties of cliques and neighborhoods. The properties are particularly
tricky to derive in the presence of internal nodes that are not the neighbours
of leaves: such nodes serve as invisible entities that subtly alter the structure
of the relationships of neighborhoods. The lemmas we prove may be helpful
not only in generalizing our results to k > 4, but also in unrelated problems
on graphs and trees.

We first establish properties of neighborhoods in trees in Section 3. Next,
we present a representation of the original graph as a clique graph, defined
in Section 4. Section 5 contains polynomial-time algorithms which deter-
mine whether or not a graph G is a 3-leaf power or a 4-leaf power of a
tree T , and if so, demonstrate one such T . Finally, directions for future
research are discussed in Section 6.

2. PRELIMINARIES

Our algorithms identify tree structure by examining cliques of leaves in
the tree. As a consequence, we need to distinguish between internal vertices
that are neighbors of leaves (visible vertices) and internal vertices that are
not neighbors of leaves (invisible vertices). A tree that does not contain any
invisible vertices is an ideal tree. To help avoid confusion, we will refer to
vertices in a tree T and nodes in its k-leaf power G.

The case of 2-leaf powers is not interesting; a 2-leaf power G is a set
of disjoint cliques, each clique corresponding to the leaves of T adjacent
to one internal vertex. Any tree formed by connecting the internal vertices
yields the same 2-leaf power.

When k > 2, the set of leaves of T adjacent to an internal vertex also
forms a clique in G, but these cliques may overlap and will not, in general,
be maximal. It is the maximal cliques of G that hold the key to reconstruct-
ing T , and we must find elements in T that correspond to these cliques.

Since a k-leaf power is an induced subgraph of a power of trees, and
powers of trees are chordal [6], clearly the graphs we are trying to recognize
are chordal. We can check for chordality and find all maximal cliques in
linear time [3, 10].

A few easy observations will simplify our task. Given a graph G which is
a k-leaf power, we can treat each connected component separately and
connect the resulting trees by paths of length k. Consequently we can
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assume (and will do so for the rest of the paper) that G is connected.
Any tree T whose 3-leaf power is connected has no invisible vertices (as
these would disconnect the 3-leaf power) and similarly, any tree T whose
4-leaf power is connected cannot have two adjacent invisible vertices.

The distance d�u� v� between two nodes u� v in a tree T is the number
of edges in the unique path between them. We will find it convenient to
define the distance d�u� e� between a node u and an edge e = �v�w� as
�d�u� v� + d�u�w��/2. Note that, in a tree, this is always of the form j + 1

2
for an integer j; intuitively, the extra half is the amount needed to “get to
the center of the edge.” Similarly, we define the distance d�e1� e2� between
two edges e1 and e2 in a tree as one more than the number of edges in the
unique path between them. Intuitively, the addition is due to the two extra
halves needed to “get to the center” of each edge. It is not hard to verify
that the triangle inequality holds for this extended notion of distance.

Definition 2.1. The 2k-neighborhood with center vertex v in a tree T
is the set S of all leaves of distance at most k from internal vertex v. The
�2k + 1�-neighborhood with center edge e in a tree T is the set S of all
leaves of distance at most k+ 1

2 from edge e = �u� v�, where u and v are
both internal vertices.

Lemma 2.1. In a 2k-leaf power G of a tree T , the vertices of any maximal
clique M of G form a 2k-neighborhood in T of some internal vertex v.

Proof. We let P be a longest path in T between two points of M , and
let u and w be the endpoints of P . Clearly, P has length at most 2k. We
define v to be the midpoint of P (if P contains an even number of vertices,
we break the tie arbitrarily) and let N be the 2k-neighborhood of v.

To see that M ⊆ N , we suppose instead that there exists a vertex x ∈
M \N , and hence d�x� v� > k. The path from x to v must contain an edge
from a vertex outside of P to a vertex z in P; without loss of generality, we
assume that z appears on the path from u to v in P . Since P is a longest
path, d�u�w� ≥ d�x�w�, and hence we can conclude that d�u� v� ≥ d�x� v�.
By assumption d�x� v� > k, which implies that d�u� v� > k, and hence the
length of P is greater than 2k, a contradiction.

Next, we show that N ⊆ M . Let y be an arbitrary vertex in N and let x
be an arbitrary vertex of M . Since M ⊆ N , d�x� v� ≤ k. Thus d�x� y� ≤
d�x� v� + d�v� y� ≤ 2k, and x and y are connected in G. Since x was
arbitrary, y is connected to every vertex in M , and by maximality of M ,
y ∈M .

Lemma 2.2. In a �2k + 1�-leaf power G of a tree T , the vertices of any
maximal clique M of G form a �2k+ 1�-neighborhood in T of some edge e
between two internal vertices.

Proof. Similar to that of the previous lemma.
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The converse of Lemmas 2.1 and 2.2 fails to hold. For example, we
can construct a path u� v�w, and x of internal vertices such that both v
and x are invisible, and all other neighbors of w are leaves. Then, the
4-neighborhood with center w (the leaf neighbors of w) is a proper sub-
set of the 4-neighborhood with center v (the leaf neighbors of u and w).
Even in an ideal tree, vertices “close to the edge” can have nonmaximal
4-neighborhoods, in a way quantified in the next section, where we look at
the structure underlying neighborhoods and maximal cliques.

3. PROPERTIES OF NEIGHBORHOODS

3.1. Properties of Neighborhoods in Arbitrary Trees

We will discover the hidden structure of the underlying tree of a k-leaf
power by intersecting maximal cliques, which are neighborhoods. The fol-
lowing technical lemma aids in characterizing the structure of intersections
of neighborhoods.

Lemma 3.1. For v1 and v2 internal vertices or edges in a tree T such that
d�v1� v2� = r, and Si the ki-neighborhood of vi for ki ≥ 2, i ∈ 
1� 2�, k1 ≥ k2,
the following conditions hold:

(a) if �k1 + k2�/2 − 2 < r, then S1 ∩ S2 = �,
(b) if r ≤ �k1 − k2�/2, then S2 ⊆ S1.
(c) if �k1 − k2�/2 < r ≤ �k1 + k2�/2 − 2, then S1 ∩ S2 is the

��k1 + k2�/2 − r�-neighborhood of the unique vertex/edge whose distance
from v1 is �k1 − k2�/4+ r/2 and whose distance from v2 is �k2 − k1�/4+ r/2.

Proof. We will examine the case where k1� k2, and r are all even; the
analysis for the other cases is very similar. First, we prove the contrapositive
of (a). Suppose that S1 ∩ S2 �= �� w is an arbitrary leaf in S1 ∩ S2, and v is
the unique vertex of T that is adjacent to w. Clearly, d�v� vi� ≤ ki/2− 1, for
i = 1� 2, and hence r = d�v1� v2� ≤ d�v1� v� + d�v� v2� ≤ �k1 + k2�/ 2 − 2.

Suppose now that r ≤ �k1 − k2�/2. For any x ∈ S2� d�v2� x� ≤ k2/2. As
d�v1� x� ≤ d�v1� v2� + d�v2� x�, we can conclude that d�v1� x� ≤ r + k2/2 ≤
k1/2 and thus x ∈ S1. Therefore, S2 ⊆ S1 and (b) follows.

To prove (c), let u be the unique vertex of T that is at distance
�k1 − k2�/4+ r/2 from v1 and distance �k2 − k1�/4+ r/2 from v2, and S be
the ��k1 + k2�/2 − r�-neighborhood of u. We must show that S = S1 ∩ S2.
For x ∈ S� d�x� u� ≤ �k1 + k2�/4 − r/2. As d�u� v1� = �k1 − k2�/4 + r/2,
we conclude that

d�x� v1� ≤ d�x� u� + d�u� v1� ≤
k1 + k2

4
− r

2
+ k1 − k2

4
+ r

2
= k1

2
�
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and hence x ∈ S1. Similarly, we can show that x ∈ S2 and thus S ⊆ S1 ∩ S2.
For x /∈ S� d�x� u� > �k1 + k2�/4 − r/2. Deleting u divides T into con-

nected components; at least one of the vi’s, say v1, is not in the connected
component that contains x. As v1 and x are in different connected compo-
nents, clearly

d�x� v1� = d�x� u� + d�u� v1� >
k1 + k2

4
− r

2
+ k1 − k2

4
+ r

2
= k1

2

and so x cannot be in the k1-neighborhood of v1. This implies that x /∈
S1 ∩ S2, and we conclude that S = S1 ∩ S2.

Using Lemma 3.1 we can easily prove the following results concerning
the structure of neighborhoods. Although stated in a general form, in this
paper we apply these primarily in the case j = 4.

Lemma 3.2. The following conditions hold for any tree T and j ≥ 4:

1. The intersection of two distinct j-neighborhoods is either empty or a
j′-neighborhood for 2 ≤ j′ ≤ j − 1.

2. No �j − 1�-neighborhood is a subset of more than two distinct j-
neighborhoods for j even.

3. If a �j − 2�-neighborhood is a subset of a j-neighborhood, then their
centers are either identical or adjacent.

4. The �j − 2�-neighborhood of a vertex of degree at least two is the
intersection of the j-neighborhoods of any two of its neighbors for j even.

5. The �j − 1�-neighborhood of an edge is the intersection (union) of
the j-neighborhoods (�j − 2�-neighborhoods) of its endpoints.

Proof. Condition (1) follows by applying k1 = k2 = j� r ≥ 1 (cases
(a) and (c)). For condition (2), observe that, among three distinct j-
neighborhoods of vertices, there are two with centers of distance at least 2;
applying Lemma 3.1 for k1 = k2 = j and r ≥ 2 (cases (a) and (c)) shows
that their intersection cannot be a �j − 1�-neighborhood. Conditions (3),
(4), and (5) follow from Lemma 3.1 with k1 = j� k2 = j − 2, r < 2 (case
(b)), k1 = k2 = j, r = 2 (case (c)), and k1 = k2 = j, r = 1 (case (c)),
respectively. The parenthesized version of condition (5) is obvious.

In addition to the above general properties, the following specific prop-
erties are useful for the case k = 4.

Lemma 3.3. The following conditions hold for any tree T :

1. All the 2-neighborhoods of the internal vertices of T are vertex
disjoint.
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2. The intersection of the 4-neighborhood of v and the 3-neighborhood
of e is either the 3-neighborhood of e, a 2-neighborhood of one of the endpoints
of e, or empty.

3. The intersection of the 4-neighborhood of v1 and the 2-neighborhood
of v2 is either the 2-neighborhood of v2, or empty.

4. Let S be the intersection of two 3-neighborhoods of two edges e1� e2.
If e1 and e2 are adjacent then S is the 2-neighborhood of their common end-
point; otherwise S is empty.

Proof. Condition (1) follows by applying Lemma 3.1 with k1 = k2 = 2,
r ≥ 1 (case (a)), condition (2) by applying Lemma 3.1 with k1 = 4� k2 = 3,
r = 1

2 (case (b)), r = 3
2 (case (c)), and r > 3

2 (case (a)), and condition (3)
by applying Lemma 3.1 with k1 = 4, k2 = 2, r = 1 (case (b)) and r > 1
(case (a)). Finally, condition (4) follows for k1 = k2 = 3 and r > 1 (case
(a)), or r = 1 (case (c)).

3.2. Properties of Neighborhoods in Ideal Trees

We make use of terminology that distinguishes between types of vertices
in a tree. For T ′, the tree obtained from T after two successive leaf prun-
ings, we partition the internal vertices of T into those which are not in T ′

(marginal vertices), those which are leaves in T ′ (peripheral vertices), and
those which are internal vertices in T ′ (central vertices). Any edge incident
on a central vertex is a central edge. An edge in T is pendant if one of its
endpoints is a leaf.

We now derive some properties of ideal trees.

Lemma 3.4. The following conditions hold for any ideal tree T :

1. No 4-neighborhood (3-neighborhood) of a nonmarginal vertex (cen-
tral edge) is a subset of the 4-neighborhood (3-neighborhood) of another non-
marginal vertex (central edge).

2. The 4-neighborhood of a peripheral vertex v contains only one 3-
neighborhood of a central edge, the one centered on the unique central edge
that contains v as endpoint.

3. Let 
S1� � � � � S�� be a set of 3-neighborhoods of nonpendant edges,
and let S be a 4-neighborhood (2-neighborhood) of a nonmarginal vertex. Then
Si ⊂ S (Si ⊃ S), i = 1� � � � � � if and only if the centers of Si, i = 1� � � � � �
contain the center of S as an endpoint.

4. Let S1 and S2 be two distinct 4-neighborhoods (2-neighborhoods) of
nonmarginal vertices and let S be a 3-neighborhood. Then Si ⊃ S (Si ⊂ S),
i = 1� 2 if and only if the center of S has the centers of S1 and S2 as endpoints.
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5. Let S2 and S4 be the 2-neighborhood and the 4-neighborhood of a
nonmarginal vertex and let S3 be a 3-neighborhood. Then S2 ⊂ S3 if and only
if S3 ⊂ S4.

Proof of Lemma 3�4, point �1�. We let v1 and v2 be two nonmarginal
vertices and let S1 and S2 be their 4-neighborhoods. By the definition of
nonmarginal, there are two leaves u1 and u2 such that the unique path P
connecting v1 and v2 is a subpath of the path connecting u1 and u2, and
d�vi� ui� = 2 for i = 1� 2. Clearly d�v1� v2� ≥ 1, and hence u1 ∈ S1 and
d�v2� u1� ≥ 3. We can conclude that u1 �∈ S2 and S1 �⊆ S2. Symmetrically,
S2 �⊆ S1. The parenthesized case can be proved using similar reasoning.

Proof of Lemma 3�4, point �2�. By the definitions of a central edge and
a peripheral vertex, there is only one central edge e with a given peripheral
vertex v as its endpoint. It is a direct consequence of Lemma 3.2, point 5
that the 3-neighborhood of e is a subset of the 4-neighborhood of v. For
any other central edge e′, at least one endpoint u of e′ is at distance at
least two from v; the result follows from the fact that the leaf neighbors of
u are in the 3-neighborhood of e but not in the 4-neighborhood of v.

Proof of Lemma 3�4, point �3�. If the centers of the Si’s contain the cen-
ter of S, Si ⊆ S is a consequence of Lemma 3.1, case (b), for k1 = 4� k2 = 3,
and r = 1

2 . For each i, to show that Si ⊂ S, it suffices to find an element of
S that does not belong to Si. As S is the 4-neighborhood of a nonmarginal
vertex v, there exist at least two nonpendant edges sharing v as an end-
point. Of these edges, at most one is the center of Si, and hence there
exists a nonpendant edge �u� v� which is not the center of Si. Since T is
ideal, there exists a leaf w adjacent to u in T . Clearly, w ∈ S and w /∈ Si.

To prove the parenthesized version of this direction, we apply Lemma 3.1,
case (b), for k1 = 3� k2 = 2 and r = 1

2 to conclude that Si ⊇ S. Let v and
�v� u� be the centers of S and Si, respectively. As T is ideal and �v� u� is
nonpendant, there exists a leaf w adjacent to u in T . Clearly, w ∈ Si and
w /∈ S. Therefore, Si ⊂ S.

Assume now that Si ⊂ S, i = 1� � � � � �, and let v be the center of S.
Suppose to the contrary that ej , the center of Sj , does not contain v as
an endpoint. This means that d�v� ej� ≥ 3

2 . By applying Lemma 3.1 for
k1 = 4� k2 = 3 and r ≥ 3

2 we know that the intersection of Sj and S

(which is simply Sj , since Sj ⊂ S) is either empty (case (a), r > 3
2 ) or is

the 2-neighborhood S′j of a vertex, say vj , adjacent to v (case (c), r = 3
2 ).

Notice that Sj ∩ S cannot be empty as it is equal to Sj , which in turn can-
not be empty because T is ideal. By Lemma 3.2, point 5, Sj is the union of
the 2-neighborhoods of the endpoints of its center, namely vj and some v′,
which are disjoint due to Lemma 3.2, point 1. Since we have shown Sj = S′j ,
the 2-neighborhood of v′ must be empty, again a contradiction to T being
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ideal (recall that v′ is an endpoint of a nonpendant edge and therefore
cannot be a leaf). The proof of the parenthesized version is similar and
easier.

Proof of Lemma 3�4, point �4�. If the center of S has the centers of S1
and S2 as endpoints, then S ⊂ Si follows from Lemma 3.1, case (b), for
k1 = 4� k2 = 3, and r = 1

2 (or case (b), k1 = 3� k2 = 2, and r = 1
2 for its

parenthesized version) and an argument similar to the one we used in (3)
above.

Assume now that Si ⊃ S, i = 1� 2, and let e be the center of S. By applying
(3), we can conclude that the centers of S1 and S2 are distinct endpoints of
the center of S. The proof of the parenthesized version is similar.

Proof of Lemma 3�4, point �5�. For convenience, we let v be the center
of S2 and S4. If S2 ⊂ S3, we can apply the parenthesized version of (3) to
conclude that v is an endpoint of the center of S3. By applying (3) again in
the opposite direction, we obtain the desired result.

Similarly, if S3 ⊂ S4, then by (3), v is an endpoint of the center of
S3; using the parenthesized version in the opposite direction yields the
result.

4. CLIQUE GRAPHS AND THEIR PROPERTIES

Our algorithms rely on the representation of graphs as directed acyclic
graphs of maximal cliques and their intersections; here we introduce the
notion of a clique graph and establish properties that prove useful algorith-
mically. Since in subsequent sections we will discuss clique graphs along
with k-leaf powers, we will use nodes to refer to clique graphs (with names
drawn from the first half of the alphabet) as well as to nodes in the orig-
inal graph. In contrast, vertices in the tree will be named from the second
half of the alphabet.

4.1. Clique Graphs

The clique graph CG of a chordal graph G is a directed acyclic graph,
whose nodes are labeled by cliques of vertices in G. The definition of CG is
given algorithmically as described in the clique graph algorithm below. We
build CG by first computing all node labels, and then creating edges. The
node labels are computed by first determining all maximal cliques and then
iteratively finding intersections of existing node labels. A node is created for
each label, and an edge is added from a node a to a node b if the label of a
is a subset of the label of b. In Lemma 4.19 we prove linear bounds on the
numbers of nodes and edges of clique graphs of leaf powers; the algorithm
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halts if at any point these bounds are exceeded. This is necessary because
the clique graph of an arbitrary chordal graph could have exponential size
(consider a graph on vertices u1� � � � � un/2� v1� � � � � vn/2 in which there is an
edge �ui� uj� and �ui� vj� for all i �= j). Finally, we construct the transitive
reduction of the graph in a naive fashion, by checking triples of nodes
�a� b� c�, and removing the edge �a� c� if edges �a� b� and �b� c� exist (this
is unambiguous since our graph is a directed acyclic graph); as this step is
not the bottleneck, our method suffices.

** clique graph algorithm **
1 form the set � of node sets of all maximal

cliques of G
2 form the set � ′ of all intersections of sets in �
3 let � ← � ∪ � ′′
4 (if at any point above the number of sets exceeds csn,

stop and answer NO)
5 for each set S in � create a node a�S� labeled S
6 for each pair of sets �S� S′� in �
7 create edge �a�S�� a�S′�� if S is a proper subset of S′

8 (if at any point above the number of edges exceeds cen,
stop and answer NO)

9 for every triple of sets S, S′� S′′ in �
10 if S ⊆ S′ ⊆ S′′� mark edge �a�S�� a�S′′��
11 delete all marked edges

Beyond ensuring a polynomial running time, we have not attempted to
optimize this construction; further investigation of the properties of chordal
graphs may improve the lemma below.

Lemma 4.1. Given a chordal graph G = �V�E�, CG can be computed in
time O��V �3�.

Proof. We first find all O��V �� maximal cliques in time O��V �2� (the
number of cliques and running time are a consequence of the linear-time
recognition of chordal graphs by means of a perfect elimination order-
ing [10, 11]). Finding intersections naively in line 2 takes cubic time given
that the number of nodes is linear. Finally, forming the graph and its tran-
sitive reduction can be accomplished naively in cubic time.

We use tree/DAG terminology to describe relationships between nodes
of a clique graph. If �a� b� ∈ E�CG�, we say that a is a parent of b (or,
alternatively, that b is a child of a). A node of the clique graph is a border
node if it has a unique parent. We say that b is a descendant of a (or that
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o tdb g
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FIG. 1. Internal vertices of tree T . Letter labels denote sets of leaf neighbors; squares
denote invisible vertices.

a is an ancestor of b) if there exists in CG a directed path starting from a
and finishing at b. If such a path has length 2, then we call b a grandchild
of a or, alternatively, we say that a is a grandparent of b.

Each node has associated with it a label and a level. The label of a node
c in a clique graph is its clique graph label, denoted cglabel(c). Clearly, the
union of the sets of nodes appearing in labels is equal to the set of nodes
of G and there is a one-to-one correspondence between labels of sinks of
CG and maximal cliques in G. For k− 2 the length of the longest directed
path in CG, sinks are at level k− 1, and any other node is at a level one less
than the minimum level of its children. If a node is at level j we call it a
level-j node. We use Cj� j+1 to denote the underlying undirected subgraph of
CG induced on edges between nodes at levels j and j + 1. Levels of nodes
in a clique graph can easily be found by depth-first search, and we prove
in subsequent sections that the clique graph of a k-level power has at most
k − 1 levels (for k = 3� 4). The internal vertices of a sample input T are
illustrated in Fig. 1; for convenience, sets of leaf neighbors, omitted from
the figure, are indicated by letter labels and invisible vertices are indicated
by squares. Figure 2 depicts the clique graph G (for k = 4) generated from
the tree T . In this example, the nodes with clique graph labels mop, nmo,
cde, jk, and gh are all border nodes.

4.2. Ideal Clique Graphs

A clique graph is an ideal clique graph if it can be generated from a k-leaf
power of an ideal tree T . Ideal clique graphs have elegant properties, as

mop nmo ma abc bcd cde cj jk dg gh

mo a bc cd g

dcm 1

2

3

Levels

j

FIG. 2. Clique graph G (k = 4) of tree T in Fig. 1.
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demonstrated in Lemma 4.2, which are absent from general clique graphs.
We can view a general clique graph as having been generated from an ideal
clique graph, with subsequent “collapsing” occurring at the invisible nodes.

Lemma 4.2. The following conditions hold for the clique graph C of the
4-leaf power of an ideal tree T :

1. the labels of the level-3 nodes are the 4-neighborhoods of the non-
marginal vertices of T ;

2. the labels of the level-2 nodes are the 3-neighborhoods of the central
edges of T ; and

3. the labels of the level-1 nodes are the 2-neighborhoods of the central
vertices of T .

Proof. By Lemma 2.1, the label of any sink node of C (i.e., any maxi-
mal clique of the 4-leaf power of T ) is the 4-neighborhood of some inter-
nal vertex of T . Lemma 3.4, point 1 shows that any 4-neighborhood of a
nonmarginal vertex of T is maximal, yielding property 1. To see that 4-
neighborhoods of marginal vertices are not maximal, we observe that they
are proper subsets of the 4-neighborhoods of their peripheral neighbors.

The clique graph algorithm will generate all possible nonempty intersec-
tions of 4-neighborhoods of nonmarginal vertices in T . By Lemma 3.2, point
1, these intersections are either 2-neighborhoods or 3-neighborhoods of ver-
tices of T . Moreover, by Lemma 3.2, points 4 and 5, any 3-neighborhood
(2-neighborhood) of a central edge (of a central vertex) is the intersec-
tion of two 4-neighborhoods of nonmarginal vertices. Therefore, the level-2
nodes and level-1 nodes mentioned in properties 2 and 3 are all created
during the first application of line 2 of the clique graph algorithm.

To prove properties 2 and 3, it will suffice to show that each 3-
neighborhood is at level 2 and each 2-neighborhood is at level 1. As a
consequence of Lemma 3.4, point 1, C contains no directed path of length
four. Each 3-neighborhood is the parent of 4-neighborhoods (Lemma 3.2,
point 5) and each 2-neighborhood is the parent of 3-neighborhoods
(Lemma 3.3, point 4), as needed.

The notion of a center is well defined, due to Lemma 4.2, Lemma 3.3,
point 1, and Lemma 3.4, point 1.

Definition 4.1. Given a level-j node b in a clique graph of the 4-leaf
power of an ideal tree T , center(cglabel(b)) is the unique nonmarginal
vertex or central edge v such that cglabel(b) is the �j + 1�-neighborhood
of v.

The following lemmas determine when a clique graph is ideal; the proof
of Lemma 4.3 is a simplification of that of Lemma 4.4 and hence is omitted.
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Lemma 4.3. The clique graph C of the 3-leaf power of an ideal tree T has
the following properties:

1. level-2 nodes have one or two parents and no children; and
2. level-1 nodes have at least two children and no parents.

Lemma 4.4. The clique graph C of the 4-leaf power of an ideal tree T has
the following properties:

1. Children of level-1 nodes are level-2 nodes, and children of level-2
nodes are level-3 nodes.

2. Level-2 nodes have exactly two children and one or two parents;
level-1 nodes have at least two children and no parents.

3. If a is a level-1 node, then all its children share a common level-3
node as a child and no other 3-node is the child of more than one of a’s
children; if c is a level-3 node, then all its parents share a common level-1
node as a parent, and no other level-1 node is the parent of more than one of
c’s parents.

4. C1�2 is a tree, and C2�3 is a subtree of C1� 2.

Proof of Lemma 4�4� point �1�. We first observe that by Lemma 3.2,
point 1, and Lemma 3.4, point 1, there are no edges in C connecting nodes
at the same level. Suppose that there is a level-1 node a that has a level-3
node c as a child, with va = center(cglabel(a)) and vc = center(cglabel(c)).
By Lemma 3.2, point 3, there exists a central edge e in T that con-
tains both of va and vc as endpoints (possibly va = vc). By Lemma 3.2,
point 5, for the level-2 node b labeled by the 3-neighborhood of e,
cglabel(a) ⊂ cglabel(b) ⊂ cglabel(c) and consequently edge �a� b� and
�b� c� exist in C, so that edge �a� c� should not exist. The fact that the chil-
dren of level-2 nodes are all level-3 nodes follows from the parenthesized
version of Lemma 3.4, point 1.

Proof of Lemma 4�4� point �2�. The first statement follows directly from
Lemma 3.2, points 2 and 5. The second follows from the fact that any
central vertex is adjacent to at least two central edges, and therefore its
2-neighborhood is contained in at least two 3-neighborhoods of central
edges.

Proof of Lemma 4�4� point �3�. To prove the first statement, we let
a be a level-1 node of C with children b1� � � � � b�� � ≥ 2, such that
va = center�cglabel�a�� and ei = center�cglabel�bi�� for all 1 ≤ i ≤ �.
Since each cglabel�bi�, for i = 1� � � � � �, is a 3-neighborhood of a central
edge that properly contains cglabel�a� (Lemma 4.2, points 2 and 3), and va
is the common endpoint of the ei’s (Lemma 3.4, point 3). We now show that
the bi’s have a common child c, where c is the level-3 node whose label
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is the 4-neighborhood of va (which exists by Lemma 4.2, point 1. By
Lemma 3.4, point 3, cglabel�bi� ⊂ cglabel�c�, for i = 1� � � � � �, and hence
b1� � � � � b� are all parents of c.

Suppose now that a level-3 node c′ is a child of at least two of the
children of a, say b1 and b2. By Lemma 3.4, point 3, center�cglabel�c′�� is
the common endpoint of the centers of e1 and e2. However, in the above
paragraph, we showed that the common endpoint of the centers e1 and e2 is
va. Therefore, center�cglabel�c′�� = va = center�cglabel�c��, which means
that c′ = c. The proof of the second statement is very similar, following the
observation that center�cglabel�c�� is either peripheral or central; if c has
two or more parents, Lemma 3.4, point 2 rules out its being peripheral.

Proof of Lemma 4�4� point �4�. We prove that C2� 3 is a tree by showing
that it is a subgraph of a tree T ′ formed by subdividing each edge in T .
We define f to be the mapping of nodes of C2� 3 to vertices of T ′ such
that for a level-3 node a, f �a� = v where center�cglabel�a�� = v, and for a
level-2 node b with children c and c′, f �b� is the subdivision vertex of the
edge �f �c�� f �c′��. It will suffice to show that f is well defined, since if it
is, clearly �a� a′� is an edge in C2� 3 if and only if �f �a�� f �a′�� is an edge
in T ′.

The fact that f is well defined on level-3 nodes follows from Lemma 4.2,
point 1, and �2� implies that a level-2 node b has two children c and c′. As
a consequence of Lemma 3.4, point 4, the center of cglabel�b� has the cen-
ters of cglabel�c� and cglabel�c′� as endpoints, and so �center�cglabel�c��,
center�cglabel�c′��� = �f �c�� f �c′�� is an edge in T .

To show C1� 2 is a subtree of C2� 3, it suffices to demonstrate a mapping
f of nodes in C1� 2 to nodes in C2� 3 such that �a� b� is an edge in C1� 2
if and only if �f �a�� f �b�� is an edge in C2� 3. We define f to map each
level-2 node to itself (since each such node is in both graphs) and to map
each level-3 node c to the level-1 node f �c� such that center�cglabel�c�� =
center�cglabel�f �c���.

If �a� b� is an edge in C1� 2, for a at level 1 and b at level 2, then
cglabel�a� ⊂ cglabel�b�, which implies that cglabel�b� ⊂ cglabel�f �a��
(Lemma 3.4, point 5) and hence �b� f �a�� = �f �b�� f �a�� is an edge in
C2� 3. If �b� c� is an edge in C2� 3, for b at level 2 and c at level 3, then
cglabel�b� ⊂ cglabel�c�, and again by Lemma 3.4, point 5, we can conclude
that cglabel�f−1�c�� b� = �f−1�c�� f−1�b�� is an edge in C1� 2.

The next two lemmas prove useful properties needed in the proof of
correctness of the algorithm for k = 4.

Lemma 4.5. In a three-level ideal clique graph, if a level-2 node b has two
parents a1 and a2, then cglabel�b� = cglabel�a1� ∪ cglabel�a2�.
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Proof. Since cglabel�ai� ⊂ cglabel�b�, i = 1� 2, clearly cglabel�a1� ∪
cglabel�a2� ⊆ cglabel�b�. Any node in the 3-neighborhood of an edge e
belongs to one of the 2-neighborhoods of the endpoints of e (Lemma 3.2,
point 5). Therefore, cglabel�b� ⊆ cglabel�a1� ∪ cglabel�a2�, and the lemma
follows.

Lemma 4.6. In the clique graph of an ideal tree, the parent of a border
level-3 node is a border level-2 node.

Proof. Suppose instead that c were a level-3 border node with nonbor-
der parent b. Since b is not a border node it has at least two parents a1
and a2, and by Lemma 4.4, point 2, a1 has a child b1 and a2 has a child b2
such that b, b1, and b2 are all distinct.

By Lemma 4.4, point 3, b and b1 must share a common child c1 and b
and b2 must share a common child c2. Since c has only a single parent,
clearly c1 and c2 are distinct from c, violating Lemma 4.4, point 2 for b.

4.3. General Clique Graphs

The presence of invisible nodes complicates the characterization of gen-
eral clique graphs of 4-leaf powers, for which the correlation between neigh-
borhoods and levels is no longer so clean. For example, if u, v, w, and x
form a path in T such that v and x are invisible and all other neighbors of
w are leaves, then the 4-neighborhood of w is equal to the 2-neighborhood
of w and the 3-neighborhoods of �v�w� and �w�x� and is a subset of the 4-
neighborhood of v. As a consequence of the blurring of distinctions between
types of neighborhoods, intuitively, general clique graphs of 4-leaf powers
have the following structure: the sections of height 3 look like ideal clique
graphs, but the sections of height 2 can be arbitrary bipartite trees. Theorem
4.1 confirms this intuition.

The following lemma characterizes a few constraints on the correlations
between levels and neighborhoods:

Lemma 4.7. In any three-level clique graph, the following conditions hold:

1. In any path of length three, the labels of the nodes are, in order from
source to sink, a 2-neighborhood, a 3-neighborhood, and a 4-neighborhood.

2. A level-3 node is always a 4-neighborhood, sometimes a 3-
neighborhood, and never a 2-neighborhood.

3. A level-2 node can be a 2-neighborhood and/or a 3-neighborhood,
but never a 4-neighborhood.

Proof. Condition 1, the first part of condition 3, and the first part of
condition 2 follow directly from the role of proper subsets in the defini-
tion of a clique graph and the fact that each level-3 node is a maximal
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clique and hence a 4-neighborhood (Lemma 2.1). A level-3 node cannot
be a 2-neighborhood, since if a 2-neighborhood is a maximal clique in the
graph, the graph is not connected. The remaining statements result from
the presence of invisible vertices.

Lemma 4.8. The clique graph of a k-leaf power, for k ≥ 3, has at most
k− 1 levels.

Proof. Suppose instead that there is a path �ah−k+1� ah−k+2� � � � �
ah−1� ah� of length k such that for each i, node ai is at level i, and level
h is the highest level in the clique graph for some h ≥ k. By Lemmas 2.1
and 2.2, cglabel�ah� is the k-neighborhood of some vertex in T . Moreover,
as the label of any node of level i < h is the intersection of two nodes at
levels greater than i, and any intersection of two neighborhoods is also a
neighborhood (by Lemma 3.1) it is easy to prove that any label in C is a
neighborhood of some vertex/edge in T . Observe now that cglabel�ah−1�
is the intersection of cglabel�ah� and the labels of a nonempty set Ah of
level-h nodes. As the labels in Ah ∪ 
ah� are pairwise disjoint and all con-
tain cglabel�ah−1� as a proper subset, we can use Lemma 3.1 to conclude
that cglabel�ah−1� is a kh−1-neighborhood for some kh−1 < k. Iterating
this reasoning, we can show that cglabel�ah−i� is a kh−i-neighborhood for
some kh−i < k − i + 1, for i = 1� 2� � � � � k − 1. Thus cglabel�ah−k+1� is
a kh−k+1-neighborhood for some kh−k+1 < 2, contradicting the fact that
cglabel�ah−k+1� ⊂ cglabel�ah−k+2� and both are nonempty.

Given a three-level clique graph C, we decompose C into a set of sub-
graphs and linking edges. We identify two types of three-level subgraphs,
namely nondegenerate and degenerate three-level subgraphs, as well as
two-level subgraphs. In Theorem 4.1 we stipulate additional conditions
which ensure that C is the clique graph of a 4-leaf power.

The decomposition algorithm starts by creating a partition � of level-1
nodes that have at least two level-2 children, where two nodes are in the
same set of the partition if they share a level-2 child. For each set P of the
partition, it forms the subgraph NP of C induced by P , the level-2 children
of nodes in P , and the grandchildren of nodes in P . Removing every NP

from C temporarily, the algorithm starts to form the set A of roots of
additional three-level subgraphs. While there exists in C a level-1 node a
with a level-2 child in C, it forms the subgraph Da of C induced by a, its
level-2 children, and its grandchildren. Da is temporarily removed from C
and a is added to A. Next, the algorithm forms the subgraph F induced on
vertices in C, renaming each level-1 vertex to be a level-2 vertex, and forms
the set E of linking edges, namely all edges of C not in any NP , Da, or
F . All removed components are restored, and the partitioning is done. We
must now reason about its effects and discover enough structure to justify
the reconstruction algorithm.
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** clique graph partitioning **
1 create a partition � of level-1 nodes that have at

least two level-2 children, where two nodes are in
the same set of the partition if they share a
level-2 child

2 for each set P of the partition form the subgraph
NP of C induced by P, the level-2 children of
nodes in P, and the grandchildren of nodes in P

3 form C ′ by removing each NP from C and initialize
A = �

4 while there exists in C ′ a level-1 node a with a
level-2 child in C ′

5 form the subgraph Da of C induced by a, its level-2
children, and its grandchildren

6 remove Da from C ′ and add a to A
7 form the subgraph F induced on vertices in C,

renaming each level-1 vertex to be a level-2 vertex
8 form the set E of all edges of C not in any NP, Da,

or F

Since it is possible for the label of a node a of the clique graph C of
a 4-leaf power of a fixed tree T to be both an i-neighborhood and a j-
neighborhood for i �= j (due to invisible vertices), we introduce the notion
of a range (intuitively, the size of the visible part of the neighborhood) and a
middle (the center of the visible part of the neighborhood). More formally,
the range of a is the length of the longest path in T connecting leaves in
cglabel�a�. The middle of a, denoted middle(a), is the vertex/edge of T that
is in the middle of such a path (its uniqueness is a homework exercise in
most graph theory textbooks).

Lemma 4.9. If c is a node of range k, then cglabel�c� is the k-
neighborhood of its middle.

Proof. We first show that the k-neighborhood of the middle v of
cglabel�c� contains every node in cglabel�c�. If instead there were a vertex
at distance greater than k/2 from v in cglabel�c�, there would exist a path
of length greater than k connecting vertices in cglabel�c�, contradicting the
assumption that the range of a is k.

To see that the neighborhood must be a k-neighborhood we consider
leaves v1 and v2 connected by a longest path. If cglabel�c� were an i-
neighborhood for i < k, then each of v1 and v2 could be a distance of
at most i/2 from v, and hence the distance from v1 to v2 would be at most
i < k, contradicting the assumption that the range of c is k.
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We can extract structure by examining middles in conjunction with levels
of nodes.

Lemma 4.10. For c a node in a clique graph C of the 4-leaf power of a
tree T ,

1. if middle(c) is a vertex v for a level-3 node c, then cglabel�c� is the
4-neighborhood of v and v has at least two visible neighbors;

2. if middle(c) is a vertex v for a level-2 node c, then cglabel�c� is the
2-neighborhood of v and v is visible; and

3. if middle(c) is an edge e, then cglabel�c� is the 3-neighborhood of e
and both endpoints of e are visible.

Proof. For c a level-3 node, having a vertex as a middle forces cglabel�c�
to be either a 2-neighborhood or a 4-neighborhood, and by Lemma 4.7,
point 2, cglabel�c� cannot be a 2-neighborhood. Moreover, since v is the
middle of cglabel�c�, v is the midpoint of path of length four between
two leaves and hence has at least two visible neighboring vertices, proving
condition 1.

To see that condition 2 holds, having a vertex as a middle and Lemma 4.7,
point 3 force cglabel�c� to be a 2-neighborhood of v; by the definition of a
middle, v must be the midpoint in a path of length two between two leaves
and hence visible.

Finally, condition 3 follows from the fact that e is the middle and on a
path of length three between two vertices.

When the additional conditions specified below are satisfied, we call the
subgraphs NP the nondegenerate three-level subgraphs, the subgraphs Da the
degenerate three-level subgraphs, and the trees in the forest F the two-level
subgraphs. Figure 3 illustrates the decomposition of the clique graph G
from Fig. 2, with linking edges (as defined in Theorem 4.1) appearing as
dashed lines.

2

3

1

FD N

cj djmop nmo ma abc bcd cde jk gh

mo a bc cd j g

dcm

Levels

a P
F F

FIG. 3. Partitioned clique graph G.
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To make precise the correspondence between a clique graph and T , it is
helpful to define some additional terminology. A visible component of T is
a component of the forest induced by the visible vertices of T . The terms
central, peripheral, and marginal defined on ideal trees can be extended in
the obvious fashion to visible components. A visible component is an ideal
subtree if it contains at least one central vertex.

Theorem 4.1. The following conditions are true of the clique graph C of
the connected 4-leaf power G of a tree T :

1. For P1 and P2 distinct sets in the partition � , NP1
and NP2

do not
intersect.

2. For a1 and a2 distinct vertices in A, Da1
and Da2

do not intersect.

3. For any P ∈ � and a ∈ A, NP and Da do not intersect.

4. Each NP is isomorphic to a (necessarily ideal) clique graph of an
ideal subtree.

5. In each Da, a has only one child and exactly two grandchildren.

6. F is a forest without edges connecting nodes of the same level.

7. A linking edge can connect either

(i) a level-1 node of a three-level subgraph and a level-3 node of a
two-level subgraph (central linking edge), or

(ii) a level-2 node of a three-level subgraph and a level-2 node ( for-
merly level-1) of a two-level subgraph (peripheral linking edge), or

(iii) a level-3 node of a three-level subgraph and a level-2 node of a
two-level subgraph (marginal linking edge).

Proof of Theorem 4�1� point �1�. If NP1
and NP2

intersect (for distinct
P1 and P2), they share a level-3 vertex c, child of level-2 nodes b1 and
b2 in NP1

and NP2
, respectively. By Lemma 4.7, point 1, b1 and b2 are

3-neighborhoods, say of edges e1 and e2, and by Lemma 3.2, point 5,
cglabel�c� must be the 4-neighborhood of endpoints of both e1 and e2. Since
e1 and e2 are adjacent, by Lemma 3.3, point 4 S = cglabel�b1� ∩ cglabel�b2�
is the 2-neighborhood of the common endpoint of e1 and e2. The fact that
b1 and b2 have parents in C imply that the common endpoint has adja-
cent leaves; the 2-neighborhood is thus a common parent of b1 and b2,
contradicting the assumption that P1 and P2 are distinct.

Proofs of Theorem 4�1� points �2� and �3�. These results are direct con-
sequences of line 4 and line 3 of the algorithm, respectively.

Proof of Theorem 4�1� point �4�. We prove the statement by defining,
for any NP , a subgraph T ∗P of T , and then showing that T ∗P is an ideal
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subtree of T (Lemma 4.11) and that the clique graph C∗ of T ∗P is isomor-
phic to NP (Lemma 4.13).

We define T ∗P in terms of level-1 nodes of NP and their neighbors. For a
any level-1 node of NP , let �a� b� c� be a path of length three in NP (by the
construction of NP , at least one such path always exists). By Lemma 4.7,
point 1, the labels of a� b, and c are the 2-neighborhood of a vertex va
of T , the 3-neighborhood of an edge eb of T , and the 4-neighborhood of
a vertex vc of T , respectively. We take the union of all vertices vc for all
paths of length three emanating from all level-1 nodes in NP to form the set
VP ⊆ V �T �. Furthermore, we define V ′P to contain each visible vertex that
is adjacent to at least one vertex in VP . Finally, we set V ∗P = VP ∪ V ′P ∪ 
v �
v is a leaf of T adjacent to a vertex in VP ∪ V ′P�. T ∗P is then the subgraph of
T induced by V ∗P .

Lemma 4.11. T ∗P is an ideal subtree of T .

Proof. The proof of the lemma can be partitioned into three main
claims, namely that all the internal vertices of T ∗P are visible (Claim 4.1),
T ∗P is connected (Claim 4.2), and if v is a visible vertex of T and is adjacent
to a vertex in T ∗P then v ∈ VP ∪ V ′P (Claim 4.3). Claim 4.3 shows that T ∗P is
a visible component of T (since it is maximal), and Fact (ix) below shows
that it has at least one central vertex, as required.

In what follows, we will always assume the correspondence, defined
before, between paths �a� b� c� of nodes of NP and the centers va� eb, and
vc of cglabel�a�, cglabel�b�, and cglabel�c�, respectively. We proceed first
with facts and definitions which facilitate the classification of vertices of
T ∗P ; proofs of facts are clustered after statements for readability. Several
of the facts hold for both nondegenerate and degenerate three-level sub-
graphs and hence will be stated in the more general form. The first five
facts lead to the first claim.

Fact (i). If a is a level-1 node of a three-level subgraph, then va is visible.

Fact (ii). If a is a level-1 node of a three-level subgraph and b is its child,
va is an endpoint of eb.

Fact (iii). If b is a level-2 node of a three-level subgraph, then both end-
points of eb are visible.

Fact (iv). If b is a level-2 node of a three-level subgraph, then it has exactly
two children in C and, therefore, exactly two children in the subgraph.

Fact (v). If c is the child of a level-2 node b in a three-level subgraph,
then vc is one of the endpoints of eb.
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Proof of Facts (i)–(v). Fact (i) is a consequence of the facts that
cglabel�a� �= � and cglabel�a� is the 2-neighborhood of va. Fact (ii)
follows from Lemma 3.1 and the observations, by construction, that
cglabel�a� ⊂ cglabel�b� and that cglabel�b� is the 3-neighborhood of eb.

To see that Fact (iii) holds, we observe that b is the child of some level-1
node a, a is an endpoint of eb (by Fact (ii)), and a is visible (by Fact (i)).
Since cglabel�a� �= cglabel�b�, the other endpoint of eb must also be visible,
as needed.

Fact (iv) follows from the observation that by Lemma 3.2, point 2 (for
j = 4), the 3-neighborhood cglabel�b� cannot be a proper subset of more
than two 4-neighborhoods.

We prove Fact (v) by contradiction. If eb = �x� y� and vc /∈ 
x� y�, then
the distance between vc and eb is at least 3

2 . By applying Lemma 3.1, for
k1 = 4 and k2 = 3, we conclude that either cglabel�b� ∩ cglabel�c� is empty
(point (a) for r > 3

2 ) or cglabel�b� ∩ cglabel�c� is the 2-neighborhood of an
endpoint of eb, say x (point (c) for r = 3

2 ). Because cglabel�c� ⊃ cglabel�b�,
cglabel�b� ∩ cglabel�c� = cglabel�b�, which implies that y is invisible, con-
tradicting Fact (iii) for eb = �x� y�.
Claim 4.1. All internal vertices of T ∗P are visible.

Proof. We consider a path �a� b� c� used to construct the vertex set of
T ∗P . Each vc is visible, since it is an endpoint of eb (Fact (v)) and hence vis-
ible (Fact (iii)); all vertices in VP are thus visible. By definition, the vertices
in V ′P are visible, and hence we can conclude that all the internal vertices
of T ∗P are visible, as needed to complete the proof.

To prove that T ∗P is connected (Claim 4.2), we establish correlations
between level-1 and level-3 vertices (Fact (vii)), which in turn allows us
to classify centers of level-3 nodes. Given a level-1 node a of NP and a
level-3 node such that vc = va, we call c the projection of a. We classify
centers of the level-3 nodes in NP as follows: if a vertex vc is the center of
the projection of a level-1 node, vc is a P-inner vertex of T ; otherwise, it is
a P-side vertex of T . Facts (viii) and (x) suffice to prove Claim 4.2.

Fact (vi). For �a� b� c� a path in a three-level subgraph, either vc = va or
eb = �vc� va�.
Fact (vii). For any level-1 node a in a NP , there exists a (clearly unique)

level-3 node c such that va = vc .

Fact (viii). Each P-side vertex vc in T is adjacent to a P-inner vertex of T .

Proofs of Facts (vi)–(viii). Fact (vi) follows as a corollary of Facts (ii)
and (v).

The proof of Fact (vii) is as follows. Suppose b is a child of a and c and c′

are the children of b, as determined by Fact (iv). By Fact (v), we conclude



90 nishimura, ragde, and thilikos

that eb = �vc� vc′ �. As a consequence of Fact (ii), either vc or vc′ is identical
to va, completing the proof.

To see that Fact (viii) holds, we first observe that c is the level-3 node
of a path �a� b� c�. Since vc is a P-side vertex, vc �= va. By Fact (vi), we can
conclude eb = �vc� va�. As a consequence of Fact (vii) there exists a level-3
node c′ such that va = vc′ , and hence va is a P-inner vertex.

Fact (ix). Any P-inner vertex of T is the center of a path in T of five
visible vertices.

Proof of Fact (ix). We let a be a level-1 node in NP and let b and b′

be two of its children, whose existence is guaranteed by the construction of
NP ; we will show that va is the center of a path of five visible vertices. The
vertex va is the common endpoint of eb and eb′ (Fact (ii)). By Fact (iv), b
and b′ each have exactly two children in NP ; by Fact (vi) we can assume that
b has children c and c′′, b′ has children c′ and c′′, vc′′ = va, eb = �vc� va�
eb′ = �va� vc′ �, and (by Fact (iii)) vc� va, and vc′ are all visible in T .

To extend the path �vc� va� vc′ � to a path of five vertices, we observe that
since c, c′′, and c′ are level-3 nodes of NP , the 4-neighborhoods of vc� vc′′ =
va, and vc′ induce maximal cliques in G. Since the 4-neighborhoods are
distinct, each of vc and vc′ must have a visible neighbor other than va,
completing the proof of Fact (ix).

Fact (x). Two level-1 nodes a and a′ in NP share a level-2 child if and
only if the centers vc and vc′ of their projections are adjacent in T .

Proof of Fact (x). If a and a′ are two level-1 nodes of NP with common
child b, then va and va′ are both endpoints of eb (Fact (ii)) and hence
vc = va is adjacent to vc′ = va′ .

To prove the converse, suppose that vc and vc′ are the adjacent centers
of the labels of the projections of two level-1 nodes a and a′ of NP . Both vc
and vc′ are P-inner vertices and therefore each is the center of a path of
five visible vertices in T (Fact (ix)). These paths may or may not each use
the edge �vc� vc′ �, but in each case the edge �vc� vc′ � is the center of a path
�y� z� vc� vc′� z′� y ′� of six visible vertices in T . It is now easy to see that the
4-neighborhoods of z, vc , vc′ , and z′ are maximal cliques in C and therefore
correspond to labels of level-3 nodes of C.

During the formation of the clique graph, first the level-2 nodes w, b,
and w′ (labelled by the 3-neighborhoods of �z� vc�, �vc� vc′ �, and �vc′� z′�,
respectively) will be created. Next, the procedure will form the level-1 nodes
whose labels are the 2-neighborhoods of vc and vc′ , i.e., the level-1 nodes a
and a′. In addition, the edges �a� b� and �a′� b� will be formed in C. Finally,
the clique graph partitioning procedure will construct CP so that �a� b� and
�a′� b� will be edges of NP , as claimed.
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Claim 4.2. T ∗P is connected.

Proof. Fact (x) proves that the subgraph of T ∗P induced by P-inner ver-
tices is connected; Fact (viii) proves that the subgraph of T ∗P induced by VP
is connected. The connectivity of T ∗P follows by the construction of V ∗P .

Claim 4.3. If v is a visible vertex of T and is adjacent to a vertex in T ∗P ,
then v ∈ VP ∪ V ′P .

Proof. We let y be a visible node of T that is adjacent to a vertex z in
V ∗P = VP ∪ V ′P and show that y ∈ V ∗P . If z ∈ VP then, by definition, y ∈ V ′P
and thus y ∈ V ∗P . Suppose now that y is adjacent to a vertex z ∈ V ′P but
not to any vertex in VP . By definition, z is adjacent to a vertex w in VP . We
examine two cases:

Case 1: w is a P-inner vertex of T . In this case, there exists a level-1
node a in NP whose label has w as center, and by Fact (ix) w is the center
of a path of five visible vertices in T . We can use all or part of this path to
create a path �y� z�w� z′� y ′� of five visible vertices in T . By reasoning about
the formation of the clique graph (as in the proof of Fact (x)), we observe
that NP will contain a level-2 node b whose label is the 3-neighborhood of
�z�w�. The node b is a child of a in NP , and b will have a child c whose
label is the 4-neighborhood of z. The existence of the path �a� b� c� implies
that z is a vertex in VP , a contradiction.

Case 2: w is a P-side vertex of T . Clearly w is adjacent to a P-inner
vertex w′ (Fact (viii)) which is the center of the label of a level-1 node a′

in NP . Fact (ix) proves that w′ is the center of a path of five visible vertices
in T ; using all or part of this path, we can form a path �y� z�w�w′� z′� y ′�
of six visible vertices in T . As in the previous case we can demonstrate the
existence of a path �a� b� c� which implies that w is a P-inner vertex of T ,
a contradiction.

This completes the proof of Lemma 4.11.
The following lemma strengthens the correspondence between T and T ∗P

and is useful in proving the isomorphism between NP and the clique graph
C∗ of T ∗P .

Lemma 4.12. A vertex x is a P-inner vertex of T if any only if it is a central
vertex of T ∗P , and x is a P-side vertex of T if and only if it is a peripheral vertex
of T ∗P .

Proof. If x is a P-inner vertex of T , then by Fact (ix) it is a central ver-
tex of T ∗P . If x is a P-side vertex of T , then by Lemma 4.7, point 1 and
Lemma 4.10, point 1 it cannot be marginal.

We show that any central vertex of T ∗P is a P-inner vertex of T by sup-
posing instead that there exists a central vertex that is not a P-inner vertex.
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Let z be a P-inner vertex and let y be the central but not P-inner vertex
at minimum distance from z. By minimality, there is a path of central ver-
tices from z to y such that each point on the path except y is central and
P-inner. We let y ′ be the neighbour of y on this path. As both y and y ′

are central, by Fact (ix) there must exist a path of six visible vertices, say
�u�w� y� y ′� w′� u′� in T ∗P .

By using the argument in the proof of Fact (x), in the clique graph forma-
tion procedure there must be level-3 nodes labeled by 4-neighborhoods of
w, y, y ′, and w′, level-2 nodes labeled by 3-neighborhoods of �w� y�, �y� y ′�,
and �y ′� w′�, and level-1 nodes labeled by 2-neighborhoods of y and y ′. By
definition, y is a P-inner vertex, contradicting the assumption.

To complete the proof, we note that a peripheral vertex in T ∗P cannot be
in V ′P (as it would then be marginal), so it must be in VP and hence the
center of a level-3 node. Since it cannot be a P-inner vertex, it must be a
P-side vertex.

Lemma 4.13. NP is isomorphic to the clique graph C∗ of T ∗P .

Proof. Since C∗ is an ideal clique graph (Lemma 4.11), we can make
use of the bijection between neighborhoods of T ∗P and nodes of C∗ as estab-
lished in Lemma 4.2. We define φ = φ1 ∪ φ2 ∪ φ3 mapping the nodes of
NP to the nodes of C∗ as follows.

For each level-3 node c of NP , φ3�c� is the level-3 node of C∗ whose
label is identical to the 4-neighborhood of the nonmarginal vertex vc of T ∗P .

For each level-2 node b of NP , φ2�b� is the level-2 node of C∗ whose
label is identical to the 3-neighborhood of the central edge eb of T ∗P .

For each level-1 node a of NP , φ1�a� is the level-1 node of C∗ whose
label is identical to the 2-neighborhood of the central vertex va of T ∗P (notice
that va is identical to the center vc of the projection of a).

To see that φ is a bijection, we first observe that the images of two
distinct nodes in NP are distinct. Next we consider the nodes in C∗, level
by level, and show that each has a preimage in NP .

Suppose c∗ is a level-3 node of C∗. The label of c∗ is the 4-neighborhood
of a nonmarginal vertex x of T ∗P that is either a P-inner or a P-side vertex
of T (Lemma 4.12). The 4-neighborhood of x is the label of a node c in
NP , and φ�c� = c∗, as needed.

For b∗ a level-2 node of C∗, the label of b∗ is the 3-neighborhood of a
central edge �x� x′� of T ∗P . As �x� x′� is a central edge in T ∗P , one, say x, of
its endpoints will be a central vertex in T ∗P and therefore a P-inner vertex
in NP (Lemma 4.12). Clearly, x′ can be either a P-inner vertex or a P-side
vertex of T . We distinguish two cases.
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Case 1: x′ is a P-side vertex of T . Let �a� b� c� be a path in NP such
that vc = x′. By Facts (ii) and (vi), eb = �x′� va�. Since x′ is peripheral
(Lemma 4.12), it cannot be adjacent to two distinct central vertices va and
x, and hence x = va. As eb = �x� x′�, we can conclude that φ�b� = b∗.

Case 2: x′ is a P-inner vertex of T . Let c and c′ be the level-3 nodes of
NP whose labels have x and x′ as centers. Clearly c and c′ are projections
of two level-1 nodes a and a′, respectively. Since x and x′ are adjacent, a
and a′ have a common child b in NP (Fact (x)). Since the centers of the
labels of a and a′ are the endpoints of eb (Fact (ii)), eb = �x� x′� and thus
φ�b� = b∗.

Finally, suppose a∗ is a level-1 node of C∗. The label of a∗ is the 2-
neighborhood of a central vertex x of T ∗P which, in turn, is a P-inner vertex
of T (Lemma 4.12). Since there exists a level-1 node a in NP whose label
is the 2-neighborhood of x, va = x and φ�a� = a∗. This demonstrates that
φ is a bijection.

To complete the proof of the lemma, it will suffice to show that NP and
T ∗P are isomorphic under φ. By the construction of NP , we observe that
NP has no edges connecting level-1 vertices and level-3 vertices, which is
also the case for ideal clique graphs (Lemma 4.4, point 1). In addition, in
a clique graph the nodes at a given level form an independent set. Thus,
to prove that NP and T ∗P are isomorphic, it will suffice to prove that there
exists an edge connecting a level-i node and a level-�i + 1� node (i = 1� 2)
in NP if and only if there exists an edge connecting their images through
φ in T ∗P . It is not difficult to see that nodes in two consecutive levels of
NP or T ∗P are adjacent if and only if the label of the smaller level node is
a subset of the label of the higher level node. By the construction of φ,
we can conclude that for any d ∈ V �NP�, cglabel�d� = cglabel�φ�d��, as
needed to complete the proof.

This completes the proof of Theorem 4.1, point (4).

Proof of Theorem 4.1� point �5�. The fact that a in Da has only one
child b follows from line 1 of the algorithm. Any level-1 node with two
children is in a nondegenerate three-level subgraph. The fact that b has
only two children follows from the fact that cglabel�b� is a 3-neighborhood,
from the fact that the labels of the children of b are all 4-neighborhoods
(Lemma 4.7), and from Lemma 3.2, point 2.

Proof of Theorem 4.1� point �6�. In order to prove that F is a forest, we
need to show that there exists no cycle among nodes in F . By construction,
the neighbors of any level-1 node in F are all at level 3. Since there are no
edges between nodes at the same level, each edge in F is between a level-3
node and a node not at level 3. It thus suffices to prove Lemma 4.18 below,
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which claims that C does not contain any even cycle in which each edge in
the cycle connects a level-3 node to a node not at level 3.

In order to prove Lemma 4.18, we need to establish properties concern-
ing nodes which might appear in such a cycle. We call two level-3 nodes
close if they have a common neighbour; Lemma 4.14 (a direct consequence
of Lemma 3.1 and Lemma 4.7, point 2) and Lemma 4.15 establish proper-
ties of middles of close nodes.

Lemma 4.14. If two level-3 nodes c1 and c2 are close and their middles
are x1 and x2, respectively, then 1 ≤ d�x1� x2� ≤ 2.

Lemma 4.15. It is not possible for both of the middles of two close nodes
to be edges.

Proof. Suppose instead that c1 and c2 are close nodes with middles �x� y�
and �y� z� (in order for the clique graph labels of c1 and c2 to have a
nonempty intersection, their middles must share an endpoint). For b the
common neighbor of c1 and c2, cglabel�b� = cglabel�c1� ∩ cglabel�c2� is
nonempty, and hence y is a visible vertex. This, in turn, implies that x and
z are visible as well (otherwise cglabel�c1� = cglabel�b� or cglabel�c2� =
cglabel�b�). As a consequence, the 4-neighborhood of y is the maximum
clique containing the 3-neighborhoods of �x� y� and �y� z� and hence the
labels of c1 and c2, contradicting the assumption that c1 and c2 are level-3
nodes.

The following two lemmas establish properties of paths involving close
nodes, which prove useful in the proof of Lemma 4.18. Lemma 4.17 is a
consequence of applying Lemma 4.16 iteratively.

Lemma 4.16. For ci a level-3 node with middle xi, i = 1� 2� 3, if c1 is close
to c2, c2 is close to c3, and c1 is not close to c3, then x2 is a vertex on the path
in T connecting x1 and x3.

Proof. We suppose instead that x2 is not on the path connecting x1
and x3 in T , and without loss of generality assume that x3 is on the
path connecting x1 and x2 in T . The three middles must be distinct as
they are middles of level-3 nodes, and hence either 4-neighborhoods or
3-neighborhoods. By Lemma 4.14, 1 ≤ d�x1� x2� ≤ 2, and hence it suffices
to consider the following cases:

Case 1: d�x1� x2� = 1. By Lemma 4.15, x1 and x2 are both vertices, and
thus the labels of c1 and c2 are 4-neighborhoods of x1 and x2, respectively.
Since x3 is on the path from x1 to x2, cglabel�c3� is the 3-neighborhood of
�x1� x2�, properly contained in the labels of both c1 and c2, and contradict-
ing the assumption that c3 is a level-3 node.
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Case 2: d�x1� x2� = 3
2 . Without loss of generality we assume that x1

is a vertex and x2 is an edge �y� z�. Therefore, the label of c1 is a 4-
neighborhood, the label of c2 is a 3-neighborhood, and x3 is either the
edge �x1� y� or the vertex y. In the first case cglabel�c3� ⊂ cglabel�c1�, con-
tradicting the assumption that c3 is a level-3 node and in the second case
cglabel�c2� ⊂ cglabel�c3�, contradicting the assumption that c2 is a level-3
node.

Case 3: d�x1� x2� = 2. By Lemma 4.15, c1 and c2 are vertices, their
labels are 4-neighborhoods, and for d their common neighbour, cglabel�d�
is the 2-neighborhood of the unique vertex x between x1 and x2 in T .
Applying Lemma 4.14 for c2� c3, we observe that d�x2� x3� ≥ 1 and there-
fore x3 cannot be the edge �x� x2�. By symmetry, x3 cannot be the edge
�x1� x�, either, so x3 = x.

Since x3 = x, cglabel�c3� is the 4-neighborhood of x. As c1 and c2
are close, cglabel�c1� ∩ cglabel�c2� is nonempty and consists of the 2-
neighborhood of x = x3, or cglabel�d�. As c3 and c2 are close, cglabel�c3� ∩
cglabel�c2� is nonempty and consists of the 3-neighborhood of �x3� x2�
which is the label of d′, where d′ is the common neighbor of c2 and c3. If
x2 is invisible, cglabel�d′� = cglabel�d�, a contradiction to the fact that c1
is not close to c3 (which implies that d′ and d are distinct). If x2 is visible,
cglabel�d� ⊂ cglabel�d′� ⊂ cglabel�c2�, a contradiction to the existence of
the edge �d� c2�.

Lemma 4.17. For ci a level-3 node for all 1 ≤ i ≤ r, r ≥ 3, such that two
nodes ci, cj are close if and only if �i− j� = 1, the middle of cj is on the path
connecting ci and ch in T for any i and j such that 1 ≤ i < j < h ≤ r.

Lemma 4.18. C does not contain any even cycle in which each edge in the
cycle connects a level-3 node to a node not at level 3.

Proof. We suppose instead that �d1� � � � � dr� �r ≥ 4� is an even chordless
cycle (that is, a minimal counterexample) in which each edge in the cycle
connects a level-3 node to a node not at level 3. Without loss of generality
we assume that the level-3 nodes are the odd nodes.

If r = 4, then the existence of edges �d1� d2� and �d2� d3� implies that
cglabel�d2� = cglabel�d1� ∩ cglabel�d3� and the existence of edges �d3� d4�
and �d4� d1� implies that cglabel�d4� = cglabel�d1� ∩ cglabel�d3�. We can
then obtain a contradiction by concluding that d2 = d4.

If instead r ≥ 6, we consider the path �d1� � � � � dr−1� of �d1� � � � � dr� that
avoids dr . For xi the middle of di, by Lemmas 4.14 and 4.17, we observe
that the path connecting xd1

and xdr−1 in T has length at least r−2
2 ≥ 2. Since

d1 and dr−1 are close nodes, Lemma 4.14 implies that their distance will
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be at most two, which is only possible if r = 6 and the following conditions
hold:

d�x1� x3� = 1� (1)

d�x3� x5� = 1� (2)

d�x1� x5� = 2� (3)

Since by Lemma 4.15 x1, x3, and x5 cannot all be edges, in order to
satisfy conditions (1)–(3), they must all be vertices.

We now show that both x3 and x5 are visible. The node x3 must be visible
since cglabel�d6� = cglabel�d1� ∩ cglabel�d5� (by (3) and the fact that d6 is
adjacent to both d1 and d5), where cglabel�d6� is nonempty and equal to the
2-neighborhood of x3. We can conclude that x5 is visible, since if it were not,
then cglabel�d4� = cglabel�d3� ∩ cglabel�d5� would be the 2-neighborhood
of x3, and hence the label of d6, yielding d4 = d6, a contradiction.

Using the fact that x3 and x5 are visible, we are able to complete the
proof. Since cglabel�d4� is the 3-neighborhood of �x3� x5�, cglabel�d6� ⊂
cglabel�d4� (recall that cglabel�d6� is the 2-neighborhood of x3). It is not
difficult to see that cglabel�d4� ⊂ cglabel�d5�. Combining these observa-
tions, we conclude that cglabel�d6� ⊂ cglabel�d4� ⊂ cglabel�d5�, a contra-
diction to the existence of edge �d5� d6�.

This concludes the proof of Theorem 4.1, point (6).

Proof of Theorem 4�1� point �7�. To prove this point, we consider all
ways that subgraphs can be joined and prove the impossibility of all edges
other than those mentioned in the statement of the lemma. As a conse-
quence of the way the clique graph is formed, there are no edges joining
nodes at the same level. In addition, by the formation of three-level sub-
graphs, there can be no edge from a level-i node of a three-level subgraph
to a level-�i + 1� node of any other subgraph. The only case that remains
to be considered is an edge connecting a level-3 node c of a three-level
subgraph and a (formerly level-1) level-2 node a of a two-level subgraph.

We consider a path �a′� b′� c� in the three-level subgraph containing c.
As a was a level-1 node in C there must exist in C a path �a� b′′� c′′�, where
b′ �= b′′ and c �= c′′ (since otherwise a would be part of the same three-level
subgraph as a′). Mimicking the beginning of the proof of point 4, we can
use Lemma 4.7, point 1, to define va′ , eb′ , and vc such that their 2-, 3-, and
4-neighborhoods are cglabel�a′�, cglabel�b′�, and cglabel�c�, respectively.
We define va� eb′′� vc′′ in a similar manner.

To complete the proof, we make use of facts from the proof of point 4,
all of which hold for any three-level subgraph, and in particular for the
path �a′� b′� c�. The node b′ has exactly two children (Fact (iv)), c and
some c′, such that vc and vc′ are both endpoints of eb′ (Fact (v)). Both vc
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and vc′ are visible (Fact (iii)). We claim that vc is adjacent to a visible
vertex z of T different from vc′ . If not, then cglabel�c� will be equal to the
3-neighborhood of eb′ = �vc� vc′ � contradicting the fact that cglabel�b′� ⊂
cglabel�c�.

We now show that va and vc must be adjacent. By Fact (i), cglabel�a� is
the 2-neighborhood of a visible vertex va. As cglabel�a� ⊂ cglabel�c� and
cglabel�c� is a 4-neighborhood, either va and vc are the same vertex, or they
are adjacent. To see that va and vc cannot be the same vertex, we observe
that eb′′ has two visible endpoints (Fact (iii)), one of which is va (Fact (ii)).
If va = vc , then since va is an endpoint of eb′′ , the 3-neighborhood of eb′′ is
a subset of the 4-neighborhood of va (and hence vc) (Lemma 3.2, point 5).
There must then be an edge �b′′� c� in C, which is incompatible with the
existence of edge �a� c�. We can thus conclude that va and vc are adjacent.

We wish to show that va has at least two visible neighbours, vc (demon-
strated above) and y, where eb′′ = �va� y�. Clearly vc �= y, since if vc = y,
there would be an edge �b′′� c�, making �a� c� impossible.

Since va has at least two visible neighbors, the 4-neighborhood of va is
a maximal clique of G and hence the label of some level-3 node c∗ in C.
Clearly, the intersection of cglabel�c� and cglabel�c∗� results in another
node b∗ of C, where cglabel�b∗� = cglabel�c� ∩ cglabel�c∗�. Moreover,
cglabel�b∗� is the 3-neighborhood of �vc� va� which contains cglabel�a� as a
proper subgraph. Therefore, cglabel�a� ⊂ cglabel�b∗� ⊂ cglabel�c�, a con-
tradiction to the initial assumption that �a� c� is an edge in C, completing
the proof.

Finally, we can quantify the constants in the linear bounds on the number
of vertices and edges in the clique graph of a 4-leaf power.

Lemma 4.19. If G is the connected 4-leaf power of a tree T , then we can
set cs = 5 in line 4 of the clique graph algorithm and ce = 16 in line 8.

Proof. We first determine the number of internal vertices in T . For
n = �V �G��, there are n leaves in T , each of which is associated with a
visible internal vertex, for a total of at most n visible internal vertices. The
number of invisible internal vertices is also at most n, since each invisible
vertex can be paired with a distinct visible vertex, as no two invisible vertices
are adjacent.

To determine a bound cs on the total number of nodes in the clique
graph, we use the fact that each node in the clique graph is a 2-, 3-, or 4-
neighborhood. In particular, there are at most n 2-neighborhoods (one for
each visible vertex), at most 2n 3-neighborhoods (one for each nonpendant
edge), and at most 2n 4-neighborhoods (one for each internal vertex). Thus,
cs = 5.

We count the edges between levels to determine ce = 16. Each edge
between a level-1 node and a level-2 node is either part of a three-level
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subgraph or is a peripheral linking edge, so by Lemma 4.4, point 4, these
form a tree and hence number at most 5n. Similarly, the edges between
level-2 and level-3 nodes number at most 5n.

We finally determine the number of edges that may be generated
between level-1 and level-3 nodes (some of which will be subsequently
deleted in the transitive reduction). There is an edge from a level-1 node
(a 2-neighborhood) to each 4-neighborhood containing it. Since the 2-
neighborhood of a vertex v is contained in exactly the 4-neighborhoods of
v itself and all of v’s neighbors, the total number of edges is the sum over
all internal vertices of the degree of the vertex plus one. This sum equals
the number of internal vertices plus twice the number of nonpendant edges
in T , and the total is at most 6n, yielding 16n overall, as claimed.

5. ALGORITHMS

We will briefly sketch the intuition behind our algorithms before giving
details. For k = 3, our assumption that G is connected makes its clique
graph ideal. As a result, simple local replacement in the clique graph will
construct a suitable tree. For k = 4, the clique graph is partitioned as in
Theorem 4.1, each subgraph is transformed into a subtree by local replace-
ment, and the subtrees are joined to form a single tree.

5.1. Algorithm for k = 3

The following simple algorithm and its justification are a good warmup
for the more complicated k = 4 case.

1 form a clique graph C
2 if C has more than 2 levels, stop and answer NO
3 for each level-2 node a
4 if a does not have 1 or 2 parents
5 stop and answer NO
6 for each level-1 node a
7 if a has fewer than 2 children
8 stop and answer NO
9 for each level-1 node a
10 create a vertex t�a� labelled cglabel�a�
11 for each pair of level-1 nodes a and b with a common
12 child form the edge �t�a�� t�b��
13 for each level-2 border node a with parent b
14 create a vertex t�a� labelled cglabel�a�\cglabel�b�
15 form the edge �t�a�� t�b��
16 form T by replacing each label by leaves
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The correctness of the algorithm follows Lemma 4.3 and the following
two lemmas.

Lemma 5.1. If leaves u and v are of distance at most three in T , then there
exists an edge �u� v� in G.

Proof. Let p and q be the internal vertices associated with u and v,
respectively. Clearly, either p = q or p and q are adjacent in T . Looking
at how edges are created in T , there are two possibilities.

If t−1�p� and t−1�q� are both level-1 nodes, then they must have a com-
mon level-2 child, and both u and v are in the label of this child, meaning
they are in the same maximal clique, ensuring the existence of �u� v�.

If they are not both level-1 nodes, then without loss of generality t−1�p�
is a level-1 node and t−1�q� is a level-2 border node which is its child.
Both u and v must be in the label of t−1�q�, and the result follows.

Lemma 5.2. If �u� v� is an edge in G, then u and v are of distance at most
three in T .

Proof. The edge �u� v� must appear in some maximal clique of G, and
so both u and v appear in the label of a level-2 node a in C.

If a is a border node, then either both u and v are in the label of t�a�,
they are both in the label of the parent t�b�, or one is in the label of t�a�
and one in the label of t�b�. In all cases, they are of distance at most three
in T .

If a is not a border node, by Lemma 4.3 it has exactly two parents b and
c, the union of whose labels is the label of a. Thus, u and v appear in one
of the following: the same label, labels of a parent and a child, or labels of
t�b� and t�c�. Since there is an edge between t�b� and t�c� (created in line
12), in each case u and v must be of distance at most three.

Theorem 5.1. Given a graph G with n vertices, it is possible in time O�n3�
to determine whether or not G is a 3-leaf power of a tree T , and if so, to
determine such a T .

5.2. Algorithm for k = 4

Rather than present the algorithm all at once, we will present it in sec-
tions, with justification following each section.

1 form a clique graph C
2 if C has more than 3 levels, stop and answer NO
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The correctness of line 2 follows from Lemma 4.8. We now partition
the clique graph into two-level components and three-level nondegenerate
and degenerate components. Each nondegenerate three-level component is
checked to see that it satisfies the necessary properties.

3 partition C into non. and deg. three-level
and two-level components

4 for each nondegenerate three-level
component N

5 for each level-1 node a in N

6 if a has only one child
or any two children of a have more than

one child in common in N
or if there is no level-3 node that is a

child of all children of a in N

7 stop and answer NO
8 for each level-2 node b in N
9 if b does not have exactly two children in N

or if b has more than two parents
stop and answer NO

10 if b has two parents a1 and a1 and
cglabel�b� �= cglabel�a1� ∪ cglabel�a2�

stop and answer NO
11 for each level-3 node c in N

12 if any two parents of c have more than one
parent in common in N

or if there is no level-1 node that is a
parent of all parents of c in N

13 stop and answer NO

14 if the subgraph induced on levels 1 and 2 of N
does not form a tree

or the subgraph induced on levels 2 and 3 does
not form a tree

stop and answer NO

The correctness of line 7 follows from Lemma 4.4, points 2 and 3; line 9
from Lemma 4.4, point 2; line 10 from Lemma 4.5; line 13 from Lemma 4.4,
point 3; and line 14 from Lemma 4.4, point 4.

We now create a subtree TN for each nondegenerate three-level compo-
nent N .
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16 for each N
17 create a subtree TN (initially empty)
18 for each level-1 node a in N, create a vertex t�a�

labeled cglabel�a�
19 if level-1 nodes a and b share a child, create

the edge �t�a�� t�b��
20 for each border node a with parent b
21 create a vertex t�a� in TN labeled

cglabel�a�\cglabel�b�
22 create the edge �t�a�� t�b��
23 for each level-3 node a with parents b1� � � � � bk,

k ≥ 2 such that A = cglabel�a�\
∪ki=1 cglabel�bi��
is nonempty

24 create a vertex t�a� labeled A
25 for d the common parent of b1� � � � � bk, create

edge �t�a�� t�d��

To see that the graph formed is a tree, it suffices to observe that in N
the parent of each border node at level 3 is a border node at level 2, as
shown in Lemma 4.6.

Next each degenerate three-level component D is checked to ensure that
it is a degenerate ideal clique graph, and from it a tree TD is formed.
Figure 4 illustrates the subtrees derived from the degenerate and nonde-
generate three-level components of Fig. 3.

26 for each degenerate three-level component D
27 if there are more than two level-3 nodes, stop

and answer NO

mop nmo map n

mo bc cd

bcd cdeabc

c

b

a

c

d

e

m

m

o

FIG. 4. Subtree derived from three-level components of Fig. 3.
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28 for the level-1 node a, create t�a�
labeled cglabel�a�

29 for the level-2 node b, create t�b�
labeled cglabel�b�\cglabel�a�

30 for level-3 nodes c and d, create t�c� labeled
cglabel�c�\cglabel�b�
and create t�d� labeled cglabel�d�\cglabel�b�

31 create edges �t�d�� t�a��, �t�a�� t�b��, �t�b�� t�c��
32 for F the subgraph induced on nodes in C not in

any N or D in which each level 1 node is
relabelled to be at level 2
if F is not a forest of nodes at levels 2

and 3, stop and answer NO

The correctness of line 27 is a consequence of Theorem 4.1, point 5 and
the correctness of line 32 is a consequence of Theorem 4.1, point 6.

33 for each tree S in F
34 create a subtree TS (initially empty)
35 for each level-2 node a in S, create a

vertex t�a� labeled cglabel�a�
36 for each level-3 node a such

that A= cglabel�a�\∪b parent of a in Scglabel�b�
is empty

37 create a vertex t�a� with the empty label
38 for each parent b of a create an edge �t�a�� t�b��
39 for each level-3 node a such

that A = cglabel�a�\∪b parent of a in Scglabel�b�
is nonempty

40 create a vertex t�a� labeled A
41 create a vertex va with the empty label
42 create the edge �t�a�� va�
43 for each parent b of a create an edge �t�b�� va�
44 form a labeled forest L from all TN, TD, and TS

The subtrees derived from two-level components of the example clique
graph G can be seen in Fig. 5.

45 for each central linking edge �a� b�, a in TN or
TD, b in TS
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g
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d d

j

ja
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m c k
cj jk dg ghma

g

FIG. 5. Subtrees derived from two-level components of Fig. 2.

46 add the edge �t�a�� vb�
47 remove the label of t�a� from the label of t�b�
48 for each peripheral or marginal linking edge �a� b�,

a in TN or TD, b in TS
49 identify t�a� and t�b�
50 form T by replacing each label in L by leaves

Finally, we must show that the vertex vb exists whenever �a� b� is a cen-
tral linking edge, namely an edge between a level-1 node a of a three-level
subgraph and a level-3 node b of a two-level subgraph. The vertex vb is
created when cglabel�b� contains nodes not found in its parent in TS; the
presence of the linking edge implies that such nodes exist (namely the label
of cglabel�a�). Figure 6 shows the reconstructed tree for the running exam-
ple. Although it is not identical to Fig. 1 (as a clique graph can represent
more than one possible tree), it differs only in the absence of invisible ver-
tices between g and h and between j and k.

The correctness of the algorithm follows from Theorem 4.1 and the two
lemmas below. The first shows that the 4-leaf power of the constructed tree
T is a subgraph of G. The second shows that G is a subgraph of the 4-leaf
power of T .

Lemma 5.3. If leaves u and v are of distance at most four in T , then there
exists an edge �u� v� in G.

Proof. In the tree T formed by the algorithm, we consider all possible
parents p and q of u and v such that the distance between p and q is at

p n k h

cm

o tdb g

a e

FIG. 6. Tree generated from clique graph of Fig. 2 by reconstruction algorithm. As before,
sets of leaf neighbors are indicated by letter labels, and invisible vertices by squares.
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most two and show that in each case �u� v� must be an edge in G. To show
that �u� v� is an edge in G, it suffices to find a node in the clique graph C
containing both u and v in its label.

We first observe that if p and q are at distance one in T , then �u� v� is
an edge in G. Edges between visible vertices are formed in lines 19, 22, 25,
and 31. In these cases t−1�p� is either the parent or grandparent of t−1�q�
(and hence the label of t−1�q� in the clique graph contained both u and v)
or t−1�p� and t−1�q� share a common child (which in turn contains both u
and v).

In the remainder of the proof we consider p and q at distance exactly
two. For ease of exposition, we consider three cases, exhaustive up to the
naming of p and q: first, p and q both in some TN or TD; next, both in
some TS; and finally, p in some TN or TD and q in some TS . In each case,
we use the fact that p and q are at distance at most two to find a node in
the clique graph labeled with both u and v, showing that �u� v� is an edge
in G.

Case 1: p and q in TN or TD. The property is easy to verify for TD;
we now concentrate on TN . In TN , there are three types of vertices, level-1
top vertices (line 18), border vertices (line 21), and grandchild vertices (line
24).

Case 1A: p and q are both level-1 top vertices. If p and q are level-1
top vertices at distance two, they share a common neighbor r, where r is
also a level-1 top vertex. The edges �p� r� and �r� q� exist since t−1�p� and
t−1�r� share a child b and t−1�r� and t−1�q� share a child b′. By Lemma 4.4,
point 3, the children of t−1�r� (in particular b and b′) must share a child c,
which contains both u and v as labels in the clique graph.

Case 1B: p is a grandchild vertex. By Lemma 4.4, point 3 and line 24,
a level-1 top vertex can be the neighbor of at most one grandchild. Thus,
if p is a grandchild vertex, then q is either a level-1 top vertex or a border
vertex.

When q is a level-1 top vertex at distance 2 from p, there is a path in TN
from p to q through r where t−1�r� is the common grandparent of t−1�p�’s
parents. Since r and q are connected by an edge, clearly t−1�r� and t−1�q�
have a common child b (line 19). Since t−1�p� is the common grandchild of
all of the children of t−1�r� (Lemma 4.4, point 3), t−1�q� is the grandparent
of t−1�p�, and hence u and v both appear in the label of t−1�p�.

If q is a border vertex, there is a path from t−1�p� to t−1�q� via t−1�p�’s
grandparent a, which is the parent of t−1�q�. Since all children of a share
a common child t−1�p�, t−1�q� is also a parent of t−1�p�. Thus u and v are
both in the label of t−1�p� in the clique graph, completing this case.
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Case 1C: p is a border vertex. The case in which q is a grandchild
vertex is handled in Case 1B above.

If both p and q are level-2 border vertices, t−1�p� and t−1�q� share
a common parent and hence a common child containing both u and v
in its label. We observe that p and q cannot both be level-3 border ver-
tices, for the parent of t−1�p� and t−1�q�, having exactly these two children
(Lemma 4.4, point 2) would not share any child with its siblings, violating
Lemma 4.4, point 3.

If p is a level-3 border vertex and q is a level-1 top vertex, then q is the
parent of p’s parent, a level-2 border vertex (Lemma 4.6). In this case, u
and v are both in the label of t−1�p�.

Finally, if q is a level-1 top vertex that is a neighbor of p’s level-1 top
vertex parent r, then t−1�q� and t−1�r� share a child b and t−1�p� and b
share a child c. In the clique graph, c is labeled with both u and v, as
needed.

Case 2: p and q in TS . In TS , the vertices with nonempty labels include
top vertices (line 35) and bottom vertices (line 40). As before, we consider
pairs of vertices at distance exactly two. Since each bottom vertex has a
distinct parent, one of the vertices, say p, must be a top vertex.

If q is a top vertex at distance exactly two from p, there exists a level-3
node containing the union of cglabel�p� and cglabel�q� (line 36 or 39), and
hence u and v are in the label of a node in the clique graph, as needed. If
instead q is a bottom vertex at distance two, t−1�q� is a child of t−1�p� and
hence u and v are in cglabel�q�.

Case 3: p in TN or TD and q in TS . It suffices to consider p in TN in
the remainder of the discussion below, since the argument is identical for p
in TD. We first suppose that TN and TS are joined by a marginal or periph-
eral edge. If p or q is one of the endpoints of the linking edge, then both p
and q were in either TN or TS , and hence covered by cases 1 and 2 above.
If instead neither p nor q is an endpoint of the linking edge, then one, say
q, must be a node in TS adjacent to the endpoint r in TS . By definition
of marginal and peripheral, t−1�r� is at level 2, and by construction (lines
37, 38, and 40–43), t−1�q� has an empty label, contradicting the assumption
that q is the parent of u.

We now suppose that TN and TS are joined by a central edge, in which
case both p and q must both be neighbors of vb with u and v both being
in cglabel�b�. This concludes the demonstration that any two leaves of dis-
tance four in T have an edge between them in G.

We next show that for each edge �u� v� in G there is a path from u to
v in T of distance at most four. If �u� v� is an edge in G, then there exists
a maximal clique containing �u� v�; we consider the assignment of labels of
maximal cliques to vertices in T .
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Lemma 5.4. If �u� v� is an edge in G, then u and v are of distance at most
four in T .

Proof. Since u and v are leaves of T , it suffices to show that their asso-
ciated internal vertices are of distance at most two in T . The edge �u� v�
must be in some maximal clique of G, and so u and v appear together in
some label of a level-3 node a in C. We omit the trivial cases in which u
and v end up in the same label at line 50 and hence share an associated
internal vertex. The proof proceeds by looking at what happens to node a
during the algorithm. In some cases, a vertex t�a� is created; in others, it is
not.

If t�a� does not exist, then a must be a level-3 node in a three-level
ideal subgraph N of C with parents b1� � � � � bk, k ≥ 2 such that the union
of the labels of b1� � � � � bk is exactly the label of a (this is the negation of
the conditions at lines 20 and 23). The nodes b1� � � � � bk share a common
parent d (Lemma 4.4, point 3); each bi may have another parent ci as
well. The vertices u and v must occur somewhere in the labels of the bi’s
and therefore somewhere in the labels of the t�ci� vertices (created at line
18), say u in t�cj� and v in t�cj′ � or t�d�. Since the edges �t�d�� t�cj�� and
�t�d�� t�cj′ �� are created at line 19, the associated internal vertices of u and
v are of distance at most two in T .

We now suppose that t�a� exists and consider its roles, as a level-3 vertex,
in TN , TD, and TS . We observe that we can ignore marginal linking edges,
since if there were one incident to a, the node d on the other end would
result in a vertex t�d� being created which would have the same label as
t�a� and be identified with it.

If t�a� is a border vertex (created at line 21 from TN), then u is in
the label of t�a� and v is in the label of t�b�, for b either the parent or
grandparent of a in the same component N . If b is the parent of a, t�a�
and t�b� (the latter created at line 18) are adjacent due to the edge created
at line 22; if b is the grandparent, t�a� and t�b� are at distance two due to
edges created at line 22.

If t�a� is a grandchild vertex (created at line 24 from TN), then at most
one of u and v is in the label of t�a�. We suppose v is in the label of some
parent b1 of a and u is in the label of t�a�, in the label of b1, or in the label
of a parent b2 �= b1 of a. For each bi we consider two cases, depending on
the number of parents it has, which is either one or two, by Lemma 4.4,
point 2. For ease of exposition, we let d be the common parent of b1 and
b2 (Lemma 4.4, point 3) and ci be another parent of bi, if it exists.

If bi has one parent, then a node t�bi� is created at line 21, and since
the parent d of b is a level-1 node, t�d� is created at line 18. There are
edges �t�bi�� t�d�� (created at line 22) and �t�bi�� t�d�� (created at line 25).
If bi has two parents, then t�ci� exists and since t�ci� and t�d� are adjacent,
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there is an edge �t�ci�� t�d��. Taking the two cases together, u is in t�a�,
t�b1�, t�c1�, t�b2�, t�c2�, or t�d�, and v is in t�b1�, t�c1�, or t�d�. There is
a path of length at most two between any of the two sets of vertices (via
t�d�), and hence u and v are at distance at most four.

The case in which t�a� is in TD follows from the observation that the
only vertices in TD at distance more than two are t�c� and t�d�, derived
from two different level-3 nodes. Clearly u and v cannot be found in these
two locations.

If t�a� is an empty bottom vertex (created at line 37 from TS), then a
cannot have an incident central linking edge, as the label of the vertex at
the other end of that edge would falsify the condition of line 36. We can
thus find u in the label t�b� and v in the label t�c� for b and c both parents
of a. Since t�b� and t�c� are both adjacent to t�a� by edges created at line
38, they are at distance at most two, as needed.

Finally, if t�a� is a nonempty bottom vertex (created at line 40 from TS),
u and v can each be in any of three places: in the label of t�a�, in the label
of t�b� for some parent b of a, or possibly in the label of t�d� for some
central linking edge �d� a�. Each of these vertices is adjacent to the vertex
va created at line 41, by edges created at lines 42, 43, and 46, respectively.
Hence they are at distance two from each other, as needed to complete the
proof.

Theorem 5.2. Given a graph G with n vertices and e edges, it is possible
in time O�n3� to determine whether or not G is a 4-leaf power of a tree T ,
and if so, to determine such a T .

Proof. We have seen that clique graph generation takes O�n3� time and
produces a clique graph with O�n� vertices and edges; partitioning and local
replacement then clearly can be completed in time O�n�.

6. CONCLUSIONS AND FURTHER WORK

Reconstructing the k-leaf powers of ideal trees for k > 4 would be easy
(by generalizing the part of the reconstruction algorithm that deals with
nondegenerate three-level subgraphs) but less interesting than handling
more general trees. We believe the clique graph approach offers promise
for the general case, though more work is needed to quantify exactly how
collapses occur as a result of invisible vertices. The algorithm to create
the clique graph works for all k, as do the general technical lemmas on
neighborhoods and some of the characterizations of clique graph structure.
The main stumbling block appears to be the combinatorial explosion in the
number of cases in the analysis of the extension of results like Theorem 4.1,
which may be controlled by discovery of further general structure. It might
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also be possible to extend these techniques to consider the case of weighted
edges in the tree T .

Among the objections to practical use of the algorithms is that the num-
ber of trees that correspond to a particular k-leaf power could be very large.
It might be interesting to determine all corresponding trees, or perhaps all
trees that satisfy a given set of additional constraints.
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