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Abstra t

In this paper, we analyze the stability properties of the FIFO pro-
tocol in the Adversarial Queueing model for packet routing. We show
a graph for which FIFO is stable for any adversary with injection rate
r < 0.1428. We generalize this results to show upper bounds for stabil-
ity of any network under the FIFO protocol. We also design a network
and an adversary for which FIFO is non-stable for any r > 0.771,
improving the previous known bounds in [1] and in the preliminary
version of the present work [3].

1 Introduction

An important issue in parallel and distributed computing is the efficient
routing of packages in networks. A possible setting for study packet routing
represents the network as a digraph, where nodes represent processors and
arcs represent communication channels. When a packet is injected into the
network, it contains its destination and at each step it must decide the best
edge to traverse (adaptive routing). In an alternative model, the packet
includes also the path to follow to its destination (non-adaptive routing).
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In this paper we only deal with the non-adaptive model of routing. In a
single step, only one packet can traverse any given arc. To regulate the
traffic of packets through each edge, at each arc there is a queue to assign
the priorities to the packets through the arc. First-in-First-out (FIFO) is
one of the simplest queueing policies and has been used to provide best-
effort services in packet-switched networks. Omne crucial aspect of FIFO’s
performance is that of stability: A network is said to be stable if there is a
bound on the total size of packets in the network at all times. Recall that
FIFO belongs to the class of protocols usually denoted as greedy protocols.
A protocol is said to be greedy if whenever the queue of an arc is non empty,
the protocol must send a packet through the arc.

The adversarial queueing model of Borodin et al. [2], was developed as a
robust model of queueing theory in network traffic, and replaces stochastic
by worst case inputs. See [5] for a nice survey on the adversarial model. Ad-
versarial Queueing Theory considers the time evolution of a packet-routing
network as a game between an adversary and a protocol. The adversary, at
each time step, may inject a set of packets at some nodes. For each packet,
the adversary specifies a network path that the packet must traverse, when
the packet arrives to its final destination, it is absorbed by the system. If
more than one packet wish to cross an edge e in the current time step, then
FIFO resolves the conflict, maintaining a queue per edge. We shall say that
a packet targets edge e if the edge belongs to its destination path, regardless
whether that the packet path finishes at e.

A crucial parameter of the adversary is its injection rate. The rate of an
adversary in this model, is specified by a pair (r,b) where b > 1 is a natural
number and 0 < r < 1. The adversary must obey the following rule:

Of the packets that the adversary injects in any time interval I,
at most [r|I]] + b can have paths that contain any particular
edge.

Such a model allows for adversarial injection of packets that are “bursty”.

The previous definition of injection rate, is the one described in [1] except
that in our model the adversary can select the initial configuration of the
system, which was not assumed in the model described in [1]. Without lost
of generality, we will also assume that b = 1.

The motivation to study the behavior of packet communication networks,
is to determine the conditions of stability, the fact that the number of packets
in the system remains bounded, as the system dynamically evolves in time.
Andrews et al. [1] solved several open questions posed in [2]. They also
showed the existence of graphs and protocols that are not universally stable.



In particular, they showed that for the network in Figure 2, the protocol
FIFO is non-stable for values of > 0.85. Later, Goel [4] proved that FIFO
is not stable for the network in Figure 1. This result is a corollary of his main
theorem, showing that this network is not universally stable. However, the
paper does not provide any upper bounds to r. It must be observed, that
although we give as references for [1] and [2] the journal versions, which
appeared at the same time, the work of Borodin et al. was presented at
STOC-96, while the work of Andrews et all, was presented a few months
latter at FOCS-96.

In [1], Andrews et al. proved the existence of a finite set of basic undi-
rected graphs such that a graph G is stable for every r if and only if none
of these graphs is a minor of G. Goel [4] presented three simple graphs
Hy, Hy, H3, which form this set for any directed graph. This result ensure
the decidability of the question: is G universally stable? It remains an open
problem the decidability of the following question: is G stable for the FIFO
protocol? However, until now, it was not known if there is an rog > 0 such
that, even these simple graphs, are stable for FIFO for any r < ry.

A question raised at the end of [1], refers to the existence of a threshold
rate rg > 0 such that any FIFO network is stable against every adversary
of rate r < rg. In the first section of this paper, we give evidence that
their question may be answered in the positive, we show that for every
network, FIFO is stable against any adversary with a small injection rate,
where 7 depends only on the specific network. Before presenting the general
result, we begin by showing that FIFO is stable for the particular network
in Figure 1, for any adversary with rate r < 0.1428. We feel this proof will
help to understand the general case.

Our second result is the design of a simple network and an adversary
making the network unstable for » > 0.771, thus improving the previous
known bounds from [1] and [3]. Our improvement is based on some new
ideas of a) suitably exploiting ”initial” paths and b) controlling the injection
rounds in the construction.

For simplicity, we will omit floors and ceilings, and sometimes we will
count steps and packets roughly. By carrying these through the computa-
tion we are loosing some additive constants but gaining in clarity. Given a
network A, and an edge e € N, Q(e) we will denote the queue at e, and
e(t) will denote the size of Q(e) at time t.



Figure 1: Goel’s network N7.

2 An upper bound for the stability for FIFO

Let us consider the network N'; in Figure 1. As already said, this network
was considered in [4], to prove non-stability under any greedy protocol, and
as a corollary the non-stability of the FIFO protocol. We prove here, that
given any initial packet configuration for A'j, and for every adversary A
with injection rate r < ry, for a given r; to be computed, the number of
packets in the system remains bounded. So we can conclude that FIFO is
stable for N1, under any adversary with rate r < ry.

Theorem 1. For the network N1, given any initial configuration, FIFO is
stable against any adversary with injection rate 0 < r < 0.1428.

Proof. We will split the time into periods. In the first part of each period
we analyze the evolution of the system from the initial time to the first
step in which all the initial packets have arrived to their last queue. The
second part allows enough time to guarantee that all initial packets have
been served and that the system configuration reproduces the initial ones.

Notice that the in degree of edge e is two, therefore this edge can get
an input flow bigger than any of the other two edges. So the largest queue
builded in N'; must occur at e. We analyze the flow of initial packets with
final destination e. The analysis of edges g and f can be done similarly.

Assume that at time 0, the system has a configuration of f(0) pack-
ets in Q(f), ¢(0) packets in Q(g) and e(0) packets in Q(e). Make M =
max{f(0),9(0),e(0)}. Let us run the system for M steps, which correspond
to the first part of the period.

Let P(t) denote the number of packets in the system at time ¢, let P.(t),
fe(t) and ge(t) denote respectively the number of packets in Ny, Q(f) and
Q(g), that will pass through e. Then P(0) = f(0) 4 ¢g(0) + e(0) and P.(0) =



fe(0) + ge(0) + e(0). As the protocol is FIFO, at time M, the number of
packets from P,(0) which still have not been served by Q(e) is at most
fe(0) 4+ g¢(0), and they are queued in Q(e). At the same time, the maximum
number of new injections of packets targeted with e is at most rM. Thus,
e(M) < 1M + fe(0) + ge(0). Let

SZTM+fe(0)+ge(0)7 (1)

then at time M + s all the P, (0) old packets will have been served by Q(e).
Consider the time intervals with duration: s,rs,r2s,...r*s, where k is
such that 7%s > 1 and 7%*'s < 1. During these k + 1 intervals of time, the

total number of packets injected, targeted with e is

k )
i i rs
TE rs<sr§ r = .
. , 1—7r
1=0 =0

Let t; denote the time at the end of these intervals (which includes the initial
time M). Then,

r
P.(t1) <
e(l)_l—r

s+rM (2)

By the previous definitions, f.(0)+g.(0) < P.(0) < P(0) and M < P(0).
Substituting in (1) we get s < rP(0) + P(0) = (1 + r)P(0). Plugging this
bound for s and M into (2), we get

r
1—r

Pe(tl) S

(14 7)P(0) + rP(0) < <1 2TT> P(0).

To guarantee the stability of the system, it must be that the expression inside

the parenthesis must be less than 1, which holds for a value r; < 0.3334.
On the other hand, at time ¢; the total number of packets in the system

can be estimated in the following way: As all queues behave in the worst

case as Q(e), each queue can get at most one new packet per injection, and

N7 has three queues, we get

3r

P(t1)§3T‘M+1 S.

—r
Substituting the value of s, we get

6r

P(t1) < 3rP(0) + 13T

- T

(1+7)P(0) = ( )P(O).
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To guarantee the stability of the system, the quantity inside the parenthesis
must be less than or equal to 1, which need a value r9 < 0.1428.

Taking ro = min{ry, 2}, we have shown that P(¢;) < P(0) for any value
of r < ry.

Repeat the argument, getting an infinite time sequence t1,t2,%3,---. In
the period between time 0 and ¢1, the queues of the edges in N1 are bounded.
As at each new period starting at t;41, the number of packets with a specific
target, is a non-increasing function, we have proved the Theorem. O

The previous argument, can be extended to work in full generality, for
any network N with k edges, maximum in-degree «, and maximum directed

path length g,

Theorem 2. For any network N, given any initial configuration, there exist
an 0 < ry < 1, such that FIFO s stable with respect any adversary with
injection rate v < rar, where Tar is independent of the initial configuration
and it is a function of the maximum in-degree, the mazimum directed path
length and the number of edges.

Proof. Assume that N has k edges, maximum in-degree «, and maximum
directed path length  and that the injection rate of A is . Notice that
if @ = 1 then we have a tree or a ring, for which it is known that such a
network is universally stable [1], so we assume a > 1.

Let us denote the queues as (1, Q2, ... , @k and their loads at time ¢ > 0
as q1(t),q2(t), ... ,qk(t). Let P(0) = ¢;(0) be the initial load.

We will construct an infinite sequence of time periods, t;, at which
P(t;) < P(0) thus keeping the network stable. Again, we will refer to the
packets at time 0, as the old packets.

The fact that we are using a FIFO protocol implies that after a certain
time all the old packets will leave the system. We will compute a bound to
this time.

Consider the worst case of an old packet being last in a queue @); at time
0 and targeted with the largest simple path in the network. Rename the
queues in this simple path as Q; = Qjy, ... = Qj,_,

Note that at time M; = g;,(0) all packets of this queue will have been
served. Thus these packets have passed to the next queues in the path.
Moreover, they can be delayed by at most rM; new injections. Furthermore
the size of any @), is bounded above by (a + 7) M.

We repeat the same procedure, each time considering the last queue
in the path that still contains old packets. After 8 — 2 additional steps
(Mg, M3, ... Mg 1) all the old packets would disappear or being in Q.



Define ¢(t) = max?_,{g;(t)}. Working in the previous way, an absolute
bound for the delay of the last old packet in Q; is M = My +--- + Mg_,
where for every 0 < ¢ < 3, we have M; < ¢(3_,.; M;), with My = 0.
Moreover,during a period of ¢(t) steps starting at time ¢, we have q(t+q(t)) <
(a4 7)q(t). Solving the recurrence, we have that the total time,

|
—

8
M <) (a+1)'q0). (3)

1

Il
<)

Consider consecutive time periods M, M, r2M, ... ,r'M, where [ is such
that 7'M > 1 and »"*'M < 1. Let ¢; be the time at which 7'M finishes.
The packets in N at time ¢; are all new, therefore the number of packets
per queue is at most

rMAr2M 4.+ M < rM + %M,
-7

Therefore, P(t;) < 2=LrkM. Substituting the value of M from (3), we have

1=0

f—1
P(t) < f — :rk (Z(a + r)i> P(0).

For the stability condition, we need P(t1) to be less than P(0), which implies
that we must choose an r such that,

2—r =
- Trk <Z(a+T)Z> <1,

1=0

which is equivalent to finding in the real interval (0,1), the root rx of
—2Zk(a+ 2)PY) 422k 4+ Z%k(a+ 2)P ) — 22k + a+2Z -1 — aZ — Z°.

By the Bolzano’s theorem, this polynomial has a root between 0 and 1,
which is ry. ]

Using the polynomial obtained in the proof of the previous theorem,
we can prove the stability under FIFO for any network. However, doing a
particular analysis for specific networks, we can get better lower bounds for
the values of the r’s that make the network stable under FIFO protocol.
For example, in [1] to prove the non-stability of the FIFO protocol, they use
the network in Figure 2. Applying the previous techniques we get that the
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Figure 2: AAFKLL network Ns.

network is stable for r < 0.0026732592, while a direct proof gives a value for
stability of r < 0.03889. In Section 3, we will use the network in Figure 3,
to lower the injection rate for non-stability of FIFO. Applying again the
techniques developed in Theorem 2, we get a value < 0.0003932323554 for
stability, while a more careful analysis will yield » < 0.01062737157.

3 A lower bound for the non-stability of FIFO

Using the network Ny described in Figure 2, Andrews et al. [1] gave a lower
bound of 0.85, to prove the non-stability of FIFO. In [3], we slightly lowered
their bound to 0.8357, on the network given in Figure 3. In this section, we
use the same network, to lower the injection rate bound to 0.771, so that
FIFO is non-stable for values of » > 0.771.

Theorem 3. There is a network N3 and an adversary A of rate r, such
that the (N, A) system is non-stable, starting from a non-empty initial
configuration, for any r > 0.771.

Proof. We consider the network N3, and the following hypothesis.
Inductive Hypothesis: At the beginning of phase j, there are s packets queued
in the queues ¢g, fé, fé requiring to traverse edges eg, g, f2, all the packets in
queue fé are of this type, and the number of packets queued in fé queue is
bigger than the number of packets queued in fé queue

We will construct an adversary A such that at the beginning of phase
j + 1 the inductive hypothesis will hold, for the symmetric edges, with an
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Figure 3: The network A3 for the non-stability of FIFO

increased value of s. That is, there will be s’ > s packets queued in the
queues fo, f3, €1 requiring to traverse edges e, q, fé, all the packets in queue
f3 are of this type, and the number of packets queued in f3 queue is bigger
than the number of packets queued in fo queue.

From the inductive hypothesis, initially, there are s packets (called S —
flow) in the queues ¢y, fé, fé requiring to traverse edges eg, g, fo.

During phase j the adversary plays three rounds of injections:

Round 1: For s steps, the adversary injects in fé queue a set X of rs packets
wanting to traverse fé, eo, f1, f2, €1, fé. These packets are blocked by the
S — flow. Notice that it has been assumed that all the packets queued in fé
queue form part of the S-flow, and that the number of packets queued in fé
queue at the beginning of this round is bigger than the number of S — flow
packets queued in fé queue.

At the same time, the S — flow is delayed by the adversary’s rs single
injections S7 in queue g. The S; packets get mixed with the packets in the
S — flow, and some of them will remain queued at g queue.

Notice that, because of the FIFO policy, the packets of 5,5 mix in
consecutive blocks according to their initial proportion of their sizes (fair



mixing property). Since |S| = s and |S| = rs, these proportions are TJ%I
and H_Ll, respectively. Thus, during the s steps of round 1, the packets of

S,S1, which arrive to g are, respectively,

1 s T TS
1l 41T+l 41

From this flow only s packets traverse edge g. Therefore, the remaining
packets of each type are:

. S __ _Ts
e for Sr,-em. s — Py R |
f S . rs T2S
® I0r O1,rem: TS — 41 — 1

Round 2: For the next rs steps, the adversary injects a set Y of r2s packets
requiring edges fé, eo, f3,€1,9 fé. These packets are blocked by the set X.
At the same time, the adversary pushes a set Sy of single injections in the
queue f1, where |So| = 725 and a set S3 of single injections in the queue fo,
where | S| = 7?s.

Because of the FIFO policy, the packets of X,Se mix in consecutive

blocks according to their initial proportion of their sizes. Since |X| = rs
and |Sy| = r?s, these proportions are TJ%I and 7, respectively. Thus,

during the rs steps of this round, the packets of X,S,, that pass fi are,
respectively,

rs T2S

Xpass = m752,pass = m
Therefore, the remaining packets of each type are:

s 7'28

o for X,em: 78 — T = 171
.2 r?s __ r3s
o for Sy rem: s — 77 = 777

Note that in queue g, there are the remaining S — flow and the remaining
S1 — flow packets. Since their total number is rs (which is equal to the
duration of the round), the Si ;e — flow does not delay the Syep — flow.
Note also that, because the S1 .., packets are absorbed after they pass only
g, only the Sy, packets require edge fo. As a result the stream arriving
from g to fo contains empty spaces at the positions of the Si ¢, packets.
Therefore, during round 2, three different flows of packets arrive to the fo
queue:
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e the X, — flow, where |X,qs| = rr+_81 This flow is mixed with

59 pass — flow. However, since their total number is s (that is equal to
the duration of the round), S pass — flow does not delay the X4 —
flow. Note also that, because the S ;455 — flow is absorbed after they
pass f1, only the X455 — flow requires edge fz. As a result the stream
arriving from f; to fo contains empty spaces at the positions of the

S92, pass packets.
e the Syem — flow, where |Sypenm| = -7+ Notice that the stream arriving

from this edge also contains empty spaces, from the S; flows.
e the S single-injected packets, where |S3| = r?s.
Since the total number of packets that have to traverse f; in the three
flows is:

s+ 125+ 2rs

T —
r—+1

and the empty spaces and new injections arrives regularly, the corresponding
proportions are:

. 'XP(ISS — 1
e for Xpass- T = 725752

.S _ 1
[ ] fOI' S?"GTTL' % = m

r24r

. S3
e for Ss: T3—T2+T+2

Thus, the remaining packets in fo queue from each flow at the end of
round 2 are:

. TS s _ 241
o for Xpass- T+ 22 8 (r+1)(r2+r+2)
.S TS _ r241
o for Syem: =S s R (NN ) | (REFEE))
o for Sy r2s — rs—tl = pg AT
3 r24+r+2 r24r+2

Round 3: For the next r2s steps, the adversary injects a set Z of r3s
packets requiring edges f3,e1,9 , fé The set Z is mixed with the set Y in
counsecutive blocks according to their initial proportion of their sizes. These
proportions are Y : % and Z : T% Thus, during the r?s steps of this
round, the packets Y, Z that pass fs are respectively,

11



2 1 _ r3s

YI-WSS = ST T ré—l
— 2,1 —_ r°s
Zpass = TSI =

Therefore, the remaining packets in f3 queue are:

.2 r3s __ r3s
o for Yie,: r S— 7T = 71

O r3s _ ris
o for Z,opm: 1°8 — T = I

Furthermore, notice that all the packets share the same destination path.

During this period the number of X5 — flow packets that traverses fo
is

1
2
ros
247 +2

Thus, the remaining X455 — flow and S;.p, packets that are still in fo

queue at the end of this round are:

s+ 7rs r2s rs —rls

r+D)2+r+2) 2+r+2 (r+D)Fr2+r+2)

Srem = Xpass,rem =

Also, the remaining S3 — flow packets that remain in fy queue at the
end of this round are:

rds +ris s + s r2s —r3s

P2rr+2 r247r+2 24742

S3,rem =

Furthermore, all the X,.,, packets that are queued in f; at the beginning
of this round traverse f; and are queued in fo because the total size of packets
in f1 is
r?s r3s 9

i E

|Xrem| + |S2,rem| -

which is equal to the duration of this round.

From the inductive hypothesis, the assumption that the number of pack-
ets requiring to traverse edges fg,el,g', fé is bigger than the number of
packets requiring to traverse edges fa, €1, g', fé should be hold.

However in queue fo, there is a number of Sy, and S3 ¢ packets at the
end of this round, that are mixed with X445 rem packets, while the X,
packets are queued after Srem, S3rem and Xpassrem packets in queue fo.
Because of this mixture X445 rem packets are delayed in the next phase. So,
we should take them into account for the following comparison:

12



QUfs) > Qlf) N
= it > 2merery Tt e
— > 0.755

where Q(f3) and Q(f2) are the number of packets in f3 and fo queues
respectively.

Thus, for r > 0.755, we have proved that under the inductive hypothesis,
at the end of step 3, the number of packets queued in f3 queue is bigger
than the number of packets queued in fo queue, furthermore all the packets
queued in f3 get destination fs, ey, g/, fé.

Now, we will find the appropriate lower bound for injection rate in order
to prove that the the number s of packets queued in the queues fo, f3, €1
requiring to traverse edges e, g', fé at the end of step 3 is bigger than s.

At the end of the round, the number of packets that are in queues
f2, f3, €1 requiring to traverse edges e1,q . fé is:

r2s r3s+rs 9

r_ .3 2 _
S ey S P § T i)

In order to have instability s > s should be hold. Therefore,

3 2 354
r°s + :—I—_Sl + (7,._1_{)(‘:,.2:_‘;_1_2) > S
= 754 29° 4 4pt 4 33 > 2r+2

The above inequality has as a result r > 0.771. Thus, in order to fulfill
the inductive hypothesis, we take the maximum of 0.771 and 0.755. There-
fore, for » > 0.771 the network in Figure 3 is unstable. This concludes our
proof. O

4 Open problems

As we already said, Andrews et al. posed the open question on the existence
of an threshold constant ry such that any network with FIFO protocol is
stable against any adversary with injection ratio » < r¢ [1]. In this work we
have showed that for any network A with FIFO protocol, there exists a 7
such that N is stable against any adversary with » < 5. The original open
problem still remains open, and the values given in this paper indicates that
even for a particular network, the gap is still is too large.

Another interesting open area relates to decidability issues of FIFO pro-
tocol. In particular, the decidability of the following problems is open:

13



Given a network N and a r, 0 < r < 1, is N stable against any
adversary with injection ratio r?

Given a network N, does it have a non trivial threshold for FIFO
stability? that is, is there an r, 0 < rnr < 1 such that N is stable
against any adversary with injection ratio 7 < r) and non-stable
against any adversary with injection ratio r > rys

We have mentioned that several networks are Universally stable for any

greedy protocol. Another interesting question would be to show the exis-
tence of an specific network, which is not universally stable but for which
the network is always stable for FIFO.
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