
Optimal algorithms for hitting (topological)
minors on graphs of bounded treewidth∗

Julien Baste1, Ignasi Sau2,3, and Dimitrios M. Thilikos2,4

1 Université de Montpellier, LIRMM, Montpellier, France
2 AlGCo project-team, CNRS, LIRMM, France
3 Departamento de Matemática, Universidade Federal do Ceará, Fortaleza,

Brazil
4 Department of Mathematics, National and Kapodistrian University of Athens,

Greece

Abstract
For a fixed collection of graphs F , the F-M-Deletion problem consists in, given a graph G

and an integer k, decide whether there exists S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor. We are interested in the parameterized complexity
of F-M-Deletion when the parameter is the treewidth of G, denoted by tw. Our objective is
to determine, for a fixed F , the smallest function fF such that F-M-Deletion can be solved
in time fF (tw) · nO(1) on n-vertex graphs. Using and enhancing the machinery of boundaried
graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we
prove that when all the graphs in F are connected and at least one of them is planar, then
fF (w) = 2O(w·logw). When F is a singleton containing a clique, a cycle, or a path on i vertices,
we prove the following asymptotically tight bounds:

f{K4}(w) = 2Θ(w·logw).
f{Ci}(w) = 2Θ(w) for every i ≤ 4, and f{Ci}(w) = 2Θ(w·logw) for every i ≥ 5.
f{Pi}(w) = 2Θ(w) for every i ≤ 4, and f{Pi}(w) = 2Θ(w·logw) for every i ≥ 6.

The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential
ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-
exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et
al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F
are forbidden as topological minors, and prove essentially the same set of results holds.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory.

Keywords and phrases parameterized complexity; graph minors; treewidth; hitting minors; to-
pological minors; dynamic programming; Exponential Time Hypothesis.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Let F be a finite non-empty collection of non-empty graphs. In the F-M-Deletion (resp.
F-TM-Deletion) problem, we are given a graph G and an integer k, and the objective
is to decide whether there exists a set S ⊆ V (G) with |S| ≤ k such that G \ S does not
contain any of the graphs in F as a minor (resp. topological minor). These problems have
a big expressive power, as instantiations of them correspond to several notorious problems.
For instance, the cases F = {K2}, F = {K3}, and F = {K5,K3,3} of F-M-Deletion (or

∗ Emails of authors: baste@lirmm.fr, ignasi.sau@lirmm.fr, sedthilk@thilikos.info.
This work has been supported by project DEMOGRAPH (ANR-16-CE40-0028).

© Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

Editors: John Q. Open and Joan R. Acces; Article No. ; pp. :1–:37
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

F-TM-Deletion) correspond to Vertex Cover, Feedback Vertex Set, and Vertex
Planarization, respectively.

For the sake of readability, we use the notation F-Deletion in statements that apply to
both F-M-Deletion and F-TM-Deletion. Note that if F contains a graph with at least
one edge, then F-Deletion is NP-hard by the classical result of Lewis and Yannakakis [22].

In this article we are interested in the parameterized complexity of F-Deletion when
the parameter is the treewidth of the input graph. Since the property of containing a graph
as a (topological) minor can be expressed in Monadic Second Order logic (see [19] for explicit
formulas), by Courcelle’s theorem [7], F-Deletion can be solved in time O∗(f(tw)) on
graphs with treewidth at most tw, where f is some computable function1. Our objective is
to determine, for a fixed collection F , which is the smallest such function f that one can
(asymptotically) hope for, subject to reasonable complexity assumptions.

This line of research has attracted some interest during the last years in the parameterized
complexity community. For instance, Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic-programming techniques, and no algorithm
with running time O∗(2o(tw)) exists unless the Exponential Time Hypothesis (ETH)2 fails [17].

For Feedback Vertex Set, standard dynamic programming techniques give a running
time of O∗(2O(tw·log tw)), while the lower bound under the ETH [17] is again O∗(2o(tw)). This
gap remained open for a while, until Cygan et al. [9] presented an optimal algorithm running
in time O∗(2O(tw)), using the celebrated Cut&Count technique. This article triggered several
other techniques to obtain single-exponential algorithms for so-called connectivity problems
on graph of bounded treewidth, mostly based on algebraic tools [3, 13].

Concerning Vertex Planarization, Jansen et al. [18] presented an algorithm of time
O∗(2O(tw·log tw)) as a crucial subroutine in an FPT algorithm parameterized by k. Marcin
Pilipczuk [26] proved that this running time is optimal under the ETH, by using the framework
introduced by Lokshtanov et al. [24] for proving superexponential lower bounds.

Our results. We present a number of upper and lower bounds for F-Deletion parameter-
ized by treewidth, several of them being tight. Namely, we prove the following results, all
the lower bounds holding under the ETH:
1. For every F , F-Deletion can be solved in time O∗

(
22O(tw·log tw)

)
.

2. For every connected3 F containing at least one planar graph (resp. subcubic planar graph),
F-M-Deletion (resp. F-TM-Deletion) can be solved in time O∗

(
2O(tw·log tw)).

3. For any connected F , F-Deletion cannot be solved in time O∗(2o(tw)).
4. When F = {Ki}, the clique on i vertices, {Ki}-Deletion cannot be solved in time
O∗(2o(tw·log tw)) for i ≥ 4. Note that {Ki}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 3 [9], and that the case i = 4 is tight by item 2 above (as K4 is planar).

5. When F = {Ci}, the cycle on i vertices, {Ci}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 5. Note that, by items 2
and 3 above, this settles completely the complexity of {Ci}-Deletion for every i ≥ 3.

6. When F = {Pi}, the path on i vertices, {Pi}-Deletion can be solved in time O∗(2O(tw))
for i ≤ 4, and cannot be solved in time O∗(2o(tw·log tw)) for i ≥ 6. Note that, by items 2
and 3 above, this settles completely the complexity of {Pi}-Deletion for every i ≥ 2,
except for i = 5, where there is still a gap.

1 We use the notation O∗(·) that suppresses polynomial factors depending on the size of the input graph.
2 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [17] for more details.
3 A connected collection F is a collection containing only connected graphs.

J. Baste, I. Sau, and D. M. Thilikos XX:3

The results discussed in the last three items are summarized in Table 1. Note that the
cases with i ≤ 3 were already known [9,17], except when F = {P3}.

HHH
HHF
i 2 3 4 5 ≥ 6

Ki tw tw tw · log tw tw · log tw ? 2O(tw·log tw) tw · log tw ? 2O(tw·log tw)

Ci tw tw tw tw · log tw tw · log tw
Pi tw tw tw tw ? tw · log tw tw · log tw

Table 1 Summary of our results when F equals {Ki}, {Ci}, or {Pi}. If only one value ‘x’ is
written in the table (like ‘tw’), it means that the corresponding problem can be solved in time
O∗(2O(x)), and that this bound is tight. An entry of the form ‘x ? y’ means that the corresponding
problem cannot be solved in time O∗(2o(x)) and that it can be solved in time O∗(2O(y)). We interpret
{C2}-Deletion as Feedback Vertex Set. Grey cells correspond to known results.

Our techniques. The algorithm running in time O∗
(

22O(tw·log tw)
)
uses and, in a sense,

enhances, the machinery of boundaried graphs, equivalence relations, and representatives
originating in the seminal work of Bodlaender et al. [5], and which has been subsequently
used in [14, 15, 19]. For technical reasons, we use branch decompositions instead of tree
decompositions, whose associated widths are equivalent from a parametric point of view [28].

In order to obtain the faster algorithm running in time O∗
(
2O(tw·log tw)) when F is a

connected collection containing at least a (subcubic) planar graph, we combine the above
ingredients with additional arguments to bound the number and the size of the representatives
of the equivalence relation defined by the encoding that we use to construct the partial
solutions. Here, the connectivity of F guarantees that every connected component of a
minimum-sized representative intersects its boundary set (cf. Lemma 23). The fact that
F contains a (subcubic) planar graph is essential in order to bound the treewidth of the
resulting graph after deleting a partial solution (cf. Lemma 9).

We present these algorithms for the topological minor version and then it is easy to adapt
them to the minor version within the claimed running time (cf. Lemma 7).

The single-exponential algorithms when F ∈ {{P3}, {P4}, {C4}} are ad hoc. Namely, the
algorithms for {P3}-Deletion and {P4}-Deletion use standard (but nontrivial) dynamic
programming techniques on graphs of bounded treewidth, exploiting the simple structure of
graphs that do not contain P3 or P4 as a minor (or as a subgraph, which in the case of paths
is equivalent). The algorithm for {C4}-Deletion is more involved, and uses the rank-based
approach introduced by Bodlaender et al. [3], exploiting again the structure of graphs that
do not contain C4 as a minor (cf. Lemma 12). It might seem counterintuitive that this
technique works for C4, and stops working for Ci with i ≥ 5 (see Table 1). A possible reason
for that is that the only cycles of a C4-minor-free graph are triangles and each triangle is
contained in a bag of a tree decomposition. This property, which is not true anymore for
Ci-minor-free graphs with i ≥ 5, permits to keep track of the structure of partial solutions
with tables of small size.

As for the lower bounds, the general lower bound of O∗(2o(tw)) for connected collections
is based on a simple reduction from Vertex Cover. The superexponential lower bounds,
namely O∗(2o(tw·log tw)), are strongly based on the ideas presented by Marcin Pilipczuk [26]
for Vertex Planarization. We present a general hardness result (cf. Theorem 18) that
applies to wide families of connected collections F . Then, our superexponential lower bounds,
as well as the result of Marcin Pilipczuk [26] itself, are corollaries of this general result.
Combining Theorem 18 with 2, it easily follows that the running time O∗(2O(tw·log tw)) is
tight for a wide family of F , for example, when all graphs in F are planar and 3-connected.

CVIT 2017

XX:4 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Further research. In order to complete the dichotomy for cliques and paths (see Table 1),
it remains to settle the complexity when F = {Ki} with i ≥ 5 and when F = {P5}. An
ultimate goal is to establish the tight complexity of F-Deletion for all collections F , but
we are still very far from it. In particular, we do not know whether there exists some F
for which a double-exponential lower bound can be proved, or for which the complexities of
F-M-Deletion and F-TM-Deletion differ.

Note that the connectivity of F was relevant in previous work on the F-M-Deletion
problem taking as the parameter the size of the solution [12, 19]. Getting rid of connectivity
in both the lower and upper bounds we presented is an interesting avenue. We did not focus
on optimizing either the degree of the polynomials involved or the constants involved in our
algorithms. Concerning the latter, one could use the framework presented by Lokshtanov et
al. [23] to prove lower bounds based on the Strong Exponential Time Hypothesis.

Finally, let us mention that Bonnet et al. [6] recently studied generalized feedback vertex
set problems parameterized by treewidth, and obtained independently that excluding C4
plays a fundamental role in the existence of single-exponential algorithms, similarly to our
dichotomy for cycles summarized in Table 1.

Organization of the paper. In Section 2 we provide some preliminaries. The algorithms
based on boundaried graphs are presented in Section 3, and the single-exponential algorithms
for hitting paths and cycles are presented in Section 4. The general lower bound for connected
collections is deferred to Appendix G, and the superexponential lower bounds are presented
in Section 5. The proofs of the results marked with ‘(?)’ have been moved to the appendices.

2 Preliminaries

In this section we provide some preliminaries to be used in the following sections. We include
here only the “non-standard” definitions; the other ones can be found in Appendix A.

Block-cut trees. A connected graph G is biconnected if for any v ∈ V (G), G \ {v} is
connected (notice that K2 is the only biconnected graph that it is not 2-connected). A
block of a graph G is a maximal biconnected subgraph of G. We name block(G) the set of
all blocks of G and we name cut(G) the set of all cut vertices of G. If G is connected, we
define the block-cut tree of G to be the tree bct(G) = (V,E) such that V = block(G)∪ cut(G)
and E = {{B, v} | B ∈ block(G), v ∈ cut(G) ∩ V (B)}. Note that L(bct(G)) ⊆ block(G).
The block-cut tree of a graph can be computed in linear time using depth-first search [16].
Let F be a set of connected graphs such that for each H ∈ F , |V (H)| ≥ 2. Given H ∈ F
and B ∈ L(bct(H)), we say that (H,B) is an essential pair if for each H ′ ∈ F and each
B′ ∈ L(bct(H ′)), |E(B)| ≤ |E(B′)|. Given an essential pair (H,B) of F , we define the
first vertex of (H,B) to be, if it exists, the only cut vertex of H contained in V (B), or an
arbitrarily chosen vertex of V (B) otherwise. We define the second vertex of (H,B) to be an
arbitrarily chosen vertex of V (B) that is a neighbor in H[B] of the first vertex of (H,B).
Note that, given an essential pair (H,B) of F , the first vertex and the second vertex of
(H,B) exist and, by definition, are fixed. Moreover, given an essential pair (H,B) of F , we
define the core of (H,B) to be the graph H \ (V (B) \ {a}) where a is the first vertex of
(H,B). Note that a is a vertex of the core of (H,B).

Topological minors and graph separators. For the statement of our results, we need to
consider the class K containing every connected graph G such that for each B ∈ L(bct(G))
and for each r ∈ N, B 6�tm K2,r (or equivalently, B 6�m K2,r). Let H be a graph. We define
the set of graphs tpm(H) as follows: among all the graphs containing H as a minor, we
consider only those that are minimal with respect to the topological minor relation.

J. Baste, I. Sau, and D. M. Thilikos XX:5

I Observation 1. There is a function f1 : N → N such that for every h-vertex graph H,
every graph in tpm(H) has at most f1(h) vertices.

I Observation 2. Given two graphs H and G, H is a minor of G if and only if some of the
graphs in tpm(H) is a topological minor of G.

Let G be a graph and S ⊆ V (G). Then for each connected component C of G \ S, we
define the cut-clique of the triple (C,G, S) to be the graph whose vertex set is V (C)∪ S and
whose edge set is E(G[V (C) ∪ S]) ∪

(
S
2
)
.

I Lemma 1 (?). Let i ≥ 2 be an integer, let H be an i-connected graph, let G be a graph,
and let S ⊆ V (G) such that |S| ≤ i− 1. If H is a topological minor (resp. a minor) of G,
then there exists a connected component G′ of G \ S such that H is a topological minor (resp.
a minor) of the cut-clique of (G′, G, S).

I Lemma 2 (?). Let G be a connected graph, let v be a cut vertex of G, and let V be the
vertex set of a connected component of G \ {v}. If H is a connected graph such that H �tm G

and for each leaf B of bct(H), B 6�tm G[V ∪ {v}], then H �tm G \ V .

Graph collections. Let F be a collection of graphs. From now on instead of “collection
of graphs” we use the shortcut “collection”. If F is a collection that is finite, non-empty,
and all its graphs are non-empty, then we say that F is a regular collection. For any regular
collection F , we define size(F) = max{|V (H)| | H ∈ F} ∪ {|F|}. Note that if the size of F
is bounded, then the size of the graphs in F is also bounded. We say that F is a planar
collection (resp. planar subcubic collection) if it is regular and at least one of the graphs in F
is planar (resp. planar and subcubic). We say that F is a connected collection if it is regular
and all the graphs in F are connected. We say that F is an (topological) minor antichain if
no two of its elements are comparable via the (topological) minor relation.

Let F be a regular collection. We extend the (topological) minor relation to F such that,
given a graph G, F �tm G (resp. F �m G) if and only if there exists a graph H ∈ F such
that H �tm G (resp. H �m G). We also denote extm(F) = {G | F �tm G}, i.e., extm(F)
is the class of graphs that do not contain any graph in F as a topological minor. The set
exm(F) is defined analogously.

Definition of the problems. Let F be a regular collection. We define the parameter tmF
as the function that maps graphs to non-negative integers as follows:

tmF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ extm(F)}. (1)

The parameter mF is defined analogously. The main objective of this paper is to study
the problem of computing the parameters tmF and mF for graphs of bounded treewidth
under several instantiations of the collection F . Note that in both problems, we can always
assume that F is an antichain with respect to the considered relation. Indeed, this is the case
because if F is contains two graphs H1 and H2 where H1 �tm H2, then tmF (G) = tmF ′(G)
where F ′ = F \ {H2} (similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the treewidth of
the input graph of the considered problem, respectively. In some proofs, we will also use
w to denote the width of a (nice) tree decomposition that is given together with the input
graph (which will differ from tw by at most a factor 5).

CVIT 2017

XX:6 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

3 Dynamic programming algorithms for computing tmF

The purpose of this section is to prove the following results.

I Theorem 3. If F is a regular collection, where d = size(F), then there exists an algorithm
that solves F-TM-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 4. If F is a connected and planar subcubic collection, where d = size(F), then
there exists an algorithm that solves F-TM-Deletion in 2Od(tw·log tw) · n steps.

I Theorem 5. If F is a regular collection, where d = size(F), then there exists an algorithm
that solves F-M-Deletion in 22Od(tw·log tw) · n steps.

I Theorem 6. If F is a connected and planar collection, where d = size(F), then there exists
an algorithm that solves F-M-Deletion in 2Od(tw·log tw) · n steps.

The following lemma is a direct consequence of Observation 2.

I Lemma 7. Let F be a regular collection. Then, for every graph G, it holds that mF (G) =
tmF ′(G) where F ′ =

⋃
F∈F tpm(F).

It is easy to see that for every (planar) graph F , the set tpm(F) contains a subcubic
(planar) graph. Combining this observation with Lemma 7 and Observation 1, Theorems 5
and 6 follow directly from Theorems 3 and 4, respectively. The rest of this section is dedicated
to the proofs of Theorems 3 and 4. For this, we need a number of definitions about boundaried
graphs, their equivalence classes, and their branch decompositions. Many of these definitions
were introduced in [5, 14] (see also [15,19]), and can be found in Appendix B. We present
here only the most fundamental definitions in order to be able to state our results.

Basic definitions about boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple
G = (G,R, λ) where G is a graph, R ⊆ V (G), |R| = t, and λ : R → N+ is an injective
function. We call R the boundary of G and we call the vertices of R the boundary vertices of
G. We also call G the underlying graph of G. Moreover, we call t = |R| the boundary size of
G and we define the label set of G as Λ(G) = λ(R). We also say that G is a boundaried graph
if there exists an integer t such that G is an t-boundaried graph. We say that a boundary
graph G is consecutive if Λ(G) = [1, |R|]. We define B(t) as the set of all t-boundaried graphs.

Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2) be two t-boundaried graphs. We define the
gluing operation ⊕ such that (G1, R1, λ1)⊕ (G2, R2, λ2) is the graph G obtained by taking
the disjoint union of G1 and G2 and then, for each i ∈ [1, t], identifying the vertex ψ−1

G1
(i)

and the vertex ψ−1
G2

(i).
Let F be a regular collection and let t be a non-negative integer. We define an equivalence

relation ≡(F,t) on t-boundaried graphs as follows: Given two t-boundaried graphs G1 and
G2, we write G1 ≡(F,t) G2 to denote that ∀G ∈ B(t), F �tm G⊕G1 ⇐⇒ F �tm G⊕G2.
We set up a set of representatives R(F,t) as a set containing, for each equivalent class C
of ≡(F,t), some consecutive t-boundaried graph in C with minimum number of edges and
no isolated vertices out of its boundary (if there are more than one such graphs, pick one
arbitrarily). Given a t-boundaried graph G we denote by rep(F)(G) the t-boundaried graph
B ∈ R(F,t) where B ≡(F,t) G and we call B the F-representative of G.

Given t, r ∈ N, we define A(t)
F,r as the set of all pairwise non-isomorphic boundaried graphs

that contain at most r non-boundary vertices, whose label set is a subset of [1, t], and whose
underlying graph belongs in extm(F). Given a t-boundaried graph B and an integer r ∈ N,
we define the (F , r)-folio of B, denoted by folio(B,F , r) the set containing all boundaried
graphs in A(t)

F,r that are topological minors of B.

J. Baste, I. Sau, and D. M. Thilikos XX:7

I Lemma 8 (?). There exists a function h1 : N×N→ N such that if F is a regular collection
and t ∈ N, then |R(F,t)| ≤ h1(d, t) where d = size(F). Moreover h1(d, t) = 22Od(t·log t) .

I Lemma 9 (?). There exists a function µ : N → N such that for every planar subcubic
collection F , every graph in extm(F) has branchwidth at most y = µ(d) where d = size(F).

We already have all the main ingredients to prove Theorem 3; the proof can be found
in Appendix C. In order to prove Theorem 4, we need Lemma 11 below, which should be
contrasted with Lemma 8. Its proof, which can be found in Appendix E, uses, among others,
the following result of Baste et al. [2] on the number of labeled graphs of bounded treewidth.

I Proposition 10 (Baste et al. [2]). Let n, y ∈ N. The number of labeled graphs with at most
n vertices and branchwidth at most q is 2Oq(n·logn).

I Lemma 11 (?). Let t ∈ N and F be a connected and planar collection, where d = size(F),
and let R(F,t) be a set of representatives. Then |R(F,t)| = 2Od(t·log t). Moreover, there exists
an algorithm that given F and t, constructs a set of representatives R(F,t) in 2Od(t·log t) steps.

The proof of Theorem 4 can be found in Appendix D. The main difference with respect
to the proof of Theorem 3 is an improvement on the size of the tables of the dynamic
programming algorithm, namely |Pe|, where the fact that F is a connected and planar
subcubic collection is exploited.

4 Single-exponential algorithms for hitting paths and cycles

In this section we show that if F ∈ {{P3}, {P4}, {C4}}, then F-TM-Deletion can also
be solved in single-exponential time. It is worth mentioning that the {Ci}-TM-Deletion
problem has been studied in digraphs from a non-parameterized point of view [25].

The algorithms we present for {P3}-TM-Deletion and {P4}-TM-Deletion use stand-
ard dynamic programming techniques, and can be found in Appendix H. The definition of
nice tree decomposition can also be found there.

We proceed to use the dynamic programming techniques introduced by Bodlaender et
al. [3] to obtain a single-exponential algorithm for {C4}-TM-Deletion. The algorithm we
present solves the decision version of {C4}-TM-Deletion: the input is a pair (G, k), where
G is a graph and k is an integer, and the output is the boolean value tmF (G) ≤ k.

Given a graph G, we denote by n(G) = |V (G)|, m(G) = |E(G)|, c3(G) the number of
C3’s that are subgraphs of G, and cc(G) the number of connected components of G. We
say that G satisfies the C4-condition if G does not contain the diamond as a subgraph
and n(G)−m(G) + c3(G) = cc(G). As in the case of P3 and P4, we state in Lemma 12 a
structural characterization of the graphs that exclude C4 as a (topological) minor.

I Lemma 12 (?). Let G be a graph. C4 6�tm G if and only if G satisfies the C4-condition.

I Lemma 13 (?). If G is a non-empty graph such that C4 6�tm G, then m(G) ≤ 3
2 (n(G)− 1).

We are now going to restate the tools introduced by Bodlaender et al. [3] that we need
for our purposes. Let U be a set. We define Π(U) to be the set of all partitions of U . Given
two partitions p and q of U , we define the coarsening relation v such that p v q if for each
S ∈ q, there exists S′ ∈ p such that S ⊆ S′. (Π(U),v) defines a lattice with minimum
element {{U}} and maximum element {{x} | x ∈ U}. On this lattice, we denote by u the
meet operation and by t the join operation. Let p ∈ Π(U). For X ⊆ U we denote by
p↓X = {S ∩X | S ∈ p, S ∩X 6= ∅} ∈ Π(X) the partition obtained by removing all elements

CVIT 2017

XX:8 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

not in X from p, and analogously for U ⊆ X we denote p↑X = p∪ {{x} | x ∈ X \U} ∈ Π(X)
the partition obtained by adding to p a singleton for each element in X \U . Given a subset S
of U , we define the partition U [S] = {{x} | x ∈ U \S}∪{S}. A set of weighted partitions is a
set A ⊆ Π(U)× N. We also define rmc(A) = {(p, w) ∈ A | ∀(p′, w′) ∈ A : p′ = p⇒ w ≤ w′}.

We now define some operations on weighted partitions. Let U be a set and A ⊆ Π(U)×N.

Union. Given B ⊆ Π(U)× N, we define A ∪↓ B = rmc(A ∪ B).
Insert. Given a set X such that X ∩U = ∅, we define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈ A}.
Shift. Given w′ ∈ N, we define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.
Glue. Given a set S, we define Û = U ∪ S and glue(S,A) ⊆ Π(Û)× N as

glue(S,A) = rmc({(Û [S] u p↑Û , w | (p, w) ∈ A}).
Given w : Û × Û → N , we define gluew({u, v},A) = shft(w(u, v), glue({u, v},A)).

Project. Given X ⊆ U , we define X = U \X and proj(X,A) ⊆ Π(X)× N as
proj(X,A) = rmc({(p↓X , w) | (p, w) ∈ A,∀e ∈ X : ∀e′ ∈ X : p v U [ee′]}).

Join. Given a set U ′, B ⊆ Π(U)× N, and Û = U ∪ U ′, we define join(A,B) ⊆ Π(Û)× N as
join(A,B) = rmc({(p↑Û u q↑Û , w1 + w2) | (p, w1) ∈ A, (q, w2) ∈ B}).

I Proposition 14 (Bodlaender et al. [3]). Each of the operations union, insert, shift, glue, and
project can be carried out in time s · |U |O(1), where s is the size of the input of the operation.
Given two weighted partitions A and B, join(A,B) can be computed in time |A| · |B| · |U |O(1).

Given a weighted partition A ⊆ Π(U)×N and a partition q ∈ Π(U), we define opt(q,A) =
min{w | (p, w) ∈ A, p u q = {U}}. Given two weighted partitions A,A′ ⊆ Π(U) × N, we
say that A represents A′ if for each q ∈ Π(U), opt(q,A) = opt(q,A′). Given a set Z and a
function f : 2Π(U)×N × Z → 2Π(U)×N, we say that f preserves representation if for each two
weighted partitions A,A′ ⊆ Π(U)× N and each z ∈ Z, it holds that if A′ represents A then
f(A′, z) represents f(A, z).

I Proposition 15 (Bodlaender et al. [3]). The union, insert, shift, glue, project, and join
operations preserve representation.

I Theorem 16 (Bodlaender et al. [3]). There exists an algorithm reduce that, given a set of
weighted partitions A ⊆ Π(U)× N, outputs in time |A| · 2(ω−1)|U | · |U |O(1) a set of weighted
partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |, where ω denotes the matrix
multiplication exponent.

We now have all the tools needed to describe our algorithm. This algorithm is based
on the one given in [3, Section 3.5] for Feedback Vertex Set. We define a new graph
G0 = (V (G) ∪ {v0}, E(G) ∪ E0), where v0 is a new vertex and E0 = {{v0, v} | v ∈ V (G)}.
The role of v0 is to artificially guarantee the connectivity of the solution graph, so that the
machinery of Bodlaender et al. [3] can be applied. In the following, for each subgraph H
of G, for each Z ⊆ V (H), and for each Z0 ⊆ E0 ∩E(H), we denote by H〈Z,Z0〉 the graph(
Z,Z0 ∪

(
E(H) ∩

(
Z\{v0}

2
)))

.
Given a nice tree decomposition of G of width w, we define a nice tree decomposition

((T,X), r,G) of G0 of width w + 1 such that the only empty bags are the root and the
leaves and for each t ∈ T , if Xt 6= ∅ then v0 ∈ Xt. Note that this can be done in linear
time. For each bag t, each integers i, j, and `, each function s : Xt → {0, 1}, each function
s0 : {v0} × s−1(1) → {0, 1}, and each function r : E(Gt

〈
s−1(1), s−1

0 (1)
〉
) → {0, 1}, if

C4 6�tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define:

J. Baste, I. Sau, and D. M. Thilikos XX:9

Et(p, s, s0, r, i, j, `) = {(Z,Z0) | (Z,Z0) ∈ 2Vt × 2E0∩E(Gt)

|Z| = i, |E(Gt〈Z,Z0〉)| = j, c3(Gt〈Z,Z0〉) = `,

Gt〈Z,Z0〉 does not contain the diamond as a subgraph,
Z ∩Xt = s−1(1), Z0 ∩ (Xt ×Xt) = s−1

0 (1), v0 ∈ Xt ⇒ s(v0) = 1,
∀u ∈ Z \Xt : either t is the root or

∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z,Z0〉,
∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are

connected in Gt〈Z,Z0〉,

∀e ∈ E(Gt〈Z,Z0〉) ∩
(

s−1(1)
2

)
: r(e) = 1⇔ e is an

edge of a C3 in Gt〈Z,Z0〉}
At(s, s0, r, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, r, i, j, `) 6= ∅}.

Otherwise, i.e., if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, we define At(s, s0, r, i, j, `) = ∅.

Note that we do not need to keep track of partial solutions if C4 �tm Gt
〈
s−1(1), s−1

0 (1)
〉
, as

we already know they will not lead to a global solution. Moreover, if C4 6�tm Gt
〈
s−1(1), s−1

0 (1)
〉
,

then by Lemma 13 it follows that m(Gt
〈
s−1(1), s−1

0 (1)
〉
) ≤ 3

2 (n(Gt
〈
s−1(1), s−1

0 (1)
〉
)− 1).

Using the definition of Ar, Lemma 12, and Lemma 13 we have that tm{C4}(G) ≤ k if and
only if for some i ≥ |V (G)∪{v0}|−k and some j ≤ 2

3 (i−1), we haveAr(∅,∅,∅, i, j, 1+j−i) 6=
∅. For each t ∈ V (T), we assume that we have already computed At′ for each children t′ of
t, and in Appendix F we show how to compute At, distinguishing several cases depending on
the type of node t. The proof of the following theorem can also be found in Appendix F.

I Theorem 17 (?). {C4}-TM-Deletion can be solved in time 2O(tw) · n7.

5 Superexponential lower bound for specific cases
In this section, we focus on the graph classes P = {Pi | i ≥ 6} and K, and we show the
following theorem. Let us recall that K is the set containing every connected graph G such
that for each leaf B ∈ L(bct(G)) and r ∈ N, B 6�tm K2,r (or B 6�m K2,r, which is equivalent).

I Theorem 18. Let F be a regular collection such that F ⊆ P or F ⊆ K. Unless the ETH
fails, neither F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) ·nO(1).

In particular, this theorem implies the result of Pilipczuk [26] as a corollary. Indeed,
Vertex Planarization corresponds to F-Deletion where F = {K5,K3,3}, and note that
{K5,K3,3} ⊆ K. Note also that Theorem 18 also implies the results stated in items 4 and 5
of the introduction, as all these graphs are easily seen to belong in K.

I Corollary 19. Unless the ETH fails, for each F ∈ {{Ci} | i ≥ 5} ∪ {{Ki} | i ≥ 4}, neither
F-TM-Deletion nor F-M-Deletion can be solved in time 2o(tw log tw) · nO(1).

In the following we prove Theorem 18 for F-TM-Deletion, and we explain in Appendix I
how to modify the proof to obtain the result for F-M-Deletion. To prove Theorem 18,
we reduce from k × k Permutation Clique (k × k P. Clique for short), defined by
Lokshtanov et al. [24]. In this problem, we are given an integer k and a graph G with vertex
set [1, k]× [1, k]. The question is whether there is a k-clique in G with exactly one element
from each row and exactly one element from each column. Lokshtanov et al. [24] proved that
k × k P. Clique cannot be solved in time 2o(k log k) unless the ETH fails.

CVIT 2017

XX:10 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

We now present the common part of the construction for both P and K. Let F be a
regular collection such that F ⊆ P or F ⊆ K. Note that if F ⊆ P, then |F| = 1. Let us fix
(H,B) to be an essential pair of F . We first define some gadgets that generalize the K5-edge
gadget and the s-choice gadget introduced in [26]. Given a graph G and two vertices x and y
of G, by introducing an H-edge gadget between x and y we mean that we add a copy of H
where we identify the first vertex of (H,B) with y and the second vertex of (H,B) with x.
Using the fact that an H-edge gadget between two vertices x and y is a copy of H and that
{x, y} is a cut set, we have that the H-edge gadgets clearly satisfy the following.

I Proposition 20. If F-TM-Deletion has a solution on (G, k) then this solution intersects
every H-edge gadget, and there exists a solution S such that for each H-edge gadget A
between two vertices x and y, V (A) ∩ S ⊆ {x, y} and {x, y} ∩ S 6= ∅.

In the following, we will always assume that the solution that we take into consideration
is a solution satisfying the properties given by Proposition 20. Moreover, we will restrict the
solution to contain only vertices of H-edge gadgets by setting an appropriate budget to the
number of vertices we can remove from the input graph G.

Given a graph G and two vertices x and y of G, by introducing a B-edge gadget between
x and y we mean that we add a copy of B where we identify the first vertex of (H,B) with
y and the second vertex of (H,B) with x. Given a graph G and three vertices x, y, and z
of G, by introducing a double H-edge gadget between x and z through y we mean that we
introduce an H-edge gadget between z and y, and a B-edge gadget between x and y.

Given a set of s vertices {xi | i ∈ [1, s]}, by introducing an H-choice gadget connecting
{xi | i ∈ [1, s]}, we mean that we add 2s + 2 vertices zi, i ∈ [0, 2s+ 1], for each i ∈ [0, 2s],
we introduce an H-edge gadget between zi and zi+1, and for each i ∈ [1, s], we introduce
a B-edge gadget between xi and z2i−1 and another one between xi and z2i. We see the
H-choice gadget as a graph induced by {xi | i ∈ [1, s]}∪{zi | i ∈ [0, 2s]}, the B-edge gadgets,
and the H-edge gadgets. The following proposition is similar to [26, Lemma 5].

I Proposition 21 (?). For every H-choice gadget C connecting {xi | i ∈ [1, s]}, any solution
S of F-TM-Deletion satisfies |S ∩V (C)| ≥ 2s, for every i ∈ [1, s] there exists a solution S
such that xi 6∈ S, and for every solution S with |S ∩ V (C)| = 2s, ∃i ∈ [1, s] such that xi 6∈ S.

We now start the description of the general construction. Given an instance (G, k) of
k × k P. Clique, we construct an instance (G′, `) of F-TM-Deletion, which we call the
general H-construction of (G, k). We first introduce k2 + 2k vertices, namely {ci | i ∈ [1, k]},
{ri | i ∈ [1, k]}, and {ti,j | i, j ∈ [1, k]}. For each i, j ∈ [1, k], we add the edges {rj , ti,j} and
{ti,j , ci}. For each j ∈ [1, k], we introduce an H-choice gadget connecting {ti,j | i ∈ [1, k]}.
This part of the construction is depicted in Figure 1 in Appendix I.

We now describe how we encode the edges of G in G′. For each e ∈ E(G), we define
the integers p(e), γ(e), q(e), and δ(e) in [1, k], such that e = {(p(e), γ(e)), (q(e), δ(e))} with
p(e) ≤ q(e). Note that the edges e with p(e) = q(e) are not relevant to our construction
and hence we safely forget them. For each e ∈ E(G), we add to G′ three new vertices, d`e,
dme , and dre, and four edges {d`e, cp(e)}, {d`e, rγ(e)}, {dre, cq(e)}, and {dre, rδ(e)}. We introduce a
double H-edge gadget between d`e and dre through dme . The encoding of an edge e ∈ E(G) is
depicted in Figure 2 in Appendix I. For each 1 ≤ p < q ≤ k, we define E(p, q) = {e ∈ E(G) |
(p(e), q(e)) = (p, q)} and we introduce an H-choice gadget connecting {d`e | e ∈ E(p, q)}.

For each e ∈ E(G), we increase the size of the requested solution in G′ by one, the initial
budget being the sum of the budget given by Proposition 21 over all the H-choice gadgets
introduced in the construction. Because of the double H-edge gadget, we need to take in
the solution either dme or both d`e and dre. The extra budget given for each edge permits to

J. Baste, I. Sau, and D. M. Thilikos XX:11

include dme in the solution. If the H-choice gadget connected to d`e already chooses d`e to be
in the solution, then we can use the extra budget given for the edge e to choose dre instead of
dme . In the case dme is chosen, in the resulting graph cp(e) remains connected to rγ(e) and
cq(e) remains connected to rδ(e). In the following, we consider only a solution S such that
either {d`e, dme , dre} ∩ S = {d`e, dre} or {d`e, dme , dre} ∩ S = {dme } for each e ∈ E(G).

We set ` = 3|E(G)|+ 2k2. By construction, this budget is tight and permits to take only
a minimum-size solution in every H-choice gadget and one endpoint of each H-edge gadget
between dre and dme , e ∈ E(G). This concludes the general H-construction (G′, `) of (G, k).

Let us now discuss about the treewidth of G′. By deleting 2k vertices, namely the vertices
{ci | i ∈ [1, k]} and the vertices {rj | j ∈ [1, k]}, we obtain a graph where each connected
component is an H-choice gadget, with eventually some pendant H-edge gadgets or double
H-edge gadgets. As the treewidth of the H-choice gadget, the H-edge gadget, and the double
H-choice gadget is linear in |V (H)|, we obtain that tw(G) = Od(k) (recall that d = size(F)).

We explain in Appendix I that, given a permutation σ : [1, k]→ [1, k] defining a solution
of k × k P. Clique on (G, k), we can define a so-called σ-general H-solution S having nice
properties. Conversely, given a set S ⊆ V (G′) of size at most 3|E(G)|+ 2k2 satisfying the
so-called permutation property, we can define (cf. Lemma 39) a unique permutation σ that
defines a k-clique in G; we call σ the associated permutation of S.

To conclude the reduction, we deal separately with the cases F ⊆ P and F ⊆ K. For
each such F , we assume w.l.o.g. that F is a topological minor antichain, we fix (H,B) to be
an essential pair of F , and given an instance (G, k) of k × k P. Clique, we start from the
general H-construction (G′, `) and add some edges and vertices in order to build an instance
(G′′, `) of F-TM-Deletion. We show that if k × k P. Clique on (G, k) has a solution σ,
then the σ-general H-solution is a solution of F-TM-Deletion on (G′′, `). Conversely, we
show that if F-TM-Deletion on (G′′, `) has a solution S, then this solution satisfies the
permutation property. This gives, by Lemma 39, that the associated permutation σ of S is a
solution of k × k P. Clique on (G, k). The details can be found in Appendix I.

References
1 Z. Baia, J. Tu, and Y. Shi. An improved algorithm for the vertex cover P3 problem on

graphs of bounded treewidth. CoRR, abs/1603.09448, 2017.
2 J. Baste, M. Noy, and I. Sau. The number of labeled graphs of bounded treewidth. CoRR,

abs/1604.07273, 2016. To appear in Proc. of WG 2017.
3 H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential

time algorithms for connectivity problems parameterized by treewidth. Information and
Computation, 243:86–111, 2015.

4 H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on Computing, 45(2):317–
378, 2016.

5 H. L. Bodlaender, F. V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, and D. M.
Thilikos. (meta) kernelization. Journal of the ACM, 63(5):44:1–44:69, 2016.

6 É. Bonnet, N. Brettell, O. Kwon, and D. Marx. Generalized feedback vertex set problems
on bounded-treewidth graphs: chordality is the key to single-exponential parameterized
algorithms. CoRR, abs/1704.06757, 2017.

7 B. Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Information and Computation, 85(1):12–75, 1990.

8 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

CVIT 2017

XX:12 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

9 M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wo-
jtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single Exponen-
tial Time. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 150–159, 2011.

10 R. Diestel. Graph Theory. Springer-Verlag, 3rd edition, 2005.
11 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
12 F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-Deletion: Approximation,

Kernelization and Optimal FPT Algorithms. In Proc. of the 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 470–479, 2012.

13 F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Efficient computation of repres-
entative families with applications in parameterized and exact algorithms. Journal of the
ACM, 63(4):29:1–29:60, 2016.

14 F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality and kernels.
In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
503–510, 2010. Full version available at CoRR, abs/1606.05689, 2016.

15 V. Garnero, C. Paul, I. Sau, and D. M. Thilikos. Explicit linear kernels via dynamic
programming. SIAM Journal on Discrete Mathematics, 29(4):1864–1894, 2015.

16 J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipulation. Commun-
ations of ACM, 16(6):372–378, 1973.

17 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

18 B. M. P. Jansen, D. Lokshtanov, and S. Saurabh. A near-optimal planarization algorithm.
In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1802–1811, 2014.

19 E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar. Linear kernels
and single-exponential algorithms via protrusion decompositions. ACM Transactions on
Algorithms, 12(2):21:1–21:41, 2016.

20 T. Kloks. Treewidth. Computations and Approximations. Springer-Verlag LNCS, 1994.
21 J. Komlós and E. Szemerédi. Topological cliques in graphs 2. Combinatorics, Probability

& Computing, 5:79–90, 1996.
22 J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is

NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.
23 D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time

hypothesis. Bulletin of the EATCS, 105:41–72, 2011.
24 D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized prob-

lems. In Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 760–776, 2011.

25 D. Paik, S. M. Reddy, and S. Sahni. Deleting vertices to bound path length. IEEE
Transactions on Computers, 43(9):1091–1096, 1994.

26 M. Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded treewidth.
Discrete Applied Mathematics, DOI: http://dx.doi.org/10.1016/j.dam.2016.05.019,
2016, to appear.

27 N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986.

28 N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

29 J. Tu, L. Wu, J. Yuan, and L. Cui. On the vertex cover P3 problem parameterized by
treewidth. Journal of Combinatorial Optimization, DOI: 10.1007/s10878-016-9999-6,
2016, to appear.

J. Baste, I. Sau, and D. M. Thilikos XX:13

A Extended preliminaries

Sets, integers, and functions. We denote by N the set of every non-negative integer and
we set N+ = N \ {0}. Given two integers p and q, the set [p, q] refers to the set of every
integer r such that p ≤ r ≤ q. Moreover, for each integer p ≥ 1, we set N≥p = N \ [0, p− 1].
In the set [1, k]× [1, k], a row is a set {i} × [1, k] and a column is a set [1, k]× {i} for some
i ∈ [1, k].

We use ∅ to denote the empty set and ∅ to denote the empty function, i.e., the unique
subset of ∅×∅. Given a function f : A→ B and a set S, we define f |S = {(x, f(x)) | x ∈ S∩A}.
Moreover if S ⊆ A, we set f(S) =

⋃
s∈S{f(s)}. Given a set S, we denote by

(
S
2
)
the set

containing every subset of S that has cardinality 2. We also denote by 2S the set of all the
subsets of S. If S is a collection of objects where the operation ∪ is defined, then we then
denote

⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X.

Let p ∈ N with p ≥ 2, let f : Np → N, and let g : Np−1 → N. We say that f(x1, . . . , xp) =
Oxp(g(x1, . . . , xp−1)) if there is a function h : N → N such that f(x1, . . . , xp) = O(h(xp) ·
g(x1, . . . , xp−1)).

Graphs. All the graphs that we consider in this paper are undirected, finite, and without
loops or multiple edges. We use standard graph-theoretic notation, and we refer the reader
to [10] for any undefined terminology. Given a graph G, we denote by V (G) the set of
vertices of G and by E(G) the set of the edges of G. We call |V (G)| the size of G. A graph
is the empty graph if its size is 0. We also denote by L(G) the set of the vertices of G
that have degree exactly 1. If G is a tree (i.e., a connected acyclic graph) then L(G) is the
set of the leaves of G. A vertex labeling of G is some injection ρ : V (G) → N+. Given a
vertex v ∈ V (G), we define the neighborhood of v as NG(v) = {u | u ∈ V (G), {u, v} ∈ E(G)}
and the closed neighborhood of v as NG[v] = NG(v) ∪ {v}. If X ⊆ V (G), then we write
NG(X) = (

⋃
v∈X NG(v)) \X. The degree of a vertex v in G is defined as degG(v) = |NG(v)|.

A graph is called subcubic if all its vertices have degree at most 3.
A subgraph H = (VH , EH) of a graph G = (V,E) is a graph such that VH ⊆ V (G) and

EH ⊆ E(G) ∩
(
V (H)

2
)
. If S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is the

graph (S,E(G) ∩
(
S
2
)
). We also define G \ S to be the subgraph of G induced by V (G) \ S.

If S ⊆ E(G), we denote by G \ S the graph (V (G), E(G) \ S).
If s, t ∈ V (G), an (s, t)-path of G is any connected subgraph P of G with maximum

degree 2 and where s, t ∈ L(P). We finally denote by P(G) the set of all paths of G. Given
P ∈ P(G), we say that v ∈ V (P) is an internal vertex of P if degP (v) = 2. Given an integer
i and a graph G, we say that G is i-connected if for each {u, v} ∈

(
V (G)

2
)
, there exists a set

Q ⊆ P(G) of (u, v)-paths of G such that |Q| = i and for each P1, P2 ∈ Q such that P1 6= P2,
V (P1) ∩ V (P2) = {u, v}.

We denote by Kr the complete graph on r vertices, by Kr1,r2 the complete bipartite
graph where the one part has r1 vertices and the other r2, and by K+

2,r the graph obtained
if we take K2,r and add an edge between the two vertices of the part of size 2. Finally we
denote by Pk and Ck the path and cycles of k vertices respectively. We define the diamond
to be the graph K+

2,2.

Minors and topological minors. Given two graphs H and G and two functions φ :
V (H)→ V (G) and σ : E(H)→ P(G), we say that (φ, σ) is a topological minor model of H
in G if

for every {x, y} ∈ E(H), σ({x, y}) is an (φ(x), φ(y))-path in G and
if P1, P2 are two distinct paths in σ(E(H)), then none of the internal vertices of P1 is a
vertex of P2.

CVIT 2017

XX:14 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

The branch vertices of (φ, σ) are the vertices in φ(V (E)), while the subdivision vertices of
(φ, σ) are the internal vertices of the paths in σ(E(H)).

We say that G contains H as a topological minor, denoted by H �tm G, if there is a
topological minor model (φ, σ) of H in G.

Given two graphs H and G and a function φ : V (H)→ 2V (G), we say that φ is a minor
model of H in G if

for every x ∈ V (H), G[φ(x)] is a connected non-empty graph and
for every {x, y} ∈ E(H), there exist x′ ∈ φ(x) and y′ ∈ φ(y) such that {x′, y′} ∈ E(G).

We say that G contains H as a minor, denoted by H �m G, if there is a minor model φ
of H in G.

Proof of Lemma 1. We prove the lemma for the topological minor version, and the minor
version can be proved with the same kind of arguments. Let i, H, G, and S be defined as in
the statement of the lemma. Assume that H �tm G and let (φ, σ) be a topological minor
model of H in G. If S is not a separator of G, then the statement is trivial, as in that case
the cut-clique of (G \S,G, S) is a supergraph of G. Suppose henceforth that S is a separator
of G, and assume for contradiction that there exist two connected components G1 and G2 of
G \ S and two distinct vertices x1 and x2 of H such that φ(x1) ∈ V (G1) and φ(x2) ∈ V (G2).
Then, as H is i-connected, there should be i internally vertex-disjoint paths from φ(x1) to
φ(x2) in G. As S is a separator of size at most i− 1, this is not possible. Thus, there exists
a connected component G′ of G \ S such that for each x ∈ V (H), φ(x) ∈ V (G′) ∪ S. This
implies that H is a topological minor of the cut-clique of (G′, G, S). J

Proof of Lemma 2. Let G, v, V , and H be defined as in the statement of the lemma. Let
B ∈ L(bct(H)). If B is a single edge, then the condition B 6�tm G[V ∪ {v}] implies that
V = ∅. But V is the vertex set of a connected component of G \ {v} and so V 6= ∅. This
implies that the case B is a single edge cannot occur. If B is not a simple edge, then by
definition B is 2-connected and then, by Lemma 1, B �tm G \ V . This implies that there is
a topological minor model (φ, σ) of H in G such that for each B ∈ L(bct(H)) and for each
b ∈ B, φ(b) 6∈ V .

We show now that for each x ∈ V (H), φ(x) 6∈ V . If V (H) \ (
⋃
B∈L(bct(H)) V (B)) = ∅

then the result is already proved. Otherwise, let x ∈ V (H) \ (
⋃
B∈L(bct(H)) V (B)). By

definition of the block-cut tree, there exist b1 and b2 in
⋃
B∈L(bct(H)) V (B) such that x lies on

a (b1, b2)-path P of P(H). Let Pi be the (bi, x)-subpath of P for each i ∈ {1, 2}. By definition
of P , we have that V (P1) ∩ V (P2) = {x}. This implies that there exists a (φ(b1), φ(x))-path
P ′1 and a (φ(b2), φ(x))-path P ′2 in P(G) such that V (P ′1) ∩ V (P ′2) = {φ(x)}. Then, as v is a
cut vertex of G, it follows that φ(x) 6∈ V . Thus, for each x ∈ V (H), φ(x) 6∈ V . Let {x, y} be
an edge of E(H). As σ({x, y}) is a simple (φ(x), φ(y))-path, both φ(x) and φ(y) are not in
V and v is a cut vertex of G, we have, with the same argumentation that before that, for
each z ∈ V (σ({x, y}), z 6∈ V . This concludes the proof. J

In the above lemma, we have required graph H to be connected so that bct(H) is well-
defined, but we could relax this requirement, and replace in both statements “for each leaf B
of bct(H)” with “for each connected component H ′ of H and each leaf B of bct(H ′)”.

Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X), where T is
a tree and X = {Xt | t ∈ V (T)} is a collection of subsets of V (G) such that:⋃

t∈V (T)Xt = V (G),
for every edge {u, v} ∈ E, there is a t ∈ V (T) such that {u, v} ⊆ Xt, and

J. Baste, I. Sau, and D. M. Thilikos XX:15

for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

We call the vertices of T nodes of D and the sets in X bags of D. The width of a tree
decomposition D = (T,X) is maxt∈V (T) |Xt| − 1. The treewidth of a graph G, denoted by
tw(G), is the smallest integer w such that there exists a tree decomposition of G of width at
most w. For each t ∈ V (T), we denote by Et the set E(G[Xt]).

Parameterized complexity. We refer the reader to [8,11] for basic background on para-
meterized complexity, and we recall here only some very basic definitions. A parameterized
problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N, k is called the
parameter. A parameterized problem is fixed-parameter tractable (FPT) if there exists an
algorithm A, a computable function f , and a constant c such that given an instance I = (x, k),
A (called an FPT algorithm) correctly decides whether I ∈ L in time bounded by f(k) · |I|c.

B Boundaried graphs

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,R, λ) where G
is a graph, R ⊆ V (G), |R| = t, and λ : R → N+ is an injective function. We call R the
boundary of G and we call the vertices of R the boundary vertices of G. We also call G the
underlying graph of G. Moreover, we call t = |R| the boundary size of G and we define the
label set of G as Λ(G) = λ(R). We also say that G is a boundaried graph if there exists
an integer t such that G is an t-boundaried graph. We say that a boundary graph G is
consecutive if Λ(G) = [1, |R|]. We define the size of G = (G,R, λ), as |V (G)| and we use
the notation V (G) and E(G) for V (G) and E(G), respectively. If S ⊆ V (G), we define
G′ = G \ S such that G′ = (G′, R′, λ′), G′ = G \ S, R′ = R \ S, and λ′ = λ|R′ . We define
B(t) as the set of all t-boundaried graphs. We also use the notation B∅ = ((∅, {∅}), ∅,∅) to
denote the (unique) 0-boundaried empty boundaried graph.

Given a t-boundaried graph G = (G,R, λ), we define ψG : R→ [1, t] such that for each
v ∈ R, ψG(v) = |{u ∈ R | λ(u) ≤ λ(v)}|. Note that, as λ is an injective function, ψG is a
bijection and, given a boundary vertex v of G, we call ψG(v) the index of v.

Let t ∈ N. We say that two t-boundaried graphs G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2)
are isomorphic if there is a bijection σ : V (G1)→ V (G2) that is an isomorphism σ : V (G1)→
V (G2) from G1 to G2 and additionally ψ−1

G1
◦ ψG2 ⊆ σ, i.e., σ sends the boundary vertices

of G1 to equally-indexed boundary vertices of G2. We say that G1 and G2 are boundary-
isomorphic if ψ−1

G1
◦ ψG2 is an isomorphism from G1[R1] to G2[R2] and we denote this fact

by G1 ∼ G2. It is easy to make the following observation.

I Observation 3. For every t ∈ N, if S is a collection of t-boundaried graphs where |S| > 2(t2),
then S contains at least two boundary-isomorphic graphs.

Topological minors of boundaried graphs. Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2)
be two boundaried graphs. We say that G1 is a topological minor of G2 if there is a topological
minor model (φ, σ) of G1 in G2 such that

ψG1 = ψG2 ◦ φ|R1 , i.e., the vertices of R1 are mapped via φ to equally indexed vertices of
R2 and
none of the vertices in R2 \ φ(R1) is a subdivision vertex of (φ, σ).

Operations on boundaried graphs. Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2) be two
t-boundaried graphs. We define the gluing operation ⊕ such that (G1, R1, λ1)⊕ (G2, R2, λ2)

CVIT 2017

XX:16 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

is the graph G obtained by taking the disjoint union of G1 and G2 and then, for each i ∈ [1, t],
identifying the vertex ψ−1

G1
(i) and the vertex ψ−1

G2
(i). Keep in mind that G1 ⊕G2 is a graph

and not a boundaried graph. Moreover, the operation ⊕ requires both boundaried graphs to
have boundaries of the same size.

Let G = (G,R, λ) be a t-boundaried graph and let I ⊆ N. We denote G|I =
(G,λ−1(I), λ|λ−1(I)), i.e., we do not include in the boundary anymore the vertices that
are not indexed by numbers in I. Clearly, G|I is a t′-boundaried graph where t′ = |I ∩Λ(G)|.

Let G1 = (G1, R1, λ1) and G2 = (G2, R2, λ2) be two boundaried graphs. Let also
I = λ1(R1) ∩ λ2(R2) and let t = |R1|+ |R2| − |I|. We define the merging operation � such
that (G1, R1, λ1)� (G2, R2, λ2) is the t-boundaried graph G = (G,R, λ) where G is obtained
by taking the disjoint union of G1 and G2 and then for each i ∈ I identify the vertex λ−1

1 (i)
with the vertex λ−1

2 (i). Similarly, R is the obtained by R1 ∪ R2 after applying the same
identifications to pairs of vertices in R1 and R2. Finally, λ = λ′1 ∪ λ′2 where, for j ∈ [1, 2],
λ′j is obtained from λj after replacing each (x, i) ∈ λj (for some i ∈ I) by (xnew, i), where
xnew is the result of the identification of λ−1

1 (i) and λ−1
2 (i). Observe that G1 �G2 is a

boundaried graph and that the operation � does not require input boundaried graphs to
have boundaries of the same size.

Let G = (G,R, λ) be a consecutive t-boundaried graph and let I ⊆ N be such that
|I| = t. We define G = (G,R, λ) � I as the unique t-boundaried graph G′ = (G,R, λ′) where
λ′ : R→ I is a bijection and ψG′ = λ.

Equivalence relations. Let F be a regular collection and let t be a non-negative integer.
We define an equivalence relation ≡(F,t) on t-boundaried graphs as follows: Given two
t-boundaried graphs G1 and G2, we write G1 ≡(F,t) G2 to denote that

∀G ∈ B(t) F �tm G⊕G1 ⇐⇒ F �tm G⊕G2.

It is easy to verify that ≡(F,t) is an equivalent relation. We set up a set of representatives
R(F,t) as a set containing, for each equivalent class C of ≡(F,t), some consecutive t-boundaried
graph in C with minimum number of edges and no isolated vertices out of its boundary (if
there are more than one such graphs, pick one arbitrarily). Given a t-boundaried graph G
we denote by rep(F)(G) the t-boundaried graph B ∈ R(F,t) where B ≡(F,t) G and we call B
the F-representative of G. Clearly, rep(F)(B) = B.

Note that if B = (B,R, λ) is a t-boundaried graph and F �tm B, then rep(F)(B) is, by
definition, a consecutive t-boundaried graph whose underlying graph is a graph H ∈ F with
minimum number of edges, possibly completed with t− |V (H)| isolated vertices in the case
where |V (H)| < t. We denote this graph by F(F,t) (if there are many possible choices, just
pick one arbitrarily). Note also that the underlying graph of every boundaried graph in
R(F,t) \ {F(F,t)} belongs in extm(F).

We need the following three lemmata. The first one is a direct consequence of the
definitions of the equivalence relation ≡(F,t) and the set of representatives R(F,t).

I Lemma 22. Let F be a regular collection and let t ∈ N. Let also B1 and B2 be t-boundaried
graphs. Then B1 ≡(F,t) B2 if an only if ∀G ∈ R(F,t) F �tm G⊕B1 ⇐⇒ F �tm G⊕B2.

I Lemma 23. Let F be a connected collection and let t ∈ N. Let also B ∈ R(F,t). Then
every connected component of the underlying graph of B intersects its boundary set.

Proof. Let B = (B,R, λ) ∈ R(F,t). As the lemma follows directly in the case where
B = F(F,t), we may assume that F 6�tm B. We assume, towards a contradiction, that B
has a component C whose vertex set does not contain any of the vertices of R. This means

J. Baste, I. Sau, and D. M. Thilikos XX:17

that B can be seen as the disjoint union of C and B′ = B \ V (C). As F 6�tm B, we also
have that F 6�tm C. Let now B′ = (B′, R, λ). Clearly |E(B′)| < |E(B)|. We will arrive to a
contradiction by proving that B′ ≡(F,t) B. Let G ∈ B(t). Note that G⊕B is the disjoint
union of G⊕B′ and C. As all graphs in F are connected, it follows that a (connected) graph
H ∈ F is a topological minor of G⊕B if and only if H is a topological minor of G⊕B′.
We conclude that B′ ≡(F,t) B, a contradiction. J

I Lemma 24. Let F be a connected collection. Then, for every graph B, it holds that
rep(F)((B, ∅,∅)) = B∅ if and only if F 6�tm G.

Proof. Let B = (B, ∅,∅) where B is a graph. Recall that if F �tm B, then rep(F)(B) =
F(F,t). As F does not contain the empty graph, we have that F(F,t) 6= B∅, therefore
rep(F)(B) 6= B∅.

Suppose now that F 6�tm B. We have to prove that for every G ∈ B(0), F �tm G⊕B ⇐⇒
F �tm G⊕B∅. Let G = (G, ∅,∅) ∈ B(0). Note that G⊕B is the disjoint union of G and
B and that G⊕B∅ = G. As F 6�tm B and F is connected, it follows that the disjoint union
of B and G contains some (connected) graph in F if and only if B does. This implies that
F �tm G⊕B ⇐⇒ F �tm G⊕B∅, as required. J

Folios. Let F be a regular collection. Given t, r ∈ N, we define A(t)
F,r as the set of all pairwise

non-isomorphic boundaried graphs that contain at most r non-boundary vertices, whose
label set is a subset of [1, t], and whose underlying graph belongs in extm(F). Note that a
graph in A(t)

F,r is not necessarily a t-boundaried graph.
Given a t-boundaried graph B and an integer r ∈ N, we define the (F , r)-folio of B,

denoted by folio(B,F , r) the set containing all boundaried graphs in A(t)
F,r that are topological

minors of B. Moreover, in case F �tm B, we also include in folio(B,F , r) the graph F(F,t).
We also define F

(t)
F,r = 2A

(t)
F,r∪{F

(F,t)} and notice that {folio(B,F , r) | B ∈ B(t)} ⊆ F
(t)
F,r,

i.e., F(t)
F,r contains all different (F , r)-folios of t-boundaried graphs.

I Lemma 25. Let t ∈ N and let F be a regular collection. For every t-boundaried graph B
and every r ∈ N, it holds that |folio(B,F , r)| = 2Or+d(t log t), where d = size(F). Moreover,
|F(t)
F,r| = 22Or+d(t log t)

.

Proof. Let t ∈ N, let F be a regular collection, let r ∈ N, and let n = t + r. We prove a
stronger result, namely that |A(t)

F,r| = 2Or+d(t log t). The claimed bound on |F(t)
F,r| then follows

directly by definition of the set F(t)
F,r. By [21], there exists a constant c such that for each

G ∈ extm(F), |E(G)| ≤ c · |V (G)|. By definition, every underlying graph of an element of
A(t)
F,r is in extm(F). If we want to construct an element G = (G,R, λ) of A(t)

F,r with at most
n vertices, then there are asymptotically at most c ·n ·

(
n2

c·n
)
≤ c ·n1+2·c·n choices for the edge

set E(G), at most t ·
(
n
t

)
≤ t · nt choices for R, and t|R| ≤ tt choices for the function λ. We

obtain that A(t)
F,r is of size at most n · 2(1+2·c·n) logn · 2t log t = 2Or+d(t log t), and the lemma

follows. J

The following lemma indicates that folios define a refinement of the equivalence relation
≡(F,t).

I Lemma 26. Let F be a regular collection and let d = size(F). Let also B1 and B2 be two
t-boundaried graphs. If folio(B1,F , d) = folio(B2,F , d), then B1 ≡(F,t) B2.

CVIT 2017

XX:18 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Proof. Let B1 and B2 be two t-boundaried graphs such that folio(B1,F , d) = folio(B2,F , d).
We fix G ∈ B(t), and we need to prove that F �tm G⊕B1 if and only if F �tm G⊕B2.

Assume first that F �tm G ⊕B1. Then there exists a graph F ∈ F and a topological
minor model (φ, σ) of F in G⊕B1. This topological minor model (φ, σ) can be naturally
decomposed into two topological minor models (φ0, σ0) and (φ1, σ1) of two graphs F0
and F1 in A(t)

F,d, respectively, with F0 � F1 = F , such that (φ0, σ0) (resp. (φ1, σ1)) is a
topological minor model of F0 (resp. F1) in the (boundaried) graph G (resp. B1). Since
folio(B1,F , d) = folio(B2,F , d), there exists a topological minor model (φ2, σ2) of F1 in B2.
Combining the topological minor models (φ0, σ0) and (φ2, σ2) gives rise to a topological
minor model (φ′, σ′) of F in G⊕B2, and therefore F �tm G⊕B2.

Conversely, assume that F 6�tm G⊕B1, and assume for contradiction that there exists
a graph F ∈ F and a topological minor model (φ, σ) of F in G ⊕ B2. Using the same
arguments as above, (φ, σ) implies the existence of a topological minor model (φ′, σ′) of F in
G⊕B1, contradicting the hypothesis that F 6�tm G⊕B1. J

Lemmata 25 and 26 directly imply Lemma 8.

Branch decompositions of boundaried graphs. Let G = (G,R, λ) be a boundaried
graph and let ρ be a vertex labeling of G where λ ⊆ ρ.

A branch decomposition of G is a pair (T, σ) where T is a ternary tree and σ : E(G)∪{R} →
L(T) is a bijection. Let r = σ(R) and let er be the unique edge in T that is incident to r. We
call r the root of T . Given an edge e ∈ E(T), we define Te as the one of the two connected
components of T\{e} that does not contain the root r. We then define Ge = (Ge, Re, λe)
where E(Ge) = σ−1(L(Te) ∩ L(T)), V (Ge) =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
E(Ge), Re is the set containing every vertex

of G that is an endpoint of an edge in E(Ge) and also belongs in a set in {R}∪(E(G)\E(Ge))
(here we treat edges in E(G)\E(Ge) as 2-element sets), and λe = ρ|Re . We also set te = |Re|
and observe that Ge is a te-boundaried graph. The width of (T, σ) is max{te | e ∈ E(T)}. The
branchwidth of G, denoted by bw(G), is the minimum width over all branch decompositions
of G.

This is an extension of the definition of a branch decomposition on graphs, given in [28],
to boundaried graphs. Indeed, of G is a graph, then a branch decomposition of G is a branch
decomposition of (G, ∅,∅). We also define the branchwidth of G as bw(G) = bw(G, ∅,∅).

I Lemma 27. Let G = (G,R, λ) be a boundaried graph. Then bw(G) ≤ bw(G) + |R|.

Proof. Let (T ′, σ′) be a branch decomposition of G′ = (G, ∅,∅) and let r be the root of
T ′. Recall that G′e = (G′e, R′e, λ′e), e ∈ E(T ′). We construct a branch decomposition (T, σ)
of G = (G,R, λ) as follows: we set T = T ′ and σ = (σ′ \ {(∅, r)}) ∪ {(R, r)}. Note that
Ge = (G′e, Re, λe), e ∈ E(T), where Re ⊆ R′e ∪ R. This means that |Re| ≤ |R′e| + |R|,
therefore bw(G) ≤ bw(G) + |R|. J

The following proposition is a combination of the single-exponential linear-time constant-
factor approximation of treewidth by Bodlaender et al. [4], with the fact that any graph G
with |E(G)| ≥ 3 satisfies that bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) [28]; it is worth noting that
from the proofs of these inequalities, simple polynomial-time algorithms for transforming a
branch (resp. tree) decomposition into a tree (resp. branch) decompositions can be derived.

I Proposition 28. There exists an algorithm that receives as input a graph G and a w ∈ N
and either reports that bw(G) > w or outputs a branch decomposition (T, σ) of G of width
O(w). Moreover, this algorithm runs in 2O(w) · n steps.

J. Baste, I. Sau, and D. M. Thilikos XX:19

Proof of Lemma 9. Let G ∈ extm(F) and let F ∈ F be a planar subcubic graph. Since F is
subcubic and F �tm G, it follows (see [10]) that F �m G, and since F is planar this implies
by [27] that tw(G), hence bw(G) as well, is bounded by a function depending only on F . J

C Proof of Theorem 3

We provide a dynamic programming algorithm for the computation of tmF (G) for the general
case where F is a regular collection. We first consider an, arbitrarily chosen, vertex labeling
ρ of G. From Lemma 28, we may assume that we have a branch decomposition (T, σ) of
(G, ∅,∅) of width O(w), where w = tw(G). This gives rise to the te-boundaried graphs
Ge = (Ge, Re, λe) for each e ∈ E(T). Moreover, if r is the root of T , σ−1(r) = ∅ = Rer and
Ger = (G, ∅,∅). Keep also in mind that te = O(w) for every e ∈ E(T).

For each e ∈ E(T), we say that (L, C) is an e-pair if L ⊆ Re and C ∈ F
(t′e)
F,d where

t′e = te−|L|. We also denote by Pe the set of all e-pairs. Clearly, |Pe| =
∑
i∈[0,te] 2i · |F(te−i)

F,d |,
therefore, from Lemma 25, |Pe| = 22Od(w logw) .

We then define the function tm(e)
F : Pe → N such that if (L, C) ∈ Pe, then

tm(e)
F (L, C) = min{|S| | S ⊆ V (Ge) ∧ L = Re ∩ S ∧ C = folio(Ge \ S, d)} ∪ {∞}.

Note that Per = ∅ × F
(0)
F,d. Note also that the set A(0)

F,d contains only those that do not
contain some graph in F as a topological minor. Therefore

tmF (G) = min{tm(er)
F (∅, C) | C ∈ 2A

(0)
F,d}.

Hence, our aim is to give a way to compute tm(e)
F for every e ∈ E(T). Our dynamic

programming algorithm does this in a bottom-up fashion, starting from the edges that contain
as endpoints leaves of T that are different from the root. Let ` ∈ L(T) \ {r} and let e` be the
unique edge of T that contains it. Let also σ−1(e`) = {x, y}. Clearly, Ge` = ({x, y}, {{x, y}})
and

Pe` =
{

({x, y},A0
F,d)

}
∪ (
{
{x}, {y}

}
×A(1)

F,d) ∪ ({∅} × A(2)
F,d).

As the size of the elements in Pe` depends only on d, it is possible to compute tm(el)
F in

Od(1) steps.
Let e ∈ {er} ∪ E(T \ L(T)), and let e1 and e2 be the two other edges of T that share an

endpoint with e and where each path from them to r contains e. We also set

Fe =
(
Re1 ∪Re2

)
\Re.

For the dynamic programming algorithm, it is enough to describe how to compute tm(e)
F

given tm(ei)
F , i ∈ [1, 2]. For this, given an e-pair (L, C) ∈ Pe it is possible to verify that

tm(e)
F (L, C) = min

{
tm(e1)
F (L1, C1) + tm(e2)

F (L2, C2)− |L1 ∩ L2| |
(Li, Ci) ∈ Pei , i ∈ [1, 2] ,
Li \ Fe = L ∩Rei , i ∈ [1, 2] ,
L1 ∩ Fe = L2 ∩ Fe, and

C =
⋃

(B1,B2)∈C1×C2

folio
((

(B1 � Z1)� (B2 � Z2)
)
|Z ,F , te − |L|

)
where Z = ρ(Re \ L) and Zi = ρ(Rei \ Li), i ∈ [1, 2]

}
.

CVIT 2017

XX:20 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Note that given tm(ei)
F , i ∈ [1, 2] and a (L,B) ∈ Pe, the value of tm(e)

F (L,B) can be
computed by the above formula in O(|Pe1 | · |Pe2 |) = 22Od(w logw) steps. As |Pe| = 22Od(w logw) ,
the computation of the function tm(e)

F requires again 22Od(w logw) steps. This means that the
whole dynamic programming requires 22Od(w·logw) · |V (T)| = 22Od(w logw) · |E(G)| steps. As
|E(G)| = O(tw(G) · |V (G)|), the claimed running time follows.

D Proof of Theorem 4

We provide a dynamic programming algorithm for the computation of tmF (G). We first
consider an, arbitrarily chosen, vertex labeling ρ of G. From Lemma 28, we may assume
that we have a branch decomposition (T, σ) of (G, ∅,∅) of width at most w = O(bw(G)) =
O(tw(G)) (we naturally extend the definition of branch decompositions to boundary graphs
– see page 18 of Appendix B). This gives rise to the te-boundaried graphs Ge = (Ge, Re, λe)
for each e ∈ E(T). Moreover, if r is the root of T , σ−1(r) = ∅ = Rer and Ger = (G, ∅,∅).
Keep also in mind that te = O(w) for every e ∈ E(T).

Our next step is to define the tables of the dynamic programming algorithm. Let
e ∈ E(T). We call the pair (L,B) an e-pair if L ⊆ Re and B = (B,R, λ) ∈ R(k′,F), where
k′ = |Re \L| = te− |L|. For each e ∈ E(T), we denote by Pe the set of all e-pairs. Note that

|Pe| =
∑

i∈[0,te]

2i · |R(F,te−i)| = (te + 1) · 2te · 2Od(te·log te) = 2Od(w·logw),

where we have used Lemma 11 in the second equality. We define the function tm(e)
F : Pe → N

such that if (L,B) ∈ Pe, then

tm(e)
F (L,B) = min{|S| | S ⊆ V (Ge) ∧ L = Re ∩ S ∧ B = repF (Ge \ S)} ∪ {∞}.

Note that Per = {(∅,B∅), (∅,F(F,t))} where B∅ = ((∅, ∅), ∅,∅). We claim that tmF (G) =
tm(er)
F (∅,B∅). Indeed,

tmF (G) = min{|S| | F 6�tm G \ S} (from Equation (1))
= min{|S| | B∅ = repF ((G \ S, ∅,∅))} (from Lemma 24 in page 17)
= min{|S| | ∅ = ∅ ∩ S ∧ B∅ = repF (G \ S, ∅,∅)}
= min{|S| | ∅ = Rre ∩ S ∧ B∅ = repF (Ger \ S)}
= tm(er)

F (∅,B∅).

Therefore, our aim is to give a way to compute tm(e)
F for every e ∈ E(T). Our dynamic

programming algorithm does this in a bottom-up fashion, starting from the edges that contain
as endpoints leaves of T that are different to the root. Let l ∈ L(T) \ {r} and let e` be the
edge of T that contains it. Let also σ−1(e`) = {x, y}. Clearly, Ge` = ({x, y}, {{x, y}}) and

Pe` =
{

(
{
{x, y}

}
×R(0,F)) ∪ (

{
{x}, {y}

}
×R(1,F)) ∪ (

{
∅
}
×R(2,F)).

As the size of the elements in Pe` depends only on F , it is possible to compute tm(el)
F in

Od(1) steps. Let e ∈ {er} ∪ E(T \ L(T)), and let e1 and e2 be the two other edges of T
that share an endpoint with e and where each path from them to r contains e. We also set
Fe =

(
Re1 ∪Re2

)
\Re. It is enough to describe how to compute tm(e)

F given tm(ei)
F , i ∈ [1, 2].

For this, given an e-pair (L,B) ∈ Pe where B = (B,R, λ), it holds that (see Appendix B for

J. Baste, I. Sau, and D. M. Thilikos XX:21

the undefined operations, which just formalize the natural way of gluing objects):

tm(e)
F (L,B) = min

{
tm(e1)
F (L1,B1) + tm(e2)

F (L2,B2)− |L1 ∩ L2| |
(Li,Bi) ∈ Pei , i ∈ [1, 2],
Li \ Fe = L ∩Rei , i ∈ [1, 2] ,
L1 ∩ Fe = L2 ∩ Fe, and

B = repF
((

(B1 � Z1)� (B2 � Z2)
)
|Z , te − |L|

)
where

Z = ρ(Re \ L) and Zi = ρ(Rei \ Li), i ∈ [1, 2]
}
.

Note that given tm(ei)
F , i ∈ [1, 2] and a (L,B) ∈ Pe, the value of tm(e)

F (L,B) can be
computed by the above formula in O(|Pe1 | · |Pe2 |) = 2Od(w·logw) steps. As |Pe| = 2Od(w·logw),
the computation of the function tm(e)

F requires again 2Od(w·logw) steps. This means that the
whole dynamic programming requires 2Od(w·logw) · |E(T)| = 2Od(w·logw) · O(|E(G)|) steps.
As |E(G)| = O(bw(G) · |V (G)|), the claimed running time follows.

E Proof of Lemma 11

Before we proceed with the proof of Lemma 11, we need a series of results. The proof of the
following lemma uses ideas similar to the ones presented by Garnero et al. [15].

I Lemma 29. There is a function h2 : N× N→ N such that if F is a connected and planar
collection, where d = size(F), t ∈ N, B = (B,R, λ) ∈ R(F,t) \ {F(F,t)}, z ∈ N, and X is a
subset of V (B) such that X ∩R = ∅ and |NB(X)| ≤ z, then |X| ≤ h2(z, d).

Proof. We set h2(z, d) = 2h1(d,µ(d)+z)·(z+µ(d)+1)+ζ(µ(d)+z)−1 + z, where h1 is the function of
Lemma 8, µ is the function of Lemma 9, and ζ : N→ N such that ζ(x) = 2(x2). Let y = µ(d),
q = h1(d, y + z) · (x+ y + 1) · ζ(y + z), s = h2(z, d), and observe that s = 2q−1 + z. Towards
a contradiction, we assume that |X| > s.

Let B = (B,R, λ) ∈ R(F,t) \ {F(F,t)} and let ρ be a vertex-labeling of B where λ ⊆ ρ.
As B 6= F(F,t), it follows that

B ∈ extm(F). (2)

We set G = B[X ∪NB(X)] and observe that |V (G)| ≥ |X| > s. As G is a subgraph of B,
(2) implies that

G ∈ extm(F), (3)

and therefore, from Lemma 9, bw(G) ≤ y. Let R′ = NB(X) and λ′ = ρ|R′ . We set
G = (G,R′, λ′). From Lemma 27, bw(G) ≤ bw(G) + |R′| ≤ y + |R′| = y + z.

Note now that G has at most |R′| connected components. Indeed, if it has more, then one
of them, say C, will not intersect |R′|. This, together with the fact that R ∩X = ∅, implies
that C is also a connected component of B whose vertex set is disjoint from R, a contradiction
to Lemma 23. We conclude that |E(G)| ≥ |V (G)| − |R′| ≥ |V (G)| − z > s− z = 2q−1.

Let (T, σ) be a branch decomposition of G of width at most y + z. We also consider the
graph Ge = (Ge, Re, λe), for each e ∈ E(T) (recall that λe ⊆ ρ). Observe that

∀e ∈ E(T), |Re| ≤ y + z. (4)

We define H = {repF (Ge) | e ∈ E(T)}. From (4), H ⊆
⋃
i∈[0,y+z]R(F,i). From Lemma 8,

|H| ≤ (y + z + 1) · h1(d, y + z), therefore q ≥ |H| · ζ(y + z). Let r be the root of T and let

CVIT 2017

XX:22 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

P be a longest path in T that has r as an endpoint. As B has more than 2q−1 edges, T
also has more than 2q−1 leaves different from r. This means that P has more than q edges.
Recall that q ≥ |H| · ζ(y + z). As a consequence, there is a set S ⊆ {Ge | e ∈ E(P)} where
|S| > ζ(y + z) and repF (S) contains only one boundaried graph (i.e., all the boundaried
graphs in S have the same F-representative). From Observation 3, there are two graphs
Ge1 ,Ge2 ∈ S, e1 6= e2, such that

Ge1 ≡(F,t) Ge2 and (5)
Ge1 ∼ Ge2 . (6)

W.l.o.g., we assume that e1 is in the path in T between r and some endpoint of e2. This
implies that the underlying graph of Ge1 is a proper subgraph of the underlying graph of
Ge2 , therefore

|E(Ge2)| < |E(Ge1)|. (7)

Recall that Gei = (Gei , Rei , λei), i ∈ [1, 2]. Let B− = B \ (V (Ge1) \ Re1) and we set
B− = (B−, Re1 , λe1). Clearly, B− ∼ Ge1 . This, combined with (6), implies that

B− ∼ Ge2 . (8)

Let now B∗ = B− ⊕Ge2 . Combining (7) and (8), we may deduce that

|E(B∗)| < |E(B)|. (9)

We now set B∗ = (B∗, R, λ) and recall that t = |R|. Clearly, both B and B∗ belong in B(t).
We now claim that B ≡(F,t) B∗. For this, we consider any D = (D,R, λ) ∈ B(t). We

define B? = (B−, R, λ), D+ = D⊕B?, and D+ = (D+, Re1 , λe1). Note that

D⊕B = D+ ⊕Ge1 and (10)
D⊕B∗ = D+ ⊕Ge2 . (11)

From (5), we have that F �tm D+ ⊕Ge1 ⇐⇒ F �tm D+ ⊕Ge2 . This, together with (10)
and (11), implies that F �tm D⊕B ⇐⇒ F �tm D⊕B∗, therefore B ≡(F,t) B∗, and the
claim follows.

We just proved that B ≡(F,t) B∗. This, together with (9), contradict the fact that
B ∈ R(F,t). Therefore |X| ≤ s, as required. J

Given a graph G and an integer y, we say that a vertex set S ⊆ V (G) is a branchwidth-y-
modulator if bw(G \ S) ≤ y. This notion is inspired from treewidth-modulators, which have
been recently used in a series of papers (cf., for instance, [5, 14,15,19].

The following proposition is a (weaker) restatement of [14, Lemma 3.10 of the full version]
(see also [19]).

I Proposition 30. There exists a function f2 : N≥1 × N→ N such that if d ∈ N≥1, y ∈ N,
and G is a graph such that G ∈ extm(Kd) and G contains a branchwidth-y-modulator
R, then there exists a partition X of V (G) and an element X0 ∈ X such that R ⊆ X0,
max{|X0|, |X | − 1} ≤ 2 · |R|, and for every X ∈ X \ {X0}, |NG(X)| ≤ f2(d, y).

I Lemma 31. There is a function h3 : N→ N such that if t ∈ N and F is a connected and
planar collection, where d = size(F), then every graph in R(t,F) has at most t ·h3(d) vertices.

J. Baste, I. Sau, and D. M. Thilikos XX:23

Proof. We define h3 : N → N so that h3(d) = 2 + h2(f2(d, µ(d)), µ(d)) where h2 is the
function of Lemma 29, f2 is the function of Proposition 30, and µ is the function of Lemma 9.

As F(F,t) has at most d vertices, we may assume that G = (G,R, λ) ∈ R(t,F) \ {F(F,t)}.
Note that G ∈ extm(F), therefore, from Lemma 9, bw(G) ≤ µ(d). We set y = µ(d) and we
observe that R is a branchwidth-y-modulator of G. Therefore, we can apply Proposition 30
on G and R and obtain a partition X of V (G) and an element X0 ∈ X such that

R ⊆ X0, (12)
max{|X0|, a} ≤ 2 · |R|, and (13)
∀X ∈ X \ {X0} : |NG(X)| ≤ f2(d, y) (14)

From (12) and (14), each X ∈ X \ {X0} is a subset of V (G) such that X ∩ R = ∅ and
|NG(X)| ≤ f2(d, y). Therefore, from Lemma 29, for each X ∈ X \{X0}, |X| ≤ h2(f2(d, y), d).
We obtain that

|G| = |X0|+
∑

X∈X\{X0}

|X|

≤(13) 2 · |R|+ |R| · h2(f2(d, y), d)
= t · (2 + h2(f2(d, y), d))
= t · h3(d),

as required. J

We are finally ready to prove Lemma 11.

Proof of Lemma 11. Before we proceed to the proof we need one more definition. Given
n ∈ N, we set B(F,t)

≤n = A(t)
F,n−t ∪ {F(F,t)}.

Note that, from Lemma 31, R(F,t) ⊆ B(F,t)
≤n , where n = t · h3(d). Also, from Lemma 9,

all graphs in B(F,t)
≤n have branchwidth at most y = max{µ(d), t}. The fact that |B(F,t)

≤n | =
2Od(t·log t) follows easily by applying Proposition 10 for n and y.

The algorithm claimed in the second statement of the lemma constructs a set of repres-
entatives R(F,t) as follows: first it finds a partition Q of B(F,t)

≤n into equivalence classes with
respect to ≡(F,t) and then picks an element with minimum number of edges from each set of
this partition.

The computation of the above partition of B(F,t)
≤n is based on the fact that, given two

t-boundaried graphs B1 and B2, B1 ≡(F,t) B2 iff for every G ∈ B(F,t)
≤n F �tm G⊕B1 ⇐⇒

F �tm G ⊕ B2. This fact follows directly from Lemma 22 and taking into account that
R(F,t) ⊆ B(F,t)

≤n .
Note that it takes |B(F,t)

≤n |3 · Od(1) · tO(1) steps to construct Q. As |B(F,t)
≤n | = 2Od(t·log t) ,

the construction of Q, and therefore of R(F,t) as well, can be done in the claimed number of
steps. J

F Deferred contents of Section 4

Before proving Lemma 12, we first need an auxiliary lemma.

I Lemma 32. Let n0 be a positive integer. Assume that for each graph G′ such that 1 ≤
n(G′) ≤ n0, C4 6�tm G′ if and only if G satisfies the C4-condition. If G is a graph that does not
contain a diamond as a subgraph and such that n(G) = n0, then n(G)−m(G)+c3(G) ≤ cc(G).

CVIT 2017

XX:24 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Proof. Let n0 be a positive integer, and assume that for each graph G′ such that 1 ≤
n(G′) ≤ n0, C4 6�tm G′ if and only if G satisfies the C4-condition. Let G be a graph
that does not contain a diamond as a subgraph and such that n(G) = n0. Let S ⊆ E(G)
such that C4 6�tm G \ S and cc(G \ S) = cc(G) (note that any minimal feedback edge set
satisfies these conditions). We have, by hypothesis, that G \ S satisfies the C4-condition, so
n(G \ S)−m(G \ S) + c3(G \ S) = cc(G \ S). Moreover, as G does not contain a diamond
as a subgraph, each edge of G participates in at most one C3, and thus c3(G)− c3(G \ S) ≤
|S|. As by definition n(G) = n(G \ S) and m(G) − m(G \ S) = |S|, we obtain that
n(G)−m(G) + c3(G) ≤ cc(G \ S) = cc(G). J

Proof of Lemma 12. Let G be a non-empty graph, and assume first that C4 6�tm G. This
directly implies that G does not contain the diamond as a subgraph. In particular, any two
cycles of G, which are necessarily C3’s, cannot share an edge. Let S be a set containing an
arbitrary edge of each C3 in G. By construction, G \ S is a forest. As in a forest F , we
have n(F) −m(F) = cc(F), and S is defined such that |S| = c3(G) because each edge of
G participates in at most one C3, we obtain that n(G)−m(G) + c3(G) = cc(G). Thus, G
satisfies the C4-condition.

Conversely, assume now that G satisfies the C4-condition. We prove that C4 6�tm G

by induction on n(G). If n(G) ≤ 3, then n(G) < n(C4) and so C4 6�tm G. Assume now
that n(G) ≥ 4, and that for each graph G′ such that 1 ≤ n(G′) < n(G), if G′ satisfies the
C4-condition, then C4 6�tm G′. We prove that this last implication is also true for G. Note
that, as two C3 cannot share an edge in G, we have that c3(G) ≤ m(G)

3 . This implies that
the minimum degree of G is at most 3. Indeed, if each vertex of G had degree at least 4,
then m(G) ≥ 2n(G), which together with the relations n(G)−m(G) + c3(G) = cc(G) and
c3(G) ≤ m(G)

3 would imply that cc(G) < 0, a contradiction. Let v ∈ V (G) be a vertex with
minimum degree. We distinguish two cases according to the degree of v.

If v has degree 0 or 1, then the graph G \ {v} satisfies the C4-condition as well, implying
that C4 6�tm G \ {v}. As v has degree at most 1, it cannot be inside a cycle, hence C4 6�tm G.

Assume that v has degree 2 and participates in a C3. As G does not contain a diamond
as a subgraph, C4 �tm G if and only if C4 �tm G \ {v}. Moreover n(G \ {v}) = n(G) − 1,
m(G \ {v}) = m(G) − 2, c3(G \ {v}) = c3(G) − 1, and cc(G \ {v}) = cc(G). This implies
that G \ {v} satisfies the C4-condition, hence C4 6�tm G \ {v}, and therefore C4 6�tm G.

Finally, assume that v has degree 2 and does not belong to any C3. Using the induction
hypothesis and Lemma 32, we have that n(G \ {v})−m(G \ {v}) + c3(G \ {v}) ≤ cc(G \ {v}).
As n(G \ {v}) = n(G)− 1, m(G \ {v}) = m(G)− 2, c3(G \ {v}) = c3(G), v has degree 2 in
G, and G satisfies the C4-condition, we obtain that cc(G \ {v}) = cc(G)− 1. This implies
that G \ {v} satisfies the C4-condition, and thus C4 6�tm G \ {v}. Since v disconnects one of
the connected components of G it cannot participate in a cycle of G, hence C4 6�tm G. J

Proof of Lemma 13. As C4 6�tm G, by Lemma 12 G satisfies the C4-condition. It follows
that c3(G) ≤ 1

3m(G). Moreover, as G is non-empty, we have that 1 ≤ cc(G). The lemma
follows by using these inequalities in the equality n(G)−m(G) + c3(G) = cc(G). J

Computation of At in the dynamic programming algorithm. We distinguish several
cases depending on the type of node t in the nice tree decomposition.

Leaf. By definition of At we have At(∅,∅,∅, 0, 0, 0) = {∅}.
Introduce vertex. Let v be the insertion vertex of Xt, let t′ be the child of t, let s, s0, and r

the functions defined as before, let H = Gt
〈
s−1(1), s−1

0 (1)
〉
, and let d3 be the number of

C3’s of H that contain the vertex v.

J. Baste, I. Sau, and D. M. Thilikos XX:25

If C4 �tm H or if v = v0 and s(v0) = 0, then by definition of At we have that
At(s, s0, r, i, j, `) = ∅.
Otherwise, if s(v) = 0, then,
by the definition of At, At(s, s0, r, i, j, `) = At′(s|Xt′ , s0|Et′ , r|Et′ , i, j, `).
Otherwise, if v = v0, then by construction of the nice tree decomposition, we know
that t′ is a leaf of T and so s = {(v0, 1)}, s0 = r = ∅, j = ` = i − 1 = 0 and
At(s, s0, r, i, j, `) = ins({v0},At′(∅,∅,∅, 0, 0, 0)).
Otherwise, we know that v 6= v0, s(v) = 1, and C4 6�tm H. As s(v) = 1, we have to
insert v and we have to make sure that all vertices of NH [v] are in the same connected
component of H. Moreover, by adding v we add one vertex, |N(v)| edges, and d3 C3’s.
Therefore, we have that
At(s, s0, r, i, j, `) =

glue(NH [v], ins({v},At′(s|Xt′ , s0|Et′ , r|Et′ , i− 1, j − |NH(v)|, `− d3))).

Forget vertex. Let v be the forget vertex of Xt, let t′ be the child of t, and let s, s0, and r
the functions defined as before. For each function, we have a choice on how it can be
extended in t′, and we potentially need to consider every possible such extension. Note
the number of vertices, edges, or C3’s is not affected. We obtain that
At(s, s0, r, i, j, `) = At′(s ∪ {(v, 0)}, s0, r, i, j, `)⋃↓

s′:Xt′→{0,1}, s′|Xt=s, s′(v)=1
s′0:{v0}×s′−1(1)→{0,1}, s′0|Xt=s0

r′:E(Gt〈s′−1(1),s′−1
0 (1)〉)→{0,1}, r′|Xt=r

proj({v}, At′(s′, s′0, r′, i, j, `)).

Join. Let t′ and t′′ be the two children of t, let s, s0, and r be the functions defined as before,
let H = Gt

〈
s−1(1), s−1

0 (1)
〉
, and let S ⊆ E(H) be the set of edges that participate in a

C3 of H.
We join every pair of compatible entries At′(s′, s′0, r′, i′, j′, `′) and At′′(s′′, s′′0 , r′′, i′′, j′′, `′′).
For two such entries being compatible, we need s′ = s′′ = s and s′0 = s′′0 = s0. Moreover,
we do not want the solution graph to contain a diamond as a subgraph, and for this we
need r′−1(1) ∩ r′′−1(1) = S. Indeed, either H contains the diamond as a subgraph, and
then At′(s′, s′0, r′, i′, j′, `′) = At′′(s′′, s′′0 , r′′, i′′, j′′, `′′) = {∅}, or the diamond is created by
joining two C3’s, one from t′ and the other one from t′′, sharing a common edge. This is
possible only if (r′−1(1) ∩ r′′−1(1)) \ S 6= ∅. For the counters, we have to be careful in
order not to count some element twice. We obtain that
At(s, s0, r, i, j, `) =

⋃↓
r′,r′′:E(H)→{0,1},
r′−1(1)∩r′′−1(1)=S
i′+i′′=i+|V (H)|
j′+j′′=j+|E(H)|
`′+`′′=`+c3(H)

join(At′(s, s0, r′, i′, j′, `′), At′′(s, s0, r′′, i′′, j′′, `′′)).

Proof of Theorem 17. The algorithm works in the following way. For each node t ∈
V (T) and for each entry M of its table, instead of storing At(M), we store A′t(M) =
reduce(At(M)) by using Theorem 16. As each of the operation we use preserves representation
by Proposition 15, we obtain that for each node t ∈ V (T) and for each possible entry M ,
A′t(M) represents At(M). In particular, we have that A′r(M) = reduce(Ar(M)) for each
possible entry M . Using the definition of Ar, Lemma 12, and Lemma 13, we have that

CVIT 2017

XX:26 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

tm{C4}(G) ≤ k if and only if for some i ≥ |V (G)∪ {v0}| − k and some j ≤ 2
3 (i− 1), we have

A′r(∅,∅,∅, i, j, 1 + j − i) 6= ∅.
We now focus on the running time of the algorithm. The size of the intermediate

sets of weighted partitions, for a leaf node and for an introduce vertex node are upper-
bounded by 2|s−1(1)|. For a forget vertex node, as in the big union operation we take
into consideration a unique extension of s, at most 2 possible extensions of s0, and at
most 2|s−1(1)| possible extensions for r, we obtain that the intermediate sets of weighted
partitions have size at most 2|s−1(1)| + 2 · 2|s−1(1)| · 2|s−1(1)| ≤ 22|s−1(1)|+2. For a join
node, as in the big union operation we take into consideration at most 2|E(H)| possible
functions r′ and as many functions r′′, at most n + |s−1| choices for i′ and i′′, at most
3
2 (n − 1) + |E(H)| choices for j′ and j′′, and at most 1

2 (n − 1) + 1
3 |E(H)| choices for

`′ and `′′, we obtain that the intermediate sets of weighted partitions have size at most
2|E(H)| · 2|E(H)| · (n+ |s−1|) · (3

2 (n− 1) + |E(H)|) · (1
2 (n− 1) + 1

3 |E(H)|) · 4|s−1(1)|. As each
time we can check the condition C4 6�tm H, by Lemma 13 m(H) ≤ 3

2 (n(H)−1), so we obtain
that the intermediate sets of weighted partitions have size at most 6 ·n3 · 25|s−1(1)|. Moreover,
for each node t ∈ V (T), the function reduce will be called as many times as the number of
possible entries, i.e., at most 2O(w) · n3 times. Thus, using Theorem 16, A′t can be computed
in time 2O(w) · n6. The theorem follows by taking into account the linear number of nodes in
a nice tree decomposition. J

G Single-exponential lower bound for any connected F

I Theorem 33. Let F be a connected collection. Neither F-TM-Deletion nor F-M-
Deletion can be solved in time 2o(tw) · nO(1) unless the ETH fails.

Proof. Let F be a connected collection and recall that w = tw(G). Without loss of generality,
we can assume that F is a topological minor antichain. We present a reduction from Vertex
Cover to F-TM-Deletion, both parameterized by the treewidth of the input graph, and
then we explain the changes to be made to prove the lower bound for F-M-Deletion. It is
known that Vertex Cover cannot be solved in time 2o(w) · nO(1) unless the ETH fails [17]
(in fact, it cannot be solved even in time 2o(n)).

First we select an essential pair (H,B) of F . Let a be the first vertex of (H,B), b be the
second vertex of (H,B), and A be the core of (H,B).

Let G be the input graph of the Vertex Cover problem and let < be an arbitrary total
order on V (G). We build a graph G′ starting from G. For each vertex v of G, we add a copy of
A, which we call Av, and we identify the vertices v and a. For each edge e = {v, v′} ∈ E(G)
with v < v′, we remove e, we add a copy of B, which we call Be, and we identify the
vertices v and a and the vertices v′ and b. This concludes the construction of G′. Note that
|V (G′)| = |V (G)| · |V (A)|+ |E(G)| · |V (B) \ {a, b}| and that tw(G′) = max{tw(G), tw(H)}.

We claim that there exists a solution of size at most k of Vertex Cover in G if and
only if there is a solution of size at most k of F-TM-Deletion in G′.

In one direction, assume that S is a solution of F-TM-Deletion in G′ with |S| ≤ k.
By definition of the problem, for each e = {v, v′} ∈ E(G) with v < v′, either Be contains
an element of S or Av contains an element of S. Let S′ = {v ∈ V (G) | ∃v′ ∈ V (G) : v <
v′, e = {v, v′} ∈ E(G), (V (Be) \ {v, v′}) ∩ S 6= ∅} ∪ {v ∈ V (G) | V (Av) ∩ S 6= ∅}. Then S′ is
a solution of Vertex Cover in G and |S′| ≤ |S| ≤ k.

In the other direction, assume that we have a solution S of size at most k of Vertex
Cover in G. We want to prove that S is also a solution of F-TM-Deletion in G′. For
this, we fix an arbitrary H ′ ∈ F and we show that H ′ is not a topological minor of G′ \ S.

J. Baste, I. Sau, and D. M. Thilikos XX:27

First note that the connected components of G′ \ S are either of the shape Av \ {v} if
v ∈ S, Be \ e if e ⊆ S, or the union of Av with zero, one, or more graphs B{v,v′} \ {v′}
such that {v, v′} ∈ E(G) if v ∈ V (G) \ S. As F is a topological minor antichain, for
any v ∈ V (G), H ′ 6�tm Av \ {v} and for any e ∈ E(G), H ′ 6�tm Be \ e. Moreover, let
v ∈ V (G) \ S and let K be the connected component of G \ S containing v. K is the
union of Av and of every B{v,v′} \ {v′} such that {v, v′} ∈ E(G). As, for each v′ ∈ V (G)
such that {v, v′} ∈ E(G), v′ is not an isolated vertex in B{v,v′}, by definition of B, for any
B′ ∈ L(bct(H ′)), |E(B{v,v′} \ {v′})| < |E(B′)|. This implies that for each leaf B′ of bct(H ′)
and for each {v, v′} ∈ E(G), B′ 6�tm B{v,v

′} \ {v′}. Moreover, it follows by definition of F
that H ′ 6�tm Av. This implies by Lemma 2 that H ′ is not a topological minor of K. Moreover,
as H ′ is connected by hypothesis, it follows that that H ′ is not a topological minor of G′ \ S
either. This concludes the proof for the topological minor version.

Finally, note that the same proof applies to F-M-Deletion as well, just by replacing
F-TM-Deletion with F-M-Deletion,
topological minor with minor,
�tm with �m, and
Lemma 2 with Lemma 34 below. J

The following lemma can be proved analogously to Lemma 2, using the same kind of
argumentation with minors instead of topological minors.

I Lemma 34. Let G be a connected graph, let v be a cut vertex of G, and let V be the vertex
set of a connected component of G \ {v}. If H is a graph such that H �m G and for each
leaf B of bct(H), B 6�m G[V ∪ {v}], then H �m G \ V .

H Single-exponential lower bound for hitting P3’s and P4’s

We first need a simple observation and to introduce nice tree decompositions, which will be
very helpful in the algorithms.

I Observation 4. Let G be a graph and h be a positive integer. Then the following assertions
are equivalent.

G contains Ph as a topological minor.
G contains Ph as a minor.
G contains Ph as a subgraph.

Moreover, the following assertions are also equivalent.
G contains Ch as a topological minor.
G contains Ch as a minor.

Nice tree decompositions. Let D = (T,X) be a tree decomposition of G, r be a vertex of
T , and G = {Gt | t ∈ V (T)} be a collection of subgraphs of G, indexed by the vertices of T .
We say that the triple (D, r,G) is a nice tree decomposition of G if the following conditions
hold:

Xr = ∅ and Gr = G,
each node of D has at most two children in T ,
for each leaf t ∈ V (T), Xt = ∅ and Gt = (∅, ∅). Such t is called a leaf node,
if t ∈ V (T) has exactly one child t′, then either
Xt = Xt′ ∪ {vinsert} for some vinsert 6∈ Xt′ and Gt = G[V (Gt′) ∪ {vinsert}]. The node t
is called introduce vertex node and the vertex vinsert is the insertion vertex of Xt,

CVIT 2017

XX:28 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is called forget
vertex node and vforget is the forget vertex of Xt.

if t ∈ V (T) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , and E(Gt′) ∩
E(Gt′′) = ∅. The node t is called a join node.

As discussed in [20], given a tree decomposition, it is possible to transform it in polynomial
time to a nice new one of the same width. Moreover, by Bodlaender et al. [4] we can find
in time 2O(tw) · n a tree decomposition of width O(tw) of any graph G. Hence, since in
this section we focus on single-exponential algorithms, we may assume that a nice tree
decomposition of width w = O(tw) is given with the input.

H.1 A single-exponential algorithm for {P3}-TM-Deletion
It should be noted that a single-exponential algorithm for {P3}-TM-Deletion is already
known. Indeed, Tu et al. [29] presented an algorithm running in time O∗(4tw), and very
recently Baia et al. [1] improved it to O∗(3tw). Nevertheless, for completeness we present in
this section a simpler algorithm, but involving a greater constant than [1, 29].

We first give a simple structural characterization of the graphs that exclude P3 as a
topological minor.

I Lemma 35. Let G be a graph. P3 6�tm G if and only if each vertex of G has degree at
most 1.

Proof. Let G be a graph. If G has a connected component of size at least 3, then clearly it
contains a P3. This implies that, if P3 6�tm G, then each connected component of G has size
at most 2 and so, each vertex of G has degree at most 1. Conversely, if each vertex of G has
degree at most 1, then, as P3 contains a vertex of degree 2, P3 6�tm G. J

We present an algorithm using classical dynamic programming techniques over a tree
decomposition of the input graph. Let G be an instance of {P3}-TM-Deletion and let
((T,X), r,G) be a nice tree decomposition of G.

We define, for each t ∈ V (T), the set It = {(S, S0) | S, S0 ⊆ Xt, S ∩ S0 = ∅} and a
function rt : It → N such that for each (S, S0) ∈ It, r(S, S0) is the minimum ` such that
there exists a set Ŝ ⊆ V (Gt), called the witness of (S, S0), that satisfies:
|Ŝ| ≤ `,
Ŝ ∩Xt = S,
P3 6�tm Gt \ Ŝ, and
S0 is the set of each vertex of Xt of degree 0 in Gt \ S.

Note that with this definition, tmF (G) = rr(∅, ∅). For each t ∈ V (T), we assume that
we have already computed rt′ for each children t′ of t, and we proceed to the computation of
rt. We distinguish several cases depending on the type of node t.

Leaf. It = {(∅, ∅)} and rt(∅, ∅) = 0.
Introduce vertex. If v is the insertion vertex of Xt and t′ is the child of t, then for each

(S, S0) ∈ It,
rt(S, S0) = min

(
{rt′(S′, S0) + 1 | (S′, S0) ∈ It′ , S = S′ ∪ {v}}
∪ {rt′(S, S′0) | (S, S′0) ∈ It′ , S0 = S′0 ∪ {v}, NGt[Xt](v) \ S = ∅}
∪ {rt′(S, S′0) | (S, S′0) ∈ It′ , S0 = S′0 \ {u}, u ∈ S′0, NGt[Xt](v) \ S = {u}}

)
.

Forget vertex. If v is the forget vertex of Xt and t′ is the child of t, then for each (S, S0) ∈ It,
rt(S, S0) = min{rt′(S′, S′0) | (S′, S′0) ∈ It′ , S = S′ \ {v}, S0 = S′0 \ {v}}

J. Baste, I. Sau, and D. M. Thilikos XX:29

Join. If t′ and t′′ are the children of t, then for each (S, S0) ∈ It,
r(S, S0) = min{r(S′, S′0) + r(S′′, S′′0)− |S′ ∩ S′′|

| (S′, S′0) ∈ It′ , (S′′, S′′0) ∈ It′′ ,
S = S′ ∪ S′′, S0 = S′0 ∩ S′′0 , Xt \ S ⊆ S′0 ∪ S′′0 }.

Let us analize the running time of this algorithm. As, for each t ∈ V (T), S and S0 are
disjoint subsets of Xt, we have that |It| ≤ 3|Xt|. Note that if t is a leaf, then rt can be
computed in time O(1), if t is an introduce vertex or a forget vertex node, and t′ is the child
of t, then rt can be computed in time O(|It′ | · |Xt|), and if t is a join node, and t′ and t′′ are
the two children of t, then rt can be computed in time O(|It′ | · |It′′ | · |Xt|).

We now show that for each t ∈ V (T), the function rt is correctly computed by the
algorithm.

Leaf. This follows directly from the definition of rt.
Introduce vertex. Let v be the insertion vertex of Xt. As v is the insertion vertex, we have

that NGt[Xt](v) = NGt(v), and so for each value we add to the set, we can find a witness
of (S, S0) of size bounded by this value.
Conversely, let (S, S0) ∈ It and let Ŝ be a witness. If v ∈ S, then (S \ {v}, S0) ∈ It′
and r(S \ {v}, S0) ≤ |Ŝ| − 1, if v ∈ S0 then (S, S0 \ {v}) ∈ It′ and r(S, S0 \ {v}) ≤ |Ŝ|,
and if v ∈ Xt \ (S ∪ S0), then by definition v has a unique neighbor, say u, in Gt \ Ŝ,
moreover u ∈ Xt \ (S ∪ S0), v is the unique neighbor of u in Gt \ Ŝ, (S, S0 ∪ {u}) ∈ It′ ,
and r(S, S0 ∪ {u}) ≤ |Ŝ|.

Forget vertex. This also follows directly from the definition of rt.
Join. Let (S′, S′0) ∈ Rt′ and let (S′′, S′′0) ∈ It′′ with witnesses Ŝ′ and Ŝ′′, respectively.

If S = S′ ∪ S′′ and S′0 ∪ S′′0 = Xt \ S, then the condition Xt \ S ⊆ S′0 ∪ S′′0 ensures
that Gt \ (Ŝ′ ∪ Ŝ′′) has no vertex of degree at least 2 and so Ŝ′ ∪ Ŝ′′ is a witness of
(S, S′0 ∩ S′′0) ∈ It of size at most rt′(S′, S′0) + rt′(S′′, S′′0)− |S′ ∩ S′′|.
Conversely, let (S, S0) ∈ It with witness Ŝ. If Ŝ′ = Ŝ ∩ V (Gt′) and Ŝ′′ = Ŝ ∩ V (Gt′′),
then by definition of Ŝ, Ŝ′ is a witness of some (S′, S′0) ∈ It′ , and Ŝ′′ is a witness of some
(S′′, S′′0) ∈ It′′ such that S = S′ = S′′, S′0 ∪ S′′0 = Xt \ S, and S0 = S′0 ∩ S′′0 , and we have
rt′(S′, S′0) + rt′(S′′, S′′0)− |S| ≤ |Ŝ|.

The following theorem summarizes the above discussion.

I Theorem 36. If a nice tree decomposition of G of width w is given, {P3}-TM-Deletion
can be solved in time O(9w · w · n).

H.2 A single-exponential algorithm for {P4}-TM-Deletion
Similarly to what we did for {P3}-TM-Deletion, we start with a structural definition of
the graphs that exclude P4 as a topological minor.

I Lemma 37. Let G be a graph. P4 6�tm G if and only if each connected component of G is
either a C3 or a star.

Proof. First note that if each connected component of G is either a C3 or a star, then
P4 6�tm G. Conversely, assume that P4 6�tm G. Then each connected component of G of size
at least 4 should contain at most 1 vertex of degree at least 2, hence such component is a
star. On the other hand, the only graph on at most 3 vertices that is not a star is C3. The
lemma follows. J

CVIT 2017

XX:30 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

As we did for {P3}-TM-Deletion, we present an algorithm using classical dynamic
programming techniques over a tree decomposition of the input graph. Let G be an instance
of {P4}-Deletion, and let ((T,X), r,G) be a nice tree decomposition of G.

We define, for each t ∈ T , the set It to be the set of each tuple (S, S1+, S1−, S∗, S3+, S3−)
such that {S, S1+, S1−, S∗, S3+, S3−} is a partition of Xt and the function rt : It → N such
that, for each (S, S1+, S1−, S∗, S3+, S3−) ∈ It, rt(S, S1+, S1−, S∗, S3+, S3−) is the minimum
` such that there exists a triple (Ŝ, Ŝ∗, Ŝ3−) ⊆ V (Gt)× V (Gt)× V (Gt), called the witness
of (S, S1+, S1−, S∗, S3+, S3−), which satisfies the following properties:

Ŝ, Ŝ∗, and Ŝ3− are pairwise disjoint,

Ŝ ∩Xt = S, Ŝ∗ ∩Xt = S∗, and Ŝ3− ∩Xt = S3−,

|Ŝ| ≤ `,

P4 6�tm Gt \ Ŝ,

S1+ is a set of vertices of degree 0 in Gt \ Ŝ,

each vertex of S1− has a unique neighbor in Gt \ Ŝ and this neighbor is in Ŝ∗,

each connected component of Gt[Ŝ3−] is a C3,

there is no edge in Gt \ Ŝ between a vertex of Ŝ3− and a vertex of V (Gt) \ (Ŝ ∪ Ŝ3−),

there is no edge in Gt \ Ŝ between a vertex of S3+ and a vertex of V (Gt) \ (Ŝ ∪S3+), and

there is no edge in Gt \ Ŝ between two vertices of S∗.

Intuitively, Ŝ corresponds to a partial solution in Gt. Note that, by Lemma 37, each
component of Gt \ Ŝ must be either a star or a C3. With this in mind, Ŝ∗ is the set of
vertices that are centers of a star in Gt \ Ŝ, S1+ is the set of leaves of a star that are not yet
connected to a vertex of Ŝ∗, S1− is the set of leaves of a star that are already connected to a
vertex of Ŝ∗, Ŝ3− is the set of vertices that induce C3’s in Gt, and S3+ is a set of vertices
that will induce C3’s when further edges will appear.

Note that with this definition, tmF (G) = rr(∅, ∅, ∅, ∅, ∅, ∅). For each t ∈ V (T), we
assume that we have already computed rt′ for each children t′ of t, and we proceed to the
computation of rt. We distinguish several cases depending on the type of node t.

Leaf. It = {(∅, ∅, ∅, ∅, ∅, ∅)} and rt(∅, ∅, ∅, ∅, ∅, ∅) = 0.

Introduce vertex. If v is the insertion vertex of Xt and t′ is the child of t, then, for each
(S, S1+, S1−, S∗, S3+, S3−) ∈ It,

J. Baste, I. Sau, and D. M. Thilikos XX:31

rt(S, S1+, S1−, S∗, S3+, S3−) = min
(
{rt′(S′, S1+, S1−, S∗, S3+, S3−) + 1
| (S′, S1+, S1−, S∗, S3+, S3−) ∈ Rt′ , S = S′ ∪ {v}}

∪ {rt′(S, S′1+, S1−, S∗, S3+, S3−)
| (S, S′1+, S1−, S∗, S3+, S3−) ∈ Rt′ ,
S1+ = S′1+ ∪ {v}, NGt[Xt\S](v) = ∅}

∪ {rt′(S, S1+, S
′
1−, S∗, S3+, S3−)

| (S, S1+, S
′
1−, S∗, S3+, S3−) ∈ Rt′ ,

S1− = S′1− ∪ {v}, z ∈ S∗, NGt[Xt\S](v) = {z}}
∪ {rt′(S, S′1+, S

′
1−, S

′
∗, S3+, S3−)

| (S, S′1+, S
′
1−, S

′
∗, S3+, S3−) ∈ Rt′ ,

S∗ = S′∗ ∪ {v}, NGt[Xt\S](v) ⊆ S′1+,

S1+ = S′1+ \NGt[Xt\S](v), S1− = S′1− ∪NGt[Xt\S](v)}
∪ {rt′(S, S1+, S1−, S∗, S

′
3+, S3−)

| (S, S1+, S1−, S∗, S
′
3+, S3−) ∈ Rt′ ,

S3+ = S′3+ ∪ {v},
[NGt[Xt\S′](v) = ∅] or
[z ∈ S′3+, NGt[Xt\S](v) = {z}, NGt[Xt\S](z) = {v}]}

∪ {rt′(S, S1+, S1−, S∗, S
′
3+, S

′
3−)

| (S, S1+, S1−, S∗, S
′
3+, S3−) ∈ Rt′ ,

S3+ = S′3+ \ {z, z′}, S3− = S′3− ∪ {z, z′, v},
z, z′ ∈ S′3+, NGt[Xt\S](v) = {z, z′},
NGt[Xt\S](z) = {v, z′}, NGt[Xt\S](z′) = {v, z}}

)
.

Forget vertex. If v is the forget vertex of Xt and t′ is the child of t, then, for each
(S, S1+, S1−, S∗, S3+, S3−) ∈ It,

rt(S, S1+, S1−, S∗, S3+, S3−) = min{rt′(S′, S1+, S
′
1−, S

′
∗, S3+, S

′
3−)

| (S′, S1+, S
′
1−, S

′
∗, S3+, S

′
3−) ∈ It′ ,

S = S′ \ {v}, S1− = S′1− \ {v},
S∗ = S′∗ \ {v}, S3− = S′3− \ {v}}.

Join. If t′ and t′′ are the children of t, then for each (S, S1+, S1−, S∗, S3+, S3−) ∈ It,
rt(S, S1+, S1−, S∗, S3+, S3−) is

min{rt′(S, S′1+, S
′
1−, S∗, S

′
3+, S

′
3−) + rt′(S, S′1+, S

′
1−, S∗, S

′
3+, S

′
3−)− |S|

| (S, S′1+, S
′
1−, S∗, S

′
3+, S

′
3−) ∈ It′ , (S, S′′1+, S

′′
1−, S∗, S

′′
3+, S

′′
3−) ∈ It′′ ,

(S′1+ ∪ S′1−) ∩ (S′′3+ ∪ S′′3−) = (S′′1+ ∪ S′′1−) ∩ (S′3+ ∪ S′3−) = ∅,
∀v ∈ S′1− ∩ S′′1−, ∃z ∈ S∗ : NGt[Xt\S](v) = {z},
∀v ∈ S′3− ∩ S′′3−, ∃z, z′ ∈ S′3− ∩ S′′3− : v, z, z′ induce a C3 in Gt[Xt \ S]}.

Let us analyze the running time of this algorithm. As, for each t ∈ V (T), S, S1+, S1−,
S∗, S3+, and S3− form a partition of Xt, we have that |It| ≤ 6|Xt|. Note that if t is a leaf,

CVIT 2017

XX:32 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

then rt can be computed in time O(1), if t is an introduce vertex or a forget vertex node,
and t′ is the child of t, then rt can be computed in time O(|It′ | · |Xt|), and if t is a join node,
and t′ and t′′ are the two children of t, then rt can be computed in time O(|It′ | · |It′′ | · |Xt|).

We now show that for each t ∈ V (T), rt is correctly computed by the algorithm.
For each (S, S1+, S1−, S∗, S3+, S3−) ∈ It, it can be easily checked that each value ` we
compute respects, rt(S, S1+, S1−, S∗, S3+, S3−) ≤ `. Conversely, we now argue that for each
(S, S1+, S1−, S∗, S3+, S3−) ∈ It, the computed value ` is such that for any witness (Ŝ, Ŝ∗, Ŝ3−)
of (S, S1+, S1−, S∗, S3+, S3−) is such that ` ≤ |Ŝ|. We again distinguish the type of node t.

Leaf. This follows directly from the definition of rt.
Introduce vertex. Let v be the insertion vertex of Xt, let (S, S1+, S1−, S∗, S3+, S3−) ∈ Rt,

and let (Ŝ, Ŝ∗, Ŝ3−) be a witness.
If v ∈ S, then (S \ {v}, S1+, S1−, S∗, S3+, S3−) ∈ It′ and
rt′(S \ {v}, S1+, S1−, S∗, S3+, S3−) ≤ |Ŝ| − 1.
If v ∈ S1+, then v is of degree 0 in Gt \ Ŝ, hence (S, S1+ \ {v}, S1−, S∗, S3+, S3−) ∈ It′
and rt′(S, S1+ \ {v}, S1−, S∗, S3+, S3−) ≤ |Ŝ|.
If v ∈ S1−, then v has a unique neighbor that is in Ŝ∗. As v is the insertion vertex
of Xt, it implies that NGt(v) ⊆ S∗, and so (S, S1+, S1− \ {v}, S∗, S3+, S3−) ∈ It′ and
rt′(S, S1+, S1− \ {v}, S∗, S3+, S3−) ≤ |Ŝ|.
If v ∈ S∗, then every neighbor of v is in S1− and has degree 1 in Gt \ Ŝ. Thus,
(S, S1+ ∪ NGt[Xt\S](v), S1− \ NGt[Xt\S](v), S∗ \ {v}, S3+, S3−) ∈ It′ and rt′(S, S1+ ∪
NGt[Xt\S](v), S1− \NGt[Xt\S](v), S∗ \ {v}, S3+, S3−) ≤ |Ŝ|.
If v ∈ S3+, then (S, S1+, S1−, S∗, S3+ \ {v}, S3−) ∈ It′ and rt′(S, S1+, S1−, S∗, S3+ \
{v}, S3−) ≤ |Ŝ|.
If v ∈ S3−, then there exist z and z′ in S3− such that {v, z, z′} induce a C3 in
Gt \ Ŝ and there is no edge in Gt \ Ŝ between a vertex of {v, z, z′} and a vertex
of V (Gt \ Ŝ) \ {x, z, z′}. So (S, S1+, S1−, S∗, S3+ ∪ {z, z′}, S3− \ {x, z, z′}) ∈ It′ and
rt′(S, S1+, S1−, S∗, S3+ ∪ {z, z′}, S3− \ {x, z, z′}) ≤ |Ŝ|.

Forget vertex. Let v be the forget vertex of Xt, let (S, S1+, S1−, S∗, S3+, S3−) ∈ It, and
let (Ŝ, Ŝ∗, Ŝ3−) be a witness. If v has degree 0 in Gt \ Ŝ, then (S, S1+, S1−, S∗ ∪
{v}, S3+, S3−) ∈ It′ and rt′(S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ≤ |Ŝ|. If v has degree
at least 1 in Gt \ Ŝ, then NGt\Ŝ(v) ∩ S3+ = ∅, as otherwise there would be an edge in
Gt \ Ŝ between a vertex of S3+ and a vertex of V (Gt)\ (Ŝ ∪S3+). So, one of the following
case occurs:
v ∈ Ŝ, (S ∪ {v}, S1+, S1−, S∗, S3+, S3−) ∈ It′ , and
rt′(S ∪ {v}, S1+, S1−, S∗, S3+, S3−) ≤ |Ŝ|,
v ∈ Ŝ∗, (S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ∈ It′ , and
rt′(S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ≤ |Ŝ|,
N
Gt\Ŝ

(v) ⊆ Ŝ∗, (S, S1+, S1− ∪ {v}, S∗, S3+, S3−) ∈ It′ , and
rt′(S, S1+, S1− ∪ {v}, S∗, S3+, S3−) ≤ |Ŝ|, or
v ∈ Ŝ3−, (S, S1+, S1−, S∗, S3+, S3− ∪ {v}) ∈ It′ , and
rt′(S, S1+, S1−, S∗, S3+, S3− ∪ {v}) ≤ |Ŝ|

Join. Let (S, S1+, S1−, S∗, S3+, S3−) ∈ It, and let (Ŝ, Ŝ∗, Ŝ3−) be a witness. Let t′ and t′′
be the two children of t. We define Ŝ′ = Ŝ ∩ V (Gt′), Ŝ′′ = Ŝ ∩ V (Gt′′), Ŝ′∗ = Ŝ∗ ∩ V (Gt′),
Ŝ′′∗ = Ŝ∗ ∩ V (Gt′′), Ŝ′3− ⊆ Ŝ3− ∩ V (Gt′), and Ŝ′′3− ⊆ Ŝ3− ∩ V (Gt′′), such that each
connected component of Gt[Ŝ′3−] (resp. Gt[Ŝ′′3−]) is a C3 and Gt′ \ (Ŝ′ ∪ Ŝ′3−) (resp.
Gt′′ \ (Ŝ′′ ∪ Ŝ′′3−)) is a forest). Then we define
S′ = Ŝ′ ∩Xt,

J. Baste, I. Sau, and D. M. Thilikos XX:33

S′1+ = S1+ ∪ {v ∈ S1− | NGt\Ŝ(v) 6⊆ Ŝ′∗},

S′1− = {v ∈ S1− | NGt\Ŝ(v) ⊆ Ŝ′∗},
S′∗ = S∗ ∩ V (Gt′),
S′3− = Ŝ′3− ∩Xt, and
S′3+ = S3+ ∪ (S3− \ S′3−).

Note that (S′, S′1+, S
′
1−, S

′
∗, S
′
3+, S

′
3−) ∈ I ′t. We define (S′′, S′′1+, S

′′
1−, S

′′
∗ , S

′′
3+, S

′′
3−) ∈ I ′′t

similarly. Moreover we can easily check that
S = S′ = S′′, S∗ = S′∗ = S′′∗ ,
(S′1+ ∪ S′1−) ∩ (S′′3+ ∪ S′′3−) = (S′′1+ ∪ S′′1−) ∩ (S′3+ ∪ S′3−) = ∅,
∀v ∈ S′1− ∩ S′′1−,∃z ∈ S∗ : NGt[Xt\S](v) = {z},
∀v ∈ S′3− ∩ S′′3−,∃z, z′ ∈ S′3− ∩ S′′3− : v, z, z′ induce a C3 in Gt[Xt \ S],
(S, S1+, S1−, S∗, S3+, S3−) = (S, S′1+ ∩S′′1+, S

′
1− ∪S′′1−, S∗, S′3+ ∩S′′3+, S

′
3− ∪S′′3−), and

rt′(S′, S′1+, S
′
1−, S

′
∗, S
′
3+, S

′
3−) + rt′′(S′′, S′′1+, S

′′
1−, S

′′
∗ , S

′′
3+, S

′′
3−)− |S| ≤ |Ŝ|.

This concludes the proof of correctness of the algorithm. The following theorem summar-
izes the above discussion.

I Theorem 38. If a nice tree decomposition of G of width w is given, {P4}-Deletion can
be solved in time O(36w · w · n).

I Deferred contents of Section 5

In this section we present the deferred contents of Section 5. Namely, in Subsection I.1 we
present the proofs, figures, and results that have been omitted from the general construction.
Then, in Subsection I.2 (resp. Subsection I.3) we explain how to conclude the reduction when
F is a subset of P (resp. subset of K). Finally, we explain in Subsection I.4 the changes to
be made to prove the hardness result for the minor version.

I.1 Deferred contents of the general construction
Proof of Proposition 21. In any solution we need, for each i ∈ [1, s], to take two vertices
among xi, z2i−1, and z2i. This implies that any solution is of size at least 2s. Moreover, for
every i ∈ [1, s], the set {xj | j 6= i} ∪ {z2j−1 | j ∈ [1, i]} ∪ {z2j | j ∈ [i, s]} is a solution of
F-TM-Deletion in the H-choice gadget of size 2s. This can be seen using Lemma 2 and the
fact that F is a topological minor antichain, as we did in the proof of Theorem 33. Finally,
note that any solution need to contain at least s+ 1 vertices from {zi | i ∈ [0, 2s+ 1]}. This
implies that in any solution S of size at most 2s, at least one vertex from {xi | i ∈ [1, s]} is
not in S. J

Definition of the σ-general H-solution. Let σ : [1, k] → [1, k] be a permutation. If
{(σ(i), i) | i ∈ [1, k]} induces a k-clique in G, then we say that σ is a solution of k × k
Permutation Clique on (G, k). We denote by eσp,q the edge {(σ(p), p), (σ(q), q)}. With
such σ, we associate a σ-general H-solution S such that

S ⊆ V (G′),
|S| = 3|E(G)|+ 2k2,
for each j ∈ [1, k], S restricted to the H-choice gadget connecting {ti,j | i ∈ [1, k]} is a
solution of F-TM-Deletion of size 2k such that {ti,j | i ∈ [1, k]} \ {tσ(j),j} ⊆ S and
tσ(j),j 6∈ S,

CVIT 2017

XX:34 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

c1

r1

c2

r2

c3

r3

t1,1 t2,1 t3,1

t1,2 t2,2 t3,2

t1,3 t2,3 t3,3

Figure 1 The general H-construction, where the dotted parts correspond to H-edge gadgets,
without the encoding of the edges of E(G).

cp(e)

rγ(e)

cq(e)

rδ(e)

d`e dme dre

Figure 2 The encoding of an edge e = {(p(e), γ(e)), (q(e), δ(e))} of G, where the dotted lines
correspond to a double H-edge gadget.

for each p, q ∈ [1, k], p < q, such that eσp,q ∈ E(G), S restricted to the H-choice gadget
connecting {d`e | e ∈ E(p, q)} is a solution of F-TM-Deletion of size 2|E(p, q)| such
that {d`e | e ∈ E(p, q) \ {eσp,q}} ⊆ S and d`eσp,q 6∈ S,
for each p, q ∈ [1, k], {dre | e ∈ E(p, q) \ {eσp,q}} ⊆ S and dreσp,q 6∈ S, and
for each p, q ∈ [1, k], dmeσp,q ∈ S.

Note that, with this construction of S, we already impose 3|E(G)|+ 2k2 vertices to be in
S, and therefore no other vertex of G′ can be in S.

Definition of the associated permutation of a set satisfying the permutation
property. Given S ⊆ V (G′), we say that S satisfies the permutation property if

for each e ∈ E(G) such that d`e 6∈ S and for each j ∈ [1, k] \ {γ(e)}, tp(e),j ∈ S, and
for each e ∈ E(G) such that dre 6∈ S and for each j ∈ [1, k] \ {δ(e)}, tq(e),j ∈ S.

I Lemma 39. If S is a subset of V (G′) such that
|S| ≤ 3|E(G)|+ 2k2,
for each H-choice gadget, S restricted to this H-choice gadget is a solution of F-TM-
Deletion of minimum size,
for each edge e ∈ E(G), S is such that either {d`e, dme , dre}∩S = {d`e, dre} or {d`e, dme , dre}∩
S = {dme }, and
S satisfies the permutation property,

then

J. Baste, I. Sau, and D. M. Thilikos XX:35

there is a unique permutation σ : [1, k]→ [1, k] such that S ∩ {ti,j | i, j ∈ [1, k]} = {ti,j |
i, j ∈ [1, k]} \ {tσ(j),j | j ∈ [1, k]} and
{(σ(j), j) | j ∈ [1, k]} induces a clique in G.

Proof. By hypothesis, for each 1 ≤ p < q ≤ k, we know that there is an edge e ∈ E(p, q)
such that d`e 6∈ S and dre 6∈ S. As S satisfies the permutation property, this implies that for
each set {ti,j | i ∈ [1, k]}, j ∈ [1, k], at most one vertex is not in S. As we have supposed
that for each set {ti,j | j ∈ [1, k]}, i ∈ [1, k], at least one vertex is not in S, this implies that
there is a unique permutation σ : [1, k] → [1, k] such that S ∩ {ti,j | i, j ∈ [1, k]} = {ti,j |
i, j ∈ [1, k]} \ {tσ(j),j | j ∈ [1, k]}. Moreover, for each 1 ≤ p < q ≤ k, eσp,q ∈ E(G). Indeed, if
eσp,q 6∈ E(G), then there exists e ∈ E(p, q) such that σ(γ(e)) 6= p or σ(δ(e)) 6= q and such that
d`e 6∈ S and dre 6∈ S. Assume without loss of generality, that σ(γ(e)) 6= p. As tp,σ−1(p) 6∈ S,
this contradicts the fact that S satisfies the permutation property. J

We call the permutation given by Lemma 39 the associated permutation of S.

I.2 Reduction for paths
I Theorem 40. Given an integer h ≥ 6, the {Ph}-TM-Deletion problem cannot be solved
in time 2o(tw log tw) · nO(1), unless the ETH fails.

Proof. Let h ≥ 6 be an integer and let F = {Ph}. Let (G, k) be an instance of k × k
Permutation Clique and let (G′, `) be the general Ph-construction of (G, k) described in
Section 5. We build G′′ starting from G′ by adding, for each i, j ∈ [1, k], a pendant path of
size h− 6 to ti,j . This completes the construction of G′′. Note that if h = 6, then G′′ = G′.

Let σ be a solution of k × k Permutation Clique on (G, k) and let S be the σ-general
Ph-solution. To show that G′′ \ S does not contain Ph as a topological minor, we show that
each connected component of G′′\S does not contain Ph as a topological minor. Note that, by
definition of S, the only connected components of G′′\S that can contain Ph are the connected
components that contain a vertex in {ci | i ∈ [1, k]} ∪ {rj | j ∈ [1, k]}. Moreover, each of
these connected components is a subgraph of G′′ induced by {rj , cσ(j), tσ(j),j} ∪ {d`e | e ∈
E(G), σ(γ(e)) = p(e), σ(δ(e)) = q(e), p(e) = j} ∪ {dre | e ∈ E(G), σ(γ(e)) = p(e), σ(δ(e)) =
q(e), q(e) = j} and the vertices of the path of size h− 6 pendant to tσ(j),j , for some j ∈ [1, k].
These connected components, depicted in Figure 3 for the case h = 8, do not contain Ph as a
topological minor, as it can be easily checked that a longest path in them has h− 1 vertices.
Therefore, S is a solution of F-TM-Deletion on (G′′, `).

ri

cσ(i)

ti,σ(i)
· · ·

pendant path of size 2

Figure 3 The connected component of G′′ \ S that contains the vertex ri, i ∈ [1, k] where h = 8.

CVIT 2017

XX:36 Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth

Conversely, let S be a solution of F-TM-Deletion on (G′′, `). We first show that
S satisfies the permutation property. Let e ∈ E(G) be such that d`e 6∈ S and assume
that tp(e),j 6∈ S for some j ∈ [1, k] \ {γ(e)}. By construction of the Ph-choice gadget,
we know that there exists i0 ∈ [1, k] such that ti0,γ(e) 6∈ S. This implies that the path
rjtp(e),jcp(e)d

`
erγ(e)ti0,γ(e) together with the pendant path with h − 6 vertices attached to

ti0,γ(e) form a path with h vertices. As the same argument also works if dre 6∈ S, it follows
that S satisfies the permutation property, concluding the proof. J

I.3 Reduction for subsets of K

I Theorem 41. Given a regular collection F ⊆ K, the F-TM-Deletion problem cannot be
solved in time 2o(tw log tw) · nO(1), unless the ETH fails.

Proof. Let F ⊆ K be a regular collection. We assume without loss of generality that F is a
topological minor antichain. Let (H,B) be an essential pair of F , let a be the first vertex
of (H,B), let b be the second vertex of (H,B), let B = (V (B), E(B) \ {a, b}), and let C
be the core of (H,B). Let (G, k) be an instance of k × k Permutation Clique and let
(G′, `) be the general H-construction of (G, k). We build G′′ starting from G′ by adding a
new vertex r0, adding a copy of the core of (H,B) and identifying a and r0, and adding for
each j ∈ [1, k] a copy of B in which we identify a and r0, and b and rj . This completes the
construction of G′′.

Let σ be a solution of k × k Permutation Clique on (G, k) and let S be the σ-general
H-solution. We show that F 6�tm G′′ \S. For this, let us fix H ′ ∈ F . Note that, by definition
of S, the only connected component of G′′ \ S that can contain H ′ is the one containing
{ci | i ∈ [1, k]} ∪ {rj | j ∈ [1, k]}. Let K be this connected component, depicted in Figure 4.
Note that for each j ∈ [0, k], rj is a cut vertex of K. Moreover, we know that H ′ 6�tm C and
for each B′ ∈ L(bct(H ′)), B′ 6�tm B and B′ 6�tm K2,k. This implies, using Lemma 2, that H ′
is not a topological minor of K. Therefore, S is a solution of F-TM-Deletion on (G′′, `).

r1

r2

r3

r0

cσ(1)

cσ(2)

cσ(3)

B

B

B

C

Figure 4 The main connected component of G′′ \ S.

Conversely, let S be a solution of F-TM-Deletion on (G′′, `). We show that S satisfies
the permutation property. Let e ∈ E(G) be such that d`e 6∈ S and assume that tp(e),j 6∈ S for
some j ∈ [1, k] \ {γ(e)}. This implies that there exists in G′′ \ S a (r0, rγ(e))-path that uses
the vertices r0, rj , tp(e),j , cp(e), d`e, and rγ(e) and that does not use any edge of the graph
B = (V (B), E(B) \ {a, b}) between r0 and rγ(e). By construction, this implies that H is a
topological minor of G′′ \ S. As the same argument also works if dre 6∈ S, it follows that S
satisfies the permutation property, concluding the proof. J

J. Baste, I. Sau, and D. M. Thilikos XX:37

I.4 The minor version
Theorems 40 and 41 allow to prove the statement of Theorem 18 for topological minors.
The equivalent statement of Theorem 18 for minors follows from the same proof as for the
topological minor version by applying the following local modifications:

we replace F-TM-Deletion with F-M-Deletion,
we replace topological minor with minor,
we replace �tm with �m, and
we replace Lemma 2 with Lemma 34.

CVIT 2017

	Introduction
	Preliminaries
	Dynamic programming algorithms for computing tmF
	Single-exponential algorithms for hitting paths and cycles
	Superexponential lower bound for specific cases
	Extended preliminaries
	Boundaried graphs
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Lemma 11
	Deferred contents of Section 4
	Single-exponential lower bound for any connected F
	Single-exponential lower bound for hitting P3's and P4's
	A single-exponential algorithm for {P3}-TM-Deletion
	A single-exponential algorithm for {P4}-TM-Deletion

	Deferred contents of Section 5
	Deferred contents of the general construction
	Reduction for paths
	Reduction for subsets of K
	The minor version

