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Abstract The PLANAR FEEDBACK VERTEX SET problem asks whether an n-vertex
planar graph contains at most k vertices meeting all its cycles. The FACE COVER

problem asks whether all vertices of a plane graph G lie on the boundary of at most
k faces of G. Standard techniques from parameterized algorithm design indicate that
both problems can be solved by sub-exponential parameterized algorithms (where k
is the parameter). In this paper we improve the algorithmic analysis of both problems
by proving a series of combinatorial results relating the branchwidth of planar graphs
with their face cover. Combining this fact with duality properties of branchwidth,
allows us to derive analogous results on feedback vertex set. As a consequence, it
follows that PLANAR FEEDBACK VERTEX SET and FACE COVER can be solved in
O(215.11·

√
k + n2) and O(210.1·

√
k + n2) steps, respectively.

Keywords Branchwidth · Parameterized algorithms · Feedback vertex set · Face
cover

1 Introduction

In this paper, we offer an improved algorithmic analysis for two widely studied com-
binatorial problems on planar graphs. The first is the planar version of FEEDBACK

VERTEX SET that asks, given a graph G and a non-negative integer k, whether all cy-
cles of G can be blocked by a set of at most k vertices. The second is FACE COVER
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that asks, given a plane graph G and a non-negative integer k whether the boundaries
of at most k faces contains all the vertices of G. Our aim is to show that both prob-
lems are closely related and to use this fact to improve the analysis of algorithms for
both problems.

The FEEDBACK VERTEX SET problem, as well as its directed version, are among
the most studied NP-complete problems, mainly due to their numerous applications
(see [16]). A wide range of algorithmic results on FEEDBACK VERTEX SET have
been proposed including approximation algorithms [7, 21, 22], exact algorithms [20]
and heuristics [27].

In our study, we focus our attention on the parameterized complexity of both PLA-
NAR FEEDBACK VERTEX SET and FACE COVER.

In a parameterized problem the input is seen as a pair (I, k), where I is the main
part of the problem and k is a parameter. A fixed parameter algorithm (or simply
FPT-algorithm) is one that solves the problem in O(f (k) · |I |O(1)) steps where f
is a function depending exclusively on the parameter k (for more on parameterized
complexity and algorithms, see [17, 28]).

For both FEEDBACK VERTEX SET and FACE COVER, we consider their parame-
terized versions, where k is the parameter. Many FPT-algorithms were proposed for
FEEDBACK VERTEX SET. The best current results in this direction are the O(4kkn)
step probabilistic algorithm in [1] and the O(5kkn2) step algorithm in [6] (throughout
the paper and for both problems, we denote by n the number of vertices of the input
graph).

When restricted to planar graphs, both PLANAR FEEDBACK VERTEX SET and
FACE COVER are solvable by subexponential FPT-algorithms, i.e. algorithms running
in O(2o(k) ·nO(1)) steps. The first results of this kind were given by Kloks et al. in [26]
for both problems. Furthermore, Fernau and Juedes proved that FACE COVER can be
solved in O(224.551

√
k · n) steps [15].

All previous results can be improved using the win/win meta-algorithmic frame-
work emerging from the bidimensionality theory in [8]. Combining this framework
with the dynamic programming algorithms in [10, 11] is easy to derive O(228.48

√
k ·

n + n3) and O(219.04
√

k · n + n3) step algorithms for PLANAR FEEDBACK VERTEX

SET and FACE COVER respectfully.
In this paper, we proceed to an improved “taylor made” analysis of the complexity

of both PLANAR FEEDBACK VERTEX SET and FACE COVER. In fact, we unify the
analysis of both problems, by exploiting a duality relation between them. As a con-
sequence, we prove that PLANAR FEEDBACK VERTEX SET and FACE COVER can
be solved in O(215.11·

√
k + n2) and O(210.1·

√
k + n2) steps, respectively. Our analy-

sis resides in a thorough analysis of the structure of face covers in planar graphs,
which leads to combinatorial bounds of independent interest. Moreover, the obtained
running times use kernelization techniques as developed in [2–5, 31].

The presentation of the paper is organized as follows. In Sect. 2, we present the
main definitions and some preliminary results. In Sect. 3, we present the main al-
gorithmic techniques, as well as our approach for proving the claimed complexity
bounds. The algorithmic analysis of Sect. 3 is supported by a series of combinatorial
results presented in Sect. 4. Finally, in Sect. 5, we conclude with the discussion of
our results.
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Fig. 1 Two graphs embedded
along with their duals (the
vertices of the duals are depicted
with squares). Their radial
graphs are depicted with bold
lines

2 Preliminaries

2.1 Definitions

We consider graphs that may have loops or multiple edges. If a graph has no multiple
edges or loops we call it simple. Given a graph G, we denote as V (G) its vertex set
and as E(G) its edge multiset. For any set S ⊆ V (G), we denote as G[S] the subgraph
of G induced by the vertices in S. We also denote as G \ S the graph G[V (G) − S]
and if v ∈ V (G) we also write G\v instead of G\ {v}. Finally, if e ∈ E(G), we write
G \ e instead of (V (G),E(G) − {e}). Given a sphere S0 and a subset " ⊆ S0, the

closure of " is denoted by ", and the boundary of " is "̂="∩ S0 −".
We use the term plane graph for a planar graph along with an embedding of it

in the sphere S0 without crossings. Given a plane graph G = (V ,E), we call noose,
a Jordan curve in S0 that meets the drawing only in vertices of G. For a noose N

passing through vertices v1, v2, . . . , vn we will use the same notation we use for a
cycle of a graph, i.e. N = v1v2 · · ·vnv1. The length |N | of a noose N is the number
of vertices it meets.

To simplify notations, we do not distinguish between a vertex of the graph and
the point of S0 used in the drawing to represent the vertex or between an edge and
the open line segment representing it. We denote as F(G), the set of faces of this
embedding, i.e. the connected components of S0 \ G (that are open sets of S0). We
also use the notation G∗ to denote an embedding of the dual graph of G, i.e. the graph
whose vertices correspond to the faces of G and whose edges correspond to pairs of
faces that are incident to a common edge in G.

Given a plane graph G with at least one edge, we define its radial graph RG as
the plane graph whose vertex set is V (G) ∪ V (G∗) and whose edges are defined
as follows: Let C = {C1, . . . ,Cr} be the connected components of S0 \ (G ∪ G∗)
and observe that for i = 1, . . . , r Ci is an open set whose boundary contains one
vertex, say vi , from V (G) and one vertex, say ui , from V (G∗). The edge set of
RG is the set E(RG) = {{vi, ui}, i = 1, . . . , r} where edge {vi, ui} has multiplicity
1 if both vi and ui have degree at least 2 in G and G∗ respectively, otherwise its
multiplicity is 2 (clearly, {vi, ui} can be seen as a subset of the open set Ci ). Notice
that RG = (V (G) ∪ F(G),E(RG)) is a bipartite graph, whose parts are the vertex
and face sets of G, respectively.
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A vertex set S ⊆ V (G) is a feedback vertex set of a graph G, if the graph G \ S

is acyclic. The feedback vertex set number of a graph G, denoted as fvs(G), is the
minimum size of a feedback vertex set of G.

A face cover of a plane graph G is a set R ⊆ F(G) of faces, such that all vertices
of G lie on the boundary of some face in R. We define the face cover number of a
plane graph G, as the minimum size of a face cover of G and we denote it as fc(G).

We consider the following two parameterized problems.

PLANAR FEEDBACK VERTEX SET

Instance: A planar graph G and a non-negative integer k

Parameter: k

Question: fvs(G) ≤ k? FACE COVER

Instance: A plane graph G and a non-negative integer k

Parameter: k

Question: fc(G) ≤ k?

2.2 Branch and Sphere-Cut Decompositions

Let G be a graph on n vertices. A branch decomposition (T ,µ) of a graph G consists
of an unrooted ternary tree T (i.e. all internal vertices are of degree three) and a
bijection µ : L → E(G) from the set L of leaves of T to the edge set of G. We define
for every edge e of T the middle set ω(e) ⊆ V (G), as follows: Let T1 and T2 be
the two connected components of T \ e. Then, let Gi be the graph induced by the
edge set {µ(f ) : f ∈ L ∩ V (Ti)} for i ∈ {1,2}. The middle set is the intersection of
the vertex sets of G1 and G2, i.e. ω(e) = V (G1) ∩ V (G2). The width of (T ,µ) is the
maximum order of the middle sets over all edges of T (in case T has no edges, then
the width of (T ,µ) is equal to 0). An optimal branch decomposition of G is defined
by the tree T and the bijection µ which give the minimum width, the branchwidth,
denoted by bw(G).

Given two graphs H and G, we write H ≤ G, when H can occur from a sub-
graph of G after a series of edge contractions. It is known from [29], that if H ≤ G,
bw(H) ≤ bw(G).

Let G be a plane graph. A branch decomposition (T ,µ) of G is called sphere-cut
decomposition if for every edge e of T there exists a noose Ne, such that

(a) Gi ⊆ "i ∪ Ne for i = 1,2, where Gi the subgraph induced by the edges corre-
sponding to the leaves of the component Ti(e) of T \ e and "1,"2 are the two
open discs bounded by Ne,

(b) for every face f of G, Ne ∩ f is either empty or connected (i.e. if the noose
traverses a face then it traverses it once).

Sphere-cut decompositions appeared as a concept in [30] and were studied in [11–
13]. As proved in [30, Theorem (5.1)] every planar graph G where bw(G) ≤ k, has a
sphere-cut decomposition with width at most k. The following theorem follows from
Theorem (7.2) of [30] and will be useful for our analysis.
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Theorem 1 Let G be a planar graph that contains as a subgraph a cycle of length
at least 2 and let G∗ be a dual of G. Then, the branch-width of G is equal to the
branch-width of G∗.

3 The Algorithms

3.1 The Win/Win Approach for Planar Graphs

The standard technique for the design of subexponential parameterized algorithms
for graph parameters on planar graphs, relies on two conditions: the existence of a
sublinear combinatorial bound for the branchwidth in terms of the parameter and dy-
namic programming on branch decompositions (for a survey, see [14]). In particular,
we refer to any graph parameter p, for which there exist two positive real numbers
αp and βp, such that:

(a) For any planar graph G, bw(G) ≤ αp · √p(G).
(b) For every planar graph G and given an optimal sphere-cut decomposition (T ,µ)

of G, p(G) can be computed in O(2βp·bw(G)) steps.

Theorem 2 If conditions above are satisfied for some parameter p and some αp and
βp, then one can construct an algorithm that, given a graph G and a non-negative

integer k, checks whether p(G) = k in O(2αp·βp·
√

kn + n3) steps.

Proof Given the optimal sphere-cut decomposition (T ,µ) of G, we first check
whether bw(G) > αp ·

√
k. If this is true we respond “no” or “yes” depending

on whether p is a minimization or a maximization parameter. Else, according to
the second condition, using the branch decomposition, we can compute p(G) in
O(2αp·βp·

√
kn) steps. The O(n3) overhead corresponds to the time required to con-

struct an optimal sphere-cut decomposition. For this, one can use the O(n3) step
algorithm by Gu and Tamaki [23] (see also [24, 25, 30]). !

According to the results in [8], conditions (a) and (b) are satisfied for both fvs and
fc. Therefore Theorem 2 can be applied for these parameters. We define αfvs (αfc)
and βfvs (βfc) as the minimum values for αp and βp, for which conditions (a) and (b),
respectively, holds for fvs (fc). In what follows, we provide bounds to these constants
towards improving the time analysis of the algorithm in Theorem 2.

3.2 Estimating βfvs and βfc

Regarding condition (b), and in case of fvs, it is known that given an optimal sphere-
cut decomposition of a n-vertex planar graph G, there is a dynamic programming
algorithm that computes fvs(G) in O(23.56bw(G) · n) steps [10]. We conclude, that
condition (b) holds for βfvs ≤ 3.56.

To estimate βfc, we use the well known reduction of the FACE COVER problem to
the following problem:
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PLANAR BLUE-RED DOMINATING SET

Instance: A planar bipartite graph G with parts B and R and a non-negative integer k.
Parameter: k
Question: Is there a vertex set D ⊆ R where |D| ≤ k and such that every vertex in B
has a neighbour in D?

Observe that (G, k) is a yes-instance of FACE COVER, if and only if (RG, k)
is a yes-instance of PLANAR BLUE-RED DOMINATING SET (set B = V (G) and
R = F(G)) (see also [15]). From [11, Theorem 2.3.2], PLANAR BLUE-RED DOM-
INATING SET can be solved in O(21.19·bw(G) · |V (G)|) steps, provided that an opti-
mal branch decomposition is given. As we prove in Sect. 4, it holds that bw(RG) ≤
2 · bw(G) (Theorem 5). We conclude that condition (b) is satisfied for βfc ≤ 2.38.

3.3 Easy Bounds for αfvs and αfc

Condition (a) follows directly from the theory of bidimensionality introduced in [8].
Applying the meta-algorithmic result of [8] (Theorem 4.14) for both parameters
fvs and fc, condition (a) holds for αfvs,αfc ≤ 8. This implies the existence of an
O(228.48·

√
k ·n+n3) step algorithm for the PLANAR FEEDBACK VERTEX SET prob-

lem (to our knowledge, no other exact bound for this problem exists) and the existence
of an O(219.04·

√
k · n + n3) step algorithm for the FACE COVER problem (improving

the constants of [15] for the same problem).
The above estimations for αfvs and αfc can be easily further improved using known

results. Kloks et al. [26] proved that for any planar graph G, there is a planar graph
H containing G as a subgraph such that ds(H) ≤ fvs(G) (here by ds(H) we de-
note the minimum size of a dominating set of H ). Moreover it holds that for any
planar graph H , bw(H) ≤ 6.364

√
ds(H) [18]. As bw(G) ≤ bw(H), we obtain that

bw(G) ≤ 6.364
√

fvs(G) and this yields condition (a) for αfvs ≤ 6.364. For αfc, we
need to make the following observation: Suppose that a plane graph G has a face
cover U ⊆ F(G) of size ≤ k. Let H be the graph obtained from G, if for each f ∈ U
we draw a vertex vf inside f and connect it with the vertices incident to f . Notice
that the new vertices constitute a dominating set of H , of size at most k. Again, from
the result of [18], we conclude that bw(G) ≤ bw(H) ≤ 6.364 ·

√
k, thus αfc ≤ 6.364.

According to the above, there is an O(222.66·
√

k · n + n3) step algorithm for the
PLANAR FEEDBACK VERTEX SET problem and an O(215.15·

√
k · n + n3) step algo-

rithm for the FACE COVER problem. To our knowledge, these are the fastest algo-
rithms for these problems so far.

3.4 Improved Bounds for αfvs and αfc

In order to find better bounds for αfvs and αfc, we should focus our attention to the
structure of the corresponding parameters. In fact, face cover and planar feedback
vertex set are closely related in dual graphs. Informally speaking, the “dual” version
of the face cover number is upper bounded by the feedback vertex set number. For-
mally, we observe the following:

Lemma 1 Let G be a plane graph and let G∗ be a dual of G. Then, fc(G∗) ≤ fvs(G).
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Proof We examine the non-trivial case where G is not a forest. Let S ⊆ V (G) be a
feedback vertex set in G, of minimum size. As the boundary of any face f ∈ F(G)

contains a cycle of G, it also contains a vertex v ∈ S. This implies that any vertex
f ∗ ∈ V (G∗) of G∗ is in the boundary of some face v∗ of S∗, where S∗ ⊆ F(G∗) is
the set of the duals of the vertices in S. Therefore S∗ is a face cover of G∗. !

The above lemma, combined with the duality of branchwidth (Theorem 1), yields
that bw(G) = bw(G∗) ≤ αfc

√
fc(G∗) ≤ αfc

√
fvs(G) ⇒ αfvs ≤ αfc (we examine the

non-trivial case where G contains a cycle of length at least 2). Therefore, any im-
provement in the estimation of αfc reflects to αfvs as well. In fact we give a better
bound for αfc which is based to the following combinatorial result (the proof occu-
pies the entire Sect. 4).

Theorem 3 For any planar graph G, bw(G) ≤ 2 ·
√

4.5 · √fc(G).

We conclude that αfvs ≤ αfc ≤ 4.243. This leads to the main result of this paper.

Theorem 4 PLANAR FEEDBACK VERTEX SET and FACE COVER can be solved in
O(215.11·

√
k + n2) and O(210.1·

√
k + n2) steps, respectively.

Proof By Theorem 2 and as αfvs ≤ 4.243 and βfvs ≤ 3.56 we derive the an
O(215.11·

√
k · n + n3) step algorithm for PLANAR FEEDBACK VERTEX SET. Sim-

ilarly, taking into account that αfc ≤ 4.243 and βfc ≤ 2.38 we obtain an O(210.1·
√

k ·
n + n3) step algorithm for FACE COVER. Notice that both problems have linear ker-
nels, i.e. they can be reduced in polynomial time to equivalent instances of linear size.
It follows from the general meta-algorithmic results of [5] that such kernels can be
constructed in O(n2) steps (for specific kernels for the above problems, see [3, 26],
and also [2, 31]). This yields the claimed time bounds. !

3.5 Planar Cycle Packing

Our combinatorial bounds can be useful for computing other parameters that can be
bounded by the face cover or the feedback vertex set numbers. An example of such
a parameter is the cycle packing number, denoted as cp(G), that is the maximum
number of disjoint cycles in a graph G. The corresponding parameterized problem is
the following:

PLANAR CYCLE PACKING

Instance: A planar graph G and a non-negative integer k.
Parameter: k

Question: cp(G) ≥ k?

According to the results of [10, 11], computing cp(G) on planar graphs can be
done in O(22.78·bw(G) · n + n3) steps. Therefore, condition (b) holds for cp when
βcp ≤ 2.78. Kloks et al. proved that for any planar graph G, fvs(G) ≤ 5 · cp(G) [26].
Recall that, by Theorem 3, for any planar G, bw(G) ≤ 2 ·√4.5 · fvs(G). This implies
that, for any planar G, bw(G) ≤ 2 · √4.5 · 5 · cp(G) and thus condition (a) holds for
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cp for αcp ≤ 9.487. By Theorem 2, the PLANAR CYCLE PACKING can be solved in

O(226.374·
√

kn + n3) steps. Combining this with the results in [5] (or, alternatively
the specific kernel from [4]) we obtain a O(226.374·

√
k + n2) step algorithm for the

problem.

4 Bounding Branchwidth

4.1 Plane Graphs and Hypergraphs

Hypergraphs will be an important ingredient of the proofs of this section. Our first
step is to extend some basic concepts for hypergraphs. We use the term arity for the
number of the vertices of a hyperedge. We insist in calling edges, hyperedges of arity
equal to two (i.e. those that have only two endpoints), while we confine the term
“hyperedge” to hyperedges with arity three or more.

Notice that the definition of branch decomposition and branchwidth applies di-
rectly for hypergraphs. Therefore, we use the notation bw(H), also when H is a hy-
pergraph. The following lemma is useful for gluing together branch decompositions
of hypergraphs.

Lemma 2 [18, Lemma 3.1] Let H1 and H2 be hypergraphs with one hyperedge in
common, i.e. V (H1) ∩ V (H2) = e and {e} = E(H1) ∩ E(H2). Then, it holds that:
bw(H1 ∪ H2) ≤ max{bw(H1),bw(H2), |e|}.

We call plane hypergraph, any hypergraph H whose vertices are those of a plane
graph G, and whose hyperedges are some of the edges of G, plus some new pairwise
distinct hyperedges, each containing the boundary vertices of some of the faces of G.
By construction, H has an embedding in S0 that copies the one of G and where
hyperedges are drawn inside the corresponding faces of G (see Fig. 2).

Given a plane simple graph G, consider the hypergraph

G+ = (V (G),E(G) ∪ {f̂ ∩ V (G) | f ∈ F(G)})

and notice that G+ can be embedded in S0 in a way that its edges are embedded as in
G and the rest of is hyperedges are embedded as open discs inside the corresponding
faces. Thus a hypergraph H is plane if it is the sub-hypergraph of G+ for some plane
graph G where V (H) = V (G).

We say that the plane graph G generates the plane hypergraph H if H can be
obtained by G+ after first removing some hyperedges of arity ≥ 3 and then removing
edges that are subsets of remaining hyperedges. The next lemma follows easily from
Lemma 2.

Lemma 3 Let G be a plane graph and let H be a hypergraph generated by G. Then
bw(G) ≤ bw(H).

Given a plane hypergraph H , we define its dual H ∗ as the hypergraph whose ver-
tices are the faces of H and where each hyperedge e of H corresponds to a hyperedge
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Fig. 2 A plane graph G, its radial graph RG , a plane hypergraph H generated by G, and the plane
hypergraphs H∗, and R̃G

e∗ of H ∗ whose endpoints are the faces of H that are incident to e. By drawing each
vertex of H ∗ inside the corresponding face of H , one can see that H ∗ is also a plane
hypergraph (see Fig. 2).

In the rest of this section, we will consider only plane hypergraphs generated by
simple 3-connected planar graphs.

This permits us to consider the hyperedges of a plane hypergraph and its dual
as closed discs whose boundary vertices are their endpoints. As we did for graphs,
while working with plane hypergraphs, we will not distinguish between a vertex of
the graph and the point of the sphere S0 used in the drawing to represent the vertex,
or between a edge (hyperedge) and the closed line segment (closed disk) representing
it in the embedding. Using this convention, we can define the set of faces of a hyper-
graph H as the set of connected components of S0 \H . It is now clear that the notion
of a face cover naturally extends for plane hypergraphs.

4.2 The Branchwidth of Radial Graphs

Let G be a 2-connected plane graph and let RG be its radial graph. Notice that, as G is
2-connected, all faces of RG are squares (i.e. their boundaries are cycles of length 4).
We define R̃G as the plane hypergraph generated by RG, if we first add a hyperedge
for each face of RG and then remove all the edges of RG.

Lemma 4 For any 2-connected plane graph G, it holds that bw(R̃G) ≤ 2 · bw(G).

Proof Suppose that bw(G) ≤ k. From [30, Theorem (5.1)] there exists a sphere-cut
decomposition (T ,µ) of width at most k. By definition, the middle set of e in (T ,µ)
is equal to Ne ∩ V (G) and thus |Ne| ≤ k. Observe also that the noose Ne can be seen
as a cycle Ce of the radial graph GR of length twice the length of Ne. Recall now
that the definitions of RG and R̃G imply the existence of a bijection ρ : E(G) →
E(R̃G) between the edges of G and the hyperedges of R̃G. This permits us consider
the branch decomposition (T ,σ ) of R̃G where σ = ρ ◦ µ is the composition of the
bijections µ and ρ. Observe that for any e ∈ E(T ), the middle set of e in (T ,σ )
consists of the vertex set of the cycle Ce . Therefore, (T ,σ ) of R̃G has width at most
twice the width of (T ,µ) and the lemma follows. !



Algorithmica

We are now ready to prove the following theorem.

Theorem 5 For any plane graph G containing a vertex of degree at least 2, it holds
that bw(RG) ≤ 2 · bw(G).

Proof We first notice that Lemmata 3 and 4 imply that the result holds if G is 2-
connected. We also assume that G is not a forest (it is easy to see that forests with
at least one vertex of degree ≥ 2 have branchwidth 1 or 2 while their radials have
branchwidth at most 2).

We apply induction on the number of biconnected components of G. Let S ⊆
V (G) such that |S| ≤ 1 and G \ S is disconnected and let C be the vertex set of
some of its connected components. We set G1 = G[C ∪ S] and G2 = G \ C. Let
f ∈ F(G) be the unique face of G whose boundary contains vertices of all con-
nected components of G \ S. Observe that S′ = S ∪ {f } ⊆ V (RG) induces a clique
in RG of at most 2 vertices and RG \ S′ is disconnected. Notice also that one of
the connected components of RG \ S′ contains all the vertices of C and we de-
note as C′ its vertex set. We observe that RG1 = RG[C′ ∪ S′] and RG2 = RG \ C′.
As S′ = V (RG1 ∩ RG2) and RG = RG1 ∪ RG2 , it follows, using Lemma 2, that
bw(RG) ≤ max{bw(RG1),bw(RG2), |S′|}. Observe that all graphs containing cycles
have branchwidth at least 2 and radial graphs are such graphs. Therefore, as |S′| ≤ 2,
we obtain that bw(RG) ≤ max{bw(RG1),bw(RG2)}. As G1 and G2 are both sub-
graphs of G we have max{bw(G1),bw(G2)} ≤ bw(G).

As G is not acyclic, not both G1 and G2 are acyclic. This implies that the induction
hypothesis applies for at least one of G1 and G2 that should have branchwidth at
least 2. We conclude that

bw(RG) ≤ max{bw(RG1),bw(RG2)}
≤ 2 · max{bw(G1),bw(G2)} ≤ 2 · bw(G)

which concludes the proof. !

4.3 Normalization

Given a plane graph G and a face cover SG of it, we will refer to the faces in SG ⊆
F(G) as F C -faces. We say that two F C -faces f1 and f2 touch if , f̂1 ∩ f̂2 .= ∅. Two
vertices will be called a pair, if they are adjacent and lie on the same F C -face. We
call a face of G triangle if its boundary is a cycle of length 3. We call an edge of
G bridge if there are F C -faces f1 and f2 such that e it is the unique edge whose
endpoints belong in the boundaries of f1 and f2.

Let f1, f2 be two F C -faces and let x1, x2, y1, y2 be four vertices, such that xi, yi ∈
f̂i , i = 1,2); a noose of the form x1y1x2y2x1, will be called a 4-noose. As a Jordan
curve, a 4-noose N bounds two closed discs. If one of them contains exactly one
hyperedge, whose endpoints are the vertices of N , then we refer to such a 4-noose as
trivial. We proceed to the first lemma on the structure of the graph.

Lemma 5 Let G be a simple 3-connected plane graph, such that fc(G) ≤ k. Then
there exists a plane graph G′ and a face cover SG′ of G′, such that:
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Fig. 3 The transformations of the proof of Lemma 5

(a) bw(G) ≤ bw(G′),
(b) |SG′ | ≤ k,
(c) G′ is simple and 3-connected,
(d) No two different F C -faces touch,
(e) G′ does not contain any bridge, and
(f) A face of G′ is either a F C -face or a square whose boundary contains two pairs

of two different F C -faces or a triangle incident to three different vertices that, in
turn, are incident to three different F C -faces.

Proof Let SG be a face cover of G where |S| ≤ k. We will consecutively apply a
number of transformations to G that result in the graph G′, that has the desired prop-
erties. In each step the initial face cover will be altered to a same size face cover of
the new graph. The transformations are the following.

Face Detachment Notice that if two F C -faces f1 and f2 touch, then the set f̂1 ∩ f̂2
is either an edge or a vertex of G (otherwise, G cannot be 3-connected). In each case
we apply an inverse contraction as depicted in Fig. 3 (transformations FD1 and FD2).
Applying this rule as long as there exist touching F C -faces, we obtain a graph G1,
which contains a face cover SG1 with the same size as SG, satisfies conditions (c), (d)
and G ≤ G1 holds.

Partial Triangulation Add non-parallel edges in G1, as long as this does not harm
the planarity of the resulting graph and does not add edges inside some F C -face. We
denote the resulting graph by G2. Clearly, G2 contains a face cover SG2 with the
same size as SG1 . Moreover, because G1 was 3-connected and simple, G2 remains
so. Observe then, that G2 satisfies conditions (c), (d) and G1 ≤ G2.

Bridge Widening The third transformation, applies the inverse contraction depicted
in Fig. 3 (transformation BW) to any bridge of G2. The resulting graph, denoted as
G3, contains a face cover SG3 with the same size as SG2 . Observe that G3 satisfies
conditions (c)–(e), and G2 ≤ G3 holds.

Triangle Widening From condition (c) and the 3-connectivity of G3, any of its tri-
angles that is not a F C -face should touch at least two F C -faces. Let f be such a
triangle. If f touches 3 F C -faces, then it satisfies the demand of condition (f) for
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the triangles. Suppose now, f touches two F C -faces, namely f1 and f2; we apply
the inverse contraction of Fig. 3 (transformation TW), and by repeating this process
we obtain a graph G′, that contains a face cover SG′ with the same size as SG3 and
satisfies all demands of condition (f). Moreover notice, that conditions (c)–(e) also
hold and G3 ≤ G′.

We conclude, that G ≤ G′ and fc(G′) ≤ fc(G); hence, G′ satisfies all required
conditions and the lemma follows. !

We call a face of a plane hypergraph H degenerate if it is bounded by exactly two
hyperedges of H .

Lemma 6 Let G be a 3-connected simple graph such that fc(G) ≤ k. Then, there
exists a hypergraph H and a face cover SH of H with size at most k, such that:

(a) bw(G) ≤ bw(H).
(b) No two different F C -faces touch.
(c) H contains no edges and each hyperedge of H has arity 4 and contains two

disjoint pairs that are incident to two different F C -faces.
(d) A face of H is either a non-degenerate F C -face or a degenerate face or a triangle

incident to three different vertices that in turn are incident to three different F C -
faces.

Proof Let G′ be a planar hypergraph and SG′ a face cover of G′, as in Lemma 5.
Let also H be the plane hypergraph generated by G′ if we add a hyperedge for each
square of G′ and then remove all edges. Condition (a) follows directly from Lemma 3.
Condition (b) follows because it holds for G′ and it is invariant under hypergraph
generation. Conditions (c) and (d) are consequences of condition (f) in Lemma 5 for
G′ and the construction of H . !

A plane hypergraph H with a face cover SH , satisfying properties (b)–(d) of
Lemma 6, will be characterized, from now on, as normalized.

Lemma 7 Let H be a normalized hypergraph with face cover SH and let N a non-
trivial 4-noose bounding the closed discs "1,"2. Let also Hi , (i = 1,2) be the sub-
graph of H containing all vertices and edges included in "i , plus the edge ẽ with
endpoints the four vertices the 4-noose passes through. Then, Hi (for i = 1,2) is a
normalized graph with fc(Hi) ≤ fc(H) and less vertices than H .

Proof Let us label the noose N as x1y1y2x2x1, where xj , yj ∈ fj (for j = 1,2) and
f1, f2 two F C -faces. Note that none of the xj , yj can be a pair, as otherwise they
would both be pairs and all four vertices would lie on a hyperedge, contradicting that
N is non-trivial. Let wj , zj be two vertices of fj that keep xj and yj from being a
pair; they lie, then, in different open discs bounded by N , which implies that Hi (for
i = 1,2) has less vertices than H , as wanted. Notice that fj , j = 1,2 is divided by
N into two faces f i

j := fj ∩ "i (for i = 1,2, j = 1,2). Faces f1, f2 are the only
F C -faces touched by N and hence we can choose

SHi = {f i
1 , f i

2 } ∪ {f ∈ SH : f ⊆"i}, i = 1,2.
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Fig. 4 The prime hypergraph H with face cover SH = {f1, . . . , f5}, the plane graphs red(H) and
Rred(H) and the isomorphic plane hypergraphs H∗ and R̃red(G) (in the planar embedding of H∗ the
vertex corresponding to the infinite face of H is missing)

This guarantees, that fc(Hi) ≤ fc(H) for i = 1,2. It remains now to verify, that condi-
tions (b)–(d) of Lemma 6 remain invariant in both Hi, i = 1,2 and the lemma holds.
Condition (b) follows from the fact that all faces of Hi, i = 1,2 are subsets of faces
in H . Observe that no edges are added to Hi, i = 1,2 while the newly added hyper-
edge ẽ contains the pairs x1, y1 and x2, y2 that are in turn incident to the new faces
f1, f2 and this implies that condition (c) holds. Condition (d) follows from the fact
that all triangles of Hi, i = 1,2 either are triangles of H or correspond to the triangles
of H crossed by N and now are incident to the new hyperedge ẽ. !

4.4 Prime Hypergraphs

A normalized hypergraph H will be called prime, if every 4-noose is trivial. Let H be
a prime hypergraph and SH a face cover of H with |SH | ≥ 3. We define its reduced
graph red(H) as the graph whose vertices correspond to the faces of SH and where
two vertices are connected if and only if there is a hyperedge in H with vertices lying
on the corresponding faces (see Fig. 4).

Lemma 8 Let H be a prime hypergraph with fc(H) ≥ 3. Then, the graphs H ∗ and
R̃red(H) are isomorphic.

Proof Notice that in a prime hypergraph H , all faces are either triangles or F C -faces.
Hence, the vertices of H ∗ can be partitioned to those, that correspond to F C -faces
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H ∗ H red(H) R̃red(H)

VF C (H ∗) SH V (red(H)) V1(R̃red(H))

VT R (H ∗) F (H) \ SH F(red(H)) V2(R̃red(H))

E(H ∗) E(H) E(red(H)) E(R̃red(H))

Fig. 5 The bijections in the proof of Lemma 8.

and those that correspond to triangles of H . We denote these two vertex sets of H ∗

as VF C (H ∗) and VT R(H ∗). On the other hand, the F C -faces of H correspond to
vertices of red(H) and the triangles of H correspond to the faces of red(H). More-
over, the sets V (red(H)) and F(red(H)) correspond to the two parts of the vertex
set of Rred(H), and thus to a bipartition V1(R̃red(H)),V2(R̃red(H)) of the vertices of
R̃red(H). We now have a chain of bijections, that merge into a bijection σ between
VF C (H ∗) ∪ VT R(H ∗) and V1(R̃red(H)) ∪ V2(R̃red(H)). We claim that σ is a isomor-
phism from H ∗ to R̃red(H). To see this, observe that any hyperedge e of H ∗ has
four endpoints containing two anti-diametrical pairs: two corresponding to F C -faces
and two corresponding to triangles of H . Notice that these F C -faces and triangles
of H correspond to vertices and faces of red(G) and therefore to the vertices of the
hyperedge σ (e) of R̃red(H) (see Fig. 5). !

Corollary 1 If H is a prime hypergraph, then bw(H) ≤ 2 · √4.5 · fc(H).

Proof If fc(H) = 2, then H is the graph of 6 vertices—three on each disk—with
3 hyperedges of arity four between these vertices. It is bw(H) = 4 ≤ 2 ·

√
4.5 · 2.

Suppose now, that SH is a face cover of H where 3 ≤ |SH | = fc(H) and notice that
red(H) contains |SH | vertices. From the main result in [19], any n-vertex plane graph
has branchwidth bounded by

√
4.5 · n. Applying this result on red(H) we have that

bw(red(H)) ≤ √
4.5 · fc(H). Also, applying [30, Theorem (7.2)] on H and H ∗ it

follows that bw(H) = bw(H ∗). From Lemmata 4 and 8, we obtain that bw(H) =
bw(H ∗) = bw(R̃red(H)) ≤ 2 · bw(red(H)) ≤ 2 · √4.5 · fc(H). !

Lemma 9 Let H be a normalized graph. Then bw(H) ≤ 2 · √4.5 · fc(H).

Proof We use induction on the number of vertices of H . In case |V (H)| = 6, G
has two F C -faces, three vertices on each of them, and three hyperedges. So, indeed
bw(H) ≤ 4 ≤ 2 ·

√
4.5 · 2. We now assume that for any normalized hypergraph H

where 6 ≤ |V (H)| < n it holds that bw(H) ≤ 2 · √
4.5 · fc(H) and we will show
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that the same upper bound holds for any normalized hypergraph H with n ver-
tices. If H is prime then the result follows directly from Corollary 1. Suppose now
that H is not prime, therefore it contains a non-trivial 4-noose N . As N bounds
two discs "1,"2, Lemma 7 implies that the graph Hi (for i = 1,2) is a normal-
ized graph with fc(Hi) ≤ k and |Hi | < n, i = 1,2. By the induction hypothesis we
have bw(Hi) ≤ 2 · √

4.5 · ki, i = 1,2. Finally, using Lemma 2, we conclude that
bw(H) = max{bw(H1),bw(H2)}, i.e. bw(H) ≤ 2 ·

√
4.5 · k. !

We are now ready to prove the main combinatorial result of this paper.

Proof of Theorem 3 We can assume that fc(G) ≥ 2, as otherwise G is either a forest
or an outerplanar graph, implicating that bw(G) ≤ 2 yielding trivially the result. Also,
we can assume that G is simple as the removal of loops or multiples edges may
reduce the branchwidth of a graph by at most 2 and this only in the case where the
resulting graph is a forest. We will use induction on |V (G)|. For the smallest graph
with fc(G) at least two, namely the K4, the upper bound is true. We assume the same
for any graph with less than n > 4 vertices and we will show that it holds also for
any n-vertex graph. If the graph G is 3-connected, then by Lemmata 5 and 6, there
is a hypergraph H where fc(H) ≤ fc(G) and bw(G) ≤ bw(H) and the result follows
from Lemma 9. So, let us assume that G is not 3-connected. Then, it has a separator
of at most two vertices. We will describe the case where the minimum separator
has two vertices x and y as, otherwise, the result follows by applying Lemma 2 to
the (bi-)connected components of G. Let C be some of the connected components
of G[V (G) − {x, y}]. We set G1 = G[V (C) ∪ {x, y}] and G2 = G[V (G) − V (C)]
and we add in both G1 and G2 the edge e = {x, y} (if its does not already exists).
Notice that Gi ≤ G and therefore fc(Gi) ≤ fc(G). By the induction hypothesis, we
have bw(Gi) ≤ 2 · √4.5 · fc(Gi) and the result follows by applying Lemma 2 for G1
and G2. !

5 Discussion

According to the Win/win approach described in Sect. 3.1, the algorithmic analysis of
all problems of this paper is reduced to the problem of bounding the decomposabil-
ity of a planar graph (i.e. the branchwidth) by a sublinear function of the parameter.
While such general (but not optimal) upper bounds are provided by bidimensionality
theory [8], better constants (and thus faster algorithms) have been achieved by a “tai-
lor made” analysis of the parameter in the cases of vertex cover, edge dominating set,
and dominating set (see [9, 18]). Our results for feedback vertex set, face cover, and
cycle packing offer to the same line of research. Furthermore, specific combinatorial
similarities between our proofs in Sect. 4 and the proofs in [9, 18], make us believe,
that a generic technique for wider families of problems may exist.
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